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IMPROVED ERROR BOUNDS FOR
UNDERDETERMINED SYSTEM SOLVERS*

JAMES W. DEMMELt AND NICHOLAS J. HIGHAM$

Abstract. The minimal 2-norm solution to an underdetermined system Ax b of full rank can
be computed using a QR factorization of AT in two different ways. One method requires storage
and reuse of the orthogonal matrix Q, while the method of seminormal equations does not. Existing
error analyses show that both methods produce computed solutions whose normwise relative error
is bounded to first order by ca2(A)u, where c is a constant depending on the dimensions of A,
2(A) IIA+II211AII2 is the 2-norm condition number, and u is the unit roundoff. It is shown that
these error bounds can be strengthened by replacing 2(A) by the potentially much smaller quantity
cond2(A) IA+I IA1112, which is invariant under row scaling of A. It is also shown that cond2(A)
reflects the sensitivity of the minimum norm solution x to row-wise relative perturbations in the data
A and b. For square linear systems Ax b row equilibration is shown to endow solution methods
based on LU or QR factorization of A with relative error bounds proportional to condo(A), just as
when a QR factorization of AT is used. The advantages of using fixed precision iterative refinement
in this context instead of row equilibration are explained.
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1. Introduction. Consider the underdetermined system Ax b, where A E
]Rmn with m _< n. The system can be analysed using a QR factorization

(1.1) AT Q [R 10

where Q IRnn is orthogonal and R IRmm is upper triangular. We have

(1.2) b- Ax RT O] QTx- RTyl,

where

[YI]--QTx.Y--
Y2

If A has full rank then Yl R-Tb is uniquely determined and all solutions of Ax b
are given by

Y2
Y2 arbitrary.

The unique solution XLS that minimizes Ilxl12 is obtained by setting Y2 0. We have

(1.3) XLs Q [Rb]
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AT(AAT)-Ib

A+b,

where A+ AT(AAT)-1 is the pseudoinverse of A.
Equation (1.3) defines one way to compute XLS. This is the method described in

[13, Chap. 13], and we refer to it as the "Q method." When A is large and sparse it
is desirable to avoid storing and accessing Q, which can be expensive. An alternative
method with this property was suggested by Gill and Murray [6] and Saunders [16].
This method again uses the QR factorization (1.1) but computes XLS as XLS ATy,
where

(1.5) RTRy b

(cf. (1.4)). These latter equations are called the seminormal equations (SNE), since
they are equivalent to the "normal equations" AATy b. As the "semi" denotes,
however, this method does not explicitly form AAT, which would be undesirable from
the standpoint of numerical stability. We stress that equations (1.5) are different
from the equations RTRx ATb for an overdetermined least squares problem, where
A Q[RT 0 IT E ]Rmn with m _> n, yet these are also referred to as seminormal
equations [4]. In this paper we are solely concerned with underdetermined systems so
no confusion should arise.

Other methods for obtaining minimal 2-norm solutions of underdetermined sys-
tems are surveyed in [5].

Existing perturbation theory for the minimum norm solution problem, and error
analysis for the above QR factorization-based methods, can be summarised as follows.

(1) Golub and Van Loan [7, Thm. 5.7.1] prove the following perturbation re-
sult. (Similar results are proved in [13, Thm. 9.18] and [20, Thm. 5.1].) Here,
a(A) denotes the ith largest singular value of A E ]R"’ and, if rank(A) m,

THEOREM 1.1. Let A ]Fmn and 0 b lRm. Suppose that rank(A) m _< n
and that AA IR"n and Ab lRm satisfy

mx{llAAll/llAll, IIAbll/llbll} < am(A).

If x and are the minimum norm solutions to Ax b and (A + AA) b + Ab,
respectively, then

(1.6) _< min{3, n m + 2}n2(A) + O(e2).

This result shows that small relative changes in the data A and b produce relative
changes in the minimum norm solution x that are at most n2(A) times as large. Unlike
for the overdetermined least squares problem there is no term in n2(A)2.

(2) Arioli and Laratta [2, Thm. 4] show that the computed solution from the
Q method satisfies

(1.7) <_ clun2(A) + O(u2),
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TABLE 1.1
Stability classification scheme.

Normwise
Row-wise
Componentwise

Backward stability Forward stability
N N
R R
C C

where ci denotes a modest constant depending on rn and n, and u is the unit roundoff.
(Arioli and Laratta actually analyse a slightly more general problem in which IIx-wll2
is minimized for a given vector w; we have taken w--0.)

(3) Paige [15] shows that the computed solution from the method of seminormal
equations satisfies

a:(A)c:u(1 + n2(A)c3u)(1.8) 11"2- xl12 <_ a2(A)clu +Ilxll 
The bounds (1.7) and (1.8) are of the same form as (1.6). One implication of

these existing results is that both the Q method and the SNE method are stable in
the sense that the relative errors in the computed solutions reflect the sensitivity of
the minimum norm problem to general perturbations in the data.

The purpose of this paper is to show that the results in (2) and (3) can be
strengthened significantly by using componentwise analysis. First, in 2, we prove a
version of Theorem 1.1 for componentwise perturbations; thus we measure AA and
Ab by the smallest e such that

(1.9) IAAI <_ BE, IAbl <_ ef,

where E _> 0 and f _> 0 contain arbitrary tolerances and inequalities hold compo-
nentwise. We obtain an analogue of (1.6) with a2(A) replaced by a potentially much
smaller quantity that depends on A, x, E, and f.

In 3 we show that the term t2(A) in (1.7) and (1.8) can be replaced by

conde(A) IA+I IAI I1,

which is a generalization of the condition number II IA-I IA1112 for square matrices
introduced by Bauer [3] and Skeel [17]. This is important because cond2(A) can be
arbitrarily smaller than a:(A), since cond2(A) is invariant under row scalings A --, DA
(D diagonal and nonsingular), whereas a2(A)is not. And cond2(A) cannot be much
bigger than a2(A) since

(1.10) cond2(A) <_ ]A+] 1121] IAI 112 <- nilA+IJ211AII2 na2(A).

In 4 and 5 we investigate stability issues, and we encounter several different
types of stability. To put these different types into perspective, we present a scheme
that classifies six different kinds of stability in Table 1.1. (We appreciate that it can
be counterproductive to over-formalize stability, but we believe that this scheme helps
to clarify the overall picture.)

To explain the terminology we define for A E ]R"n, with m _< n, the backward
error

WE,I(Y) min{e B AA E lR"’, Ab ]R" s.t. y is the minimum norm

solution to (A + AA)y b + Ab, and IAAI _< BE, IAbl <_ f},
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where E >_ 0 and f >_ 0 are given. Note that if we were to remove the minimum norm
requirement on y in the definition of WE,f then the backward error would be given by

Ib- Ayli
(1.11) max

as shown in [14]. The three measures of backward stability in Table 1.1 correspond
to the following choices of E and f, where en (1, 1,..., 1)T E ]Rn"

(1.12)

Tnormwise (wN) EN- IIA[12eme,, fN Ilbll2em,
row-wise (wR) ER IAI%eT, fR Ibl,

componentwise (wC) Ec IAI, fc Ibl.

A small value for wR(y) means that y is the minimum norm solution to a perturbed
system where the perturbation to the ith row of A is small compared with the norm
of the ith row (similarly for b). We say, for example, that a numerical method for
solving Ax b is in backward stability category R (or is row-wise backward stable)
if it produces a computed solution such that wR() is of order the unit roundoff.

For each type of backward error there is a perturbation result that bounds

IIx yl12/llXl12 by a multiple of WE,f (y), and the multiplier defines a condition num-
ber. As explained in 2, for underdetermined systems the conditions numbers are

2(A) for wN, cond2(A) for w, and a quantity cond2(A, x) that depends on both A
and x for we. Continuing the "R-stability" example above, we say that a method
is in forward stability category R if it has a forward error bound of order cond2(A)
times the unit roundoff. An algorithm that has backward stability X (where X N,
R, or C) automatically has forward stability X; one of the reasons these definitions
are useful is that an algorithm can have forward stability X without having backward
stability X.

In this terminology, the gist of 3 is that the Q method and the SNE method have
forward stability R, whereas previous results guaranteed only forward stability N.

In 4 we explain why the Q method is (nearly) row-wise backward stable but the
SNE method is not backward stable at all. We give some numerical results to provide
insight into the error bounds, and to illustrate the performance of fixed precision
iterative refinement with the SNE method.

In 5 we consider the implications of the results of 3 for square linear systems. We
show that row equilibration of the system Ax b allows methods based on LU and QR
factorization of A to produce computed solutions whose relative errors are bounded
in the same way as when a QR factorization of AT is used--namely by a multiple
of cond(A)u (corresponding to row-wise forward stability). We explain why fixed
precision iterative refinement leads to an even more satisfactory computed solution
than row equilibration, and we provide two numerical examples for illustration.

2. Componentwise perturbation result. In this section we prove the follow-
ing componentwise perturbation result for the minimum norm problem, and use it to
determine the condition numbers for the perturbation measures in (1.12).

THEOREM 2.1. Let A ]Rmn and 0 =/= b lRm. Suppose that rank(A) m _< n,
and that

]AAI

_
E, IAbl f,
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where E > O, f >_ O, and el[Eli2 < am(A). Ifx and are the minimum norm solutions
to Ax b and (A + AA) b + Ab, respectively, then

(2.1)

(ll lI A+AI ET" IA+Txl II + IA+I (f + Elxl)I12)ilxli2 + O(d).

Proof. A + AA has full rank so we can manipulate the equation

(A + AA)T((A + AA)(A + AA)T)-I(b + Ab)

to obtain

x (I A+A)AAT(AAT)-lb + A+(Ab AAx) + O(e2)

(I A+A)AATA+Tx + A+(Ab- AAx) + O(e2).

Taking norms and then using absolute value inequalities, together with the mono-
tonicity property Ixl < y = Ilxl12 < IlYlI2, we have

I1- xl12 I1(I A+A)AATA+Tx[[ + IIA+(Ab AAx)[Ie + O(e)
-< (11 I A+AI ET" IA/Txl I1 + IA/I (f + Elxl)[1) + O(d),

as required.
We note that for given A, b, E, and f there exist AA and Ab for which the bound

in (2.1) is attained to within a constant factor depending on n. This is a consequence
of the fact that the two vectors on the right-hand side of (2.2) are orthogonal. Also,
it is clear from the proof that (2.1) is valid with the 2-norm replaced by the oc-norm.

By substituting the E and f from (1.12) into Theorem 2.1 we can deduce the
condition numbers corresponding to our three different ways of measuring the per-
turbations AA and Ab. For the componentwise measure the condition number is
clearly

(2.3)
cond2(A, x) (111I A+AI IATI IA+Txl ll2

+ IA+I (Ibl + IAIIxl)112)/11x112-

Replacing b by its upper bound [Al[x simplifies this expression while increasing it by
no more than a factor of 2.

For the row-wise measure the bracketed term in the bound in (2.1) is within a
factor depending on n of cond2(A), hence we can take cond2(A) as the condition
number. In showing this, we need to use the equality III- A+AII2 min{1, n- rn}
(which can be derived by consideration of the QR factorization (1.1), for example),
and the observation that if B E ]Rmn and B >_ 0, then

1

Note that when Ixl , cond2(A) differs from cond2(A, x) by no more than a factor
of about v/. Finally, for the normwise measure the condition number is a2(A) (as
implied by Theorem 1.1). Table 2.1 summarises these results.
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TABLE 2.1
Condition numbers.

Measure Condition number
Normwise
Row-wise
Componentwise

2(A)
cond2(A)
cond2 (A, x)

In the error analysis of the next section we need to use Theorem 2.1 with E
IAIH, where H is a given matrix. In this case, taking also f Ibl, it is convenient to
put (2.1) in the form

(2.4) I1 xl12 < min{3, n m + 2} max{llHII2 1}cond2(A)e + O(e2).

If IIHII2 1, this is precisely (1.6) with 2(A) replaced by cond2(A), this difference
reflecting the stronger assumption made about the perturbations for (2.4).

3. Error analysis. In this section we carry out an error analysis of the Q method
and the SNE method. We assume that the floating point arithmetic obeys the model

fl(xopy) (xopy)(1 + 5), [5[ _< u, op =.,/,
fl(x + y) x(1 q- a) =k y(1 -b/), [a[, l/3[ _< u,

fl(v/-) x/(1 q-6), [6[ _< u.

We consider first the Q method, and we assume that the QR factorization (1.1)
is computed by Householder transformations or Givens transformations. In [12,
Cor. A.8] it is shown that if R is the computed upper triangular factor, there ex-

ists an orthogonal matrix Q such that

(3.1) AT + AAT [ ]0

where

[AAT[ <_ m,nulAT[
and [[m,n[[2 _( IAm,n Here and below we use #m,, generically to denote a modest
constant depending on m and n; we are not concerned with the precise values of the
constants so we will freely write, for example, m,n 2t- Pm,n! m,n’l!

The Q method solves the triangular system RTyl b and forms x Q[yT, 0 IT.
Standard analysis shows that the computed 1 satisfies

From [12, Lemma A.7] the computed solution satisfies

(3.4) =)[1]0 +g’

where
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(We emphasise the important point that the same orthogonal matrix Q appears in
(3.1) and (3.4).)

Ideally, we would like to use the basic error equations (3.1)-(3.5) to show that
is the exact minimum norm solution to a perturbed problem where the perturbations
are bounded according to IAAI _< elA and IAbl < elbI. The forward error could then
be bounded by invoking (2.1). Unfortunately, this componentwise backward stability
result does not hold. We can, nevertheless, obtain a forward error bound of the form
(2.4) by using a mixed forward and backward error argument.

From (3.3), (3.4), and (3.1) we have

b=[(+) O].IO]
(A + F)5,

where

(3.6)
F AA + [AT

Since (A + F)T has the QR factorization (A + F)T Q [( + A)T 0] T it follows
from (3.3) and (3.6) that 5 is the minimum norm solution to (A + F)5 b as long as

liE]J2 < am(A) (so that A + F has full rank). From (3.1)-(3.3) we have

IFI < ulAI T T 2Tam,, + ItmulA[(I+uGm,n)lll
ulAIH,,n.

Hence we can invoke (2.4) to obtain

(3.7) < #m,ncond2(A)u -4- O(u2).

Now from (3.4), (3.5), and (3.6)we have

I1- 11 Ilgll
IIll=u/O(u2)(3.8) < tm,n I1 112u "m,n

t,nllxll2u / o(u2).

Combining (3.7) and (3.8) we conclude that

(3.9) I1- xl12 < #,,nco"nd2(A)u + O(u2).
llxl

Now we analyse the SNE method. As for the Q method, (3.1) and (3.2) hold for
the computed triangular factor R. The computed solution to (1.5) satisfies

(3.10) ( +)(+) , I1 ,11,
and the computed solution satisfies

(3.11) - AT+ g, Igl mulATIll
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Taking a similar approach to the analysis for the Q method we write

+ A,(.le)
where

(A + AA)T,
(.) ,,
(3.14) A AT(- ) AATy + g.

Note that 5 is the exact minimum norm solution to (A + AA)x b and so once again
(3.7) holds.

For later use we note that from (3.1),

(3.15) A + AA TT
where Q1 comprises the first m columns of Q, and hence, using (3.13),

(3.16) Off .
It remains to bound A. Straightforward manipulation of (3.10) and (3.13) yields

h-h-h+-h + o()
h-l(h-O+h9) + o(),

where we have used (3.16). Premultiplying by AT and using (3.15) gives

which leads to

(a.17) IA(Y- )ll ,(ll Ifi-l Il llllll + l-lyl II) + o()
To bound I-TI [T[ [[2, note that for the exact QR factorization we have

[R-T[ [RT ]2 [QA+[ ]AQ] ]2 mcond2(A).
Hence

(3.18) [-T[. [T [[2 m cond2(A + AA) m cond2(A) + O(u).

To bound [R[. ][ [ in (3.17) we note first that for the exact R and y,

11nl. Il 1 QAI lu II: [ IAl lul
Now, since x ATy, we have Ax (AAT)y or y A+Tx. Hence

(3.19) ]AT] [Y 2 AT[ ]A+T] [x [2 cond2(A)[x[2.

It follows that for the computed R and y,

(3.20) [" ]Y[ [2 cond2(A)[]xl[2 + O(u).
Combining (3.14), (3.17), (3.18), (3.20), (3.11), and (3.19)we have

[[Abl[2 ,m,ncond2(A)u[[x[]2 + O(u2).
Together with (3.7)and (3.12)this yields

II- xl[: ,,ncond2(A)u + O(u2).
IIxll
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4. Discussion and numerical results. The analysis in the previous section
shows that for both the Q method and the SNE method the forward error is bounded
by a multiple of cond2(A)u, so both methods are forward stable in the row-wise sense.
Before giving some numerical examples we briefly consider what can be said about
backward stability.

For the Q method, the analysis of 3 proves the following result about the com-
puted solution . There exists a vector 5 and a matrix F such that 5 is the minimum
norm solution to (A + F)5 b where

[FI < ulAIHm, < #.,nulAleeT IIFI[: <

and

(This result, without the componentwise bound on F, is also proved in [13, Thm.
16.18].) Thus is relatively close to a vector that satisfies the criterion for row-wise
backward stability, and so the Q method is "almost" row-wise backward stable. Note
also that, from the above, has a relatively small residual:

(4.1) lib- A[12 < "m’,rilAII2iill2u + O(u2).

Interestingly, (4.1) implies that itself solves a slightly perturbed system, but it is

not, in general, the minimum norm solution.
For the SNE method it is not even possible to derive a residual bound of the

form (4.1). The method of solution guarantees only that the seminormal equations
themselves have a small residual. Thus, as in the context of overdetermined least
squares problems [4], the SNE method is not backward stable.

A possible way to improve the backward stability of the SNE method is to use
iterative refinement in fixed precision, as advocated in the overdetermined case in [4].
Some justification for this approach can be given using the analysis for an arbitrary
linear equations solver in [12].

We have run some numerical experiments in MATLAB, which has a unit roundoff
u 2.2 x 10-16. In our experiments we rounded the result of every arithmetic
operation to 23 significant bits, thus simulating single precision arithmetic with usp
1.2 x 10-7. The double precision solution was regarded as the exact solution when
computing forward errors.

We report results for several 10 x 16 matrices A, with the right-hand sides b
chosen randomly with elements from the normal (0, 1) distribution. We report for
each approximate solution , the normwise relative error

and the three relative residuals

Ib-pX m ,x (Exit. + fx)’
X N, R, C,

where EX and fx are defined in (1.12). Iterative refinement in fixed precision was
used with the SNE method until either pN() <_ USp or five iterations were done.
Note that if we were to use the x>norm in defining EN and fN in (1.12), then
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pN() _< pR() would be guaranteed; for the 2-norm, pg() > pn() is possible. We
also report the three condition numbers for each problem. There is no strict ordering
between these condition numbers (partly, again, because of the choice of norm), but
there are constants cl and c2 depending only on n such that

cond2(A, x) _< ClCOnd2(A) _< c22(A)

(see (1.10) and 2).
The results are presented in Tables 4.1-4.6. The matrices A in Tables 4.1-4.3 are

random matrices with geometrically distributed singular values ai ai, generated
using the routine randsvd of [10]. In Table 4.4, Ax b is the same system used
in Table 4.1, but with the fifth equation scaled by 215 32768. In Table 4.5 the
system is the one used in Table 4.1 but with the eighth column of A scaled by 215.
In Table 4.6, A is a Kahan matrix--an ill-conditioned upper trapezoidal matrix with
rows of widely varying norm [7, p. 245], [10].

The key features in the results are as follows.
(1) The error bounds of the previous section are confirmed. Indeed, for both the

Q method and the SNE method the heuristic

2() I1- xl12 cond2(A)u

predicts the error correctly to within an order of magnitude in these examples.
(2) The independence of the forward errors on the row scaling of A is illustrated

by Tables 4.1 and 4.4. However, column scaling can have an adverse effect, as shown
in Table 4.5.

(3) The relative residuals confirm that the Q method is (almost) row-wise back-
ward stable and that the SNE method is not even normwise backward stable. The
relative residuals for the SNE method exhibit dependence on cond2(A) in these ex-
amples (dependence of the normwise residual on 2(A) in the case of overdetermined
systems is proven by Bjhrck in [4, Thm. 3.1]). Iterative refinement can produce a
small relative residual, but can fail on very ill conditioned problems, as in Table 4.3.

The condition numbers displayed in the tables can all be estimated cheaply given
a QR factorization of AT. For example, we show how to estimate cond2(A,x). This
differs by at most a factor x/ from condo (A, x). We consider only the first term
of condo (A, x) in (2.3), as the second term can be treated similarly. As in [1], we

can convert this norm of a vector into a norm of a matrix: with g IATIIA+Txl and
G diag(gi), we have

I A+AI [ATI IA+Txl II r A+AIg I[
I A+AIGe II [r_ A+A[G II
I(I- A+A)GI I1
(I- A+A)G I1,.

The latter norm can be estimated by the method of [8], [9], and [11], which estimates
I]BII1 given a means for forming matrix-vector products Bx and BTy. Forming these
products for BT (I- A+A)G involves multiplying by G and Q or their transposes,
and solving triangular systems with R and RT.
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TABLE 4.1
A- randsvd([10, 16], le2), 2(A)-- le2, cond2(A)--8.63el, cond2(A, x)- 1.57e2.

() a() c() ()
Q method 1.83e-8 9.88e-9 1.42e-7 2.01e-6
SNE 5.11e-7 2.79e-7 4.40e-6 4.97e-6

1.52e-8 6.45e-9 9.64e-8 1.99e-6

TABLE 4.2
A--randsvd([10, 16], lea), a2(A)-- le4, cond2(A)--5.43e3, cond2(A, x)- 1.05e4.

() .() c() ()
Q method 5.16e-9 6.84e-9 9.16e-8 1.29e-4
SNE 1.30e-5 1.56e-5 2.36e-4 2.30e-4

4.29e-9 4.63e-9 8.01e-8 1.04e-4

TABLE 4.3
A- randsvd([10,16], le6), a2(A)- le6, cond2(A)- 4.30e5, cond2(A, x)--8.86e5.

() () pc() ()
Q method 6.88e-9 5.78e-9 9.18e-8 6.50e-3
SNE 3.58e-3 1.69e-3 2.56e-2 2.47e-2

5.17e-5 2.47e-5 3.74e-4 1.28e-2
5.39e-6 2.62e-6 3.96e-5 1.11e-2
2.05e-5 9.33e-6 1.41e-4 1.11e-2
1.51e-5 6.94e-6 1.05e-4 1.27e-2

TABLE 4.4
A- Drandsvd([10, 16], le2), a2(A)= 1.63e6, cond2(A)- 8.63el, cond2(A, x)-- 1.57e2.

Q method 9.24e-9 9.88e-9 1.42e-7 2.01e-6
SNE 9.26e-7 2.79e-7 4.40e-6 4.97e-6

5.70e-9 6.45e-9 9.64e-8 1.99e-6

5. Implications for square linear systems. All the results in 2 and 3 are
valid when m n. Theorem 2.1 reduces to a straightforward generalization of a result
in [17, Thm. 2.1]. However, the error bound

(5.1)

_
#ncond(A)u + O(u2)

for the Q method is not a familiar one for square systems. (We have switched to
the oc-norm, which is the more usual choice for square systems.) In fact, a bound of
the form (5.1) holds also if we solve Ax b using an LU factorization (with partial
pivoting) of AT. Of course, when solving a square system Ax b, it is more natural
to use an LU or QR factorization of A than of AT. But if a factorization of A is used,
then no bound of the form (5.1) holds in general--the best we can say is that

<_ #,n(A)u + O(u2).

We note, however, that there is a simple way to achieve a bound of the form
(5.1) for LU and QR factorization of A: work with the scaled system (DA)x Db
instead of Ax b, where B DA has rows of unit 1-norm. This follows from (5.2)
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TABLE 4.5
A----randsvd([10,16], le2)D, a2(A)-- 1.37e6, cond2(A)-- 7.81e5, cond2(A, x)-- 1.35e2.

() () c() ()
Q method 2.42e-9 5.70e-9 2.95e-4 9.29e-3
SNE 4.23e-3 5.89e-3 9.98e-1 2.61e-2

1.39e-5 1.93e-5 5.89e-1 1.75e-3
4.24e-7 5.90e-7 4.34e-2 3.60e-5
3.02e-9 4.20e-9 3.12e-4 1.29e-6

TABLE 4.6
A kahan([10, 16]), 2(A) 6.29e5, cond2(A) 9.58e0, cond2(A, x) 1.02el.

() .() c() ()
Q method 1.22e-8 3.52e-9 4.99e-8 1.79e-7
SNE 8.00e-8 3.42e-8 3.27e-7 3.35e-7

and the fact that a(B) condo(A). To verify the latter equality note that if
D-1 diag(IAle), then

condo(A) --II IA-1I IAI I1 -II IA-I[ IAI I1 -II IA-11D-e

It is interesting to compare this row equilibration strategy with fixed precision iterative
refinement (FPIR). It is known that under suitable assumptions, FPIR in conjunction
with LU factorization with partial pivoting [1], [18] or QR factorization [12] leads to a
computed such that wC() O(u), that is, FPIR brings componentwise backward
stability. From an oc-norm version of Theorem 2.1 we see that wC() <_ u implies

I1- xll 2 cond (A, x)u + O(u2),
Ilxll

where

condc,,:)(A x) IA-I[ IAI" Ixl II

This is a stronger bound than (5.1) because condo(A, x) <_ condo(A) (with equality
for x e) and for some A and x, condo(A, x) << condo(A) (see, for example, a 3 3
example of Hamming quoted in [17, p. 500]).

Skeel [17], [19] looks in detail at the possible benefits of row scaling for LU fac-
torization. In [17, 4.2] he shows that for the scaling 0-1 diag(IAIIxl) the forward
error bound is proportional to cond(A,x); unfortunately, since x is unknown, this
"optimal" scaling is of little practical use. Row equilibration can be regarded as
approximating Ix[ by e in the optimal scaling.

To summarise, we regard row equilibration as a "quick and dirty" way to achieve
a "cond-bounded" forward error--quick, because the scaling is trivial to perform, and
dirty, because the forward error bound is independent of the right-hand side b and
there is no guarantee that a small componentwise backward error will be achieved.
In contrast, FPIR produces a small componentwise backward error and has a sharper
forward error bound that depends on b (but FPIR may fail to converge).
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TABLE 5.1
A-- Vg, x- e, ao(A)- 4.27e5, condo (A) 1.19e3, condo(A, x)-- 1.19e3.

() .() c() ()
LU with FPIR 2.11e-8 6.25e-7 3.13e-6 1.81e-3

1.65e-8 1.65e-8 8.26e-8 1.79e-5
LU with equilibration 6.74e-9 1.91e-8 1.72e-7 2.38e-5
QR with FPIR 1.13e-8 7.47e-6 6.73e-5 3.85e-3

3.51e-9 1.06e-8 8.28e-8 1.44e-5
QR with equilibration 2.3e-8 3.71e-8 3.34e-7 1.60e-4

TABLE 5.2
A- Vii, b--e, ao(A)--6.68e7, condo(A)- 9.17e3, condo(A, x)- 5.27el.

() .() c() ()
LU with FPIR 2.18e-12 2.57e-7 4.82e-6 5.23e-5

4.57e-12 1.53e-9 5.83e-8 6.83e-7
LU with equilibration 1.22e-10 9.96e-9 2.88e-6 6.24e-5
QR with FPIR 1.95e-ll 1.64e-5 1.48e-4 3.59e-4

4.48e-12 4.86e-9 9.96e-8 1.38e-6
QR with equilibration 3.75e-9 4.75e-9 5.83e-6 1.38e-5

We illustrate our observations with two numerical examples computed using
MATLAB in simulated single precision, as in 4. For odd n 2k + 1, let Vn be
the Vandermonde matrix with (i,j) element (-k + j 1)i-1. We solved two systems
VEX b by both LU factorization with partial pivoting and QR factorization, in each
case trying both FPIR and the row equilibration discussed above.

The two systems were chosen to illustrate two extreme cases. For the first prob-
lem, V9e b, reported in Table 5.1, condo(A) cond(A,x) 3---a(A) and row
equilibration is about as effective as FPIR as measured by the size of the compo-
nentwise backward error and the relative error. For the second system, VllX e,
reported in Table 5.2, cond(A,x) 74cond(A) << (A)and FPIR achieves
a significantly smaller componentwise backward error and relative error than row
equilibration.

We also tried using a scaling obtained by perturbing the equilibrating transfor-
mation D diag(IAle)- to the nearest powers of 2, so as not to introduce rounding
errors. This led to final errors sometimes larger and sometimes smaller than with D.
In any case, from the point of view of the error bounds the rounding errors introduced
by the scaling are easily seen to be insignificant.
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APPROXIMATIONS OF THE SPECTRAL RADIUS, CORRESPONDING
EIGENVECTOR, AND SECOND LARGEST MODULUS OF

AN EIGENVALUE FOR SQUARE, NONNEGATIVE,
IRREDUCIBLE MATRICES*

ORNA GROSS’]" AND URIEL G. ROTHBLUM:I:

Abstract. Approximations are obtained for the normalized eigenvector of a square, nonnegative, irreducible
matrix corresponding to its spectral radius from solutions to linear inequality systems whose feasibility have
long been used to characterize lower and or upper bounds on the spectral radius. These linear inequality systems
depend on a parameter that can be viewed as an estimator for the spectral radius. In particular, we derive
bounds on the tightness of the resulting approximation to the corresponding eigenvector as a product of a
constant (equaling the optimal objective value of a nonlinear, convex optimization problem) and the difference
between the spectral radius and its estimator. Bounds are also developed on the second largest modulus of an
eigenvalue of a square, nonnegative, irreducible matrix in terms of approximations to its spectral radius and
the corresponding normalized eigenvectors. The latter results depend on the methods of Rothblum and Tan
[Linear Algebra Appl., 66 (1985), pp. 45-86], who derived bounds on the second largest modulus of an
eigenvalue, which depends on the explicit knowledge of the spectral radius and corresponding eigenvector of
the underlying matrix.

Key words, spectral radius, nonnegative matrix, eigenvectors, eigenvalues, approximations
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1. Introduction. The well-known Perron-Frobenius theorem asserts that the spectral
radius of a square, nonnegative, irreducible matrix is a simple eigenvalue of that matrix
with corresponding right and left positive eigenvectors (see 2 for formal definitions).
Furthermore, when the matrix is aperiodic, the powers ofthe normalized matrix (obtained
by dividing the matrix by its spectral radius) have a limit, and the convergence rate of
that sequence is geometric with a rate that is determined by the ratio ofthe second largest
modulus ofan eigenvalue ofthe matrix and its spectral radius. Related results hold when
the underlying matrix is periodic except that (C, rather than regular limits have to be
considered. Thus the spectral radius, corresponding eigenvector, and second largest mod-
ulus of the eigenvalues are important characteristics of the matrix. The purpose of this
paper is to describe methods for approximating these characteristics.

Nonnegative matrices are useful in describing the dynamics of many multiplicative
processes. In such processes, a vectorial input x is transferred, during a single period,
into an output vector xTP, where P is a square nonnegative matrix. When such systems
are operated over a number of periods, the output at the end of each period is used as
the input at the beginning of the next period. For example, finite state Markov chains
have the above structure with the input/output vectors representing probability distri-
butions. Also, this structure is shared by input / output production models (Gale 1960 ),
branching processes (Harris [1963]), Markov reward processes with exponential utility
(Howard and Matheson [1972] or Rothblum [1974]), iterative methods in numerical
analysis (Varga [1962 ]), and many other models. When the transition matrix of any
one of the aforementioned applications is irreducible, we can use the facts mentioned
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above about the spectral radius, corresponding eigenvector, and second largest modulus
ofthe eigenvalues to study equilibrium and asymptotic behavior ofthe underlying system.
Furthermore, this can also be accomplished when the transition matrix is reducible by
considering the irreducible submatrices corresponding to communicating classes (see
Rothblum 1975 and 1981 ).

Let P be a square, nonnegative, irreducible matrix with spectral radius p. Standard
results about nonnegative matrices show that a scalar t is an upper bound on o if and
only if the system Px=< tx has a nonzero, nonnegative solution; and a scalar is a lower
bound on o if and only if the system Px >= x has a nonzero, nonnegative solution (see
Theorems 3.1 and 3.3 for details). The main results ofthe current paper concern bounds
on the proximity of normalized solutions of these systems of linear inequalities to the
normalized eigenvectors ofP corresponding to o. Specifically, let f be a (strictly) positive
vector and let w be the unique fight eigenvector ofP corresponding to its spectral radius
o satisfying the normalization condition fTw 1. The results we establish in 3 show
that if is an arbitrary norm on R and v R and # R satisfy

(1.1) Pv <= #v, v > O, and fry= 1,

then v w is bounded from above by the product of (t o) and the optimal objective
value of an optimization problem. The optimization problem does depend on #, but we
show that its objective function is uniformly bounded in t. Also, we obtain similar results
for vectors v in R" satisfying

(1.2) Pv>=Xv, v>=0, and fTv= 1,

except that the uniform boundedness of the objective function applies only to scalars X
that are sufficiently close to p. Furthermore, we get improved bounds for solutions of
the combination of 1.1 and (1.2), i.e., for vectors v in R" satisfying

(1.3) Pv <= #v, Pv >= hv, v>_-0, and fTv 1.

The above results suggest the use of sequences that approximate the spectral radius
p of the square, nonnegative, irreducible matrix P to generate sequences of vectors that
approximate the corresponding normalized eigenvector w. In particular, if { uk is a
sequence of scalars that converges to o and vk is a sequence of nonnegative vectors
satisfying Pvh. <= uv and the normalization condition fTvk 1, then v } converges to
w with convergence rate that is bounded by the convergence rate of {/k to O. Similarly,
if { k is a sequence of scalars that converges to p and { vk is a sequence of nonnegative
vectors satisfying PVk >= XkV and the normalization condition fTl)k 1, then vk } con-
verges to w with convergence rate that is bounded by the convergence rate of { to o.
As every scalar is either an upper bound or a lower bound on o, we get, from the standard
results about nonnegative matrices mentioned at the beginning of the above paragraph,
that for every nonnegative scalar/3, there exists a nonnegative vector v that satisfies either
Pv <- fly or Pv >= fly. Furthermore, the normalization conditionfTw can be augmented
to either system. Thus any sequence of scalars that converges to o can be used to generate
a sequence of vectors that converges to w. Iterative methods for generating approximating
sequences of the spectral radius of a square, nonnegative, irreducible matrix P can be
found in Collatz 1942 ], Hall and Spanier 1968 ], Marek and Varga 1969 ], Yamamoto
1966 ], and Veinott 1971 ]. Furthermore, Weil 1964 ], Hamburger, Thompson, and
Weil [1967 ], and Robinson [1974 describe methods for computing the expansion rate
for an irreducible von Neumann economic model, a problem that specializes to the
problem of determining the spectral radius of an irreducible nonnegative matrix when
either the input or the output matrix is the identity.
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The derivation of bounds on the tightness of the approximations of the eigenvector
of a square, nonnegative, irreducible matrix P with respect to its spectral radius o was
motivated by the methods ofHaviv 1988 ], who considers the problem ofapproximating
the exact eigenvector of a perturbation of the underlying matrix P. Gross [1989] used
such approximations to study the problems considered in the current paper, but the
resulting analysis has some serious limitations; see the second remark following Theorem
3.9. We also note that Haviv’s approach is to measure the tightness of approximations
via coordinate-by-coordinate comparisons and the resulting optimization problems rep-
resenting the bounds are linear programs. Our approach allows for the use of arbitrary
norms with resulting nonlinear convex optimization problems representing the bounds,
though we also obtain coordinate-by-coordinate bounds.

Rothblum and Tan 1985 obtained a general method for producing bounds on the
second largest modulus of an eigenvalue of a square, nonnegative, irreducible matrix.
Their results extended and unified many specific ad hoc bounds that had been obtained
earlier. Their methods, as well as all other methods we know of, depend on the explicit
knowledge ofthe spectral radius and corresponding eigenvector ofthe underlying matrix.
This fact creates a problem in numerical implementation because the spectral radius and
corresponding eigenvector are frequently not available explicitly, and one must rely on
approximations of these quantities. In 4, we show how the approach of Rothblum and
Tan can be augmented to develop bounds on the second largest modulus ofan eigenvalue
in terms of approximations to its spectral radius and the corresponding (normalized)
eigenvector of the given matrix.

As the spectrum of a matrix coincides with that of its scalings, we can apply the
above methods for approximating the second largest modulus ofan eigenvalue of a given
square, nonnegative, irreducible matrix P to any one of its scalings. Generally, this ap-
proach results in different bounds than those derived from the matrix P itself; see the
examples of Rothblum and Tan 1985 and Gross 1989 ]. However, we show in 5 that
the resulting approximations and corresponding bounds can be equivalently derived by
considering the original matrix and a scaling of the applied norm.

We summarize some notation and preliminary results in 2 and derive bounds on
the tightness of approximations ofthe eigenvectors in 3. Next, in 4, we obtain bounds
on the second largest modulus of an eigenvalue using approximations to the spectral
radius and corresponding eigenvector. Finally, in 5, we show that the application of
the methods of 3 and 4 to scalings of the given matrix (which is known to have the
same spectrum) is equivalent to applying the methods to the matrix itself with a scaling
of the underlying norm.

2. Notation and convention. A matrix B is called nonnegative or positive, written
B > 0 or B >> 0, if all of its coordinates are nonnegative or positive, respectively. A matrix
B is called semipositive, written B > 0, if B >= 0 and B 4 0. Given two matrices A and
B of the same dimension, we write A >> B and B A, A > B and B =< A, or A > B and
B < A if, respectively, A B >> 0, A B >= 0, or A B > 0. Corresponding definitions
and notation apply to vectors.

An n n, nonnegative matrix B is called irreducible if ;i B >> 0, where the sum-
mation is taken over 0, n. Such a matrix is called aperiodic if B >> 0 for some
t= 1,2,

Let B Rnn. The spectrum of B will be denoted (B) and the spectral ra-
dius of B will be denoted p(B), i.e., (B) is the set of eigenvalues of B and o(B)
max {]]: 6 (B)}. The celebrated Perron-Frobenius Theorem, e.g., Berman and
Plemmons [1979 ], asserts that the spectral radius of a square, nonnegative matrix is an
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eigenvalue of that matrix having corresponding semipositive left and fight eigenvectors.
Furthermore, if the matrix is irreducible, the spectral radius is a simple eigenvalue with
corresponding positive left and fight eigenvectors. The second largest modulus of an
eigenvalue of B is denoted ’(B), i.e., ’(B) max { ,l a(B), 4: p(B) }.

A norm on R is a real-valued function on R such that for every x and y in R
and a in R, x + y _-< xl[ + y [[, ax[[ <= [a III xll, and x[[ 0 if and only if x 0.
For example, for _-< p < , the lp norm on R" is defined for each x 6 R" by x[Ip
(Z,i[xi [P)/P, where the summation is taken over 1, n. Also, the l norm on
R" is defined for each x R" by [Ix[l max { [xi[ 1, n}.

Let be a norm on R". The dual norm of is denoted *, i.e., for each a
R", [lal[ * max {xa xR, [Ix[I --< }. For _-< p _-< , the dual norm ofthe lp norm
is known to be the lq norm, where q- / p- 1, in particular, it is computable explicitly.
We apply norms and their duals to both column and row vectors without making any
notational distinction. Also, we use the notation for the corresponding matrix norm,
i.e., for B 6 R n, B[[ max xTBI[ X - R, x][ _-< } (this definition is convenient
for our derivations, though it is nonstandard; the usual definition takes a corresponding
maximum over Bx[[ ). The Frobenius norm of an n n matrix B is defined by B[IF
(;i] B,../] )/, where the summation is taken over all coordinates of B. Standard results
show that B]]2 --< B[[F, but, B[[F has the advantage of easier computability than B[[2
(see, e.g., Rothblum and Tan [1985 ]).

Given a norm on R, a matrix B R" ", and a vector v R n, we define the
quantity z(B, [[, v) by

z(B, [[, v) max {[IxTB[[ X R, ][x][ _-< and xTv 0}.

Closed-form expressions for these functionals when the underlying norm is either the l
or the l norms are given in Rothblum 1984 ]. Of course, we have r(B, [[, u) _-< B[[.

The following result, established in Rothblum and Tan [1985], provides upper
bounds on the second largest modulus of an eigenvalue of a square, nonnegative, irre-
ducible matrix.

THEOREM 2.1. Let P be an n n, nonnegative, irreducible matrix with spectral
radius o and corresponding eigenvector w and let be a norm on R. Then, (P) <=
r(P, II, w).

We note that the conclusion of Theorem 2.1 is trivial if the assumption that is
a norm on R" is tightened to require that it be a complex norm defined on C", i.e.,
maps C into R where for every x and y in C and a in C, x + y --< xII / y ll,
I[xII =< Il xII, and Ilxll 0 ifand only ifx 0. The proofofTheorem 2.1 in Rothblum
and Tan [1985] relies on an extension of real norms to complex norms.

Given an n n matrix B and subsets K and L of 1, n }, we denote by Bcz
the submatrix of B corresponding to the rows indexed by K and the columns indexed
by L. IfK L, we write B/( B/c and call B/( a principal submatrix of B. Furthermore,
ifK 4: 1, n }, we call Bc a principal strict submatrix of B. Also, if b is a vector in
R" and K is a subset of 1, n we denote by the bc the corresponding subvector
ofb.

Finally, we find it convenient to call a sequence of vectors convergent even if some
of the coordinates of the limit are infinite, i.e., + or -. Also, if ak } and { bk } are
sequences of real numbers, we write a O(b) if a/b is bounded in k.

3. Approximations of the spectral radius and corresponding eigenvector. In this
section we present a number of characterizations of bounds on the spectral radii of
square, nonnegative, irreducible matrices, and show how such bounds can be used to
obtain approximations of the corresponding normalized eigenvectors. In particular, we
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describe a bisection algorithm that generates geometrically converging sequences oflower
and upper bounds on the spectral radius, and we show how to use such sequences to
derive geometrically converging approximations of the corresponding normalized eigen-
vector. The bisection idea is used in Hamburger, Thompson, and Weil 1967 to compute
the expansion rate of a von Neumann economic model; also, Veinott [1971] used the
approach explicitly for computing the spectral radius ofan irreducible nonnegative matrix.

We start by stating a (standard) characterization of upper bounds on the spectral
radius ofan n n nonnegative, irreducible matrix via feasibility ofa linear system having
n inequality constraints, one equality constraint, and nonnegative variables; and we obtain
(new) bounds on the proximity of solutions of that linear system to the normalized
eigenvector of the underlying matrix corresponding to its spectral radius.

THEOREM 3.1. Letfbe a positive vector in R" and let P be an n n, nonnegative,
irreducible matrix with spectral radius o and corresponding positive eigenvector w. Then
a real number # is an upper bound on o ifand only ifthe linear inequality system

(3.1) Px<=tsx, fTx= 1, x>=0

has a solution. Furthermore, if is any norm on R, x v and is satisfy (3.1), and w
satisfies the normalization condition fT"w 1, then

[Iv-w[I =< (is 0) max Y

(3.2)
s.t. P isI)y <= g,

fTy O,

yERn,
where g E R is the vector defined by gi 1/f, 1, n.

Proof. First, assume that is is an upper bound on p. The positivity offand w implies
that fTw > 0. As Pw Ow < isw, we have that x w/fTw satisfies (3.1); thus, (3.1) is
feasible. Alternatively, assume that (3.1) is feasible with solution x v. Let u T be a
positive left eigenvector of P corresponding to o. Then uTv > 0. Premultiplying the
vector-inequality Pv <= isv by u, we conclude that puny uPv <= isuv, implying that
p<is.

Next assume that is a norm on R", that x v and is satisfy (3.1), and that w

satisfiesfrw 1. Thenfr(v w)=frv-fTw 1-1-0. Also, our earlier conclusions
imply that is >_- o; hence (P- isI)(v w) (P- isI)v (P- isI)w <= (is o)w,
implying that:

v w < max z[I

(3.3)
s.t. (P- isI)z <= (is p)w,

fz= O,

zER n.
The normalization condition fVw and the positivity of fand w imply that for
1, n, wi fwi/f <= f’w/f 1/f gi, i.e., w =< g. As is >_- p, we conclude that
the term (Is 0)win (3.3)can be replaced by (is- 0)gto obtain the following relaxation
of(3.3):

[Iv- w _-< max Ilzll

(3.4)
s.t. (P- IsI)z < (t o)g,

fTz O,

zGR n.
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Now, if z 4 0, (3.2) follows directly from (3.4) by applying the change of variable y
( O)-lz and using the positive homogeneity of real norms. Alternatively, assume that
u t) and let v be a vector satisfying (3.1); in particular, Pv <= zv or. Let u T be a
positive left eigenvector of P corresponding to 0. As 0 (ou T- uTP)v uT(ov Pv),
u >> 0, and Pv <-_ uv or, we conclude that Pv pv. So, v is an eigenvector of the
irreducible matrix P corresponding to its spectral radius o, and the normalization con-
ditionsfTw fTv imply that w v. Thus (3.2) holds in this case in the form of the
trivial inequality 0 _-< 0.

Remarks. 1. Let P be a square, nonnegative, irreducible matrix with spectral radius
o. Given an upper bound on o, we can view solutions of (3.1) as approximations of
the corresponding normalized eigenvector w, and (3.2) provides us with bounds on the
tightness of such approximations. The forthcoming Theorem 3.2 assures that these bounds
are always finite.

2. The objective function of the optimization problem occurring in (3.2) is convex
and its feasible region is determined by linear inequalities. There are many algorithms
for solving nonlinear optimization problems of this class, thus Theorem 3.1 provides us
with computable bounds on I[v w [1.

3. The arguments used to deduce (3.2) from (3.4) can be applied to inequality
(3.3) to obtain another bound on Iv w given by:

v w --< ( o) max y

(3.5)
s.t. P #I)y < w,

fTy 0,

y6Rn.

4. Inequalities (3.3) and (3.5) provide bounds on [Iv w that depend on the
eigenvector w (and the scalar u). The dependence on w is an undesirable property because
the resulting computation of bounds on the tightness of an approximation to w requires
the availability of the unknown vector w. This is why we relaxed the bound given by
(3.3) to those given by (3.4) and (3.2), which do not include w.

5. The positivity off in the characterization of upper bounds on the spectral radius
can be replaced by the assumption thatfTw > 0. Also, (3.3) and (3.5) hold without the
assumption that f is positive, while maintaining the normalization condition fTw 1.
However, the positivity of fis needed for (3.2) and (3.4) to assure that w =< g and that
no coordinate of g is defined as the reciprocal of zero.

6. The characterization of upper bounds on o via feasibility of 3.1 can be modified
by replacing the normalization conditionfTx by xl12 1. However, as the 12 norm
is not linear, the assertion that Ilvll2 w 112 does not imply Ilv w 112 o, and we
do not get a useful analogue of (3.2) by using the 12 norm. This remark applies to nor-
malization by other norms as well.

We next show that the optimal objective value of the optimization problem on the
right-hand side of (3.2) is uniformly bounded for > t}. In particular, this result implies
that for every specific selection of , the right-hand side of (3.2) is finite. Furthermore,
it shows that the bound provided by (3.2) for v w depends linearly on the proximity
of z to the spectral radius

THEOREM 3.2. Letfbe a positive vector in R and let P be an n n, nonnegative,
irreducible matrix with spectral radius to and correspondingpositive eigenvector w satisfying
the normalization conditionf w 1. Also, let be a norm on R Then the optimization
problem on the right-hand side of(3.2) is un)rmly bounded in u > p.
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Proof. Assume that the optimal objective value of the optimization problem oc-
curring in (3.2) is not uniformly bounded in u >= o. Then there exist sequences of scalars

tsk and vectors yk such that lim ]1Ykll and for each k 1, 2,

(P- II)y < g, fTy,= O, and /zk>tg.

The sequence (u,, y,/]l y, has a convergent subsequence. Let (z, d) be the limit of
such a subsequence. In particular, d is a finite, nonzero vector. Further, by dividing the
inequalities fTy, 0 by I[ykl[, we get from continuity arguments that fd 0. We
continue our analysis by distinguishing between the case where t is finite and the case
where it is not.

We first consider the case where ts is finite. Evidently, >= p. Also, dividing
the inequalities (P tkI)y <= g by Ilykll, we get from continuity arguments that
(P-uI)d<=O. LetK-= {i= 1,...,n:d. <0} andL-= {i= 1,.--,n: d,. >0}.
As f >> 0, d 4: 0, and fTd 0, we have that K and L are nonempty and differ from

1, n }. Let o(P/) be the spectral radius of the submatrix P/ of P and let u v be a
corresponding semipositive left eigenvector. In particular, as P/ is a nonempty, principal,
strict submatrix of P, we have that o(P/) < 19 (see Varga [1962, p. 30 ]). Also, as d ,
0, we have that u Vd/ < 0, and as Pd <= ud,

Pid: <= Pldi + PlLdz (Pd)l <= #di.

Upon premultiplying the last inequality by u , we conclude that p(Pl)UVd: uTPidi,: <=
#uVdi. As u Vdi < 0, we get a contradiction to the fact that p(P/) < p.

We next consider the case where # is not finite. As the sequence # is bounded
from below by 19, we have that # o. Dividing the inequalities (P #I)yk < g by
#ll YII, we get from continuity arguments that -d -_< 0. As d 4 0 andfVd 0, we obtain
a contradiction to the assumption that fis positive.

Either of the two cases we considered led to contradiction. Hence we conclude that
the optimal objective value of the optimization problem occurring in (3.2) is, indeed,
uniformly bounded for # > p. D

We next modify Theorems 3.1 and 3.2 by considering lower bounds on the spectral
radius rather than upper bounds.

THEOREM 3.3. Let f be a positive vector in R n, let P be an n n, nonnegative,
irreducible matrix with spectral radius to and corresponding positive eigenvector w. Then
a real number h is a lower bound on 19 ifand only ifthe linear inequality system

(3.6) Px >= hx, fVx= 1, x >= O

has a solution. Furthermore, if is any norm on R n, x v and h satisfy (3.6), and w
satisfies the normalization condition fTw 1, then

dvv w --< <p x) max y

(3.7)
s.t. (P- XI)y >= -g,

fVy O,

yERn,

where g R is the vector defined by g 1/f, 1, n.
Proof. The characterization of lower bounds on 19 via feasibility of (3.6) follows

from the arguments used to establish the corresponding characterization for upper bounds
in Theorem 3.1. Also, the arguments used in the proof of Theorem 3.1 with reversed
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inequalities and X replacing u show that if is any norm on R n, x v and X satisfy
(3.6), and w satisfies the normalization condition frw 1, then

IIv- w max Ilztl

(3.8)
s.t. (P- XI)z >= (X O)w -(p X)w,

frz O,

zERn,
and that the term -(0 X)w in the above bound can be replaced by -(o X)g. Now,
ifX 4: O, (3.7) follows from (3.8) by applying the change of variable y (o X) -lz and
using the positive homogeneity of real norms. Alternatively, if X O, (3.7) follows from
the corresponding arguments used in the proof of Theorem 3.1.

The remarks following Theorem 3.1 apply to Theorem 3.3. In particular, (3.7)
provides computable bounds on IIv w [I. Also, (3.8) can be transformed into a variant
corresponding to (3.5). However, the resulting inequality, as well as the original (3.8),
are not as useful as (3.7) because they provide bounds on the tightness ofan approximation
to w which depend on w itself. Finally, the positivity of fis needed only for the definition
of g as a finite vector and for the inequality w _-< g.

Unfortunately, the optimization problem occurring in (3.7) is not necessarily
bounded, as demonstrated by the following example. Let

P-= f-- 2,-= and y-- for s >0.
2 s

Then, for every s >= O, fry 0 and (P- XI)y (0, 2s) r > -(1, 1)r _g, while
lim, IlySll

The next result shows that, despite the above example, the fight-hand side of (3.7)
is uniformly bounded for which is sufficiently close to the spectral radius

THEOREM 3.4. Letfbe a positive vector in R and let P be an n n, nonnegative,
irreducible matrix with spectral radius o and correspondingpositive eigenvector w satisfying
the normalization condition fVw 1. Also, let be a norm on R". Then for some

* < o, the optimization problem on the right-hand side of(3.7) is uniformly bounded
in satisfying * <= X <-_ o.

Proof. Assume that the conclusion ofour theorem is false. Then there exist sequences
of scalars Xk and vectors yk such that lim_. yll oe, lim_.o xk o, and for
each k 1, 2,

P XI)yk >= g, fy O, and 2, <p.

The sequence y/Ilyll has a convergent subsequence. Let d be the limit of such a
subsequence. In particular, d is a finite, nonzero vector. Furthermore, by dividing the
inequalities (P- XI)y, >= -g andfry 0 by yll, we get from continuity arguments
that(P-oI)d >Oandfrd=O.LetK---{i= 1,...,n:d/->0}andL={i= 1,..-
n" d _-<_ 0}. As f >> 0, d 4:0 andfd 0, we have that K and L are nonempty and
differ from { 1, n }. Let o(P/) be the spectral radius of the submatrix P/ of P and
let uTbe a corresponding semipositive left eigenvector. In particular, as P is a nonempty
principal strict submatrix of P, we have that p(P/) < p (see Varga [1962, p. 30 ]). Also,
as dc >> 0, we have Urdl > 0, and as Pd > pd,

P:d: >= Pcd: + P:LdL (Pd): >= pdc.

Upon premultiplying the last inequality by u T, we get that p(P:)uTd: uTpcd >
puTd:. As u Td: > O, we obtain a contradiction to the fact that p(P:) < p. Hence we
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conclude that the optimal objective value ofthe optimization problem occurring in 3.7
is, indeed, uniformly bounded for sufficiently large X _-< o.

Reconsider the example preceding Theorem 3.4 with the norm I]. Then the
optimization problem occurring in (3.7) has the form

max y

s.t. (2 X)y + Y2 -1,

2yl + (1 X)y2 > -1,

yl +y2 0.

Using the substitution Y2 --Yl, the above problem reduces to

max YI
s.t. (1 X)yl >-- -1,

(1 + X)yl >---1.

This problem is unbounded for X (as we have already observed) and is bounded for
< X _-< 3 with optimal solution Yl (X )-. In particular, for every X* satisfying
< X* =< 3, the above (parametric) problem is uniformly bounded for X* _-< X < 3.

Let P be an n n, nonnegative, irreducible matrix with spectral radius
and/ be, respectively, lower and upper bounds on o. Then the interval [X, z] contains
0. The results of either Theorem 3.1 or Theorem 3.3 can next be used to produce a
smaller interval which maintains the property of containing o. Specifically, suppose f is
a positive vector in R" and/3 is a scalar satisfying X </3 < #. Then X _-< o --</3 if and only
if the linear system with n nonnegative variables, n inequalities, and one equation,

(3.9) Px <=13x, frx 1, x >-_ O,

has a solution. Also,/3 =< O =< # if and only if the linear system

(3.10) Px >- 3x, f’x 1, x > O

has a solution. Thus, by checking feasibility/infeasibility of either (3.9) or (3.10), we
can identify a subinterval of[X, z], which maintains the property of containing p. By
selecting/3 2-1(X + t), either of the two approaches bisects the interval [X, z] and
produces an interval with half the length of[X, z].

It is easy to obtain initial lower and upper bounds on the spectral radius. Specifically,
let v be any positive vector. Then for u max ((Pv)i/vi:i 1, n) and X
min (Pv)i/vi 1, n }, Xv < Pv <= v; hence Theorems 3.1 and 3.3 imply that
X =< p =< z. So, lower and upper bounds on p are computable from any positive vector.
Of course, zero can replace X as a lower bound on p. Successive applications of the
bisection procedure described in the above paragraph produce a sequence ofupper bounds
u and a sequence of lower bounds X on p, such that ( X) (u X)2 -. In

particular, the selection of any point p from the interval [X, #], for k 1, 2, will
generate a sequence with P o O(2-). We refer to the resulting algorithm as the
bisection algorithm. This approach is used in Hamburger, Thompson, and Weil [1967]
to compute the expansion rate of avon Neumann economic modela problem that
generalizes the one we consider here ofcomputing the spectral radius. But our evaluation
of whether or not/3 _-< o requires the solution of a system of linear inequalities, whereas
Hamburger, Thompson, and Weil compute the value of a two-person zero-sum game in
matrix form.
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Theorems 3.1-3.4 show that sequences ofapproximations ofthe spectral radius can
be used to generate sequences of approximations of the corresponding normalized ei-
genvector with convergence rates that are dominated by those of the estimators of the
spectral radius. Specifically, we obtain the following corollaries.

COROLLARY 3.5. Letfbe a positive vector in R and let P be an n n, nonnegative,
irreducible matrix with spectral radius t) and correspondingpositive eigenvector w satisfying
the normalization condition fTw 1. Also, let
with limk uk o and let { vk be a sequence ofvectors such thatfor each k 1, 2,
x vk satisfies (3.1) with #k. Then, Ilvk w O(lxk p).

COROLLARY 3.6. Letfbe a positive vector in R and let P be an n n, nonnegative,
irreducible matrix with spectral radius t) and correspondingpositive eigenvector w satisfying
the normalization condition fTw 1. Also, let {
with limk_ Xk p and let vk be a sequence ofvectors such thatfor each k 1, 2,
x vk satisfies (3.6) with k. Then

Let f be a positive vector in R" and let P be a square, nonnegative, irreducible
matrix with spectral radius p and corresponding positive eigenvector w satisfying the
normalization conditionfTw 1. The bisection algorithm generates a sequence of lower
bounds { k and a sequence of upper bounds
and It) k] O(2-k). By finding solutions vk to either (3.1) with/x #k or to (3.6)
with k, for k 1, 2, we get from Corollary 3.5 or Corollary 3.6, respectively,
that Ilvk w O(2-k). Thus, the sequence vk ) is a geometrically converging sequence
of approximations of w.

We next combine the characterizations of upper and lower bounds on the spectral
radius given in Theorems 3.1 and 3.3, and use two-sided bounds to obtain approximations
of the corresponding normalized eigenvector. The bounds we get on the tightness of the
resulting approximations improve on those obtained in Theorems 3.1 and 3.3.

THEOREM 3.7. Letfbe a positive vector in R and let P be an n n, nonnegative,
irreducible matrix with spectral radius t) and corresponding positive eigenvector w. Then
real numbers and tx are, respectively, lower and upper bounds on p if and only if the
linear inequality system

(3.11) Px <= #x, Px >= 3,x, fTx 1, x >= O

isfeasible. Furthermore, if is any norm on R, ifx v, ifl and satisfy (3.11 ), and
ifw satisfies the normalization condition fVw 1, then

v w <- (#

s.t. (P- M)y < v,

(3.12) (P- uI)y > -v,

fry 0,

yRn.

Proof. If X and # are, respectively, lower and upper bounds on p, then w/fw
satisfies 3.11 ). Alternatively, if 3.11 is feasible, so are 3.1 and 3.6 ), and Theorems
3.1 and 3.3 imply that X and # are, respectively, lower and upper bounds on p.

Next assume that is a norm on R n; that x v, X, and # satisfy (3.11 ); and that
w satisfies the normalization condition fVw 1. Then fT(v w) fTv fVw

0. Also, our earlier conclusions show that , =< 0 =</x; hence

(P- M)(v- w)= (P- XI)v- (P- M)w <=
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and

(P- IsI)(v w) (P- IsI)v (P- IsI)w > (X Is)v (p Is)w > -(is h)v,

v w =< max
s.t. (P- M)z <= (is- h)v,

(3.13) (P- IsI)z >= -(is h)v,

fTz=O,
zERn.

Now, if Is =/: X, (3.12) follows directly from (3.13 by applying the change of variable
y (is ,)-z and using the positive homogeneity of real norms. Alternatively, assume
that Is h. Let v be a vector satisfying 3.11 ). Then Pv <= Isv toy ,v <= Pv. So, Pv
or, i.e., v is an eigenvector of P corresponding to o. The normalization conditions
fTW fTV next imply that w v. Thus (3.12) holds in this case in the form of the
trivial inequality 0 _-< 0.

Remarks. 1. Let Pbe an n X n, nonnegative, irreducible matrix with spectral radius
o. Given an upper bound Is and lower bound h on to, we can view solutions of (3.11 as
approximations of the corresponding normalized eigenvector w, and (3.12) provides us
with bounds on the tightness of such approximations. The forthcoming Theorem 3.8
assures that these bounds are always finite.

2. The bounds on I[v w given by (3.12) are computable. Furthermore, they
require the knowledge of v, Is, and ,, but they do not depend on the eigenvector w, which
is the target of our approximation efforts. See remarks 2, 3, and 4 following Theo-
rem 3.1.

3. The positivity of fis required neither for the characterization of pairs of upper
and lower bounds on the spectral radius, nor for the derivation of inequality (3.12); see
remark 5 following Theorem 3.1. However, the positivity of fis required for our proof
of the finiteness of the right-hand side of (3.12) given in the forthcoming Theorem 3.8.

4. The characterization ofupper bounds on o via feasibility of(3.11 can be modified
by replacing the normalization condition fTx by xll2 1. But this approach cannot
be extended to get 3.12); see remark 6 following Theorem 3.1.

5. Suppose thatj min {f :i 1, n}. Then vf >--jllvll and

We conclude that the average coordinate of the vector v is smaller than or equal to the
maximal coordinate ofg divided by n. This observation suggests that the optimal objective
of the optimization problem occurring in 3.12 is smaller than that of the one in either
(3.2) or 3.7 by a factor of n.

We next show that the optimal objective function of the optimization problem
occurring in (3.12) is uniformly bounded in v, h, and Is satisfying (3.11 ).

THEOREM 3.8. Letfbe a positive vector in R" and let P be an n X n, nonnegative,
irreducible matrix with spectral radius to and correspondingpositive eigenvector w satisfying
the normalization conditionfTw 1. Also, let be a norm on R n. Then the optimization
problem on the right-hand side of(3.12) is uniformly bounded in v, , and Is where x
v, h, and Is satisfy 3.11 ).

Proof. Assume that the optimal objective value of the optimization problem oc-
curring in (3.12) is not uniformly bounded in v, h, and Is where x v, 3,, and Is satisfy

implying that
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(3.11 ). Then there exist sequences of scalars Isk and { Xk } and sequences of vectors
{ v. } and { y } such that lim_, YI[ oe and for each k 1, 2,

Pv <- Iskv, Pvi, > Xv, frv 1, vk >= O,

and

(P- XI)y < v,, (P- #,I)y, >= -v,, fTyz: O.

As frv/ and v, >= 0 for each k and as fis positive, we have that the sequence {
is bounded. Also, the first part of Theorem 3.7 assures that for each k, ),k --< o -< Isk.

The sequence (X,, Is,, y,)/II Y,I[ } has a convergent subsequence. Let (X, z, d) be
the limit of such a subsequence. In particular, d is a finite, nonzero vector and X _-< o =<
Is. Furthermore by dividing the inequalities fryk 0 by I[y, ll, we get from continuity
arguments that frd 0. We continue our analysis by distinguishing between the case
where Is and X are finite and the case where either is infinite.

We first consider the case where both Is and X are finite. Dividing the inequali-
ties (P- XI)y < v and (P- IskI)y >= -v by Ilyk[I, we get from continuity argu-
ments and the boundedness of the sequence v that Isd <= Pd <= Xd; in particular,
(is X)d < 0. Also, as X =< o =< Is we have that (is ),) > 0, and as f is positive and
frd 0 it is not true that d _-< 0. It follows from these observations that Is X p, im-
plying that Pd pd. So, d is an eigenvector of P corresponding to p. As frd 0 it now
follows that d 0, a contradiction.

We next consider the case where either Is or ), are not finite. If Is is not finite, then
Is oe, as the sequence Is, is bounded from below by p. Dividing the inequalities
(P- IsI)yk >- -v, by Isllyll we get from continuity arguments and the boundedness
of the sequence { v that -d >= 0. As f>> 0, d 4 0, and frd 0, we conclude that d
0, another contradiction. A similar contradiction is obtained if X is not finite.

In any practical use of our development, we consider only nonnegative lower bounds
on the spectral radius, in which case the proof of Theorem 3.8 simplifies somehow as
the case where ), is not finite is redundant.

Corollaries 3.5 and 3.6 show that if { Is and X are sequences ofupper and lower
bounds on o, and if for each k, v, is a solution of (3.11 with Is Isk and X X,, then
v w O(is x). Consequently, if Isk ) and Xk are generated by the bisection

algorithm, we get that the resulting sequence v,) has I[v, w]l O(2-).
The arguments used to establish the bounds on Ilv w given in Theorems 3.1,

3.3, and 3.7 can be used to obtain bounds on the individual coordinates of v w. For
example, under the assumptions of the above theorems, respectively, lower and upper
bounds on the coordinates (v w)i, 1, n, can be obtained by considering either
of the following pairs of linear programs:

(is o) min Yi

(3.14)
s.t. P IsI)y < g,

fry= O,

yER

(0- X)min Yi

(3.15)
s.t. (P- XI)y > -g,

fry O,

(is o) max Yi

s.t. (P- IsI)y <= g
fry 0

yERn,
(o- X)max Yi

s.t. (P- XI)y > g,

fry= O,

y6R, y6R,
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and

(tt- X)min Yi (- X)max Yi

s.t. (P- M)y <= v, s.t. (P- M)y <= v,

(3.16) (P- #I)y >-_ -v, (P- I)y >= -v,

f’y O, fTy O,

y6Rn, y6R.
We note that the arguments used to establish Theorems 3.2, 3.4, and 3.8 show that the
above optimization problems have (uniformly) bounded objectives over the corresponding
ranges of the parameters.

The use of linear programs like those in (3.14)-(3.16) to obtain bounds on the
individual coordinates of v w, where w is an eigenvector corresponding to the spectral
radius o and v is its approximation, was first derived by Haviv 1988 ]. Haviv’s approach
was to consider the dual programs, rather than rely on the homogeneity of the optimal
objective of a linear program with the right-hand side.

Theorems 3.1, 3.3, and 3.7 show that approximations to the spectral radius of a
square, nonnegative, irreducible matrix yield approximations to the corresponding ei-
genvector. We next show a converse of this result, where vectors that can be viewed as
approximate eigenvectors yield approximations of the spectral radius.

THEOREM 3.9. Letfbe a positive vector in R and let P be an n n, nonnegative,
irreducible matrix with spectral radius o and correspondingpositive eigenvector w satisfying
the normalization condition fTw 1. Furthermore, let v be a positive vector in R with
fTv 1, let be a positive number, and let Pv fly. Then

(3.17) 10-/31 =<max{16il/vi:i= 1,...,n}.

Furthermore, if6 >= 0, then to >-- ; and if6 <= 0, then to < .
Proof. Let u be a positive left eigenvector of P corresponding to its spectral radius

o. Then

(o- )uvv uT(Pv v) u76.

Thus IO 51 luV6l/uTv. LetK =max {liSil/vi: 1, ,n}. Then (3.17) follows
from the inequalities

uikl) uil) k.

The remaining conclusions of the theorem follow from Theorems 3.1 and 3.3.
Remarks. 1. In most computations of the spectral radius and corresponding eigen-

vector of a square, nonnegative, irreducible matrix, we end up with a scalar/3 and a
positive (normalized) vector v such that 6 Pv v is not the zero vector, but is a small
vector with respect to any given norm. So, we can view such a vector v as an approximate
eigenvector ofP with respect to/3. In this case, (3.17) provides a bound on the proximity
of/3 to the spectral radius. Furthermore, for

max i/vi:i 1, ..., n and =/3 + min { i/vi:i 1,’’’, n },
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Pv <- v, Pv > Xv, and [g X[ _-< 2111611[o, for the norm I[I [11o defined for x e R by
Illxll[ max {xi/vi’i 1, .-., n }. So, Theorems 3.1, 3.3, and 3.7 provide bounds
on lily wlllo in terms ofa product ofll[lll, and a computable constant (which depends,
respectively, on #, on X, or on #, X, and v).

2. Under the assumptions of Theorem 3.9, (P- 6fT)v Pv 6 /3v; hence v is
an eigenvector of P 6f r with respect to the eigenvalue /3. If the matrix P 6fr is
nonnegative, we conclude that/3 is its spectral radius, a fact that can be used to derive
approximations of the spectral radius of P and of the corresponding normalized eigen-
vector (see Haviv 1988 and Gross 1989 ). But the nonnegativity ofP 6fT is a strong
and restrictive assumption, which we do not wish to impose.

4. Upper bounds on the second largest modulus of an eigenvalue via approximations
of the spectral radius and corresponding eigenvector. Theorem 2.1 gives bounds on the
second largest modulus of an eigenvalue of a square, nonnegative, irreducible matrix in
terms of the spectral radius of the matrix and corresponding eigenvector. In the current
section, we develop bounds that depend on approximations of these parameters.

We start by showing that the functional r(. ,.), defined in 2 and used in Theorem
2.1, is Lipschitz continuous in its third variable over hyperplanes.

LEMMA 4.1. Let B e Rn n, fe R, and let be a norm on R n. Then for every
pair ofvectors u and v in R satisfyingf ru frv 1,

(B, II, u) =< (B, II, v)( + u v * f / u v * frB
(4.1) _-< (B, II, v) / u v * f B[t / fB

=< (B, II, v) / 2 u v * f B

Proof. Compactness arguments assure that r(B, ]1, u) I1YrBI] for some y e R
with y =< and yru 0. Now ifyTB 0, then r(B, II, u) 0 and the first inequality
of(4.1 is trivial. Also, if y (yT’v)f= O, then 0 [y (yrv)f] ru yru (yrv)
(f ru) -(yT’v). So, y is feasible for the optimization problem defining r(B, I], v), im-
plying that r(B, II, v) >= IlyTBI r(B, I111, u) and, again, the first inequality of (4.1)
follows. Next consider the case where yrB :/: 0 and y- (yrv)f:/= 0. The assumption
that yrB =/: 0 and the optimality of y for the optimization problem defining r(B, II, u)
imply that [lyll 1. Also, the assumption that y (yrv)f4:0 implies that the real vector

z [y- (yTv)f]/lly- (yrv)fll

is well defined. In particular, Ilzll and zrv O, i.e., z is feasible for the optimization
problem defining r(B, [, v). Thus, as yru 0 and Y 1,

r(B, II, v) >= IlzrBll IlyrB {[yr(v- u)lfrB}lllly [yr(v- u)]f[[ -l

> [lyrB {[yr(v-u)lfrB}ll{llyl[ + [[[yr(v-u)]fl[ -1

>-- IlyrBII [yr(v u)lfrBll} [ly[I + [yr(v u)lfll }-1

implying that

(B, II, u) _-< (O, II, v) + v u * f / v u * fO

So, the first inequality of (4.1) has been established. The remaining inequalities of (4.1)
follow directly from the standard inequalities r(B, I[, v) =< [IBl[ and [IfrB[I =<
Ilfll BII.
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We note that the first bound in (4.1) is the tightest one, but the other two are
included because they are useful in our forthcoming development and because of their
simplicity.

COROLLARY 4.2. Let B Rnn, f6 R n, and be a norm on R. Then for every
pair ofvectors u and v in R satisfyingf 7;u f 7;v 1,

"r(B, ]], u) -r(B, II, v)l =< u v *( f BI] + f 7;BII
(4.2)

_-< 2

In particular, r( B, ]], .) is Lipschitz continuous on x R xf which implies
that r( B, II, .) is continuous on that set).

THEOREM 4.3. Let P be an n n, nonnegative, irreducible matrix with spectral
radius o and corresponding eigenvector w; let fe R satisfy f T;w 1; and let be a
norm on R. Then for each v R satisfyingfT;v 1,

’(P) < -r(P,

(4.3) <= r(g, I1, v) + Ilv- wll *(llfllllPll + Ilfrgll)

--< (P,
Proof. By Theorem 2.1, ’(P) < r(P, II, w). Combining this inequality with (4.1)

immediately yields (4.3).
Theorem 4.3 provides bounds on ’(P) in terms of an approximation v to the nor-

malized eigenvector w of the underlying matrix P with respect to its spectral radius
As the bound contains the term Iv w *, we can use the results of 3 to derive bounds
that do not contain w. Specifically, given a positive vector v which satisfies 3.1 ), (3.6),
or 3.11 for scalars and/or X, respectively, we have that v w * is bounded by the
product of [ X and a (computable) constant, which is uniformly bounded over the
corresponding range. In particular, these constants are the optimal objective values of
an optimization problem involving the dual norm. Of course, explicit expressions of the
dual norm are available for the lp norms for _-< p <

We finally recall from Rothblum and Tan [1985] that for an arbitrary matrix B
R"x" vectorsv, aR" and norm onR

(4.4) r(B, II, v) _-< [IB va 7;

and

(4.5) r(B, II, v) lib- vaT;ll2 --< lib- vaTIIF.
Furthermore, the right-hand side of (4.5) is minimized by selecting a B%/(IIvII2).
Thus r(P, II, v) in (4.3) can be replaced by P- var[I for any arbitrary vector a in
R". Furthermore, if is the l norm, r(P, II, v) can be replaced by lip vaT;lie and
this expression is minimized by selecting a PT;v/(Ilvl12). We further note that when
w is the eigenvector ofP corresponding to its spectral radius p, the spectral radius o(P
wa 7;) ofP war is known to be an upper bound of f(P), where a is an arbitrary vector
satisfying a rw <= p; again, see Rothblum and Tan [1985 ]. Thus, using the continuity
of the spectrum with the elements of a matrix, one can obtain bounds on f(P) from
o(P va r) when v is an approximation of w. We do not include further details because
we were not able to derive simple representations for the tightness of these bounds or
use the results to obtain efficient computational methods.

5. Upper bounds on the second largest modulus of an eigenvalue derived from ma-
trices having the same spectrum as the underlying matrix. Given a square, nonnegative,
irreducible matrix P, we can apply the methods developed in 4 to bound the second
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largest modulus of an eigenvalue of P to any matrix that has the same spectrum as P,
e.g., the transpose ofP or any scaling o.f P. Examples of Rothblum and Tan 1985 and
Gross 1989 demonstrate that the resulting bounds can be different from those derived
from the original matrix (even when the spectral radius and corresponding eigenvector
are known and used in the corresponding bounds, rather than their approximations).

We next show that the application of the methods of 4 to scalings of the given
matrix is equivalent to scaling the underlying norm and normalizing vector. In order to
describe this fact we need some formal definitions.

Given two matrices P and D in R , where D is diagonal with positive diagonal
elements, we define the D-scaling of P as the matrix D -I PD. Also, if D is as before and

is a norm on R ", we define the D-scaling of II, denoted I1, as the norm on R"
with xll Oxll for every x e R".

LEMMA 5.1. Let D R be a diagonal matrix with positive diagonal elements
and let be a norm on R. Then for every vector a R and matrix B R ,

all ; D-lall * all *D-I

(5.3) (D-’BD, II, a)= r(B, I1, Da).

Proof. Using the formal representation of ]]al] z) and a change of variable x Dx,
we have that

* Tx t.Ilall/)=max{a xR

IIaTD- * O-’all * Ilall O-I

establishing (5.1). Next, by the definition of the functional r(.,.,. and the change of
variable x’ D- x,

(O-I BD, II, a) max xrO-l no x R n, xll =< and xTa 0

max {ll(x’)TnOll x’ Rn, [IOx’ll-<- and(x’)TDa 0}

r(B, 119, Da),

establishing 5.3 ). The proof of (5.2) follows from the arguments used to establish 5.3
(ignoring the requirement that xTa 0).

Let P be an n n, nonnegative, irreducible matrix with spectral radius p and cor-
responding eigenvector w; let f R" satisfyfTw 1; and let be a norm on R n. Also,
let D be an n n diagonal matrix with positive diagonal elements. Then the spectrum
of P and D-l PD coincide; in particular, p is the spectral radius of D-1PD with corre-
sponding eigenvector D-lw and ’(P) (D-PD). It follows that for a given vector v
and a normalizing vectorf, bounds on ’(P) can be derived by applying Theorem 4.3 to
D-1PD. We next demonstrate that the resulting bounds are the same bounds derived
from the original matrix P with respect to a scaled norm lID, where the normalizing
vector is D -1 fand the approximating vector (for the eigenvector w of P) is Dv.

LF.MMA 5.2. Let P be an n n, nonnegative, irreducible matrix with spectral radius
p and corresponding eigenvector w and let D be an n n diagonal matrix with positive
diagonal elements. Then p is the spectral radius ofD-1PD with corresponding eigenvector
D-1w. Furthermore, letfe R satisfyfT(D-lw) 1, let v R satisfyfTv 1, and let

be a norm on R Then D f T Dv 1, r(D PD I1, v) r P, D, Dr),

5.2 D-’BD B ,
and
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IIv- D ’wll* IIDv- WilD, IIDfll- IlfllD, IIf(D-’PD)II II(D-f)VPIID, and
O-’ PD ell.

Proof. The conclusions follow either from the identities of Lemma 5.1 or from the
definitions of dual norms and of scalings of norms.

We next show that applying Theorem 3.1 to a scaling of a given matrix P results in
bounds on approximations ofthe eigenvector ofthe original matrix P that are equivalently
derived from Theorems 3.1, 3.3, and 3.7 applied to P with a corresponding scaling of
the given norm.

LEMMA 5.3. Let P be an n n, nonnegative, irreducible matrix with spectral radius
o and corresponding eigenvector w; let D be an n n diagonal matrix with positive
diagonal elements; and let be a norm on R n. Also, let f be a positive vector in R
satisfyingfT(D-lw) 1; let v a R satisfy

(5.4) D-I PDv <- v, D-I PDv >= )kl, fTl 1, V >= 0;

and let g be the vector defined by gi 1/f, 1, n. Then the bounds on IIv
D-lw derived by applying (3.2), 3.7 ), and 3.12 to D -l PD, its spectral radius o, and
corresponding eigenvector D-lw, reduce, respectively, to

(5.6)

and

By w D-’ ( ) max y D-’

s.t. P #I)y <-_ Dg,

(D-lf)Ty O,

y a R

Dv w lID-’ X) max y

s.t. (P- M)y >- -Dg,

(D-lf)Ty O,

yar

Dv w D-’ (m X) max y D-1

s.t. (P- XI)y <- Dr,

(5.7) (P uI)y >= -Dr,
(D-lf)Ty- O,

yaR

Proof. We establish only 5.5 ), as (5.6) and 5.7 follow analogously. Substituting
the explicit expression of the scaled norm I]-, into (5.5) and applying the change of
variable y’ D -1 y, we get that (5.5) is equivalent to

v D-lw < (U P) max

(5.8)
s.t. (D-1PD taI)y’ < g,

fTy,= O,

y’ a R n.
The fact that (5.8) is the specialization of (3.2) to D-1PD, its spectral radius p, and
corresponding eigenvector D-lw is obvious; thereby establishing (5.5).
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ON THE SOLUTION TO MATRIX EQUATION TA FT LC
AND ITS APPLICATIONS*

CHIA-CHI TSUI’

Abstract. Equation TA FT LC is fundamental to state space control system design. However, the
existing solution to this equation cannot satisfy the necessary requirements that F be in Jordan form and that
all rows of T be explicitly expressed in terms of their respective basis vectors. These two requirements are

imposed by some basic and practical design problems such as eigenvector assignment and minimal function
observer design. This paper shows that a new solution to this matrix equation can truly satisfy those requirements.
Consequently, this solution can be applied directly to explicitly solve the above two design problems. Based on

this solution, precise loop transfer recovery (LTR), approximate LTR, and output feedback design are unified
and much more easily achieved for all systems with more outputs than inputs. This paper also shows the superior
efficiency and stability of the computation of this solution.

Key words, state space methods, eigenstructure assignment, minimal function observer design, loop transfer
recovery (LTR) observer design, computation

1. Introduction. Consider the matrix equation

(1) TA FT LC,

where the pair (A R"’, C Rmn) is given and is observable, the eigenvalues of
F Rr are arbitrarily given. The problem is to find the solution T 6 Rr n, F, and
L Rrm) which satisfies ), where the rows of T must be linearly independent of each
other. This equation is fundamental in state space control system design. For example,
when r n, is equivalent to

(2) T(A -/SC) T-1 F,

which is the state observer design problem with observer gain L T-1L. The dual
version of (2),

(3) T-(A BK)T= F,

is the state feedback design problem for eigenvalue assignment, where (A, B) is given
and is controllable, and K is the state feedback control gain.

It should be noted that when F is in Jordan form, then matrix T will be formed by
the left and fight eigenvectors (and generalized eigenvectors) of feedback systems (2)
and (3), respectively. Thus is equivalent to the entire eigenvalue and eigenvector
assignment problem.

The existing solution of (1) other than those found in Tsui [16] and Kautsky,
Nichols, and Van Dooren [9] can be divided into the following three categories.

(i) In linear systems textbooks, the solution is to first transform (TAT- CT-into canonical form (Luenberger 12 ), and to then adjust L to fit the desired characteristic
polynomial coefficients of (2). Therefore, the resulting F ofthis solution is in companion
form Brand ).

(ii) In linear algebraic literature, only the matrix equation

(4) TA FT C
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has been treated. Equation (4) is certainly different from in the sense that there is
no freedom at the right side of (4) while L of (1) is a freely designed observer gain.
Because of this difference in the available freedom, the solution of (4) requires that the
eigenvalues ofFand A be different, among other restrictions. This is certainly an additional
restriction as compared to the arbitrary eigenvalue of F in (1). Therefore, we cannot
simply use the solution of (4) to solve ), even though (4) has already been completely
solved, even with good numerical consideration (Golub, Nash, and Van Dooren [8 ]).

(iii) There are other more complicated algorithms that can be used to solve ),
such as the well-known result ofMoore 14 ], who first showed the freedom ofeigenvector
assignment.

However, none of these solutions satisfy the following two properties: (i) F is in
Jordan form, and (ii) all rows of T are explicitly expressed in terms of their respective
basis vectors.

It turns out that the above two properties are essential to solving some basic and
important design problems, which are more specialized than the simple eigenvalue as-
signment problem. These problems have not really been solved satisfactorily despite
several efforts in the control literature over many years. Three of these problems, the
eigenvector assignment for general robustness, the design of reduced-order observers
which directly estimate the state feedback, and LTR (recover the loop transfer functions
of the observer feedback system), are presented in 4, 5, and 6, respectively. Before
these sections on application, a solution of which completely satisfies the above two
required properties is presented in 2 and 3, along with its computational analysis.

2. A general solution. The solution that completely satisfies the two required prop-
erties of was independently published in 16 and 9 and is described in this section.
The solution of 16 ], which is more advanced than the solution in this section, is further
described in 3.

The solution is based on the following form of (A, C):

(5) A [A :A2], C= [C, :0], [C,[ 4:0,
rn m

where 1. represents the determinant. Form (5) can be considered general because any
C can be transformed to (5) by orthogonal transformation, which does not change the
sensitivity of the original problem.

Based on (5), can be partitioned into

(6)

and

(7) [ 0](TA FT) =0.
1_

For any F and T, (6) can always be satisfied by L because C is full column rank.
Thus we only need to solve (7) for F and T. This partitioning shows clearly how the
freedom of parameter L can be fully used to reduce the problem dimension from n in
(1) to n rn in (7).
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(8)

Equation (7)can be rewritten as

[t’ t’r] L(R)A2-F’(R) 0’,

where t’ to t’r are the rows of Tand (R) stands for the Kronecker product, and the dimension
ofthis product is rn r(n m). From this dimension, the degree offreedom ofsolution
Tof(8) is rm.

With distinctly real eigenvalues, F diag Xl, Xr}. Then from (7) or (8),

(9) t A2-X =0’, 1,...,r,
In-

and

dl](10) t [C/l, im] 1,..., r,
dm

where

(11) d’ A- Xi =0 j= mij

In

For ),i and X + a -I- j/3, a corresponding 2 2 diagonal block of the Jordan form
F will be formed. Then from (8),

0
(R)A2- (R) 0’, j= 1,...,m.(12) [d}j’d}+l,jl

0 -/3 a I._
For ),; X + 1, a corresponding 2 2 diagonal block ofF will also be formed. Then

from (8),

(R)A2- (R) =0’, j= ,m.(13) [dij di+l,j]
0 0 k In-

(14)

Equation (13) implies that

d}. A k 0’

and

(15) d} + 1,j A2 Xi d
1_ 1.-m

Equation 15 can be used repeatedly for more repeated X’s.
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The rn d/../ vectors (j 1, rn) of( 11 ), (12), and (15) always exist because the
matrix inside the bracket (and matrix A2) has full column rank with n rows and n rn
columns. These rn d/:/ vectors form a basis for ti as shown in (10).

The above solution completely satisfies the requirements of 1. Here the arbitrary
linear coefficients of (10), c0. (i 1,..., r, j 1,..., m), form the complete and
explicit freedom of T. This result clearly shows why the multivariable system (rn >
has freedom in its eigenvectors T while the single variable system does not.

3. A more advanced solution and its computational analysis. Now, in addition to
the form (5), we assume that (A, C) is in the block observable Hessenberg form

(16)
A’ A2

CI’ 0

C2
A:22

A1

Av2

0

0 0

C3

mo
ml

m2

my-
my

ml m2 m3 mo

where C1, Cv are full column rank matrix blocks in echelon form with upper-fight
corner zeros. Parameter v is the largest observability index, and parameter mk (k 1,

v) indicates the number of observability indices that are greater than k 1. Here
we have assumed without loss of generality that the observability indices are in descending
order. Form (16) can also be considered general because any observable system (A, C)
can be transformed to 16 by orthogonal transformation (van Dooren, Emalmi-Naeini,
and Silverman 23 ]).

Because of the echelon form of C. and therefore A2, the d. vectors of 11 ), (12),
and (15) can be computed using either back substitution or Givens’s method.

The difference between this result and that of 2 is that observability indices can
be used here to analyze the linear dependence of the di vectors. Let us assume that ki’s
are distinct, and let us define the matrix inside the bracket of 11 as 2. Then from
(16) A2 has the same form as A2. From (16) the jth row of Cv.+ is linearly dependent
on its previous rows in / 1, so the corresponding row of on its previous rows ofA:
will be as well. If we express this dependent row of 2 as a linear combination of its
previous and independent rows of2, then it is straightforward to show that

(17)
di’j. [1, )ki,... )kiv-l]

x...x x...x x...x, ., 0...0 0...0

x...x ’x...x, .,0...0’, 0

x...x, ,,0...0’,

rn m2

where "x" represents an arbitrary entry and "." represents a nonzero entry and is
located at the jth position of the corresponding block.
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For example, if v 4, 1)2 1)3 2, and v4 1, then from 16)-(17),

X *
X X *
X X X

X X X *
X X X X

X X X X

x x x’,x

X X X’ X X

and

il i

X X X X X X X X *|

x x x x x x x 0
x x x x 0 0 0 0

0 0 0 0 0 0 0 0

Ixi x x x x 0 0 0]
0 0 0 0 0 0 0

di2 i 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

x x x x x x 0 0]
x x 0 0 0 0 0 0

di3=i 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
d4 V 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

where v; [1 )k )kt2" k/3 l"
From (17), it is clear that the m do vectors are linearly independent of each other

for a given (i r). Furthermore, for a given j (j 1,..., m), any group of
dj vectors

are also linearly independent because both V and U have rank 1)j. This property can be
easily generalized to the multiple eigenvalue case, where U remains unchanged and V
remains to be a left eigenvector matrix of a companion form matrix (Brand [1]).

An even more special case of the Hessenberg form of (A, C) is the canonical form
(Luenberger 12 ]), for which all "x" entries ofA2 and U become 0 and all "." entries
become 1. The canonical form cannot be obtained by orthogonal transformation. Nev-
ertheless, the solution based on the canonical form is very suitable for theoretical analysis
because it is very simple.
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Let us now analyze the computational properties of the algorithm of 2 and 3.
The algorithm has only two major steps. The first is the orthogonal transformation of
(A, C) into form (5) or (16). This transformation is well known to be efficient and
numerically stable, and is a popular first step ofmany other basic computational problems
such as single value decomposition (SVD) and eigenvalue problems ). The second major
step is the computation of do vectors in 11 ), (12), and (15). The computation of 11 ),
(12), and 15 can be direct SVD if based on 5 or direct back substitution if based on
(16). This step, especially the back substitution, is well known (Wilkinson [24 ]) to be
direct, simple, numerically stable, and efficient. The efficiency property of this step is
further supported by the possibility of completely parallelized computation, which is
uniquely enabled by the unique fact that do vectors are completely decoupled for all
and all j if based on 16 (Tsui 20 ).

Many control theoreticians and numerical analysts have reservations about the ex-
plicit computation ofthe Jordan form ofFand eigenvector matrix T, because computing
the Jordan form (the simplest result) from a given matrix can be ill conditioned and
very difficult. However, the eigenstructure assignment problem is a completely different
problem because the eigenvalues are given and need not be computed. It is certainly
plausible to use the simplest form (the Jordan form) ofthese given eigenvalues to compute
the rest. In fact, the computation of the eigenvalues is iterative (either QR method or
the method of solving characteristic polynomial roots), while the computation of our
algorithm is direct and simple.

4. Eigenvector assignment for decoupling and robustness. The first direct application
of the solution of 2 and 3 is eigenvector assignment. The only simple and general goal
of this assignment is to minimize k(A) V V-I[ >_- 1, because a small k(A) gener-
ally implies better robustness, smaller control gain, and smoother transient response
(Kautsky, Nichols, and Van Dooren 9]), where A and V are defined by the equation
V-(A BK)V A, with given (A, B) and given eigenvalues of the Jordan form
matrix A.

To actually achieve (or to try to achieve) minx { k(A) of the above paragraph, we
must have explicit solution of Vand its complete and explicit freedom (within a variation
of orthogonal transformation). In other words, in solving for this problem, F must
be within an orthogonal transformation of A, and the solution T must be explicit along
with complete and explicit freedom. It is obvious that the only form of F satisfying this
requirement is the Jordan form A itself. Other forms of F within the orthogonal trans-
formation ofA, are too complicated to have the corresponding solution Tshow complete
and explicit freedom.

Indeed, not until 1985 did our solution of 2 and 3, which was based on the
Jordan form ofF, satisfy the above two requirements. Based on our solution, eigenvector
assignment is simplified to the choice of parameters c0 only. In fact, not until 1985 and
only based on this form ofeigenvector assignment freedom, were several explicit numerical
algorithms which could compute co for a minimum k(A) developed in Kautsky, Nichols,
and Van Dooren [9].

A further improvement on the result of Kautsky, Nichols, and Van Dooren [9 is
described in 3. Because the d/.-/ vectors in 2 do not have any analytical property, the
computation oftheir linear combination ci/must be pure numerical iteration in Kautsky,
Nichols, and Van Dooren 9 ]. However, the d/.-/ vectors in 3 can be analytically divided
into m (j 1, m) output (input in dual case) groups of sizes v (j 1, m),
which were derived along with the Hessenberg form. As a result, some analytical and
direct guidelines of c/selections for decoupling can be established (Tsui 17 ).
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For example, if X; Xi + 1, we may simply select ti d/j and t; + di,j+ 1, SO that
the two poles are decoupled into the jth and the j + th output groups, respectively. By
using di,j + instead of di + l.j (or the same jth group) for t + 1, a defective eigenvector
corresponding to Xi + and (15) is avoided (Golub and Wilkinson [7]). As another
example, if ),n is closest to the imaginary axis (or dominant), we may let tn d. with
the smallest v. The resulting t will be directly affected by the least number of other
eigenvectors. Let us define the sensitivity (or the condition number k( X; )) ofan individual
eigenvalue Xi as k-(Xi) {ii, i) (i n), where ii and i are the ith
normalized vectors of T and T-1 respectively 24 ]. For example, if ),, is decoupled into
a group with the smallest possible size v 1, then a diagonal block will be created
for X,, and the corresponding k(),n) will be a perfect 1. Therefore, our decoupling can
uniquely reduce k( hi ).

To guide the above selection of co and decoupling, we will establish a new robustness
measure. From 9], robustness usually implies small control gain and smooth transient
response. Robustness is the sensitivity of the system toward instability. The often used
general robustness measure, which involves pole sensitivity, is SI k-(A)[Re
However, k(A) is only an overall sensitivity of all eigenvalues, while the sensitivities of
some individual X’s (such as the dominant ones) should be more important in robustness
than the other X’s, as shown by the example of Lewkowicz and Sivan 11 ]. Thus our
new robustness measure is proposed as

(18) $2 min {k-l()i)lRe(Xi)]}.

Because k(X) IItll lit_ill < TII r-ll k(A), where ti and ti are the ith vector of T
and T-1 respectively, and because k(X > for all i, it is clear that

(19) k-(A)lRe (Xn)l < $2 --< IRe (Xn)l.

Comparing S with $2, we see that instead of using the overall pole sensitivity k(A)
in $1, $2 uses the sensitivity of ),, itselfto divide IRe (),) I, as the likely distance for
to become unstable. Therefore, $2 is always more accurate and less conservative than
S. Furthermore, unlike SI, $2 considers the sensitivities and real parts of all individual
X’s, not just that of ),n. It should be noted that the instability of any X will cause the
instability of the system. Therefore, $2 considers more complete information than S.
Nevertheless, $2 is still less conservative than S, as shown by the lower bound of (19).
Finally, $2 can be easily modified for different applications. $2 considers the weighted
sensitivities of each individual pole. The heaviest weighting factor IRe (X)I is on max-
imizing k-l(Xn), SO that the product pair will not be the minimum among the n pairs
in $2 of 18 ). We may arbitrarily modify these weighting factors if we know a priori that
the sensitivities of some individual poles are particularly important (or less important).

The unique feature of $2 is its use of individual pole sensitivities. The decoupling
can uniquely reduce these sensitivities (see [11 ). The guidelines of our eigenvector as-
signment can uniquely and directly achieve decoupling and, therefore, the enhanced
robustness (in the direction of $2). These guidelines, like pole selections, are used to
guide designer/computer interaction and iteration, but not a one-call computer subrou-
tine. Because of the variety and complexity of the real-world systems, as indicated by
different v’s, m’s, and p’s, and because of the complicated trade-offbetween the desired
performance (indicated by X’s) and robustness (indicated by X’s, k( X )’s, and $2), it is
necessary to compute the real optimal solution interactively. Our result is aimed directly
at improving this designer/computer interaction, but not at replacing this interaction
(by a one-call computer subroutine).
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5. Simplifying minimal function observer design to the solving of a set of linear
equations. The second application of our solution of is the design ofa general observer

(20) (t) Fz(t) + Ly(t) + TBu(t),

Kx(t) Nz(t) + My(t),

where x, y, and u are the system states, outputs, and inputs, respectively. Equation (20)
is a general formulation of an observer which estimates Kx(t). A state observer is a
special case of (20) when K I. The observer (20) is also defined as "Kalman type" if
M 0 and "Luenberger type" ifM =/= 0. For example, the Kalman filter, with (K, M)
fixed to be (I, 0), is a special case of (20).

The real original purpose of an observer is to estimate Kx(t), not x(t). When x(t)
is estimated by some observers, it will be immediately multiplied by K anyway. Because
the number ofKx(t)(the number ofcontrol inputs) is usually much less than the number
of states x(t), directly estimating Kx(t) should require much lower observer order than
estimating x (t). A general observer 20 that estimates Kx(t) directly is called a function
observer.

Equation ), which implies that z(t) Tx(t), is a necessary condition for all types
of observers. Substituting z(t) Tx(t) into (20), the sufficient condition is then

(21) K= NT + MC N" M]
m

Although equations and (21) are both the necessary and sufficient conditions
of observer (20) 13 ], (21 not )) exclusively reflects the difference (in K and M) of
all types of observers. Therefore, (21 should be used exclusively to systematically de-
termine the different orders of different types of observers. Therefore, the minimum
observer order r is determined as the minimum r needed to solve (21 for N and M.

For example, in state observers (K I), the observer order r is n for M 0 and
n rn for M 4 0, and is independent of the values of T and C. However, in function
observers, because K usually has much smaller numbers of rows (state feedbacks) than
I, the corresponding r can be much smaller. Furthermore, in function observers, the
minimum r is dependent on all values of K, T, and C. Thus the minimum r must be
determined from (21) for each case of K, T, and C. Because K is arbitrarily given and
T is determined from with n 2 entries, the explicit and analytical formula for minimum
r is a function of n 2 variables and therefore does not exist.

To actually determine the minimum r from (21) systematically, the eigenvalues of
F and the corresponding rows of T must be completely decoupled. Otherwise, reducing
one observer order or extracting one eigenvalue from F (or one row from T of (21)) will
change the remaining eigenvalues of F and T. Consequently, before 1985, because of
the difficulty of deriving such an F and T, people were forced to solve and (21
together. Only based on the solution of in 2 and 3, can we now solve (21 exclusively
and systematically, for a minimum r 16 ].

Because (21 alone is only a set of linear equations, it is itself the simplest possible
theoretical solution of minimal observer design. The actual solving of this set of linear
equations is technical. Although the minimum r does not have a general and explicit
formula because it depends on too many variables, its upper bound has been derived by
solving (21 exclusively 18 ]. The lower bound of r is 0, also from (21 ).

The claim made in the title of this section has never been made before and has been
unnoticed by people studying this basic problem (see, e.g., Fowell, Bender, and Assal
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U(t) y(t)
G(s)=C(sI-I)-B

KX(

FIG.

[6 ]). This is probably because the result in [16] and [18] is not as simple as the result
of state observers, despite the fact that the function observer is much more complicated
(r depends on K, T, and C) and the fact that (21 is already the simplest possible theoretical
solution.

6. Unified precise LTR and output feedback design. The third application of our
solution of is loop transfer recovery (LTR). LTR is an additional design requirement
of observer (20), whose corresponding block diagram is shown in Fig. 1. LTR requires
the observer (20) not only to estimate Kx(t), but also to have the corresponding loop
transfer function Lo(s)(at the break point u(t)) be recovered to the loop transfer function
of the direct state feedback system L.(s) K(sI- A)- B. It was pointed out by Doyle
[3] that Lo(s), unlike the loop transfer function L(s) at the break point Kx(t), is different
from L.(s).

Because the properties of a feedback control system (such as sensitivity and ro-
bustness) are contained by the system’s loop transfer function, LTR actually requires
the observer not only to implement the given state feedback control, but also to preserve
the properties of the corresponding state feedback system. Therefore, LTR is a very
practical and important problem.

The sufficient condition of LTR based on observer formulation (20) is proved to
be TB 0 [19], [21]. This condition can be directly visualized from the above block
diagram, which shows that the difference between the break points u(t) and Kx(t) is
caused by the feedback path TB.

The existing LTR approach (Doyle and Stein [4], [5 ]) uses Kalman filter as the
observer. While the complete freedom of observer design can be represented by observer
eigenstructure assignment, the only explicitly used freedom in Kalman filter design (for
LTR) is the increase of system input noise level. Based on this approach, precise LTR
(Lo(s) L,(s)) with finite filter gain can be achieved only when the open loop system
G(s) has n rn stable invariant zeros, and only if all n rn Kalman filter poles match
each one of these zeros. For all systems not having n rn stable invariant zeros, only
approximate LTR can be achieved and only with asymptotically large filter gain. This
result has received wide and continuous attention (see, e.g., Stein and Athans [15 ]).

There is another result about precise LTR TB 0), which is referred to as "unknown
input observers." Let us quote the latest treatment of that result (Kudva, Viswanadham,
and Ramakrishna [10]), which says that for all minimum-phase systems with rn > p
and rank (CB) p, precise LTR TB 0) with finite observer gain can be achieved. In
addition, if the above system does not have any invariant zeros, then the observer poles
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can be arbitrarily chosen. No approximate result has been derived for systems not satisfying
the above conditions, and this result is completely different from that ofDoyle and Stein
[41, [51.

From our analysis of LTR at the beginning of this section, the LTR problem can
be formulated to satisfy ), (21), and TB 0. Now based on our solution of in

2 and 3, we only need to satisfy (21) and TB 0 by fully using the remaining observer
design freedom of eigenvalue selection and eigenvector (ci) assignment. Now, because
for/= 1,...,n-m,

(22) t}B [Cil" tim B a__ [i1’’" Cim](DiB)mp ’,

d}m

we can always make (22) 0 by selecting the free parameters co if m > p and if the
observer poles are distinct and real. We will further assign the observer poles exactly the
same way as in [10 ], that is, we will match every existing invariant zero of G(s) (they
are stable, as guaranteed by minimum phase). Thus we have followed all design require-
ments of[10 and fully used the entire remaining observer design freedom (eigenvector
(c0) assignment). If G(s) has n m stable invariant zeros, then DB N(s i) 0
for all and for any values of (A, B, C), and m and p, where G(s) left MFD
D-(s)N(s) (see Chen [2]). In this case, we can arbitrarily select c0 to make the corre-
sponding matrix T’ C’] full rank or to make (21 solvable for any given K, and we
can always find such c0 directly (Tsui [22 ]). Therefore, we have easily and uniquely
achieved the precise LTR results ofboth Doyle and Stein 4 ], 5 and Kudva, Viswanad-
ham, and Ramakrishna [10].

For systems not satisfying the conditions in [4], [5], and [10], precise LTR with
finite observer gain cannot be achieved. As reflected in our design for satisfying (1),
(21 ), and TB 0, (21) and TB 0 may not both be satisfied for those systems, while

is always satisfied, based on the solution of 2 and 3. Now, for any systems with
m > p and distinct and real observer poles, TB 0 can always be satisfied, as shown in
(22). For those systems, only (21) is not guaranteed solvable or T" C’] is singular. In
this case, we can simply find an approximate solution of (21), K [N" M][ T’ C’]’,
with Tdetermined from (22) and Konly approximating K(as in the least-square solution
of (21)). The resulting loop transfer function will be/(sI- A)- B, and only/x(t)
(not the desired Kx(t)) will be estimated and implemented. Therefore, we achieved
approximate LTR more systematically and with guaranteed finite observer gain, because
(21 and TB 0 are only sets of linear equations.

There is a very important modification or extension of our LTR procedure, also
valid for all systems with m > p and distinct and real observer poles. Because our solution
T of and (22) TB 0) is uniquely independent of K, we can design a new Kx(t)
instead of estimating or approximating a given Kx(t), based on the available
[z(t)" y(t)’]’ [T" C’]’x(t)in (20).

It turns out that this modification is equivalent to output feedback (since TB O)
design, which has been extensively studied recently and has shown promising results.
Here we are designing an output feedback gain [N" M] from the given y(t) Cx(t) and
(t) 7x(t), where 7 is a part of T which makes ’ C’]’ full row rank and (t) is
independent of y(t) 2 ]. Because of the unique decoupled property of all rows of T of
our solution, can be directly extracted from T. We call this modified LTR design an
improved output feedback design because we are using an "additional output" (t) in-
stead of using y(t) only. Because (t) constitutes the dynamic part of output feedback
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(TB 0) observer of (20), we can also consider this improved output feedback as
dynamic output feedback.

When a system satisfies the conditions of either Doyle and Stein 4 ], 5 or Kudva,
Viswanadham, and Ramakrishna 10 ], T’ C’] will be full rank and any state feedback
Kx(t) can be estimated and implemented (with TB 0). Thus, uniquely based on the
solution of in 2 and 3, LTR is directly modified as an improved output feedback
problem, and is perfectly unified with the output feedback design. This design and
estimation centered on (21 also nicely unifies with the reduced-order observer design
of 5.

7. Conclusion. Both the Lyapunov equation TA A’T C) and Sylvester equation
(TA FT C) are classical matrix equations. It is surprising that equation TA
FT LC is much less understood, despite its fundamental importance in state space
design theory.

In this paper, we have shown the technical and computational advantages of our
new solution to the equation TA FT LC. In addition, this solution is extremely
simple, especially in light of its capability for explicitly solving eigenvector assignment,
function observer design, and LTR design problems. These three design problems are
very basic and practical. Therefore, we hope this result finds its way into future textbooks
and computer-aided design packages about controller design using state space techniques.

Acknowledgment. The author wishes to thank the reviewers of this paper for pro-
viding many suggestions for improving its presentation.
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FACTORIZED SPARSE APPROXIMATE INVERSE
PRECONDITIONINGS I. THEORY*

L. YU. KOLOTILINAt AND A. YU. YEREMIN

Abstract. This paper considers construction and properties of factorized sparse approximate inverse pre-
conditionings well suited for implementation on modern parallel computers. In the symmetric case such pre-
conditionings have the form A GIAG, where GL is a sparse approximation based on minimizing the
Frobenius form III GLLAIIF to the inverse of the lower triangular Cholesky factor LA of A, which is not
assumed to be known explicitly. These preconditionings preserve symmetry and/or positive definiteness of the
original matrix and, in the case of M-, H-, or block H-matrices, lead to convergent splittings.

Key words, sparse approximate inverse, preconditioning, M-, tt-, block/:/-matrices, convergent splittings
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1. Introduction. This paper is the first in a series of papers (see also [10] and [11])
on the same topic. The papers are dedicated to the construction of a special type of
explicit preconditioning based on factorized sparse approximate inverses and to their
application for solving three-dimensional finite element systems on massively parallel
computers.

In the context of modern massively parallel computers, it is important to consider
explicit preconditionings of linear algebraic systems. Such preconditionings, requiring
additionally only matrix-vector multiplications at each iteration ofthe conjugate gradient
(CG) method, or another basic iterative method, and thus possessing a natural parallelism,
were suggested in [2] and extended in [6 ]-[ 9]. The main idea exploited in these papers
is as follows. Let a system

(1.1) Ax= b

with a positive definite (not necessarily symmetric) n n matrix A be given. To accelerate
convergence of a basic iterative method we use explicit preconditioning, i.e., we pass
from 1.1 to an equivalent system

(1.2) GAx Gb,

where G is a nonsingular sparse approximate inverse of A.
To construct G (gig), we prescribe its sparsity pattern S

_
{ (i, j) < 4 j < n ),

i.e., we set

(1.3) gi9 0 if(i,j) 6 S,

while for (i, j) S, g0 are considered free parameters. To determine their values, we
choose a positive definite, possibly nonsymmetric weight matrix W and minimize the
nonnegative quadratic functional

(1.4) III- GAll 2w tr [(I- GA)W(I- GA)T].
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Recall that a nonsymmetric matrix A is said to be positive definite if its symmetric part
1/2 (A + A T) is positive definite. This leads to the following equations for nonzero entries
of G:

(1.5) (GA(W + WT)AT)ij ((W + WT)AT)o (i,j) S.

Clearly, 1.5 decouples into n independent linear systems with symmetric positive definite
coefficient matrices, each of which is used to compute nonzero entries in one row of G.

When A is symmetric positive definite, the choice W A -1 is possible and (1.5)
takes the form

(1.6) GA )ij 6ij, i, j) S,

where 6,.-j is the Kronecker symbol. Obviously, 1.6) is consistent whenever each principal
submatrix of A is nonsingular. This enables us to utilize (1.6) for constructing sparse
approximate inverses, e.g., for any (not necessarily symmetric) positive definite matrix
A. As shown in 7 ], G is also well defined by 1.6 when A is an H-matrix. Furthermore,
in this case, the preconditioned matrix GA is again an H-matrix and the related splitting

A=G-_R

is convergent, i.e., 0(I- GA) < 1.
Unfortunately, 1.6 (as well as 1.5 for W4: A-2) generally yields an unsymmetric

approximate inverse G even if the original matrix A and the sparsity pattern S are sym-
metric. Thus a real spectrum of A might be transformed under such preconditioning
into a complex spectrum of GA. Some methods for constructing symmetric approximate
inverses were presented in 8 ].

This paper provides the theoretical background for factorized sparse approximate
inverse preconditionings based on minimizing the Frobenius matrix norm and preserving
symmetry and / or positive definiteness ofthe original matrix. In the symmetric case such
preconditionings appeared in 5 ].

In [10] we specify a large class of finite element applications (related to the three-
dimensional elasticity problems), and consider efficient implementation of sparse ap-
proximate inverse-preconditioned CG iterations on a model parametrized, massively
parallel, hypercube computer. The numerical results presented therein show that under
an appropriate selection of the preconditioner sparsity pattern, we can ensure a high
convergence rate of the preconditioned CG iterations (comparable with that of the best
serial preconditioning methods). Furthermore, different strategies for selecting precon-
ditioner sparsity patterns for three-dimensional finite element systems are compared.

Further methods ofthe sparsity pattern selection for three-dimensional finite element
problems aimed at accelerating convergence of the CG iterations are suggested in [11].
Because direct construction of such preconditioners is rather computationally expensive,
the paper suggests applying preconditioned block CG iterations for computing block
rows ofthe former. The numerical results presented therein show that a few preconditioned
block CG iterations are required for constructing approximate preconditioners whose
preconditioning quality only slightly differs from that of the corresponding exact pre-
conditioners.

This paper is organized as follows. The general construction of factorized sparse
approximate inverse preconditionings is described in 2. Section 3 presents an approx-
imation property of staircase, structurally symmetric, factorized sparse approximate in-
verses. In 4 we prove that factorized sparse approximate inverse preconditionings pre-
serve the property of a matrix to be an M-, H-, or block H-matrix, and establish con-
vergence results.
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We conclude this introduction by specifying some notation. For a real rn n matrix
A (aij)(m, n > ), the inequality A > 0 (A >= 0) is componentwise, i.e., a;j > 0 (aij >=
0) for all and j, < =< m, =< j _-< n. By A we denote the matrix whose entries are
absolute values of the corresponding entries ofA, i.e., Alij ]a0-]. For an n n matrix
A (aij) by diag (A) diag (all,. ann), we denote the diagonal matrix whose diagonal
entries coincide with those ofA. The block diagonal matrix block diag (A) block diag
(All, Ann) for a block n n matrix A (Aij) is defined analogously. Finally, by tr
A and o(A) we denote, respectively, the trace and the spectral radius of a square ma-
trix A.

Note also that by stating that a matrix A is an M-matrix, we assume that A is
nonsingular.

2. Construction of factorized sparse approximate inverses. Let A by a symmetric,
positive definite matrix and

(2.1) A LAL
be its Cholesky factorization. We look for an approximate inverse ofA in the factorized
form

(2.2) H GGL,
where GL is a sparse nonsingular lower triangular matrix approximating L51 Such a
form of an approximate inverse is related to the preconditioning

TA -- GLAGL,

clearly preserving symmetry and/or positive definiteness of A.
To construct GL, we first fix a sparsity pattern SL

_
{ (i, j) =< 4: j < n such

that SL
_

(i, j) < j} and determine nonzero entries of GL (located in the lower
triangular part) using 1.5 with A replaced by LA and Wreplaced by I, i.e., by minimizing
the Frobenius norm 111 GLLA ]IF. Taking into account (2.1), 1.5 can be then rewritten
as

2.3 GLA )j (L’)ij, i, j) SL.

Note that by the choice of SL, the condition (i, j) SL implies that >_- j, while L T is
upper triangular. We can thus present (2.3) in the equivalent form

(2.4)
0, i4:j,

(GLA)ij
(LA)ij, j.

(i,j)SL,

Relations (2.4) show that up to a left diagonal scaling factor, the matrix GL approximating
L coincides with the (lower triangular) sparse approximate inverse ofA of type (1.6)
and off-diagonal entries of LA are luckily not required to be known at all.

If the diagonal entries of LA are not available, we construct GL as follows. First
compute the matrix (L of the same sparsity pattern as GL using the equations

(2.5) OLA )ij 6ij, i, j)

and set GL DL, where the diagonal scaling matrix D is so chosen that

(2.6) (GLAGTL)ii 1.

In other words, the matrix (LAJ is symmetrically Jacobi scaled to produce the ultimate
preconditioned matrix.
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It is, of course, possible to apply another strategy for scaling (LA(L, e.g., we can
select D to minimize I GLAGJilF. Our choice is motivated by the following well-
known results.

THEOREM 2.1 [15]. Let A be a symmetric positive definite matrix and D diag
(A). Then

COND (D-/ZAD -1/2) < m COND (/A/),
where m is the maxtrnum number ofnonzeros in any row ofA, is an arbitrary positive
definite diagonal matrix, and COND (B) Xmax (B) / Xmin B is the spectral condition
number ofB.

THEOREM 2.2 4 ]. If, under the hypotheses ofTheorem 2.1, the matrixA has property
1, then

COND (D-1/2AD -’/2) <= COND (/Ab).
Furthermore, as we shall see below, Go, constructed using (2.5) and (2.6), minimizes

the functional

(2.7) tr (XAXr)/det/ (XAX)
over all matrices X of the same sparsity pattern S. This functional was considered in
[5], and it can be viewed as a measure of closeness ofXAX to the identity matrix.

Let us consider relations (2.5) and (2.6) in more detail. Define, for a sparsity pattern
S, the matrices A(/)(S), 1, n, in the following way:

arr, r s,

(2.8) (A(i)(S))r.. ars, (i, r) S and (i, s) S,

0, otherwise.

Then, obviously, the ith row of(L coincides with the ith row of[A(i)(SL)] -1 Furthermore,
since

(JLAJL)ii , )ij(L)ij-- (L)ii-’- ([A(i)(SL)]-l)ii,
j :(i.j)CtSL

relation (2.6) implies that

(2.9) D [diag (()]-/,
and thus relations (2.5) and (2.6) can be summarized in the form

1/2(2.10) (GLA)ij 6i/([A(i)(sL)]-)ii (i,j) t SL,

which coincides with the formula in [5] derived by minimizing functional (2.7).
The above construction of factorized sparse approximate inverse preconditionings

can be readily extended to the unsymmetric case. Assume that each principal submatrix
ofA is nonsingular (which is the case, for example, ifA is positive definite, i.e., A + A T

is symmetric positive definite).
Select some triangular sparsity patterns

(2.1 la) {(i,j):i <j}
_
SL {(i,j):i

and

(2.1 lb) {(i,j)" i>j} _Sv_ {(i,j)"
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The lower and upper triangular matrices GL and Gu are constructed to satisfy the con-
ditions

(2.12)

Gi)ij O, i, j) SI,

Gc)ij O, i, j) Sc,

GA )ij 6i, i, j) S,

(AG)i 6ij, i, j) S,

and the preconditioned matrix is presented in the form

(2.13) Gz.AGD -1

where

(2.14) D diag (GLAGc).

Note that since

GIAG)ii GzA )ik( G)ki Gv)ii +
k<=i k<i

(i,k)SL
k,i)t Su

(GA)i(Gc)i,

we have

(2.15a) (GcAGu)ii Gv)ii

if there exist no k < such that (i, k) SL and (k, i) q Sv. Similarly, the equality

GLmGu)ii (GL)ii -1- (GL)il(AGu)ki
k<i
i,k)cSL
(k,i)Su

yields

(2.15b) (GLAGv)ii (GL)ii

if there exist no k < such that (i, k) SL and (k, i) S.
On the other hand, since the ith diagonal entries (GL)ii ([A(i)(SL)]-l)ii and

Gu)ii A (i)(S) -1 )ii coincide with the corresponding diagonal entries ofthe matrices
which are positive definite ifA is positive definite, the diagonal entries ofD are positive
whenever (GLAGj)ii (GL)ii or (GLAGc)ii (G)ii for every 1, n. We have
thus proved the following.

LEMMA 2.1. Let A be positive definite and the sparsity patterns SL and Sc satisfy
(2.11 and thefollowing condition:for every i, 1,..., n, either there exist no k <
such that i, k) Sz and k, i) S, or there exist no k < such that i, k) Sc and
k, i) S. Then the matrices GL, G, and D defined by (2.12) and (2.14) have positive
diagonal entries and thus preconditioning (2.13) is well defined.

Noting that the hypotheses on Sx and Se of Lemma 2.1 are trivially satisified when
Su S, and taking into account (2.15), we obtain the following corollary.

COROILARY 2.1. IfSL satisfies (2.1 and Sc S, then

D diag (GL) diag (Gu).

3. An approximation property of factorized sparse approximate inverses. In this
section we establish an interesting property of the factorized sparse approximate inverse
G/D- Gx, of a positive definite matrix A.
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Let us introduce some notation. For a lower triangular sparsity pattern SL by SL,
we denote the complementary pattern { (i, j) (i, j) q Sc }. For a sparsity pattern Sc
satisfying (2.11 ), we set

(3.1) Jk {j -< k" (k,j) SL}, k 1, n.

LEMMA 3.1. Let S satisfy (2.11 ),

(3.2) Jk X J
_

,-z. U Lr,
and Su S[. Then for any n X n matrix C and nonsingular matrices L and U of the
sparsity patterns SL and Su, respectively, the conditions

(3.3)

imply that

(LC)o 0, (i, j) e SL,

CU)i O, (i, j) e ,,
Cig= O if(i,j) eI U .

Remark 3.1. Condition (3.2) can be equivalently rewritten in the form

(3.2’) (k, i) e Lr and (i, j) e /. imply that (k, j) e q U [ for any i, j, k,

implying that the matrix P( + Lr) pr, where P is the n X n matrix of the maximum
length permutation r" 7r(i) n + 1, is a perfect elimination matrix (as defined in
[14 ]). In particular, condition (3.2) (as well as the perfect elimination condition) is
satisfied if SL is the sparsity pattern of a staircase or a banded lower triangular matrix.

Proof. We prove the lemma by induction on i. If then Ji }, and by (3.3),
LIlCll 0 implying (since L is nonsingular) that CI 0. Assuming that Crs 0 if r,
S =< and (r, s) e U , we now show that Cr. 0 if(r, s) e c tO gr for r,
s <- i. Indeed, by (3.3) for j Ji \ { }
(3.4) 0 (LC)ij Ziifij %- Likfkj,

keJi\ i}

and since the conditions j Ji and k e J/ imply, in view of (3.2), that (k, j) S U
r, by induction the sum in (3.4) is zero. Therefore, it follows from (3.4) that C/. 0
for j 6 & \ { }. The relations C; 0, j 6 & \ }, are derived in a similar way. Finally,
the last relations and (3.3) imply that

0 (LC)ii Lii Cii + LiCi Lii Cii,
k Ji\

which shows that Cii 0. This completes the proof of Lemma 3.1. [51

THEOREM 3.1. Let A be a positive definite matrix and a sparsity pattern SL satisfy
(2.1 and 3.2 ). Then for G Ge, and D defined by (2.1 2 and (2.1 4 with Sv S[,
thefollowing equalities hold"

GZ DG )ij Aij, i, j) e SL U
GuD-IGI)(i O, i, j) L U

Proof. We note first that under the hypotheses ofthe theorem, the matrices GL and
Gv are nonsingular by Lemma 2.1, and

(3.5) (DGbl)ii=(GEID)ii= 1, i= 1,...,n,
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by Corollary 2.1. Set C GTIDGb A. Then by (2.12) and (3.5),

(GLC)ij (DGb GzA)o 0 if(i,j) e

and similarly,

(CGu)j (GfID AGu)ij 0 if (i, j) e f.
Thus by Lemma 3.1, Cij (GT.1DGb )ij Aij 0 if (i, j) e L U f. Let us now

prove that (GuD-GL)ij 0 for (i, j) L U LT. Since

(GD-GL)ij (Gu)ik(D-1)lck(Gz,)kj,
(k" iEJk)&(jeJk)

and since by (3.2) the simultaneous conditions Jk and j Jk imply that (i, j) SL U
f, we conclude that (GuD-GL) can be nonzero only if (i, j) L U LT and Theorem
3.1 is proved. 73

Theorem 3.1 shows that for a positive definite matrix A there exists a structurally
symmetric sparse factorized approximate inverse G:D-1G with the sparsity pattern of
GL + G, whose inverse coincides with A up to positions at which the triangular factors
GI and Ge are allowed to have nonzero entries. Note that in the case whenA is symmetric
positive definite and SL is banded, the statement ofTheorem 3.1 was proved in 3 using
a recursive definition of GL and G instead of (2.12).

The last result of this section is not related to the preconditioning problem but is
important by itself.

THEOREM 3.2. Let A be an n n positive definite matrix and

(A-1)ij 0 if(i,j) ,
where the index set S is symmetric,

{(i, i)" _-< =< n}
___

S___ {(i,j)" =< i,j <= n},
and satisfies the condition

if(k,i) eS, k<=i and (i,j) eS, i>j, then(k,j) eS.

Then the triangular factorization A - GD-1GL ofthe inverse to A can be computed
in parallel using the entries Ao at positions i, j) via relations (2.12 and (2.14) with

SL { i, j) either < j or > j and i, j) S }
and S Sf

Proof. In view of the stated connection of (3.2’) with the perfect elimination con-
dition, the matrix A-1 has the factorization A-1 UL with the triangular factors U and
L of the sparsity patterns SLT and SL, respectively. Since LA U-1 and AU L-1 we
have, in particular,

and

LA )ii :/: 0, A U)ii :/: 0,

LA )ij O, :/: j, i, j) SL, (A U)o O, :/: j, i, j) STL.
Therefore, for some nonsingular diagonal matrices D1 and D2, we have

L =D1GL and U= GuD2,
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and it remains to show that D- D2D1. We have

(3.6) GLAGuD-1 D-{1LAUDID-1 D-{1DID-1.

On the other hand,

(GLAGuD-I)ii--

_
(GLA)ik(GuD-1)ki + (GLA)ii(GuD-l)ii

k" i,k)eSL &( k,i)f Sf

GLA )ii( GuD-1 )ii (GuD-1 )ii,

and thus, by Corollary 2.1, (GLAGuD-1 )ii 1. In view of (3.6), this means that D -1

D2DI and the proof is completed.

4. Convergence of factorized sparse approximate inverse preconditionings. In this
section we prove the convergence results for preconditionings of type (2.13) for M-,
H-, and block H-matrices. Consider first the case of M-matrices.

LEMMA 4.1 6 ], 7 ]. Let A be an n n M-matrix and S
_

i, j) <= 4 j <= n }
be a sparsity pattern. Then for G determined by (1.6), the matrix GA is an M-matrix,
G > 0 is nonsingular, and the splitting

(4.1) A G-1-R

is convergent, i.e., p(I- GA < 1.
Proof. First let us show that G is nonnegative and has no zero rows. Indeed, as

mentioned in 2, the ith row of G (g0) coincides with the ith row of the inverse to
A(i)(S) (see (2.8)), and since A(i)(s) is an M-matrix, its inverse is nonnegative and has
no zero rows.

We show next that the off-diagonal entries of GA are nonpositive. For (i, j) q S,
:/: j, it is true by construction. For (i, j) S we have

GA )ij , gi:az: <= 0
k’(i,k)tS

since gi > O, and the conditions i, j) S and (i, k) S imply that k =/= j and therefore
a; =< 0.

To prove that GA is an M-matrix, it is now sufficient to provide a positive vector
v such that GAy is also positive. But A being an M-matrix there exists a vector v > 0
such that Av > 0 and hence GAy > 0, since all rows ofG are nonnegative and nonzero.
Thus GA is an M-matrix implying, in particular, that G is nonsingular.

Finally, the matrices G and GR I- GA being nonnegative, the splitting (4.1) is
weak-regular and thus convergent [1], which completes the proof of the lemma.

LEMMA 4.2. Let L and U be nonnegative, nonsingular, respectively, lower and upper
triangular matrices such that LA and AU are M-matrices. Then LAU is also an M-
matrix.

Proof. We show first that off-diagonal entries of LAU are nonpositive. Indeed, let
< j. Then

(LA U)is , Li(A U)ks < O,
k<=i

since the conditions k =< and < j imply that k 4 j and therefore, (A U)j _-< 0 as an off-
diagonal entry of an M-matrix A U. Similarly, for j < i, we see that

LA U)i , LA )iUs <= O.
k<j
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To show that LAU is an M-matrix, it is now sufficient [1] to provide a positive
vector v such that LA Uv > 0. Since, by assumption, AU is an M-matrix, there exists
a vector v > 0 such that A Uv > 0 and therefore, L being nonnegative and nonsingular,
LAUv is also positive. The lemma is thus proved. F-]

THEOREM 4.1. Let A be an M-matrix, the sparsitypatterns SL andSu satisfy (2.11 ),
and GI and Gu be defined by (2.12). Then the matrix GIAG is also an M-matrix and
the splitting

(4.2) GIAG D R, D diag (GcAG),

is convergent.
Proof. Applying Lemma 4.1 to A and G and to A r and G, we obtain that GcA

and AG are M-matrices, while GL and Gu are nonsingular and nonnegative. Thus, by
Lemma 4.2, GcAG is an M-matrix and splitting (4.2) is convergent as a regular splitting
of an M-matrix ]. E3

Next we prove convergence of splitting (4.2) for an H-matrix A. To this end we set
J := ///(A ), where the comparison matrix g(A) (which is an M-matrix by the definition
of an H-matrix) is defined by the relations

laiil, =j,
[g(A)]

-laijl, =/=j.

For chosen sparsity patterns Sc and Su in parallel with the preconditioning A --GIAGuD -1 we consider the similar preconditioning .3 -- (3(/-1, where both pre-
conditionings are constructed using (2.12 and (2.14).

LEMMA 4.3 [7]. Let A be an H-matrix and tI(A). Then for any sparsity
pattern S

_
i, j) <= :/= j < n }, the matrices G (gi;) and G (o) such that

(4.3)
gij g; 0 if( i, j) S,

(GA)ij (d)ij 6ij if(i,j) S

satisfy the inequality

Proof. Since the ith rows of G and G coincide, respectively, with the ith rows of
(Ai)(S))- and (.3(i)(S))- defined according to (2.8), and since .3(i)(S) .]g(Ai)(s)),
the required inequality [GI < ( follows from the Ostrowski theorem 12]. The lemma
is thus proved. E3

LEMMA 4.4 [7]. Under the hypotheses ofLemma 4.3, GA <= [l, and GA is
an H-matrix.

Proof. Note that by (4.3) for (i, j) S, we have (GA)i; (.3)i. So let (i, j) 6 S.
Then

(4.4) IGA li ., giaj] , gial.
k’( i,k)S k" i,k)tS

Since conditions i, j) 6 S and i, k) S imply that k =/= j, the fight-hand side of (4.4)
does not involve diagonal entries of A. Therefore, taking into account that is an M-
matrix, it follows from (4.4) and Lemma 4.3 that

GA # Z i a I1i,
k:(i,k)tS
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implying that //(GA) >= fl. Since (. is an M-matrix by Lemma 4.1, GA is an H-
matrix, which completes the proof. [-3

Note that when S { (i, j)" < j the matrices (7 and ( defined in Lemma 4.3 are
lower triangular, while the matrices U := GA and ( are upper unitriangular. By
Lemma 4.4 the latter matrices satisfy the inequality [U[ _-< [r[. Taking into account
that / is an M-matrix by Lemma 4.1, we rewrite the last inequality in the form
/(U) > , which implies, by the Ostrowski theorem 12], that

[u-l[ /(V-1 0-1

We have thus proved the following lemma.
LEMMA 4.5. Let A be an H-matrix and ddl(A ). IfA LU and l are

the triangular decompositions ofA and such that U and are upper unitriangular,
then

[u-l[ (U-1 0-1

THEOREM 4.2. Let A be an H-matrix and GL and Gv be defined by (2.12)for some
sparsity patterns SL and Sv satisfying (2.11 ). Then GLAGv is also an H-matrix and the
splitting

GLAG D R, D diag (GzAG),

is convergent, i.e., o(I- GAGuD-) < 1.
Proof. Note first that by construction, the subvector of the ith column ofG made

up of the entries at the positions (k, i) S coincides with the last column of the inverse
to the principal submatrix A[Ii, Ii ofA, where Ii k < i" (k, i) t S }. This implies
that the corresponding subvector of GDb where D diag (G), coincides with the
last column of the inverse to the upper unitriangular factor of the LU decomposition of
A[Ii, Ii ]. For g(A), define ( by the relations

()ij 0, (i, j) 6 Sv,

(uA ii 6i j) Su

Then applying Lemma 4.5 we obtain

(4.5) GvD1 dUbj1,

where Dv diag ((v).
We show next that D is nonsingular and

(4.6) DuD-1I bub-1
where b diag ((i(u) and ( is the corresponding left preconditioner for i. Indeed,
since (GLA)ii 1, we have

DD ) + GLA )ik( GuD )k,
k<i

implying, in view of Lemma 4.4, inequality (4.5), and Lemma 4.1, that

]DD’ ]ii=. IGLA]IGvD{11>_- [(3ll(vb11i-(1)ii > 0,
k<i k<i

and (4.6) follows. Let us now prove the inequality
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First let > j. Then by Lemma 4.4 and (4.5),

IGLAGvDb I0 (GLA)i(GvDb)]
k<=j

Z LA[ik Ubj1 kj LAUb1 ij.

kj (ki)

Consider now the case < j. To this end we show that

(4.8) IAGuD Ikj Iu Ikj, k Cj.

Indeed, if (k, j) Su, k j, then both pas of (4.8) are zero, while if (k, j) Su, then
using (4.5) again, we see that

[AGuD [kj Akr(GuD’)rj] [AOub’ ]j,
(r,j)aSu (k r)

and (4.8) is thus established. Now for < j, by Lemma 4.3 and inequality (4.8),

[GAGD ]i (GL)(AGvD)[
ki

(k4j)

ki

which completes the proof of (4.7).
We are now able to show that

(4.9) I- GAGvD-1I Z I--.
Indeed, for j, (4.9) is trivially fulfilled, while for j, by (4.7) and (4.6), we have

I GcAGvD--I/= GcAGvD-I GcAGD{ I/1DvD -1

IGJGbb11(bb-1)
I- O3Ob-l).

Finally, (4.9) implies that

(I- AaD-’) (I I- AD-’ I) (I- 3Gb-’),
and since by Theorem 4.1, p(I- zfiob-) < 1, the required convergence result
follows. Fuhermore, since

aAaD-1)

by (4.9), and L3b- is an M-matrix by Theorem 4.1, both GcAGoD- and
are H-matrices. Theorem 4.2 is thus completely proved.

We conclude this section by considering the case of block H-matrices. Let a matrix
A be paitioned into blocks A (A), i, j n, in such a way that the diagonal
blocks A are all square and nonsingular. Following [13 ], A is said to be a block H-
matrix (with respect to the chosen block paitioning) if its block comparison n n
matrix g(A) with the entries

1, i=j
(4.10) ((A)) N i,j n,

-II/SA011, @j
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is an M-matrix. In (4.10), we use the notation

IIAijl] I]Aijl]ii sup
IlAijxl]a, < i,j <= n,

where i is the vector space on which the linear operator acts with the matrix Aii, and
1]. ][,. is a vector norm on 2;.

We need the following well-known block counterpart of the Ostrowski theorem.
THEOREM 4.3 [13 ]. A block H-matrix A (Aij), <= i, j <= n, is nonsingular and

(A-1)is[] _-< (Jg-’(A))o][A] 111, _-< i,j <= n.

For a block n n matrix A and a sparsity pattern S
_

{(i, j) < # j =< n},
define the block n n matrix G (Gis) of block sparsity pattern S by the following
blockwise relations"

(4.11)

Gi9 O, i, j) S,

GA )i9 Ii j,

(GA)is O, (i,j) et S,

Set 3 Jgb(A and define, in parallel with G, the n n matrix ( (0) by the pointwise
relations

(4.12) i 0, (i,j) S,

A)i 6ij i, j el S.

Define also the block matrix (ij) by the relations

6 Ai-IAij, <= i,j <= n,

and the block matrix ( ((;j) by the relations

(ij 0, (i,j)S,

(4.13) (()ij I;, j,

(dfl)ij=O, (i,j)S, i#j.

Obviously, when A is a block H-matrix, then is well defined and /gb() /gb(A),
implying that is also a block H-matrix.

The following three lemmata are the block counterparts of Lemmata 4.3-4.5.
LEMMA 4.6. Let A (Aij), <= i, j <= n, be a block H-matrix and let JI(A ).

Then for any sparsity pattern S c_ i, j) <- # j <= n }, the matrices dij) and
(di), defined according to (4.13 and (4.12 ), satisfy the relations

II oll =< 2ij, =< i, j < n.

Proof. Apply Theorem 4.3 for the proof, ff]

LEMMA 4.7. Under the hypotheses ofLemma 4.6 it holds that

[[(GA)ig[[ <= [([i9, _-< i,j <- n,

implying that GA is again a block H-matrix.

Proof. Note that ( G. block diag (A), and thus

(4.14) GA .
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For (i, j) e S we have, by Lemma 4.6 and equation (4.10),

(kC:j)

k’(i,k)tS

implying, in view of (4.14 ), that

(GA)0.11--< Iil0..
The last inequality being satisfied for (i, j) S by construction and ( being an M-
matrix by Lemma 4.1, this completes the proof of Lemma 4.7.

The proof ofthe following lemma is analogous to that ofLemma 4.5 and is omitted.
LEMMA 4.8. Let A (Aij), i, j < n, be a block H-matrix and let A LU, where

L is a lower block triangular matrix, while U is an upper block triangular matrix with
unit diagonal blocks Uii Ii, <= <= n. Similarly, for //tb(A ), let l, where

is lower triangular and (J is upper unitriangular. Then

II(U-1)ijll (-l(U))ij (0--1)ij, =< i,j <---- n.

Convergence of sparse factorized approximate inverse preconditionings for block
H-matrices is established in the following.

THEOREM 4.4. Let A (Aij), <= i, j <-_ n, be a block H-matrix and let, for some
sparsity patterns SL and S: satisfying (2.11 ), the block triangular matrices GL and G:
be defined by thefollowing blockwise relations"

GL)i O, i, j) SL; Gc)ij O, i, j)

GLA )ij Ii j; (AGc)ij Ii j;

GLA )ij O, i, j) SL, "/= j; (AG:)ij O, i, j) S:,

Then GLAGu is a block H-matrix and the splitting

GLAGc D- R, D block diag (GLAGc),

is convergent.
The proof of Theorem 4.4 follows that of Theorem 4.2 with /tb(A), and so

we omit it except for the counterpart of (4.6)"

(4.15) I(DuD-)ii]l (Ju-l)ii, <= < n,

which is proved as follows. Recall first that for a nonsingular matrix I- P with PII <
1, we have

(4.16) II(I- P)-II

P := (GLA)i(GuDb1)ki.
k’k<i

Fix ani, <i=<n, andset

Then the required inequality (4.15 follows from (4.16 since

DD j1 )ii I P
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and (by Lemmata 4.7 and 4.8)

P[I =< Z [[(GLA)ikI[ [](GuDj1
k:k<i

Z dLlik dUJ1 ki (lljl)ii < 1.
k:k<i
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ESTIMATION OF THE OPTIMUM RELAXATION FACTORS IN
PARTIAL FACTORIZATION ITERATIVE METHODS*

Z. I. WONICKI

Abstract. A new approach is proposed for estimating the optimum relaxation factors in both single and
double successive overrelaxation (SOR) processes used for the acceleration of convergence in the partial fac-
torization methods called two-sweep iterative methods, and introduced for the solution of large, sparse, linear
systems appearing in the difference approximations to the elliptic partial differential equations.

Key words, linear equation systems, sparse matrices, partial factorizations, (single and double splitting)
iterative methods, eigenvalues, optimum relaxation factor estimation
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1. Introduction. The concept of the estimation of optimum relaxation factors in
partial factorization iterative methods is derived from the analysis ofthe iteration matrix
spectral radius against the relaxation factor for the model based on the Dirichlet problem.

All considerations are referred to the solution of linear equation system

(1) Ab c,

in which the n n nonsingular matrix A is defined by the following decomposition:

(2) A:K-L-U,

where K, L, and U are diagonal, strictly lower triangular, and strictly upper triangular
matrices, respectively. It is assumed that K is a nonsingular matrix.

2. Single splitting iterative schemes. The iterative solution of can be expressed
in the form

(3) M4) ’+1) N4) t) + c, >= 0,

where 4)<t) denotes the successive iterates and

(4) A=M-N

represents the single splitting ofA as the classical splitting ofA in the theory of iterative
methods. The above iterative scheme is convergent to the unique solution

(5) ch A-c
for each $ c0) if and only if M is a nonsingular matrix and the corresponding iteration
matrix

(6) c M-N
has the spectral radius

(7) p() max [)ki[ < 1, =< =< n,

where )i’s are eigenvalues of f. Equation (3) can be written in the equivalent form

(8) 4) t+) c4)’) + M-c, >= O.
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The spectral radius ofthe iteration matrix plays a fundamental role in the convergence
analysis of iterative methods. The quantity

(9) R(() -ln

called the asymptotic rate of convergence, increases as the value of o((q) is decreasing.
Thus, in order to maximize the rate of convergence, the matrices M and N should be
chosen in such a way that the spectral radius O(N) is as small as possible. In practice,
we might expect that once M is closer to A the method will converge faster.

The idea offactorization methods consists in expressing the matrix Mas the product
of nonsingular matrices chosen in such a way that they are easy to obtain and relatively
easily invertible. Then N M- A can be considered as the residual matrix for the
assumed factorization ofM and, when N exists as a nonzero matrix, there is the partial
factorization ofA and the solution has the iterative nature. In the case when N becomes
the null matrix there is the strict factorization of A and the solution of is obtained
by means of the direct method equivalent to Gaussian elimination.

Introducing additional strictly lower triangular and strictly upper triangular matrices
H and Q, respectively, then with the definition ofA K- L U, we can assume the
following factorization

(10) M [I-(L + H)D-1ID[I D-l(u-4- Q)],

where D is assumed to be a nonsingular diagonal matrix defined by the following implicit
relation

(11) D K- diag {(L + H)D-(U+ Q)},

and, as can be easily verified,

(12) N offdiag (L + H)D-( U + Q) } H Q,

where the notation.diag { B denotes the diagonal matrix with diagonal entries identical
with those of B and offdiag B B diag B }.

The iterative method can be written as follows:

(13) (])(t+ 1)= 4)(,) + M-c, >- 0

and

(14) ._ M-’N [I- D-’(U + Q)]-lD-l[I- (L + H)D-1]-IN.

Since I- (L + H)D-1 and I- D-I(U + Q) are nonsingular lower and upper
triangular matrices, respectively, this method can be easily implemented by using the
two-sweep procedure.

Let us multiply (13) on the left by I-D-I(u+ Q) and shift the term
D-1 U + Q)4 (t + 1) to the right-hand side of the equation

4 (’+l) D-1 {(U + Q)b (t+l) q-[I-(L + H)D-I]-I(N ’) + c)}.
Denoting by

5 (’+’) [I-(L + H)D-1]-l(Ndp (’) + c)

and again multiplying this expression on the left by I- (L + H)D -1 we finally obtain

(15) /3 (+1) (L + H)D-I/3 (+l) + N4) () + c,

(/) (I+ 1) D-l[( U + Q)4) (’+ l) +/3(,+ 1)1, > 0.
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Since (L + H)D-1 and D-l( U + Q) are strictly lower triangular and strictly upper
triangular matrices, respectively, the components of/3 t+) can be calculated recursively
for increasing indices in the forward elimination sweep, and components of 4 + ) can
be calculated recursively for decreasing indices in the backward substitution sweep. Equa-
tions (15) represent the general form of a broad class of methods called the two-sweep
iterative methods and each of them is uniquely defined by choice of the matrices H and
Q. The matrix is called the two-sweep iteration matrix. The classification of factori-
zation methods from the viewpoint of the choice of H and Q matrices is given in [5
and [6 ].

Let us restrict our attention to the iterative schemes defined by the following choice
of matrices H and Q, including such classical schemes as the Jacobi and Gauss-Seidel
methods.

1. The Jacobi method.

H -L, Q -U, Oj K,

Mj= K, Nj= L + U,

M-jNj K-(L + U).

2. The Gauss-Seidel method.

H=-L, Q=O, D=K,

Mo, K I K-1U Nc; L,, M,.N (I K-1U)-IK-1L.

3. The EWA method.

H Q 0, D; K- diag {LDZ-1U},

M: (I- LDZ,)D:(I- D{’ U), N offdiag LDZ.1U},

MN: (I- D U)-D,(I- LD-)-INL

4. The AGA method.

H =HA, Q= QA, DA =K-diag{(L+HA)D(U+QA)},

MA [I--(L + HA)D]DA[I DI(U + QA)],

NA offdiag {(L + HA)DI U + QA) } HA QA,

,11 M-INA [I- DI(U + QA)]-DI[I (L + HA)D]-NA.
In the literature [7], [11], the Gauss-Seidel method is usually described by the

iteration matrix 1 (I K-L)K-IU, which corresponds to the case when H 0 and
Q -U. Since in the two-sweep approach we used, the solution vector 4 t +1) is calculated
in the backward sweep, then to keep the consistent definitions of particular methods, the
Gauss-Seidel method considered here is defined in reverse order.

The algorithm of the EWA method was implemented in the EWA-II code 10 ].
The AGA method represents a broad class of algorithms and each is defined by the

choice of the matrices HA and QA such that HA + QA 4 O, and the nonzero entries ofNA
do not coincide in location with the nonzero entries ofL + HA + U + Q. The assumption
that HA and QA are strictly lower triangular and strictly upper triangular matrices, re-
spectively, allows us to explicitly determine the values of nonzero entries in HA and QA
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for an arbitrary pattern ofthe location of nonzero entries in these matrices, directly from
the implicit form of (L + HA D U + QA). In other words, all nonzero entries of HA,
QA (and consequently, DA), and NA can be computed successively in the simple algorithm
by means of recursive formulae for each pair of increasing entry indices, =< i, j -< n,
either row-by-row or column-by-column ], 2 ].

When A is an irreducibly diagonally dominant matrix and A-1 > 0, the following
inequality has been proven ], 2 ].

(16) 0 < p( < p( < p( 8 < p( < 1.

In order to accelerate the convergence in the two-sweep iterative methods, the fol-
lowing modification of the two-sweep equations 15 is used

(17)
/(t+ 1)__ wa[(L + H)D-113 (+ 1) + NO,t) + c] -(wa- 1)/3

4) (+I) D-I[(U + Q)4 (+I) +/3(+i)], >= O.

This defines the method called theforward successive overrelaxation two-sweep iterative
method (forward SOR) and w is the relaxation factor. By the elimination of the vector
/3, we obtain the following equation

(18)

where

(19)

(20)

and

Mo4J ( + 1) Nech () + c,

Mo (1/w)[I w L + H)D-I]D[I D-I( U + Q)],

N,, 1/o) waN (w )D[I D-l( U + Q)] },

o [I- D-(U + Q)]-’D-I[I w,(L + H)D-1] -1

(21)
{,N- (w, 1)D[-D-’(U + Q)]}.

Relating this acceleration procedure to the iteration methods defined by the paicular
choices of the matrices H and Q, we have the following methods.

5. The Jacobiforward SOR.

Mje /)K,

Nj=(1/w)[w(L+ U)-(w- 1)K],

MNje w w I.

6. The Gauss-Seidelforward SOR.

Me /w)K(I K- U),

NG, 1/w,)[w,L (w )K(I- K-U)],

MG,NGe (w )I.

7. The EWA forward SOR.

M, 1/w,)(I- LD{)D(I- D U),

NE, 1/w,)[wNE (w )DE(I D U)],

w MEN;.



ESTIMATION OF THE OPTIMUM RELAXATION FACTORS 63

8. The AGA forward SOR.

MA,o 1/w)[I w( L + HA)DfI]DA[I Dsl( U + QA)],

N, 1/oA{ weNA (o )DA[I Dsl( U + Q)] },

5[o MAoeNA,oe.
Introducing a modification similar only to the backward substitution sweep, we

obtain

(22)
/3(t+ l)= [(L + H)D-’ (t+ l)+ N4)(t)+ c],

49 (t+l) wD-l[(U + Q)ch+ 1) + + 1)] (w 1)4)(), > 0.

This method is called the backward successive overrelaxation two-sweep iterative method
(backward SOR) and w, the relaxation factor. The elimination of the vector/3 allows
us to reduce (22) to the following equation"

M,o4) (t+ l) N,o,4) () + c,(23)
where

(24)

(25)
and

Moo (1/oo,)[I- (L + H)D-’]D[I- w,D-’( U + Q)],

N,o (lloo,){oo,N- (w, 1)[I- (L + H)D-’]D},

[I- woD-(U + Q)]-ID-[I-(L + H)D-1] -(26)
{woN-(wo- 1)[I-(L+H)D-’]D}.

Consequently, we have the following methods.
9. The Jacobi backward SOR.

Mj,o 1/w)K,

Njo /w) ( L + U) (w K],

10. The Gauss-Seidel backward SOR.

M++ 1/w+)K[I w+K- U],

No (1/wo)[woL (w0 1)K],

MoN [I- wK-U] K-[woL- (wo 1)K].

11. The EWA backwaM SOR.

M. (1/w+)[I- LD]D.[I- wD{ U],

N (1/wo){woN-(w- 1)[I- LD.]D),

w MN-.
12. The AGA backwaM SOR.

MA 1/w)[I (L + HA)D]]DA[I wD(U + QA)],

NA (1/w){WNA (w-- 1)[I-- (L + H)D]]DA},

dw MANA.
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As can be seen, the Jacobi forward SOR is identical to both the Jacobi backward
SOR, and the JOR method of[ 11 ]. The Gauss-Seidel backward SOR is exactly equivalent
to the standard method known as the point SOR method 7 ], 11 ], however, it is defined
in reverse order, as is the Gauss-Seidel method.

3. Double splitting iterative schemes. Expressing the matrix A in the form

(27) A =P-R+S,

called the double splitting ofA, where P is a nonsingular matrix, we obtain the following
iterative scheme spanned on three successive iterates

(28) p(t+ ) Rc(t)_ S(D (t- 1) %- C, > 0,

or, equivalently,

(29) 4) (t+) p-IRck () P-Sck (-) + p-lc, > O.

In the convergence analysis of this scheme, the same approach can be used as in
iterative methods based on the single splitting ofA (A M N, whereMis a nonsingular
matrix). Following the idea of Golub and Varga [8], we can write (29) in the following
equivalent form:

(D(/+
l)

(30)
4)(, I, 0 4 (t-) +

0

Denoting by

and

(32) f
P-R, -p-Is]I, 0

we obtain

(33) (+ 1) /’1/(t) %_ V, > 0.

Thus the necessary and sufficient condition, which ensures that the iterative method
given by (29) tends to the unique solution vector of for all vectors 4)(0) and 4 (), is
that the spectral radius of #/’, p(#/’), is less than unity. It is interesting to note that when
S is a nonsingular matrix, the matrix #/’ is also nonsingular and

(34) ///’
o, I]-S-Ip, S-1R

Applying the SOR procedure simultaneously to both forward and backward sweep equa-
tions (15), we obtain

(35)
o(t+ 1)= w[(L + H)D-{3 (+ 1) + Nob(t)+ c]- (w,- 1)/3

o(t+l) 6o,D-l[(u %_ O)(;b(t+ l)%_ /(/+1)]_ (0.,- 1)(]) (t), t>0.
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The elimination of the vector/3 allows us to reduce the above equations to (29),
in which

(36) P [I- Con(L + H)D-1]D[I 03oD-’(U + Q)],
00360

(37)
R- {wnw4)N- (004) 1)[I- 03n(L + H)D-1]D

(03n 1)D[I- w4)D-’(U + Q)] },

(03n )(034)
(38) S= D, wn4:0, w4):/:0.

03n034)

This method is called the double successive overrelaxation two-sweep iterative method
or, for brevity, the double SOR method. It is evident that the method reduces to the
single SOR methods--either the forward type when w4) 1, or the backward type when
wn 1.

Referring to the former definitions of the matrices H and Q, we have the following
methods.

1. The Jacobi double SOR.

[wnw4)(L+ U)-(wn- 1)K-(w4)- 1)K],

(con )(034)
Sj K.

2. The Gauss-Seidel double SOR.

Pa K[I w4)K-1U],

[03n034)L (03n )K(I- 034)K-1 U) (034) )K],

(03n )(034)Sa K.

3. The EWA double SOR.

[I- 03nLD-]DE[I- 04)D- U]

[03n034)NE (con )D:(I- o4)D U) (034) )(I- 03nLD-:l)DE],

03n )(034)
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4. The AGA double SOR.

[I- o@(L + HA)DI]DA[I oo,DTl(U + QA)],

o@oo,NA (o@ )DA[I w,DTi( U + QA)]

(wo 1)[I- o(L + HA)DX]DA},

(con- 1)(w-- 1)
SA DA.

4. Determination of the optimum relaxation factors. Let us examine now the de-
pendence ofthe iteration matrix eigenvalues on values w, in order to determine the values
ofoptimum relaxation factors which minimize the spectral radius ofthe iteration matrix.
Since the single (both forward and backward) SOR methods can be considered as special
cases of the double SOR method, let us first discuss this method.

4.1. Double SOR two-sweep iterative methods. Both submatrices P and S are non-
singular for all w, 4 and o =/= (and also w, =f 0 and w, =/= 0), but this ensures that
the matrix #’ is also nonsingular and there exist nonzero vectors z T [X, y] T with
corresponding eigenvalues v 4 0. Thus,

I 0 I;]
or

and hence

(40)

P-Rx p-I Sy vx,

X

P-I[R (1/v)S]x vx.

After some algebra, the above equations can be transformed to the following equation

D-’[(1 +0c)(L+H)+(1 +0c)(U+Q)-H- Q
(41)

+ cN-diag {(L + H)D-I(u + Q)}]x ’x,

where

0, (o, )/o,, " + 0:a)( +
Now we will examine, in particular iterative schemes, the behaviour ofc as a function

of 0 which corresponds implicitly to the behaviour of v 1/( + c) as a function of
o= 11(!-0).

A. The Jacobi double SOR. Referring to (41) and substituting H -L and Q
U, we obtain

(42)

and

(1 + o)K-’(L + U)x (1 + 0c)(1 + O,o)x

(43) + 0c)( + 0,c) #( + c),
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where u are eigenvalues of l K-l(L + U).
When wn co co (0n 0 0), we get

(44) 02c 2 (# 20)c + -/ 0,

or equivalently,

(45) /t2 [co2 2(co 1)]v + (co 1) 2 0.

Each eigenvalue u corresponds two eigenvalues of the iteration matrix

(46) v,/t2 #w2/2 (w + w[#[#w2/4 (w )]]1/2,
and their values coincide when

(47) uco2/4 (w 1) 0,

that is, at the values equal to where

(48) ff 2/[1 + (1 u)’/2].
When#=0, v =v2=-(co- 1).

B. The Gauss-Seidel double SOR. Substituting H -L and Q 0 into (41)
gives us

(49) K-l[( + c)L + + Onc)U]x + Once)( + Oc)x.
In the analysis ofthis method, some theoretical results for matrix problems in which

matrices A K L U have certain special properties (namely, they are p-cyclic
consistently ordered [7]) will be derived. In this case the eigenvalues of the matrix

(50) (y) K-l(yL + y-P-)U)

derived from the Jacobi matrix 3 K-(L + U) are independent of the parameter
3’ 4: 0. Then the matrix ’1 is consistently ordered as well. It is easy to verify that

3(r, ) K-[rL + U]
(5)

(KP-Io.)I]PK-I[(K/O.)I]PL + [(K/O’)I]p]-Iu]

for K 4: 0, r 4: 0, and p 4: 0. Thus, if u and r are eigenvalues of g0 and 3(K, r),
respectively, then the following relation holds:

(52) r u(P-lr) /p.

Referring to (49) and (51), and taking into account the relation (52), we obtain

5 3 + 0)- + 0,) u( +
Let us restrict the discussion here to the case when p 2. Such 2-cyclic matrices

appear in the finite difference approximations to the multidimensional neutron diffusion
equations in the rectangular geometry. Hereafter, it is assumed that con co co (0n
0 0) and for p 2, we obtain

(54) 030 q- 3020 2 (k 30)c + X 0,

where , =/2 is the eigenvalue of the Gauss-Seidel matrix
It should be mentioned that the substitution of c v) / v and 0 (co / co

into the above equation representing sixth-order curve indeed provides the explicit equa-
tion for v and co, but its analysis is very complicated because multiterm coefficients appear
in the equation.



68 z.I. WO’NICKI

In the case when 0 < X < 1, the two positive roots u and u2 are minimized when

(55) 3/[1 2 cos (,/3 + 120)],
where cos 2;h and

(56) u u2 2(- 1) and //3 -(ff- 1)/4.

For o 0, 111 /32 /’3 1,

0 < o0 < 1, X < v < 1, //2 and v3 are complex where

w 1, V ), and /I2 //3 0,

< o0 < , 0 </I2 < v < k and 0 >/I > -((.0 1)/4,

111 112 2(& 1) and /2 -(& 1)/4,

v and/22 are complex where vl > oa

and -(w 1)/4 > v3 > -1/4.

When X 0, v 112 113 -((-o 1).
Figure shows the graph of the roots v versus o0 for X ts

2 0.9 in the Gauss-
Seidel double SOR method for which the corresponding curves are denoted by the letter
D. Curves drawn by continuous lines represent real and positive values of v and dashed
lines represent the modulus of complex values of v. The dotted-dashed lines correspond
to the modulus of real and negative values of v. The points corresponding to the values
of a are marked by the digit 1.

Usually the term 03c is a few orders of magnitude smaller than the remaining
terms in (54). By neglecting this term and solving the following reduced equation

(57) 302OZ 2 (X 30)c + X 0,

we obtain

(58) a 1/( Oa)

FG. 1. RECSOR-II.

/
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where

a X/[3 + 2(3- 3)) 1/2]
and

(59) a (a 1)/[a[1 -- (( X)/3)1/21 II.
As can be seen from Table 1, the values of and calculated from 58 and 59

provide quite a good approximation to the exact values of and ? obtained from (55
and (56).

Finally it should be mentioned that for the Jacobi double SOR method, when p
2, the value of w which minimizes the spectral radius of Wj is 1.

C. The AGA (EWA) double SOR method. In applying this method, representing
a wide class of algorithms (including its special case, the EWA method, and defined by
H Q 0), to the same matrix problems, we observed that the behaviour of roots
versus w was similar to the Gauss-Seidel double SOR method. However, for the optimum
values & for which the values of It and /’2 coincide (lt /12

derived from the negative (or complex) eigenvalues of the matrix dl or Ol occur at the
absolute value, which is greater than F. In graphic presentation, the cut of the curve
representing Vl and v2 by the curve corresponding to the absolute value of Pi is for 0
wc < &. This proves that the spectral radius of /g3 is greater for w & than that for o
w.. However, as is observed in practice, for 0 & the oscillation character of the con-
vergence is occurring and the number of iterations for a given accuracy of the solution
is usually smaller than the number of iterations required for

When the n n matrix A is 2-cyclic and consistently ordered, the matrix l has n
simple eigenvalues, namely, +Ul, +u2, +un/2 (if n is odd, there is an extra zero
eigenvalue); the matrix l has n2 eigenvalues ts2, u,..., and all the other eigenvalues
are zeros. Changing over to the AGA (EWA) factorizations, negative and/or complex
eigenvalues appear in the eigenvalue spectrum of matrices l and El.

It is interesting to note that in the AGA double SOR method, curves representing
the behaviour of Vl and v2 versus w are perfectly approximated in the range 0 <
by the equation

(60) AO30z -[- BOZoz 2 ( CO)oz -1- X O,

in which coefficients A, B, and C can be calculated from three equations given by three
values of u computed for three different values of w, for instance, by power method and
using the substitutions u)/v and 0 (w )/w.

In practice, the same computational procedure as in the Gauss-Seidel double SOR
method can be based on the solution of the reduced form of (60), that is,

(61) B-02oz 2 (k 0)o + X 0,

TABLE

1. 1.5 1. 1.5 1. 2. 1.
0.999 1.4733 0.9466 1.4733 0.9462 1.9387 0.9387
0.99 1.4196 0.8392 1.4201 0.8367 1.8182 0.8182
0.9 1.2789 0.5578 1.2817 0.5462 1.5195 0.5195
0.5 1.0981 0.1962 1.1010 0.1835 1.1716 0.1716
0.1 1.0155 0.0310 1.0162 0.0282 1.0263 0.0263
0. 1. 0. 1. 0. 1. 0.
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which provides the estimation of ff with the accuracy of four significant figures. This is
completely sufficient because changes of the fourth significant digit in w do not change
the number of iterations for a given accuracy of the solution. The computer time of this
procedure is comparable (very often shorter in large problems) with the time required
only for the calculation of the spectral radius of 1. Usually the dominance ratio de-
fined as

(62) o-= ]Xll/lX2l,

where the eigenvalues have the following order IXl > IX2l > ]x3l,..., is significantly
smaller for the matrix ../1 than in the case of the matrix ’. The behaviour of versus
w is illustrated in Figs. 2, 3, and 4 in 5.

4.2. Single SOR two-sweep iterative methods. As mentioned, these methods can
be considered as special cases of the double SOR methods in which either we 4:1 and
w (forward type) or w and w 4:1 (backward type).

A. The Jacobi single SOR method. Assuming either w w and w or we
and w w in (43), we obtain for both cases the same equation,

(63) + 0c (1 + c),

and by substituting c u) / u and 0 (w / o,

(64) u=wu-(w- 1).

When is a 2-cyclic and consistently ordered matrix, the value ofw minimalizes
the spectral radius of.

B. The Gauss-Seidel single SOR method. In the forward type, in which w w
and w 1, we obtain from the matrix ot’ the relation

(65) .=wX-(w- 1),

where ), is the eigenvalue of o. For the 2-cyclic consistently ordered case the spectral
radius of &o is minimized for

(66) w 2/(2- X).

In the backward type, the substitution of w and w w, and p 2 in (53),
gives

(67) (1 + Oa)2 2(1 + a)

or

(68) 020g 2 (k 20)o + ), O.

The solution of this equation gives the well-known formula

(69) 2/[1 + (1 ),)/-]

for the point SOR method [7], where X #2 and b P(b) b 1.
The behaviour of roots v versus w is plotted in Fig. for ), 0.9, where the curve

denoted by B corresponds to the Gauss-Seidel backward SOR (the point SOR), the
curve denoted by F to the Gauss-Seidel forward SOR, and the curve denoted by D to
the Gauss-Seidel double SOR method. The points denoted by digit correspond to
optimal values of v. The algorithm of this method, when applied to the discrete solution
of two-dimensional elliptic problems in rectangular geometry, is called RECSOR-II.
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The values of b and b for different values of X =/.t
2 are given in the table. However

in spite of the fact that

p(,) < p(’Y.),

both methods are almost equivalent from the viewpoint of convergence properties; the
ratio ofR(-9) to R(#/;) changes in the range 1.15 + 1.05 for the values of k given
in the table.

C. The AGA (EWA) single SOR methods. In algorithms of this method in which
the nonzero diagonals of matrices NA are located symmetrically with respect to the main
diagonal, both the forward and backward SOR processes give almost the same values of
and w., as well as the values off and uc. The value of u. corresponding to the minimum

spectral radius is much greater than F and, for this reason, these methods are less rec-
ommended than the point SOR. This effect is illustrated in the next section.

For matrices NA with the unsymmetrical locations of nonzero diagonals with respect
to the main diagonal, the rate ofconvergence in the forward AGA method can be greater
than in the case of the backward AGA method. This effect is contrary to the behaviour
of the Gauss-Seidel forward and backward SOR methods.

5. Model problem analysis. Let us consider the solution of the two-dimensional
Dirichlet problem for the Laplace operator

(70) -V2(x, v) =f(x, v), (x, v)e R.

The problem is solved in the hexagonal geometry oriented in the oblique coordinate
system (x, v) where a uniform triangular mesh is imposed on the unit 120-degree par-
allelogram consisting ofs + oblique columns and rows 3 ]. The condition ofreflection
symmetry is assumed on the left, top, and bottom boundaries, and 0 on the right
boundary of this parallelogram.

The seven-point finite difference approximation leads to the linear equation system
in which an n n matrix A has seven nonzero diagonals where n s t. We assume
zero as the index for the main diagonal, and 1, 2 for the indices of the successive
diagonals in the upper part ofA, and 1, -2 for the indices ofthe successive diagonals
in the lower part of A; the matrix A in the above problem can then be described by the
following nonzero diagonal indices, -s 1, -s, -1, 0, 1, s, s + 1. Such matrices are
not p-cyclic and not consistently ordered.

Let us restrict our attention to the spectral radius analysis of the iteration matrices
in the above problem for the point SOR method, called HEXSOR-II here, and to two
algorithms of the AGA method, called the HEXAGA-II-A [3] and HEXAGA-II-A 1. In
HEXAGA-II-A, the nonzero diagonal indices for the matrix HA are --s and -1; for the
matrix QA, they are and s; and for the matrix NA, they are -s + and s 1. In the
case of HEXAGA-II-A1, the nonzero diagonal indices are -s, -s + 1, and -1 for HA;
and s for QA; and -s + 2, 2, and s for NA.

The behaviour of eigenvalues u versus o for the iteration matrices in HEXSOR-II,
HEXAGA-II-A, and HEXAGA-II-A is shown in Figs. 2, 3, and 4, respectively, for the
case when s 6 and 3.

The EISRG2 subroutine from the EISPACK library was used for the calculation of
the eigenvalue spectrum of iteration matrices on the PC-AT computer. The explanation
of symbols and curves on these figures is the same as for Fig. 1. The points denoted by
digit 2 correspond to the value of oc for which the spectral radius has the minimum
value. In Fig. 2 the curve denoted by R represents the case when the matrix A is 2-cyclic
and consistently ordered (but with the same value of spectral radius for w ). What
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2

FIG. 2. ttEXSOR-II.

takes place in the rectangular geometry and the minimum value of spectral radius is at
the point denoted by digit 3. This illustration allows us to conclude that the deviation
of the convergence behaviour of the point SOR method (HEXSOR-II) in the hexagonal
geometry is very small compared to that in the rectangular geometry (RECSOR-II).

As can be seen from this graph representation, the minimum values of spectral radii
are obtained for HEXAGA-II-A and HEXAGA-II-A when the double SOR process is
applied. In calculations, it was assumed that in the double SOR o0 o w.

It should be noted that the behaviour of spectral radii as a function of w shown in
Figs. 2, 3, and 4 is representative for multidimensional neutron diffusion equation prob-
lems solved by these algorithms. The results of benchmark problem calculations by the
HEXAGA programs in comparsion to other programs are demonstrated in [9 ].

o// /
// /

FIG. 3. ttEXAGA-II-A.
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o 2

FIG. 4. HEXAGA-II-A 1.
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ON A CONJECTURE OF PIERCE FOR PERMANENTS
OF SINGULAR CORRELATION MATRICES*

C. L. FRENZENf AND I. FISCHER-

Abstract. Let In be the n-by-n identity matrix, let Jn be the n-by-n matrix, all of whose entries equal 1,
and let Yn n/(n )In 1/(n )Jn. Y,, is then a singular correlation matrix, that is, Yn is a singular positive
semidefinite Hermitian matrix all of whose diagonal elements equal 1. Pierce has conjectured that if A is a
singular correlation matrix, the minimum value of the permanent ofA occurs exactly when A is similar to Yn
by a diagonal unitary matrix. If Pierce’s conjecture is true, then the permanent of Yn (per Yn) must be a
decreasing function of n. This paper proves that per Yn is strictly decreasing for n 2, 3, 4

Key words, permanent, correlation matrix, asymptotic approximation

AMS(MOS) subject classifications. 15A 15, 15A45

1. Introduction. A correlation matrix of order n is an n-by-n positive semidefinite
Hermitian matrix all ofwhose diagonal elements equal 1. Denote the set of all correlation
matrices by C. When A, B Cn and A is similar to B by a diagonal unitary matrix, we
write A B. Note that if A B, then per A per B, where per A and per B represent
the permanents ofA and B, respectively. In [4] Pierce conjectured that ifA is a singular
correlation matrix, the minimum value of per .4 occurs exactly when A Yn, where

n
(1) Yn In

n-1 n-1

with In being the n-by-n identity matrix and Jn being the n-by-n matrix with all entries
equal to 1. Pierce’s conjecture was verified for n 4 in [3].

If Pierce’s conjecture is true, then

(2) per Yn+ < per Yn (n 2, 3, 4,...).

To see this, form the (n + )-by-(n + matrix A from Yn by letting aij be the (i, j)
element of Yn for =< =< n and <- j _-< n, an + 1,n + 1. Since A Cn + 1, A is singular,
and A Yn, the truth of Pierce’s conjecture implies per A > per Yn + 1. However, by the
construction ofA, perA per Yn, and (2) follows. The first nine values ofper Yn (correct
to five places) are given in Table 1.

Pierce’s conjecture would be false if (2) failed to hold for some n. The purpose of
this paper is to prove that (2) holds for all n >- 2, thereby removing one means of
disproving Pierce’s conjecture. We obtain an asymptotic approximation with error bounds
for per Yn from an integral representation by Barrett and Lundquist [1]. Using this
approximation, we then show that

e
(3) per Yn+ per Yn < 8(n + )3 (9 n) (n 10).

Equation (2) then follows from Table and relation (3). We note that several other
monotonicity questions have recently been settled by using asymptotic expansions with

Received by the editors January 30, 1991" accepted for publication (in revised form) July 30, 1991. This
work was supported (in part) by the Naval Postgraduate School Research Program.

f Department ofMathematics, Naval Postgraduate School, Monterey, California 93943 5191 p@navpgs.bitnet).
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TABLE

n per Yn

2 2
3 1.5
4 1.48148
5 1.44531
6 1.42848
7 1.41662
8 1.40832
9 1.40209
10 1.39727

error bounds. In [2 and [5 the monotonicity of the Lebesgue constants for Legendre
series was established, and in [7] the monotonicity of the points of inflection of the
Bessel function J, was proved.

2. An integral representation for per Y.. We begin with the identity

(4) per(tin + aJn) (t + a)kan-kDn_k,
--=0 k

where Dk, the kth derangement number, may be expressed as

)
Dk k! ,

j=0 J!

The identity in (4) may be derived by noting that Dn per (Jn In). By writing tin +
aJn as (t + a)In + a(Jn In) we can find the permanent of the latter matrix (all
of whose diagonal entries equal + a) by computing the coefficient of (t + a) in its
permanent for k 0 n. Each of the () ways of selecting k of the diagonal entries
yields a factor of (t + a) in the permanent, and the coefficient of this factor is per
[a(Jn-k In-)] an-kDn-k. Multiplying (t + a) by ()an-kDn_ and summing on
k then gives (4).

Given that

x)ke dx (- )k! (- )J
j=0 J!

it follows from (5) that

(6) D (-1 ) x)ke dx.

Substituting (6) into (4) then gives

(7)

per(tin + aJn) (t + ax)ne dx

(t/a)
n!an ’ kVk=0
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where the second equality in (7) comes from applying the binomial theorem to the inte-
grand in (7) and integrating termwise. After we set n/(n and a -1 /(n ),
(7) and then yield

(8)

per Y, e dx
n-1

(- )’n! nQ_.2 (__ )knk
(n )n k=0

Equation (8) and its derivation are from Barrett and Lundquist [1].
The entries in Table were computed from the sum in (8). It is not difficult to

show from the integral in (8) (see the argument following (10)) that

e
lim perYn=-= 1.3591409142 ....

We note that the above limit was also observed in [4] by means of a different integral.
Although reference was made in 4] to an unpublished proof for asymptotic monotonicity
of per Y,, implying that per Y, > e/2 for all sufficiently large n, the monotonicity result
given in the present paper implies that per Yn > e/2 for all n >= 2.

Using (8) and substituting x ny, we now write

(9) per Y, P(n) + Pz(n),

where

(10)

P(n)
n- 1 n (1-y)ne-" dy

nn+ 1P2(n) (-1)n (r i) (y )’e-’ dy

(- )’ e-’n
(n-l)

Clearly, Pz(n) -- 0 as n --,- . Now

P(n)=
n 1--n e dx.

The factor in front of the integral above tends to e as n -- oe, while the integral itself
tends to

e-2 dx
2

by the dominated convergence theorem. Thus P (n), and therefore per Y, tends to
e/2 as n--- .

From [6, Prob. 20, p. 200] we have

n! < en"e-"n (n >= 2);

by applying this to P2(n) in (10) we conclude that

Pl
e 2 /-(11) (-1)’P2(n) < e

n-1
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Now (10) implies that

(n+ 1)(n- 1)
e2(n + ,,+ P2(n),

en

and by using this expression for P2(n + and the bound in we conclude that

(12) P2(n + 1) P2(n)l <
2(n + 1)

[2e-2n(n + )3]
n

+ ne
Since 2 e-zn(n + 3, n / (n , and (n + / n all decrease with n when n > 2,
(12) implies that

e _20fi-( )3 [ (10)l le2(n+ 1) 312e +
(13)

<
2(n + )3 (10-4)

From (9) and 13 it then follows that

(n > 10).

10-4e
(14) per gn+ per Y. < P(n + Pl(n) +

2(n + )3 (n > 10).

3. Asymptotic approximation for P (n). From (10),

(15)

where

(16)

Pl(n) F(n)H(n),

F(n):(n)n-1

H(n) n e--( y)’ dy.

We shall now show that the right side of (14) is less than zero for n > 10 by deriving an
asymptotic approximation with error bounds for Pl (n). Pl (n) decreases with n, but this
is not entirely obvious since F(n) decreases with n and H(n) increases with n.

From (16),

F(n)=exp -nln 1-- =exp + + +

so that

)(17)
F(n)

exp + + +

Equation (17) implies that

F(n)
> exp +

(18) > + nn+n +.I nn
11

> + 2n + 24n +
--6n---= (n > 2).



78 C. L. FRENZEN AND I. FISCHER

To derive an upper bound for F(n)/e, note that

n
4n -n4+ ’4n n-

(n->_ 2),

so that

(19) F(n)<exp( n )e -n+-n2- 4n3n (n >- 2)"

Since the exponent in (19) decreases with n and is less than 1/2 for n >_- 2, and since

X2 X3 ( 1)(20) eX<l +x+--+-- 0<x<
letting x be the argument of the exponential in (19) and substituting into (20) then gives

11 A(n)
(21)

F(n)
< + + -e n 24n n

where

(22)

n 1(1 1)A(n)=- 4n-1+ +nn +4n(n 1)

+ +
8(n- l)

18n

12n(n-1) +3--n n
Since A (n) decreases with n, (22) implies that

(23) A(n) <- A(IO) < 0.54 (n >= 10).

Using (23) in (21) then yields

24
F(n) 11 0.54

< + + -t (Y/ >- 10).
e nn 24n n

After 18 and (24) are combined, it then follows that for all n >_- 10

11 F(n) 11 0.54
(25) l+nn+2+n3< e <l-t-+2n 24n2- n3

We shall now derive similar upper and lower bounds for H(n) in 16 by integration
by parts. Let

h(y) y- In (1 y),
1-y

f(y)
d 2-y
-y h(y)

and

go(Y)-- 1,
d

g;+, (y) -z:.. [f(y)g( j=0, 1,2.
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Integrating by parts then gives

H(n) n e-n(y) dy - + e-n(Y)gl(y) dy

(26)
2 8n

t-- e-’h()g2(y) dy
n

2 8n 32n 2 - -5 e-nh()g3(y) dy.

Since

g3(Y)
-6

(2 y)4
20 -15

+ +
(2-y) (2-y)6’

we find after some calculation that

(27) max Ig3(y) g3(1)l 1.
y[o,]

Using (27) in (26) then yields

)H(n) 2 8n 32n 2

so that

(28)
2 8n 32n 2 2n

< H(n) <.
2 8n 32n 2 2n

Let

(29)

Q(n) l+n+ 24n2 4n 16n 2

=1+
13 7 11

4n 48n : 48n 384n 4

Multiplying the upper bounds in (25) by those in (28) and using (15) then gives

(30)

P1(n)<Q(n)+0.54 ( )e/2 - 4n 16n-( 11 ) 0.54+-- +nn + 24n2 - n6 (n >= 10)

or

(31)
Pl(n) 13 Bl(n)

<1+ + -e/2 nn 48n 2 n
(n > 10),

where

(32)
0.34 0.47

0 < B(n) < 1.4 + + +
n

0.54
(n >= 10).
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Since the right side of (32) decreases with n, evaluating it for n 10 implies that

(33) 0 < B(n) < 1.44 (n > 10).

Using 33) in 31 then yields

(34)
P(n) 13 1.44

<1 + + +-- (n > 10)
e/2 nn 48n 2 n

A similar multiplication of the lower bounds in (25) and (28) gives

(35)

11 )P(n)
> Q(n) 1_ + +

e/2 n nn 24n5

+
4n 16n 2 6n 6 (n >= 10)

or

13 B2(n)
(36)

Pl(n)
> + + (n >= 10)

e/2 4n 48n n

where

2
(37) 0 < B2 n < + .n-Z-- + zn --2--7 + o"n---- n >= 10).

Again the right side of (37) decreases with n, so evaluating it for n 10 implies that

(38) 0 < B2(n) < 1.08 (n >= 10).

Relations (36) and (38) then yield

(39)
P(n) 13 1.08

el/2 > + nn 48n 2 n
(n >= 10).

Combining (34) and (39) then gives us the asymptotic approximation for P1 (n) we need:

13 1.08 P (n) 13 1.44
(40) +4n - 48n n

<
e/2

< +4n +48n2 + n3

for all n >= 10.

4. Proof of (3). Relation (40) implies that for n >= 10

P(n + 1) P(n) -1 13 2n + 1.44
(41)

e/2
<
4n(n + 1) 48 n2(n + 1)2 + (n + 1)3

1.08

Since

-1 -1 -(2n + 1) -2
<

(n+ 1) 3,4n(n+ 1) 4(n+ 1)2’ n2(n+ 1)2 <

and

( 1) 134

(n+ 1)
+- =< (1 1)

/7 (r/ + 1) <(tt q- 1)
(n >= 10),
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(41 implies that

P(n + 1)- P(n)
(42)

e/2
< (-(n+1)+2.35)(n + 1)3 4

(n > 10).

Combining (42) and (14) then gives

(43) per Yn + per Yn < 8(n + 1)
[-n + (2.35)(4) + (4)( 10 -4 1]

for all n > 10. Since (2.35)(4) + (4)( 10 -4) < 9, (43) implies (3).
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INTERVAL MATRICES: SINGULARITY AND REAL EIGENVALUES*

JIRI ROHN-

Abstract. This paper proves that a singular interval matrix contains a singular matrix of a very special
form. This result is applied to study the real part L ofthe spectrum of an interval matrix. Under the assumption
of sign stability of eigenvectors this paper gives a complete description ofL by means ofspectra of a finite subset
of matrices and formulates a stability criterion for interval matrices with real eigenvalues that requires checking
only two matrices for stability.

Key words, interval matrix, singular matrix, eigenvalue, stability
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1. Introduction. Let Ac and A be real n n matrices with A nonnegative. The set
of matrices

[Ac- A,A+ A]:= {A;A- A <=A <=A+ A}
is called an interval matrix and is said to be singular if it contains a singular matrix. The
problem of singularity of interval matrices is studied in [6 ], where in Theorem 5.1 a
number of necessary and sufficient singularity conditions are given.

The purpose of the present paper is two-fold. First, we prove in Theorem 2.2 that
a singular interval matrix [Ac A, At, +/x] contains a singular matrix A of a very special
form

(0) A A- dTyATz,

where d [0, 1] and Tz, Ty are diagonal matrices whose vectors of diagonal entries are
the sign vectors of some singular vectors x and p of A and A t, respectively. Second, in
3 we use this theorem to study the properties of the set L of real eigenvalues of all

matrices contained in a given interval matrix. We prove that each X L is an eigenvalue
ofsome matrix ofthe form (0)(Theorem 3.2). Moreover, ifX OL, then d- (Theorem
3.4); hence each boundary point of L is achieved at some vertex of [At, A, Ac + A]
(considered a polyhedron in Rn2). To obtain more specific results, we introduce three
assumptions imposing sign stability restrictions on eigenvectors under which we give in
Theorem 3.7 a complete description ofthe set L as a union of at most n compact intervals
whose endpoints are eigenvalues of some explicitly expressed matrices. All the results
are formulated for the real part of the spectrum only, since the complex case seemingly
cannot be handled by the methods used.

Stability of interval matrices has been recently extensively studied in robust control
theory; see the state-of-the-art papers by Mansour 4] and Barmish [1 for detailed in-
formation. The description of the set L in Theorem 3.7 here implies a simple stability
criterion in the case when only real eigenvalues are present: under the three assumptions
made, an interval matrix is stable if and only if two explicitly given matrices are stable
(Theorem 3.8 ).

We shall use the following notation. The absolute-value vector of a vector x (xi)
is defined by x] (1 xi]). We introduce the set

Y= {yrR"; yj +1 for j n},

Received by the editors May 20, 1991; accepted for publication (in revised form) August 21, 1991.- Faculty of Mathematics and Physics, Charles University, Malostranske nam. 25, 11800 Prague, Czecho-
slovakia (rohn@cspguk .bitnet).
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and for each y e Y we denote by Ty the n n diagonal matrix with diagonal vector y.
Inequalities, such as A >= 0 or A > 0, are to be understood componentwise. A denotes
the transpose ofA.

2. Singular interval matrices. Theorem 2.2 below establishes the main result ofthis
paper; all subsequent theorems are consequences of it. It will be preceded by an auxiliary
characterization of singular interval matrices.

LEMMA 2.1. A square interval matrix [Ac A, Ac + A] is singular ifand only if it

satisfies

IAxl Alxl

for some nonzero vector x.
Proof. The assertion is an immediate consequence of the theorem by Oettli and

Prager [5] that characterizes solutions of systems of linear interval equations (in our
case, with zero right-hand sides); we use it here in the form given, e.g., in [6, Thm.
2.].

Now we have the following main result.
THEOREM 2.2. Let [A A, A. + A] be a singular interval matrix. Then there exist

x 4 O, p 4 O, andy, z Ysuch that

(A- dTyATz)x O,

(2) (A.- dTyATz)tp O,

(3) Tzx >= 0,

and

(4) Tp >= 0

hold, where

d min { e >= 0; [A eA, At. + eA] is singular

andde [0, 1].
Comment. Notice that (3) and (4) mean that zjxj >-_ 0, pjy9 > 0 hold forj 1,...,

n. Hence if all entries ofx and p are nonzero, then z and y are uniquely determined and
their entries are simply the signs of the respective entries ofx and p. Also notice that (3)
and (4)imply Tzx Ix[ and Tp [p[.

Proof. First observe that )-(4) hold trivially ifA is singular. In this case d 0;
hence it suffices to take some nonzero vectors x, p that satisfy Acx O, Ap 0 and
choose z and y as the sign vectors of x and p; then )-(4) hold.

Let A. be nonsingular, so that d > 0. Since the interval matrix [A dA, A + dA]
is singular, according to the assertion (C1) of[6, Thm. 5.1], there exist y, z e Y such
that det (A. dTyATz).detA =< 0. Then the continuous function of one real variable
(z) det (A -dTyATz) satisfies (0)(1) =< 0; hence (z0) 0 for some z0 e
[0, 1]. In view of(5) it must be z0d>= d; hence z0 1, so that Ac- dTATz is singular
and holds for some x 4 0. To prove the assertions (2)-(4), we shall distinguish two
cases: (a) A > 0 and (b) A >__ 0.

(a) Let A > 0.
(i) To prove (3), assume to the contrary that neither Tzx >= 0 nor Tzx <= 0 holds,

so that there exist j, k { 1,..., n } such that zgxj < 0 and zkxk > 0. Take an arbitrary
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{ 1, n }. Then one of the numbers yizjxj, YiZkXk is positive and the other is
negative, which gives

[(AcX)il d] _, AihYiZhXh < d(A]X])i;
h

since was arbitrary, it follows that [A.x] < dA[x]. Then we can choose a positive e

such that e < d and ]Acx] < eAlx]; hence the interval matrix [Ac cA, A. + eA] is
singular according to Lemma 2.1, which contradicts (5). This contradiction shows that
either Tzx >= 0 or Tzx <= 0 holds. In the former case we are done, and in the latter it is
sufficient to set x := -x to obtain and (3).

(ii) To prove (2) and (4), we first notice that since A dTyATz is singular, there
exists a nonzero vector p such that

(A- dT/XTz)p (A- TzXT)p O.

Assume that neither Typ >--_ 0 nor Typ <= 0 holds. Arguing as in (i), we obtain that
[Ap[ < dAt[p[, which again gives that the interval matrix [A eA t, At + eA t] is
singular for some e < d; hence so is [Ac cA, Ac + eA], which is a contradiction. Hence
either Typ >= 0 or Typ <= O, so that by setting p := -p if necessary we get that (2) and
(4) hold also. This concludes the proof for the case of/X > 0.

(b) Let /X be a nonnegative matrix. Let H denote the matrix of all ones and for
k 1, 2,... define /xk A + (1/k)H; then /X > 0 and each [At. /X, A + /xk] is
singular. Hence from what has been proved under (a), it follows that for each k there
exist vectors x, Pk (which can be normalized so that [[x[]2 ]lPk[[2 ), and zk, yk

Y such that

(1 t) (A dkTyk/xkTzk)Xk O,

(2’) (A.- dT/XTz)’p O,

(3’) TzkX >= 0,

(4’) Tykpk O,

where

(5’) dk min e > 0; [A e/xk, Ac + e/xk] is singular }.

First we show that dk < dk + < d for k 1, 2, In fact, from /xk >---- /xk +1 >---- /x it
follows that [A. dk + /xk + A + dk + /xk + c A dk + /xk, A. + dk + /xk], and
[At. dA, A + d/x] [A d/xk + , A + d/xk + ], which implies that both the interval
matrices [A. dk + /xk, Ac + dk + /xk] and [At. dAk + , A + dAk + ] are singular;
hence dk <= dk + and dk + <= d in view of (5’). Next, since Y is finite, there exists a
constant subsequence of the sequence (Zk, Yk = , i.e., Zk Z, Yk Y for infinitely
many k. Let us choose another subsequence of this subsequence along which Xk, Pk
converge to some x, p (this is possible since Xk }, Pk are confined to the compact unit
sphere; hence x 4:0 and p 4: 0). Then taking limits in (1’)-(4’) we obtain

(A- dT/xTz)x O,

(A- dTy/xT)tp O,

Tzx >= O,

Typ >= O,
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where d limk dk < d. Since the matrix Ac dTy&Tz is singular and belongs to the
interval matrix [A. dX, At. + d&], we have in light of (5) that d < d; hence d d e
[0, 1], so that )-(4) hold and the proof is complete. El

Next, we formulate some direct consequences of Theorem 2.2. First, we show that
there exists a singular matrix in a "normal form."

COROLLARY 2.3. Let [At.- &, A. + IX] be singular. Then it contains a singular
matrix oftheform

(6) At.- dTy&Tz,

where y, z Y and d [0, 1].
Prooj This is an obvious consequence of the assertions (I) and (5) of Theo-

rem 2.2.
The result can also be given the following geometric formulation.
COROLLARY 2.4. Let [At. &, At. + &] be singular. Then it contains a singular

matrix belonging to a segment connecting Ac with some vertex of [A X, A +
(considered a polyhedron in R

Proof. For the singular matrix A from (6) we have

A ( d)A + d(Ac- rXrz),

where d [0, 1]; hence A belongs to the segment connecting A with the matrix A
T&Tz, which is a vertex of[At.- X, Ac + &] since (At.- TXTz)i (At.- X),..j if yiz
and (A.- TXTz) (A. + X) if yiz -1. E]

COROLLARY 2.5. Let [At. X, Ac + X] be singular. Then there exists an x 4:0 such
that

holds, where d is given by (5).
Comment. The assertion is stronger than that of Lemma 2.1; it shows that the

inequality holds "uniformly."
Proof. From and (3) we have Axl dT&Tzxl dl X xl dX xl El

3. Real eigenvalues of an interval matrix. In this section we shall apply Theorem
2.2 to study the set of real eigenvalues of an interval matrix [A &, Ac + A] given by

L= X e R Ax Xx for some A e [A &, A + X], x 4: 0

Obviously, L is compact since each X L can be written as X xtAx for some A e
[At. &, At. + &] and some x with {]x]12 1. In the sequel we shall use the following
result.

LEMMA 3.1. 3, L ifand only ifthe interval matrix

(7) [(At.- XI)- &, (A,.- M)+ &]

is singular.
Proof. If X 6 L, then (A M)x 0 for some x 4: 0, where A M belongs to the

interval matrix (7), which is then singular. Conversely, if (7) is singular, then it contains
a matrix A with Ax O, x 4: O. Then A + M6 [A &, A + &] and (A + M)x Xx;
hence 3, L. El

We shall first show that each , L is an eigenvalue of a matrix of a special form.
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THEOREM 3.2. Let X L. Then there exist x 4: O, p 4 O, y, z Y, and d [0, 1]
such that

(8a) (A- dTyATz)x Xx,

(8b) (A- dr,AT)tp

(8c) Tzx>= O,

(8d) T),p >= O.

Proof. The assertion is a direct consequence of Theorem 2.2 applied according to
Lemma 3.1 to the interval matrix (7).

Let us introduce, as in [6], the matrices

A,z A. TyA Tz
for y, z 6 Y. Obviously, Ayz 6 [A A, A + A] for each y, z 6 Y.

COROtAR 3.3. Let L. Then is an eigenvalue of a matrix belonging to a
segment connecting Ac with some matrix Ayfor y, z Y.

Proof. The proof follows from Theorem 3.2.
Hence all the real eigenvalues of[A A, A + A] are achieved at matrices belonging

to a finite number of segments, i.e., to a set of measure zero if n > 1; see Hollot and
Bartlett 3 for a similar result using the edges of [A A, A + A].

Now we shall show that the boundary points of L are eigenvalues of the matri-
ces Ayz.

THEOREM 3.4. Let X OL. Then there exist x 4 O, p 4 O, and y, z Y such that

(9a) Azx Xx,

(9b) Ayzp Xp,

(9c) Tzx > O,

(9d) Typ -> O.

Proof. As in the proof of Theorem 2.2, we shall consider separately two cases: (a)
A > 0 and (b) A >= 0.

(a) Let A > 0. Since L is compact, we have OL L; hence (8a)-(8d) hold for
some x g= 0, p 4: 0, y, z 6 Y and d 6 [0, ]. We shall prove that d 1. Assume to the
contrary that d < 1. Then from Theorem 3.2 we have

I(1.- ),I)xl dzXlx[ < zXlx[.

Hence there exists an e > 0 such that each X’ e (), e, X + e) satisfies

[(A.- X’I)x[ < A Ix[.

Therefore, [(A X’I) A, (A. X’I) + A] is singular according to Lemma 2.1. This
implies X’ e L by Lemma 3.1. Hence X is an interior point of L, which contradicts the
assumption that X OL. Thus d 1, so that (8a)-(8d) take on the form of (9a)-(9d).

(b) Let A >= 0. As in the second part of the proof of Theorem 2.2, for k 1, 2,...
define A A + /k)H, where H is the matrix of all ones, and let L be the set of real
eigenvalues of the interval matrix [A /X, A. + A], so that L c L. For each k 1,
2, take a X e OL that satisfies

[Xk--X] =min{l-Xl;e0Lk}.
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We shall prove that 3‘k - 3‘. Assume this is not the case; then there exists an e > 0 and
a subsequence kj. } such that 13,k. 3‘1 >= e forj 1, 2,..., which in view ofthe definition
of 3‘j gives that (3‘ e, 3‘ + e) c Lj for each j. Hence for each 3‘’ (3‘ e, 3‘ + e) and
each j 1, 2 there exists a matrix A [Ac A, Ac + Ak]
and a vector x with IIxj[12 such that Axj 3‘’xk. Taking the limit, we obtain
Aoxo 3‘’Xo for some Ao [Ac A, Ac + A] and x0 :/: 0. Hence 3‘’
3‘ + e) c L, contrary to 3‘ OL. Hence 3‘ -- 3‘. Now, since 3‘ 60L and A > 0, by
applying the result proved in part (a) we obtain that for each k 1, 2, there exist
y, zk e Y and vectors x, p with x 2 P 2 such that

(Ac Ty AkTzk)xk 3‘Xk,

(&.- Ty/XTz)’p Xp,

Tzx >= O,

Typ >= 0

hold. Choosing a subsequence along which y, zk remain constant and x, p converge,
we obtain (9a)-(9d), which completes the proof.

Theorems 3.2 and 3.4 were quite general; to achieve more specific results about the
structure of L, we now introduce some assumptions.

Assumption 1. Each A e [A A, A + A] has exactly m real eigenvalues (1 _-<
m < n) numbered in such a way that 3‘1 (A) < < 3‘m(A).

Then we can define the sets

Li 3‘i(A); A [A A, Ac + A]}
for/= 1,...,m.

Assumption 2. Li O Lj. for each 4: j, i, j { 1,..., m (where the bar denotes
closure).

Next we shall assume a sign pattern constancy of the eigenvectors.
Assumption 3. For each 1,..., m } there exist vectors z,., y,. e Y such that each

right eigenvector x (left eigenvector p) pertaining to the ith real eigenvalue of some A
[A A, Ac + A] satisfies either Tzi x > 0 or Tzi x < 0 Tyip > 0 or Tyip < 0).

We formulate the third assumption in this way because -x and -p are also a fight
eigenvector and left eigenvector, respectively. Notice that -z,. and -Yi also possess the
required property.

COROLLARY 3.5. Let Assumptions 1-3 be satisfied, and let m }. Then
each 3‘ Li is the ith real eigenvalue ofsome matrix belonging to the segment connecting
A),z with A_y,z.

Proof. According to Theorem 3.2 there exist x, p, y, z, and d satisfying 8a)-(8d).
Hence 3‘ is an eigenvalue of the matrix A At. dT),ATz. If 3‘ 3‘j(A) for some j :/: i,
then 3‘ L (3 Lj, which contradicts Assumption 2. Hence 3‘ 3‘ (A), which, according
to Assumption 3 in conjunction with (8c) and (8d), means that z +z/. and y _+ Yi.
Hence either

A At. dTjiAT 1/2(1 + d)Ayz + 1/2(1 d)A_y,z

or

A At.- dT-yiATz 1/2(1 d)Ay,z + 1/2(1 + d)A_y,,

with d [0, 1]. In both cases A belongs to the segment connecting Ayiz with A_yi,z
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An interval matrix [At.- A, Ac + A] is called symmetric if both At. and A are
symmetric. In this case, if A [At. A, At. + A], then A 6 [Ac A, At. + A] also, but
generally [A.- A, At. + A] can contain nonsymmetric matrices. However, we have the
following result.

COROLLARY 3.6. Let a symmetric interval matrix [At. A, Ac + A] satisfy As-
sumptions 1-3. Then each X e L is an eigenvalue ofsome symmetric matrix in [A- A,
A. + X].

Proof. Since each left eigenvector of A. is also a right eigenvector in this case, it
follows from Assumption 3 that Yi +-zi for 1, m. If X L, then X L for
some and Corollary 3.5 implies that X is an eigenvalue of a matrix of the form A
dTAT for d e [-1, 1], which is obviously symmetric. [-3

Now we are ready to describe the structure of L. The following theorem is a gen-
eralization of[7, Thm. 3], where a similar result is proved for interval matrices with A
of rank one, i.e., of the form A qpt for some positive vectors q and p, whereas now A

can be an arbitrary nonnegative matrix; see also Deif [2].
THEOREM 3.7. Let an interval matrix [At, A, Ac + A] satisfy Assumptions 1-3.

Then

L=ULi,
i=1

wherefor each e {1,..., m} we have

(10) Li [_.i,

with

(11)

and

_X; min Xi(A;z,), Xi(A-,,,)

(12) Xi max { ),i (Ay,z: ), X;(A-y,,z,) }.

Comment. L is thus completely determined by the real components of the spectra
of 2m matrices A)izi, A-i,zi 1,..., m).

Proof. The assertion for L is simply a consequence of the definition of the L.’s;
therefore, we need to prove only 10)-(12). These are obvious if A 0. Assume A 4=
0, and let 1,..., m }, X e OLi. Then X e OL, or else Assumption 2 would be violated.
Hence, according to Theorem 3.4, X is an eigenvalue of some A, and in view of As-
sumption 2, X X (A). From (9c) and (9d) we can infer, as in the proof of Corollary
3.5, that either X or X , where we have denoted i X(A_,) and
X (A,). Hence Li has at most two boundary points. Fuhermore, let x and p be a right
eigenvector and a left eigenvector to and , respectively, such that Tz, x Ix] > 0
and Tp p] > 0. Then we have

(Ac + Ty, arzi)X iX
and

(A- TyAJ)p iP.
Premultiplying the first equation by p and the second by x and subtracting, we obtain

2]Pllx] (i X)PX.
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Since [p[ > O, Ix[ > O, and A :/: O, this shows that i :/: ;. In a similar manner we can
obtain i :/: Xi (Ac) and i :/: X; (At). To sum up, we have proved that the compact set
Lg consists of at least three different points and has at most two boundary points g and
i; hence Li is a compact interval whose endpoints are the two boundary points, i.e.,

where

and

Li [i, ’i ],

_Xi min Xi, i )

X max {i, i }.
Notice that if the interval matrix is symmetric, then the extremal eigenvalues

k; are achieved at symmetric matrices Azz, and A-z,z (i 1,..., m).
The above result has an implication for stability of interval matrices with real ei-

genvalues. A square matrix is called stable [4 if all its eigenvalues are placed in the open
left half of the complex plane. An interval matrix [A A, A + A] is called stable if
each A [A A, A + A] is stable. We have the following characterization.

THEOREM 3.8. Let an interval matrix [Ac A, A + A] satisfy Assumptions 1-3
with m n. Then it is stable ifand only ifAy,z, and A-y,,z, are stable.

Proof. Since m n, all the eigenvalues are real. Therefore, for each A e [A A,
A + A] and each {1,..., n} we have

Xg(A) < Xn(A) < Xn max {Xn(Ay,z,), Xn(A-y,,z,)} < O.

Hence A is stable. The "only if" part is obvious. []

4. Real eigenvectors of an interval matrix. In this section we give a characterization
of real eigenvectors of matrices belonging to a given interval matrix. In contrast to the
eigenvalue case, the situation is much simpler here because it turns out that real eigen-
vectors can be characterized by a verifiable necessary and sufficient condition.

THEOREM 4.1. A nonzero real vector x is an eigenvector ofsome matrix in [A-
A, A, + A] ifand only ifthe matrix

x--- Ixl" Ixl’

satisfies

(13) TzAcTz A)X < X( TzATz + A),
where the vector z is given by zj ifxj >= 0 and z -1 otherwise (j 1, n).

Proof. For the sake of brevity, let us denote Az TzATz. Then (13) becomes

(14) (Az -/x)X <= X(A + Ix) .
"Only if’" Let x be a real eigenvector of a matrix A 6 [A A, A + A], so that

Ax Xx for some real . Since Tzx [x[ by the definition of z, we have

(Az M) lxl Acx Xxl (Ac A )xl --< zlxl,
which implies that

(Az A)I xl --< Xl xl --< (Az + A)I xl.
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Premultiplying the left-hand inequality by Ix[ t, we obtain

(Az- A)X <- MY,

and then, transposing the right-hand inequality in 15 and premultiplying the result by
[x I, we have

XX_-<X(Az+ A) t,

which together give (14).
"If": Conversely, let x be a nonzero real vector such that the matrix X x] x[

satisfies (14). Then for each i, j e { 1,..., n we have

(16) ((Az A)I xl). xjI x. [((Az + A)[ xl)j.

Hence for each i, j with xi 4: O, xj :/: 0 it holds that

and, consequently,

max
Xi 0

((Az A)I xl)i < ((Az + z)l xl)j
Ixil Ixjl

((A A)lxl)i
N min

((A + A)[ xI)j
Ixl xO xjl

Hence there exists a ), satisfying

((A- A)lx]); < X < min
((Az + zX)lxl)j

(17) max

We shall show that (X, x) is an eigenpair of some matrix in [Ac A, Ac + A]. Let k e
n }. If Xk 4: O, then 17 gives

((Az- A)I Xl)k
N }, <= ((Az + A)I xl),

Hence

(18) ((A- A)lxlk XlxI

and

(19) Xl xl <= ((Az + A)I xl)

hold. If Xk 0, select an rn with X 4: O. Then from the inequality (16) applied to
k, j m we obtain (18), and similarly applying it to m, j k, we get (19). Hence
(18) and (19) are valid for each k, which gives that

I(A.- M)xl I(A- xI)lxll Alxl.

Then Lemmas 2.1 and 3.1 imply the existence of a matrix A e [Ac A, A. + A] such
that (A Xl)x 0. Hence X L, and x is an eigenvector of A. E3
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I. THE HERMITIAN CASE*
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Abstract. The basic results of Caratheodory and Achiezer and Krein regarding certain representations of
elements of a positive definite Toeplitz matrix are generalized to the case of block Toeplitz matrices. It is shown
that these results are closely related to some factorizations of block Toeplitz matrices, matrix polynomials, and
indefinite scalar products.
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0. Introduction. The main objective ofthis work is a generalization ofthe following
Caratheodory-Achiezer-Krein theorem.

THEOREM 0.1 (see [1]-[31). IfA [a;_],-_ (a-k ) is a Hermitian positive

definite Toeplitz matrix, then to every complex number z such that

(0.1) det

a0 d dr-
al ao at-

at- al
z al- al ao

there corresponds one and only one canonical representation

=0,

(0.2)
j=l

(k=0,+l,... +(l- 1)),

in which & > 0, Il (j 1, 2,..., l) and all Ij’s are distinct and such that

(0.3)
j=l

Conversely, to every representation (0.2) ofthe indicated type there corresponds byformula
(0.3) some z satisfying (0.1).

Theorem 0.1 has its roots in Caratheodory’s investigations [2], 3 ]. The results
stirred up much interest, as can be seen from the many proofs produced by eminent
mathematicians of that time (cf. Schur 15 ], Frobenius 7 ], and Szego 16 ). As stated,
Theorem 0.1 appears in the Achiezer-Krein paper ], which provides a comprehensive
treatment of this and related problems, and their connections to the truncated trigono-
metric moment problem, polynomials orthogonal on the unit circle, and other topics.
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It is easily observed that the representation (0.2) is equivalent to the following
factorization of matrix A"

(0.4)

# #2 #

p 0 0
0 P2

p_ 0
0 0 m

in which the condition uj 4: i for j 4: means that the Vandermonde matrix on the left
is nonsingular. The unimodularity of tzj’s (that is, I#jl forces the product of the
matrices on the fight in (0.4) to be Toeplitz. The condition (0.3) shows that, along with
the factorization (0.4), there exists a factorization of similar type of the extended
(l + (l + Toeplitz matrix occurring in (0.1).

In this first part of the work our generalizations are concerned with the case when
A is a block Toeplitz matrix with n n blocks and is nonsingular Hermitian, but not
necessarily positive definite. Hence the Caratheodory-Achiezer-Krein theorem is gen-
eralized also in the scalar case. The case of an arbitrary n n block Toeplitz matrix is
treated in the second part of the work.

Viewing the numbers/j appearing in (0.2) as roots of a monic polynomial L(k) of
degree l, we derive generalizations of Theorem 0.1 in terms of the Gohberg-Lancaster-
Rodman spectral theory of matrix polynomials developed in [9] and subsequent works.
More precisely, let

L(X) L0 + XLI + + Xt-LI- + XILt (Lk E Cnxn, k O, 1, l)

be an n n monic matrix polynomial (that is, LI I, the n n identity matrix). The
pair of matrices (X, T), where X is n In and T is In In is said to be a (right) standard
pair of L() if the In In matrix

col (X rj) 2_

X
XT

XTt-

is nonsingular and the equation

LoX + L1XT + L_ XTl-

_
XT 0
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holds. The matrix T is called a linearization of L(,), and can be characterized as a
matrix similar to the (block) companion matrix

0 I 0

(0.5) c
0 0 I

-L0 --Ll Lt-l
associated with the matrix polynomial L(,).

Clearly, the pair of matrices (X, CL), where the matrix X [I 0... 0] is n In, is
an example of a (fight) standard pair for L(X). Another standard pair, called a Jordan
pair (see [9 for definition), provides a complete explicit description of the spectral
properties of the given matrix polynomial.

Let R denote a nonsingular Hermitian matrix. A nonsingular matrix T is said to be
quasi-unitary with respect to the indefinite scalar product generated by R or, briefly, R-
unitary if T*RT R. It turns out that this notion is intimately connected to the Cara-
theodory-Achiezer-Krein-type decompositions of block Toeplitz matrices.

The following result presents a weak version of our main Theorem 3.1 concerning
a generalization ofthe Caratheodory-Achiezer-Krein theorem for nonsingular Hermitian
block Toeplitz matrices.

THEOREM 0.2. Let A denote a nonsingular Hermitian block Toeplitz matrix"

A [Ai-j],j= (A_Cnn A_ =A k= O, +l +(l- 1))

Then to every n n matrix Z such that

Ao A?
Al Ao

(0.6) rank rank A,

At-l A
Z At-l A Ao

there corresponds a unique set ofintegers r l, r2 rp rk In) such that the n n
entries ofA admit a representation

P

(0.7) A, Z XjTkRjX
j=l

(k 0, +1 +(l- 1))

having thefollowing properties"
a the matrices Rj are rs rs and nonsingular Hermitian;
(b) the r r matrices T are Rj-unitary and hence have eigenvalues symmetric

relative to the unit circle;
c the matrices X are n rj and such that the matrix

X X2 Xp
X1T X2T2 Xp Tp

XIT X2TI2-1 XpTlp-1

is square and nonsingular;
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d there exists a representation

p

0.8) z=
j=l

Conversely, for every representation (0.7), the matrix Z computed by formula (0.8)
satisfies (0.6).

The matrix above can be naturally viewed as a generalized Vandermonde matrix
and briefly written as

where

X [X, Xz’"Xp], T diag [T,, T2 Tp],

and diag T, T2, Tp] stands for the block diagonal matrix with the matrices T,
T2, Tp on its main (block) diagonal.

With this notation, the statement ofTheorem 0.2 can be reformulated as the existence
of a factorization

where
R diag [R, R2, Rp].

The matrices X and T above are n In and In ln, respectively, and such that
det =/= 0. Hence (cf. [9]) there exists a monic n n matrix polynomial L(,)
Z- MLj + ,tI having (X, T) as its (fight) standard pair. Furthermore, it turns out
that the coefficients of this polynomial form a solution of a (block) Yule-Walker-type
equation

(0.9) -[LoL...Lt_]A [ZA_A_z...A],

where the matrix Z generates a Hermitian singular extension of A defined as an
(l +)n (l + )n Hermitian block Toeplitz matrix appearing on the left in (0.6), and
such that

rank rank A.

To specify an extension of A, we refer to the matrix above as to the (Hermitian) Z-
extension of A.

The existence of Hermitian singular extensions for positive definite block Toeplitz
matrices has been established in the first part of[6 ], where it is shown, in particular,
that the set {Z ) of all matrices producing singular Hermitian extensions of a Hermitian
nonnegative definite matrix A constitutes a matrix sphere in Cnn. We also note that
the characterization ofthe positive definite case (Theorem 3.2 below) yields a description
of the block structure which is qualitatively different from that in [6 ].

A close connection between the matrix polynomials L(),) derived from (0.9) and
homogeneous Stein equations in companion matrices is indicated. In particular (see
Theorem 2.1 for the complete statement), it is shown that, for any nonsingular Hermitian
block Toeplitz matrix A, (0.9) with Z producing a singular Hermitian extension of A
yields the following equation in the companion matrices:

CLAC A,

and vice versa. The latter shows that the matrix C; is A-unitary and, in particular, that
the spectrum ofthe companion matrix for L()), as well as that ofL() itself, is symmetric
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with respect to the unit circle (cf. [10 ]). Recall that the spectrum of a monic matrix
polynomial L(h) is defined as the set a(L) {/ C: det L(tz) 0 }. The members of
a(L) are referred to as eigenvalues of the monic matrix polynomial L(,).

The results obtained in this work (especially for positive definite matrices) are closely
related to the truncated trigonometric matrix moment problem, the theory ofpolynomials
orthogonal on the unit circle, the Caratheodory problem, the prediction theory of mul-
tivariate stationary sequences, etc. (see [1], [4], [6], and [8] and references quoted
therein). An investigation of these relations, as well as a further development of the
approach adopted in this paper, will be carried out in a subsequent work. Block Hankel
analogs of the Caratheodory-Achiezer-Krein theorem are obtained in 17 ].

1. First observations. We start with observations concerning products ofthree ma-
trices.

THEOREM 1.1. Let X and T be any matrices ofsizes n r and r r, respectively.
Then for any r r matrix R satisfying the condition TRT* R and any integer l, the
product

X
XT

R(1.1) A

XTt-

X
XT

XTt-

for j, k 1, 2, l- 1. Or, which is equivalent,

col (XTJ)-(R TRT*)[col (XTJ)-] * O.

Hence the assertion of the theorem. I--I
A particularly important form of the product in (1.1) is presented below for the

case when X, T, and R can be decomposed as follows:

X X, Xz Xp T=diag[T,,Tz,...,Tp],

(1.3)

In this case, the product in 1.1 becomes

x, x
XT X2Tz Xp Tp

R 0
0 R2

x x2 x
XT X2T2 Xp Tp

R diag [R, R2 Rp].

0
Rp_ 0
0 Rp

is an In In block Toeplitz matrix with n n blocks. Ifthe matrix col (XTJ)- is left
invertible, then, conversely, the availability of( 1.1 yields the condition TRT* R.

Proof. Matrix A in 1.1 is block Toeplitz if and only if

(1.2) XTJRT*kX * XTg-RT*k- X*
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In the sequel, we confine our attention to the inverse problem of representing the given
Hermitian block Toeplitz matrix A in form 1.1 with an invertible left (and hence fight)
factor denoted by

col (x)
_.

It is shown next that the existence of such a representation is related to solvability of a
certain (block) equation with the coefficient matrix A. Moreover, this equation provides
a link between a decomposition ofA and similar decompositions of its singular Hermitian
extensions.

THEOREM 1.2. Given a Hermitian block Toeplitz matrix A, let there exist a rep-
resentation oftheform 1.1 with nonsingular left and rightfactors such that the condition

1.4) TRT* R

isfulfilled. Then there exists a unique matrix Zproducing a singular Hermitian extension

ofA such that the equation

-[LoLI" Lt-]A [ZAt_At_2. .A]

is solvable. Moreover, the matrix Z is given by theformula Z XTRX* and hence the
matrix admits a decomposition

(1.6) A =’’"R’]*.XT. .XT
Proof. The representation 1.1 yields, for each k 0, 1, 1- 1,

(1.7)

A_

Ao

At-k-i

X
XT

RT*kX *.

Since the matrix col (XTJ)- is nonsingular, it follows (see [9 ]) that there exists a
(unique) monic n n matrix polynomial of degree l"

L(X) L0 + XL + + h-Lt_ + htI,

such that (X, T) is its (fight) standard pair. That is, ZJ= 0 LjXTj 0, where Lt I or,
what is equivalent,

(1.8) -[LoLl’" L_ )

Hence, premultiplying (1.7) by [LoLl’" L_ ], we obtain for k 0, 1,

Therefore,

-[LoLl’" Lt_ l] XTRT*kX*.

-[LoLl"" L_]A [XTtRT* XTRT*X *" "XTtRT*- X*].
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It remains to observe that (1.4) and (1.7) yield for k 1, 2, ,.., l- 1,

(1.9) XTtRT, kX . XTt- RT*- X* At- ,
to deduce the equation in 1.5 with Z XTtRX *.

To derive (1.6), add to (1.9) the equation XTtRT*tX * XTt- RT*t- X*
XRX * A0, and observe that the system ofthese equations is equivalent to the decom-
position (1.6). The singularity ofJ generated from A by the matrix Z above is verified
in the following way. Rewrite (1.8) in the form

LoLl" Lt- 1I] 0,
XT

to obtain

-[LoLl"" Lt- I] 1 O.

The latter shows the existence of a (left) kernel of of dimension n. Hence (see, for
instance, [13, p. 95]) the Z-extension . ofA is singular.

Remark. Obviously, if 1.1 is valid, then there exists the following representation
of the elements ofA"

(1.10) Ak XTkRX * (k=0, l- 1).

Provided the condition (1.4) is fulfilled, the converse is also true. That is, (1.10) yield
1.1 (compare with Theorem 1.1 ).

2. The Stein equation and singular extensions. We have seen that the representation
1.1 of a Hermitian block Toeplitz matrix A is closely related to solvability of a (block)

Yule-Walker-type equation. It turns out that, for a nonsingular A, this equation, with
an appropriate choice of Z in (1.5), allows us to view the matrix A as a solution of a
certain matrix equation.

THEOREM 2.1. Given a nonsingular Hermitian In In block Toeplitz matrix A, let
the n n matrices Lo, L, Lt-form a solution ofthe equation

(2.1) -[LoL...Lt_]A [ZAt_At_2...A]

with an n n matrix Z. Denote by CL the companion matrix in theform (0.5) associated
with the monic matrix polynomial L(k) Y= )JLj + ktI. Then the homogeneous Stein
equation

(2.2) CLAC A

holds ifand only ifthe matrix Z produces a singular Hermitian extension ofA.
Proof. Let (2.2) hold. Comparing the last block rows on both sides, we have that

(2.3) -[LoLl’." Lt- ]AC [At- At-z Ao].

Denote -[LoLI Lt- ]A [AtA- ..A’] A comparison of the first l block
entries in (2.3) shows that Aj Aj for j 1, 2 l- 1, and henceforth the equation
in (2.1) holds with Z At. To check that the Hermitian Z-extension ofA is singular,
we first note that a comparison of the last block entries in (2.3) implies that

(2.4) AtL + At-,L + + AtL-I + Ao O.

Now represent in the form

B Ao
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where B [ZAt-1"" "A1], and observe that (2.4) yields

[LoLl.’. Ll- I] O.
Ao

The latter equation, along with (2.1) rewritten in the form

[LoL’"Lt-II]
B

O,

implies, in view of (2.5), the relation

[LoLl"" Ll-I/]A 0.

Thus the singularity of the Hermitian Z-extension ofA is established.
Conversely, assume that the Hermitian Z-extensionA ofA is singular. The singularity

ofA yields the existence of n n matrices Uo, U,..., Ul such that rank UoU’" Ut]
n and

(2.6) UoU Ut] A O.

Recalling the partition (2.5) of, we deduce, in view of (2.3), the equation

[UoUI’-’UI-1]A + UI[ZAI-I"’AI] 0.

Using (2.1) and the nonsingularity ofA, we have

UoUl"" Ut- Ut] UI[LoL’" LI-1I].

The matrix on the left is of full rank and henceforth Ut must be nonsingular. This, along
with (2.6), yields the equation

(2.7) [LoLl’" Lt- I]A O.

Now observe that (2.1) with an arbitrary Z yields the (symmetric) Stein equation

(2.8) A CIAC

where

0 0 0 0 0
0 0

0 0 0 0 W

(2.9) W= ZL + E Al-kL:
k=l

Ll I).

At- Ao
Z A_ AI

C AC;

Ao A’ ALl

A+-z A
At- At-2 (Ao- W)

where W is defined in (2.9). It remains to note that the condition (2.7) implies W 0,
and hence the equation (2.2) follows. Vq

Indeed, it is easily seen that, in presence of (2.1), we have
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Note that in the sufficient part of the theorem the assumption of nonsingularity of
A is redundant. In this case the validity of (2.2) implies solvability of (2.1) with some
matrix Z generating a singular Hermitian extension ofA.

Remark. A slightly different relation between matrix equations in block Toeplitz
matrices and the Stein equation has been indicated in 11 and 14 ]. In the scalar case,
a connection between (2.2) and singular extensions ofA can be found in [5].

The results obtained above are partially incorporated into the following theorem.
THEOREM 2.2. Let the In In block Toeplitz matrix A be nonsingular and Her-

mitian. Preserving the previous notation, let (X, T) standfor a (right) standard pair of
the monic matrix polynomial L(). Then thefollowing statements are equivalent:

(a) There exists a representation

(2.10) A

X
XT

XT1-

R

X
XT

in which TRT* R.
b The Hermitian extension ,4 ofA produced by the matrix Z XTtRX * is singular

and admits a representation

(2.11)

where ., col (XTJ)_.
c The equation

(2.12)

holds.

[LoLl"" Lt_ I] 0

d The homogeneous Stein equation

(2.13) CLAC A

is valid.

Proof. The implication 1 -- 2 is a consequence of Theorem 1.2. Let the statement
in 2 be valid. As shown in the proof of Theorem 2.1, the singularity of A yields the
equation (2.12 and subsequently, (2.13). Hence the implication 2 -- 3 -- 4 is verified.
The implication 4 -- 1 is shown in the following way. Define the matrix

Obviously, the representation (2.10) holds. Now substitute into (2.13) the easily verified
relation

and use the representation (2.10) to deduce the required relation TRT* R. Fq

Note that for a nonsingular A, (2.13) yields the nonsingularity of the companion
matrix CL. In particular, this implies det L0 4 0 and hence the monic matrix polynomial
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L(),) has no zero eigenvalues. Furthermore, it is well known that any p X p nonsingular
Hermitian matrix R is congruent (see, e.g., [13, p. 184 ]) to the matrix

0 -I_,

where s denotes the number of positive eigenvalues ofR counting multiplicities. Hence
the decomposition (2.10) can be written in the form

A [col (_X__TJ)J-ID[col (X__T2)J-] *,

where WDW* R with a nonsingular matrix W and X XW, T__ W- TW. Note
that, along with (X, T), the pair of matrices (X, __T) is a fight standard pair of the monic
matrix polynomial L(,) associated with A [Ai- j]5.=o and its singular extension. It is
also easily observed that __T* is D-unitary.

Thus one can view (2.10) as a representation ofthe Hermitian block Toeplitz matrix
A in a form of a generalized Gram matrix"

A --[(T*JG T*iG];,-
in which G X* and the indefinite (block) inner product of one-block column matrices
(E, F) (E, DF) F’DE is used. Clearly, in the scalar positive definite case this
reduces to a representation of the Toeplitz matrix A as an ordinary Gram matrix.

3. The main theorem. Let A be a nonsingular Hermitian block Toeplitz matrix
satisfying the equation

CLAC; A

with a companion matrix C associated with a monic matrix polynomial L(,). Note
that the equation above shows that the matrix C * is A-unitary.

Furthermore, as defined in [10 ], two pairs of matrices (B1, H and (B2, H2) are
said to be unitarily similar if there exists a nonsingular matrix S such that

B S-BS, HI S*HzS.
Thus the relations

C T-1 A R*
from above (with the first rewritten in the complex conjugate form) mean that the pairs
C/, A) and T*, R) are unitafily similar with the transition matrix S *. In particular,
T* is quasi-unitary with respect to the indefinite metric generated by R, and hence the
spectrum of T is symmetric relative to the unit circle. Recall that (X, T) is any (fight)
standard pair of the monic matrix polynomial L(). It is the goal of this section to
determine a standard pair for L()) such that the decomposition of the given block
Toeplitz matrix is as simple as possible. As expected, the desirable pair is related to a
(specific) Jordan pair.

Let (X, J) stand for a Jordan pair of L()), in which the blocks of the Jordan
matrix J are arranged as follows:

(3.1) J diag [J, Jz J, J + 1, J + z],

where each Js is a Jordan block; J1, J have their associated eigenvalue on the unit
circle; the eigenvalues of J +1, J + , J+ z-1 are outside the unit circle; and the
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eigenvalues of J,+ 2j (j 1, 2 ,/3) are obtained from that of J+ 2j- by inversion
in the unit circle.

It is shown in [10, p. 79] that the pair (T*, R) (as well as (C/, A)) is unitarily
similar to the pair (J, Qt), called a canonical pair, where

(3.2) Q=diag eQ,e2Q2 e,Q,,
Q*+l 0 Q*+ 0

The size of Q equals that of Jj- for j 1, 2, a and equals that of J, + 2(j-,) for j >
a. The ordered set el, e_, e, of signs + is uniquely determined by (T*, R) up to
permutation of signs corresponding to equal blocks Q. Clearly, the matrix J is
Q,-unitary.

The structure of the matrices Q (j 1, 2,..., a +/3) in (3.2) can be described as
follows (cf. 10, p. 79 ]): For a unimodular eigenvalue X:

(3.3) QJ S]PS (j 1, 2,..., a),

where P is an rs. rj sip matrix 6i rj+ l-k]
rj
i,,= (6i,, is the symbol of Kronecker),

S diag [1, i-l, i-2, ...]Ms. diag 1, (2),)-’, (2),)-2,
and

0
0
0

0

0 0 0 0 0
-1 -1 (-1) r’

0 -2 3
0 0 -3
0 0 0

rj.+2
0 0

Note that the columns ofM are made up of the signed binomial coefficients.
For a nonunimodular eigenvalue ), it is found that, preserving the previous notation,

(3.4) Qj SPS2 (j a + 1, a + 2,..., a + ),

where

Sj diag [1, { 0.5i( + ),) -1, { 0.5i( + ),) } -2, .]M

diag [1, + ),)-, + ),)-2, ...],

and $2 is obtained from Sl on replacing ), by -.
The unitary similarity of the pairs (T*, R) and (J, Q,) means that there exists a

nonsingular matrix S such that

(3.5) T* S-JS, R S*Q,S.

Hence T S*J*S*- and the decomposition A R* above can be written in the
form

(3.6) A Q,

2

k2j,-
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where the matrix XS* is the first component in a Jordan pair for L(X). Note that
the matrices " and X do not necessarily coincide.

Now combine the neighboring Jordan blocks in (3.1) associated with nonunimodular
eigenvalues and write

(3.7) J diag Jl J2 J, J + J, +
where j 6. for j 1, 2 a and diag [, $- +1] when j a + 1, a + 3,
a + 2B 1. Decompose " in accordance with that of J:

(3.8) 2= [Xl...XaXa+ ""Xa+Bl.
Denoting p a + , we summarize the previous discussion in the following theorem.

THEOREM 3.1. Let A denote a nonsingular Hermitian block Toeplitz matrix

A [Ai-jl.j= (Ak6C"x" A-k=A: k=0, l= 1)

Then to every n n matrix Z such that

3.9 rank

Ao A A-l Z*
AI Ao A-l

At-l A
Z Al- Al Ao

rank A,

there corresponds a unique set of integers r l, r2, rp , rk In) such that the rep-
resentation

(3.10)

x2

XlJ l-1 X23ff/-I XpJ;

Rl 0
0 R2

0

Rp_ 0
0 Rp

XI J

XlJ l-I

X2J2

,1-1X2)2

where the integer a is defined above and the matrices Qj are given in 3.3 and (3.4).
(b) The r r matrices are Jordan blocks when associated with unimodular

eigenvalues and are direct sums of two Jordan blocks corresponding to nonunimodular
eigenvalues mutually symmetric relative to the unit circle.

c The matrices X are n r and such that the matrices

) [X1X2"’Xp], J diag [Jl, J2,..., Jp]

(j=a+ 1, a+ 2,...,p),(3.11) Rj=eaQj (j= 1,2,...,a), Rs

with thefollowing properties is valid:
a The matrices R are r r nonsingular Hermitian and are given by theformulas
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constitute a (right) standard pair ofa monic matrix polynomial. In particular, the left
and rightfactors in 3.1 O) are nonsingular.

d The l + n + n matrix fl in (3.9) admits representation

(3.12)

where and R denote the left and the middlefactor in (3.10), respectively. In particular,
it holds that

p

(3.13) Z XjJj*RjXf.
j=l

Conversely, for any representation (3.1 O) with the indicated properties, the matrix Z in
(3.13) defines a (singular) Hermitian extension fl ofA such that (3.12) holds.

Proof. Let a matrix Z satisfying (3.9) be fixed. By Theorem 2.1, (2.1) generates a
unique monic matrix polynomial L(X) =0 XJLj such that

CLAC A.

Furthermore, it follows from Theorem 2.2 that, for any (fight) standard pair (X, T) of
L(), there exists a Hermitian matrix R such that

A R)*, TRT* R,

where col (XTJ) .
As pointed out above, a passage from the pair (T*, R) to its (unitarily similar)

canonical form (J, Qc), where J is arranged as in 3.1 and Qc is defined in (3.2), allows
one to derive the factorization (3.6) in which J is the first component in the (fight) pair
(J, J* for L(X). In view of(3.7) and 3.8 ), the representation (3.10) now follows from
(3.6) on using the substitution (3.11 ). Let rj denote the size of the matrix Jj in (3.7).
Then the matrix Xj. in (3.8) is n rj. Furthermore, for every j the sizes of Jj and Qj
coincide and hence the matrix Rj is rj rs., as stated. Note that the set of indices { rj is
uniquely defined by the monic matrix polynomial L(X). The observation that the de-
composition (3.12) follows from Theorem 2.2 completes the proof of the first part of
the theorem.

Conversely, let (3.10) be valid. To derive the existence of a representation (3.12)
for 3, we first observe that (3.10) in the compact form A 2R* with J*RJ R yields

CAC[ CI2R*C[ )J*RJ* R2* A,

where L(X) is the monic matrix polynomial having a (fight) standard pair (, J* ).
According to Theorem 2.2, in which the matrices X, T are replaced by 2, J*, respectively,
the required decomposition (3.12) holds provided that the (singular) extension is
generated by the matrix .J* ZR. The latter coincides with the matrix Z in 3.13 ). This
completes the proof.

Observe that Theorem 0.2 announced in the Introduction follows immediately from
Theorem 3.1.

Remark. The decomposition A R* with the indicated properties can be re-
written in the following equivalent form. Let a singular extension ofA be found and the
corresponding monic matrix polynomial L(X) be computed by formula (2.12). Denote
by J a Jordan matrix associated with L(k) and fix a matrix X such that (X, J*) is a
(right) standard pair of L(). Note that all matrices which can be substituted instead of
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X in (3.10) are given by the formula X XM, where M is any nonsingular matrix
satisfying the condition

(3.14) MJ* J*M (det M =/= 0).

Hence (3.10) can be written in the (compact) form

X0 X0 ,
xOj. xOj*

(3.15) A MRM*

xOj,- xOj,-

Note that M is a direct sum of matrices M, each of the size ofJ, satisfying the equation

Mj* J* M. for each j.
Formula 3.15 is helpful in computing decompositions ofthe form (3.10). Indeed,

provided a pair (X, J*) is found, it remains to determine M satisfying (3.14) in order
to obtain a decomposition of the required type.

A consequence ofTheorem 3.1 regarding Hermitian positive definite block Toeplitz
matrices is presented next.

THEOREM 3.2. A Hermitian block Toeplitz matrixA [A;_j],j-= is positive definite
ifand only ifthe n n entries ofA admit a representation

In

(3.16) Ak k * +(pju XX) k O, +1,..., l- 1)),
j=l

in which X. are n rectors, p > O, and the numbers tt are unimodular, and such that
the matrix

is nonsingular.

#lXl 2X2 pXp

(p ln)

Prooj Let the matrix A be positive definite. Then (see [6]) there exists a singular
Hermitian Z-extension of A and, subsequently, Theorem 3.1 asserts the existence of
a representation of the form (3.10) in which the matrices R. are necessarily positive
definite. Hence it follows from (3.11 that p a and Qj must be definite Hermitian
matrices. The sip matrices of order j > fail to be definite and therefore, in view of
(3.3), all Q9 turn out to be matrices. Thus p In and Rj. in (3.10) are positive
numbers denoted by oj (j 1, 2 ln).

The dimension of Q9 is equal to that of J and, consequently, the Jordan form
J is a diagonal matrix with unimodular eigenvalues:

J diag [, 2,

Thus the representation

(3.17) A )R*,
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where

R diag [01,02, p] col (XJ* , X= [XIXz"’Xp] (p ln)

is established. Obviously, it is equivalent to (3.16). Conversely, a representation of the
form 3.16 (or, what is equivalent, 3.17 )) with oj > 0, yields the positive definiteness
ofA.

Note that the representations (3.16) can be viewed as decompositions ofthe entries
of a block Toeplitz into sums of matrices of rank one. Furthermore, the vectors X in
Theorem 3.2 are (ordinary, not generalized) eigenvectors ofthe monic matrix polynomial
associated with the specific singular extension of the given matrix. The numbers uj are
not necessarily distinct, but enjoy the property det 4: 0, which follows from the fact
that (), J*) is a pair of a monic matrix polynomial.

CogoLhgV 3.3 (see [1 ]-[ 3 ]). A Hermitian Toeplitz matrix A [a;_] oforder
is positive defnite ifand only if its entries allow a representation

ak 2 p2t (k 0, +1,..., +(l- 1)),
j=l

in which pj > 0, It j] (j 1, 2,..., l) and all ttj are distinct.
Proceeding to the general case of a (scalar) nonsingular Hermitian Toeplitz matrix,

we first recall that the matrix J in (3.7) coincides with the Jordan form of the (scalar)
companion matrix CL and, since the latter is nonderogatory, the Jordan blocks in J
correspond to distinct eigenvalues. (Note that, for a similar reason, the number of cells
in the Jordan form ofan n n block companion matrix corresponding to equal eigenvalues
cannot exceed n. Furthermore, recalling the representation (3.15), we note that in the
scalar case, the entries ofthe matrix X can be chosen as ’s for each simple root ofL(X)
and the vector 0. 0 with k zeros for a root of multiplicity k. These observations
lead to the following consequence of Theorem 3.1 concerning nonsingular (scalar) Her-
mitian Toeplitz matrices and given here in a form based on the remark to Theorem 3.1.

COROLLARY 3.4. Let A ai-j] denote a nonsingular Hermitian Toeplitz matrix

oforder I. Then, to every complex number z generating a singular Hermitian extension

ofA, there corresponds a unique set ofintegers rl, r2, rp Z.= rj l) such that the
entries ofA admit representation

p

(3.18) ak Z XoJfMRMX (k O, +_1,..., +_(l- 1)),
j=l

in which
(a) R are rj r nonsingular Hermitian matrices computed by 3.11 ), 3.3 ), 3.4 ).
b J are r r matrices having mutually disjoint spectra symmetric (with respect

to the unit circle). They are Jordan blocks when associated with unimodular eigenvalues
and are direct sums oftwo Jordan blocks corresponding to mutually symmetric eigenvalues.

(c) Xo [0"" 0 (with r zeros).
(d) the nonsingular matrices M obey the equation Mjf jf Mj..

Furthermore,

(3.19) z E XojJ * *Mj.RM Xo.
j=l

Conversely, to every representation (3.18) with the indicated properties, the scalar z in
(3.19) defines a (singular) Hermitian extension ofA.
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Note that the existence of (infinitely many) Hermitian extensions of a Hermitian
Toeplitz matrix is established in [12].

4. Examples. Several illustrative examples of Hermitian (scalar and block) Toeplitz
matrices and their decompositions of the indicated type are presented in this section.

Example 1. Consider the nonsingular indefinite Hermitian Toeplitz matrix

-i
-iA=

-i
-i

and observe that the number generates a singular Hermitian extension of A such
that the equation (see (2.12))

[- o0 o 1]A o
is valid. This extension produces a monic polynomial

L(X) )x 4 (k 2 -- 1)(3, 2

with roots + 1, +i. Hence the pair of matrices

X=[1 1], J* diag [1, -1, -i, i]

forms a (right) standard pair for L(,). As shown above, there exists a factorization of
A of the form A )R*, in which

col (XJ* ;)} R diag e e e3 e4 (e +"----’07

and the matrices X, J* constitute a (fight) standard pair of L()). To find X, we recall
the remark of the preceding section and write X XM. Hence the decomposition
required becomes, as in (3.15) with the left factor,

-1 -io (Xo, j,j)=o -1
-1 -i

which turns out to be, in this case, a usual Vandermonde matrix. Due to the fact that
the Jordan matrix is diagonal, so is the matrix M above. The condition MJ* J*M
provides no information in this case and henceforth M diag m, m2, m3, m4 with a
priori no restrictions on the numbers. The Vandermonde matrix V )0 constructed
from numbers of modulus is easily invertible (in this case, V- 0.25 V* ), and hence
the equation

A o diag [e Im 127 e21mzl z, ealmal 2, e41m412]*
becomes

V*AV= 16 diag [e Im 12, e2]m212, e3lm31a, e41m412].
The latter gives

1 2--3-- l, 4 =--1, Iml 2= Im2l 2= Ira3[ 2= Ira4[ 2= 0.5.

Choosing m m2 m3 m4 1/V, we derive the following representation of the
given matrix A

A diag [1, 1, 1,-1]*,



108 MIRON TISMENETSKY

in which X XM /f) [1 1]. In other words, there exists the following rep-
resentation of the elements ak ofA:

4

ak= Z oj (k=0, 1,2, 3),
j=l

where 01 02 03 1,/94 -1 and #1 1, #2 -1, #3 i, 4 -i.
Note that the decomposition above shows that the matrix A has one negative and

three positive eigenvalues.
In the preceding example, the roots of the polynomial L()‘) are distinct and uni-

modular. This implies, in particular, that the matrix is a usual Vandermonde matrix
and the matrix R is diagonal. The example below deals with the case when the corre-
sponding polynomial has roots outside the unit circle.

Example 2. Let the real symmetric indefinite Toeplitz matrix

0 2
A= 0 0

2 0

be given. Since A and its leading principal submatrix oforder 2 are nonsingular, it follows
(cf. [12, p. 99 ]) that there are at most two different real symmetric singular extensions
ofA produced in this case by the numbers 3 and -3. Denote the corresponding extensions
by 31, d2 and observe that the equations

[1 -2 -2 1]all 0, [-1 -2 2 1],42 0

give rise to monic polynomials

L()‘) )‘3 2)‘2_ 2), + (), + 1)(), 2 3), + 1),

L2(),) ),3 h- 2),2- 2),- ()‘- 1)()‘ 2 + 3)‘ + 1).

The roots -1, 0.5(3 + V) and 1, 0.5(-3 + V) of the polynomials L(),) and L2(),),
respectively, are distinct, but not all lie on the unit circle. Obviously, the nonunimodular
roots are symmetric with respect to the unit circle, as required.

Coupling the symmetric roots, we obtain pairs (X1, J*) and (X2, J) for the
polynomials L (),), L2(),), respectively, in which

X X2 [1 1], J1 diag [-1, a, c-I], J2 diag [1, r, fl-],

where a 0.5(3 + V),/3 0.5(-3 + f).
As seen from the formulas 3.13 ), 3.3 ), and (3.4), and due to the disjoint spectra

of J1, J2, the middle factors R and R2 in the representations of A have to be block
diagonal with X blocks corresponding to unimodular roots and 2 X 2 blocks associated
with the pairs of roots mutually symmetric with respect to the unit circle. Proceeding as
in the previous example, we derive the following factorizations of the matrix A:

X1j2 j 0 0 Xi J2
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and

A= X:J: 0 0 X:J:
XJJ 0 0 xJJ

in which

X Xz XIM [ml, m2, m31

and the numbers mj satisfy the conditions: ml 2 0.6, Im212 m3l 2 0.2. Observe
that both factorizations have the same middle factor and that there are no other facto-
rizations of the indicated form.

The case of a Toeplitz matrix generating a monic polynomial with multiple (uni-
modular) roots is treated in the next example.

Example 3. Consider the nonsingular indefinite Toeplitz matrix

+ 2i]A= -i
2i -i

and its singular Hermitian extension produced by the number -3i. It is easily checked
that in view of the equation

[1 -1 -1 llA 0

the singular extension chosen generates a monic polynomial

L(X) X3- X2- k -t- --(k -t- 1)(X- 1) 2

with the Jordan matrix

J= 0
0 0

The pair (X, J*), where X [1 0 1], constitutes a (right) standard pair for L(X).
Compute

[ 0 1]O=col(XOj*j)}=o= -1
2

The factor M in (3.15 satisfying the condition MJ* J*M is a complex matrix of the
form

0 /

while the matrices R elOl, R2 e_Q2 corresponding to the simple root -1 and the
double root 1, respectively, are given by

Q1 1, Q2= 0
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A factorization of the matrix of the required form is obtained, in particular, when el

1, e2 -1, a //, 3 f, and , i2f, and is given below:

A XJ*
XJ* 2

-1 0 O-

o o --io - o

XJ*
xJ*zJ

where

The next example is concerned with a positive definite block Toeplitz matrix.
Example 4. The real symmetric block Toeplitz matrix

Ao
A=

2 0 01Ar]= 0 2 0 0

Ao J 0 2 0
0 0 0 2

is positive definite and its singular extension by the matrix Z 21 generates the monic
matrix L(X) , 2 I derived from the equation

- 0 0 0 0]A=00 -1 0 0 0

A Jordan pair of L(X) is given by the matrices

xo=[l 0 0]0 0
J= J* diag [1, 1,-1,-1].

Hence the factorization

which, by an appropriate choice of the (diagonal) matrix M diag [ml, m, m3, m4 ],
can be written in the required form namely, with an identity matrix as its middle factor).
Obviously, this can be achieved by setting m /1.5, m2 m4 1, m3 f.5. With
this choice, the following representations of the elements ofA are valid (compare with
(3.16)):

4 4

Ao ., pjXX., AI Z pjt.tjXjY;,
j=l j=l

where pj 1, u 2 1, #3 z4 -1, and

x, /.5[ o] , x3 .5[ o] , X2 =X4 [0 1] r.
We conclude with an example of an indefinite Hermitian block Toeplitz matrix.
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Example 5. Consider the following block Toeplitz matrix with 2 2 blocks:

A =[AoA Ar]= 0 2 0

Ao 2 0
0 0 0

The matrix A is nonsingular real symmetric and it is easily verified that the equation

is valid for

Ao A Z r][LoLI] A Ao Ar =0
Z A Ao

Z=
-2

Lo=I, L
0 0

The eigenvalues of the 2 2 monic matrix polynomial generated by the Z-extension of
A,

[ ’2-4)k+1 0 ]
are U,2 i, 3,4 2 . Hence there are two distinct unimodular roots and a pair
of mutually symmetric roots. The matrices

xO=[ 0 1] J* =diag[i,-i,a,a-’]
0 0

where 2 + , constitute a (fight) pair ofL(X) and therefore the following factofization

0 0 0 0 0 0
0 0 otm3 a-m4 0 0 0 0 0 otm3 ce-m4

-i 0 0 0 0 0 -i 0 0

of the matrix A,

A )R*

with numbers m3, m4 satisfying [m3l 2 [m4l 2 0.5, is valid.
A different singular (symmetric) extension ofA produces another factorization of

the matrix. For instance, if

Z=
0 2

then the Z-extension ofA generates the monic matrix polynomial

L(X)
0 X2-

with a Jordan pair given in the preceding example. Hence the factorization

Iml 0 m3 0illl
0 0 0!llm, 0 m3 0il*A= 0 0 0 0 0 0

ml 0 -m3 0 0 -1 m 0 -m3
0 0 0 0 0 0 0

in which [ml 2 1.5 and [m3l 2 0.5.
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THE ADDITIVE INVERSE EIGENVALUE PROBLEM
FOR LIE PERTURBATIONS*

CHRISTOPHER I. BYRNESt AND XIAOCHANG WANG:l:

Abstract. Motivated by several examples arising in linear systems theory, the problem considered here is
the inverse eigenvalue problem for an arbitrary square matrix and for arbitrary additive perturbations belonging
to a matrix Lie algebra. For an algebraically closed field with characteristic zero, the main theorem gives necessary
and sufficient conditions for the positive solution of the corresponding additive inverse eigenvalue problem.
There are, of course, several antecedents of this result in the literature involving special coordinate systems and
special representations of particular matrix Lie algebras, most notable among these being the result due to S.
Friedland on the inverse eigenvalue problem for diagonal perturbations.

Key words, additive eigenvalue problem, Lie algebras, linear control system, algebraically closed fields

AMS(MOS) subject classification. 15A 18

1. Introduction. The problem we consider here is the additive inverse eigenvalue
problem over an algebraically closed field F of characteristic zero where the perturbation
set has a very useful structure which is present in several motivating examples. We study
the problem: Given a matrix A gg(n, F), can we adjust the eigenvalues of A to an
arbitrary set of n complex numbers, counted with multiplicity, by adding a matrix be-
longing to a given Lie algebra? More precisely, given A gg(n, F), and a matrix Lie
subalgebra c gg (n, F), define a polynomial mapping A from M’ to the affine n space
A of monic polynomials over F of degree n, via

Xa L det sI A L L e

In this geometric language, we want to know if XA is onto.
Lie perturbations arise in many particular applications. Here, we give some examples

arising in control theory and in the matrix analysis of certain inverse spectral problems.
Example 1. Consider a finite-dimensional, time-invariant linear control system

2 =Ax+Bu, y= Cx

in a state space representation which evolves on m. Thus the state of the system is
denoted by the n-vector x(t) and knowledge of the "initial state" x(0) and the control
u(t), where u(t) m, is sufficient to determine the future state of the system x(t) at
any time > 0. The system output y(t) is assumed to be a p-vector, representing either
a measured or a controlled variable. One ofthe principal uses of state feedback, u Kx,
is to alter or prescribe the natural frequencies of the control system. Thus an important
problem is to determine the possible spectra of the matrices obtained using feedback,
where x is an n-vector, u is an m-vector, y is a p-vector.

If we use state feedback u Kx, the closed loop system is. (A + BK)x, y Cx.
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Here the perturbation belongs to { BK}, B is a fixed n m constant matrix, and

{ BK} is a Lie algebra under the commutator product [X, Y] XY- YX of two
matrices. It is a well-known result that Xn is onto if and only if (A, B) is controllable 3 ].

Example 2. In some cases of interest, only output measurements are available so
that state feedback must be implemented either using dynamically updated estimates
of the state x or using the functional Cx of x. For the system of Example 1, if we use
output feedback u Ky the closed loop system is

2 (A + BKC)x, y Cx.

Again, { BKC } is a Lie algebra, but the problem of arbitrarily "tuning" the natural
frequencies of the system by output feedback is still open. For this Lie algebra, however,
it is known that XA is onto if mp n and the system is nondegenerate 2 ].

Example 3. For the same system, if we use the dynamic compensator

Fz + Gy, u Hz + Ky,

where z is a q-vector, the closed loop system is

z GC z

Here, for fixed matrices B, C, the subspace of matrices

is also a Lie algebra.
Example 4. Given a matrix A, ifwe change the diagonal elements, the perturbation

belongs to , { diagonal matrices },

which is a Lie algebra. For this Lie algebra, Friedland has shown that XA is onto for all
A [11, [5], [61.

In this paper, we are looking for conditions on a Lie algebra ensuring that xa is onto
for all A. Our main result asserts that XA is onto for all A if and only if the rank of the
Lie algebra is greater than n, and there exists at least one element in the Lie algebra
which has n distinct eigenvalues. The more difficult case of determining whether X is
onto for genetic A, as in Examples 1-3, can, however, be analyzed using more sophisticated
geometric methods (see, e.g., 2 ], 10 ], and 11 ).

Caveat. Before stating and proving our main result, we want to first clarify what
we mean by the rank of a Lie algebra &t’, since there have been two definitions arising
in the literature (compare, e.g., 4 and 8 ). A Cartan subalgebra of is a Lie subalgebra
h &t’ which is nilpotent and maximal with respect to this property. Since Fis algebraically
closed, all Cartan subalgebras are conjugate in M’ [8 and by the rank of we mean

dimr h, as in [4]. An alternative convention, which we do not follow here, is to define
the rank of St as the codimension of h in &t’, as in 8 ].

As an example, consider the Lie algebra gg (n, F) of all n n matrices defined over
F, which has as a Cartan subalgebra D of all diagonal matrices. Thus the rank of
gg(n, F) is n. Of course, by additively perturbing any matrix A by gg (n, F), we can
make the perturbed matrix, and hence the perturbed characteristic polynomial, arbitrary.
Our main theorem asserts that complete eigenvalue assignment holds precisely because
gg (n, F) is a matrix algebra having , as a Cartan subalgebra. The result for , itself



INVERSE EIGENVALUE PROBLEMS FOR LIE PERTURBATIONS 15

is a by-now classical result due to Friedland. However, we note that even in this case,
our main theorem has the advantage of giving a coordinate-free criterion for a problem
that is, of course, stated in a coordinate-free fashion. In 2, we state Friedland’s theorem
for n and give a self-contained proof similar to the proofs of surjectivity for the map x
described in Example 2 and developed in algebraic geometric system theory [2 ]-[ 11],
a proof we feel might be of independent interest.

2. Friedland’s theorem. The following theorem is a well-known result due to
Friedland.

THEOREM (Friedland). Xa n -’ A is ontofor all A gg (n, F).
There are a variety of geometric and topological proofs for this theorem [1], [5 ],

[6 ]. The proof we give here is based on the projective dimension theorem. Recall that
for two varieties Y, Z of dimension r, s in P, if r + s n >= 0, then Y f’) Z is nonempty
and every irreducible component of Y N Z has dimension >= r + s n [7].

Proofof Theorem 1. We can write xa(D) as

[i i]XA(D)=det
D sI A

We define an extension of XA as a map A P P -- P".
First, denote the ordered diagonal entries of by (y, yn). We introduce the

homogeneous coordinates [xi, y] by rescaling the variables in via yg/x,, and cleating
denominators, leading to the function

Xl

A([X,, y] [X2, Y2] [X,, y]) det x
Yl

".. sI- A
Yn

where P are one-dimensional projective and [xi, Yi] are the homogeneous coordinates
of P}.

XA is a well-defined morphism and is an extension of XA; i.e., A restricted to the
afflne space A A with coordinates [1, y] coincides with xa. More explicitly,
the points of in P P are just the "finite" pointsthe points with x 0,

1, 2 n. XA maps the "infinite" points to polynomials of degree less than n,
which are exactly the "infinite" points of P. Therefore,

X(,) (,)= a(Pl X X P)n A’.

Since the image of a projective variety under a mohism is closed, if we can prove
that the image ofX contains an open set of Pn, then x must be onto, so that

X()=(P X XP)A=A.
For any n distinct elements s, s2, s in F, let (xi) be the hypersurface of

codimension in P P defined by

det

Xl

x,
=0.

Yl
"’. SiI-A

Yn
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Using the projective dimension theorem n times, we deduce that

50l(Si) I[(s- SI)(S- $2)’" "(S- Sn) .
i=1

Therefore, the open set

(s S )(s s2)"" (s sn)l sl’" s, are distinct

is contained in ;A(PI P), and the theorem is proved.
Remark. As we noted in the introduction, the characteristic polynomial ofa matrix

is coordinate-free, of course, and the set gg (n, F) of all matrices A does not depend on
a choice ofbasis, yet the hypothesis ofTheorem is coordinate-dependent, in the following
sense. A coordinate-free version of Theorem would be the assertion that xa ’ -- Ais onto for all A if is conjugate to . In addition, a straightforward extension of this
result would be the assertion that if for any matrix Lie algebra which contains a
subalgebra t71 conjugate to , the map XA : -- A" is surjective. Our main result
shows that this condition is also necessary.

3. Main result.
THEOREM 2. Given a Lie algebra ’ e g n, F), x - A is onto for all A if

and only ifrank n and some element of has distinct eigenvalues.
Before we prove Theorem 2, we recall some basic definitions and results concerning

Lie algebras 4 ], 8 ], 9 ].
A Lie algebra is called nilpotent if &’) 0 for some n, where

O(1 [O, o], o9(k)-- [O, O(k_ 1)].

By Engel’s theorem, every nilpotent subalgebra ofgg (n, F) is conjugate to a subalgebra
of s( ml’" mr) for some choice ofml’" mr 81, 9 where s(ml.., mr) is the Lie algebra.
of all block diagonal matrices of

where

0

is an mi X mi upper triangular matrix with the same diagonal elements.
A Cartan subalgebra s ofo is a nilpotent subalgebra that coincides with its nor-

malizer, i.e.,

N(,/)= {X:Xe’,adX(,/) .l}.

All Cartan subalgebras of &t are conjugate to each other under an automorphism, L --GLG- for some G belonging to the corresponding matrix Lie group 4 ], 8 ]. The rank
of a Lie algebra is the dimension of a Cartan subalgebra.

Finally, we recall that an element X qo is called regular if the dimension of
o(X {Y Ye o, (ad X)(Y) 0 for some k} is minimum. In this case, o(X)
is a Cartan subalgebra. It is known 8 that regular elements are dense in o.
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LEMMA 1. For a Lie subalgebra ’ c gL( n, F), rank n and some element of
q has n distinct eigenvalues ifand only ifany Cartan subalgebra

_
can be written

as

l GnG-1, G GL(n, F).

Proof. We only need to prove the "only if" part. Since the regular elements are
dense in &t’, there exists a regular element X which has n distinct eigenvalues.

Let q0(X) { Y Y 6 &t’, (ad X)k(Y) 0 }. By Engel’s theorem, is a
Cartan subalgebra and it is conjugate to a subalgebra of s(ml.. "mr). To say X has
distinct eigenvalues is to say that r n, rn m2 mn 1; i.e., is conjugate
to subalgebra of n. But

dim rank qo n,

so ’ is conjugate to n- Since any Cartan subalgebra is conjugate to , any Cartan
subalgebra is conjugate to n.

LEMMA 2. Given a Cartan subalgebra 1 .q, then U(I) L GLG-for some G GL(n) } is dense in q.
Proof. Take any regular element X, then Gq’o(X)G- for some G GL(n).

This means that U(’) contains all regular elements, so it is dense in o. []

Proof of Theorem 2. Sufficiency follows from Lemma and Theorem 1. As for
necessity, X0 is onto, so that

A X(9) X( U(d2ff) cz x( U(d2ff)) x( ).

But is conjugate to a subalgebra of s(m..’mr); x() ((s XI)m...

(S )kr)mr}. X(d2) An means that r n, m mn 1, and is conjugate to

n. By Lemma 1, rank &t’ n, and there exist elements having n distinct eigenvalues.
Examples and 2 (bis). As an example, we consider the Cartan subalgebra arising

in Examples and 2. The Cartan subalgebra of BK is (conjugate to)

m m m diagonal matrices),
where m is the rank of B. So x ( BK} A is onto for all A if and only if m n.

Similarly, the Cartan subalgebra of BKC is conjugate to the direct sum of s and
M(m- s) (p- s). Therefore, X { BKC ) -- A is onto for all A if and only if s n.
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DECREASING THE DISPLACEMENT RANK OF A MATRIX*
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Abstract. This paper approximates a matrix B having a displacement rank r by a matrix Bd having a lower
displacement rank d (for a fixed d < r), so as to minimize the approximation error norm. Bd CII2 for any
matrix C in terms of IIB Cll2 is estimated.

Key words, matrix rank, displacement rank, displacement generator
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1. Introduction. The downshift (or displacement) matrix Z (zero everywhere except
for its first subdiagonal, filled with ones) shifts down the entries of any vector v

v0 Vk
T (SO that Z v O, v0 Vk and plays an important role in the study

of Toeplitz-like matrices. In particular, a pair of n d matrices G and H is called a
displacement generator (of length d) for an n n matrix S if

(1.1) W(S) S- ZSZ= GH’,

and d(S), the minimum d in all such representations of S, is called the displacement
rank of the matrix S and characterizes the Toeplitz-like structure of S (see [KVM],
[KKM ], and [CKL-A]). In particular, d(S) _-< 2 if S or S-1 is a Toeplitz matrix, and
d(S) _-< p + q if S or S-1 is a p q block matrix with Toeplitz blocks.

We may represent S by G and H (see 3.1 below), thus saving (n 2 d) n words
of memory for a smaller d and accelerating the subsequent computations with S. More-
over, given a matrix, we may wish to work with a neighboring matrix having a shorter
displacement generator (compare Remark 3.2 below). This leads us to the following
problem.

Problem (decreasing the length of a displacement generator of a matrix). Let a
pair of given n r matrices M and N form a displacement generator (M, N) of length
r for an n n matrix B. Then

(a) find a displacement generator (Gd, Hal) of length d for some matrix Bd such
that the norm MN" GdHII2 is minimum where d is a fixed integer, 0 =< d =< r;

(b) for an n n matrix C having displacement rank d < r, estimate the norm
Bd- Cllz as a function in A B cl[=.

Thus, in part (a) we seek approximation to B by Bd with d(Ba) <= d that minimizes
W(B) W(Bd) 2 W(S) being defined by 1.1 )).

This does not generally give us a matrix Ca that minimizes lied BII subject to
d(Ca) <= d, and we do not know if such a matrix Ca is readily available, but our solution
to part (b) (for C Ca) shows that Bd BII 2 =< Bd Ca z + IIB Ca 2 is never
greater than (2 + 2n(r- d))llB- Cdll=,

We solve Problem in 3 by using the known auxiliary techniques that we recall
in the next section.
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Our solution can be immediately extended to the case of other representations of
structured matrices based on the application ofoperators ofscaling, displacement (shift),
and other transformations (cf. GKK and P89a ).

2. Approximation by a lower rank matrix. An n n matrix W of rank r =< n has
many distinct decompositions of the form

(2.1) W MNr, M Rn,r, N . Rn,r.

The singular value decomposition (SVD) of W,

(2.2) W UZ,V r, U 6 R,,, V6 Rn,r, uTu vTv Ir,

(2.3) Z diag (a, ar), a 0"2 0" > 0

represents a special case of the decomposition (2.1) where M G, N H,

(2.4) W= GH7r, G= UZ,, H= VZ,.

The matrix W uniquely determines the matrix Z of the relations (2.2)-(2.3) and, if all
the singular values a, are distinct, it uniquely defines the matrices U and V as well. For
an integer d such that 0 =< d =< r, let Ua, Va, Ga, and Ha denote the four matrices formed
by the first d columns of the four matrices U, V, G, and H, respectively. We write

(2.5) Wa GaH, Ga Ua,a, Ha Vaa, Za diag (al aa).

Then Wa has rank d, and (see [GL, p. 73])

(2.6) w- wall= --< w- YII2 for all matrices Y of rank at most d.

Now suppose that we are given two matrices M and N of the decomposition (2.1)
and an integer d such that 0 =< d =< r, and that we seek the matrices Ga and Ha satisfying
(2.1)-(2.6 ). Surely, we may solve this problem by means of computing the SVD (2.2),
but we may also decrease the size ofthe problem and therefore the overall computational
cost by first computing (recursive) QR-factorization ofthe n r matricesM Q(M)R(M)
and N= Q(N)R 7(N) (see [GL, pp. 211-213 ]). The matrices R(M) and R(N) overwrite
M and N, respectively, and the factors Q(M) and Q(N) are not accumulated, but are
stored as the products ofHouseholder matrices. The computation is reduced to a sequence
of Householder transformations and is performed by using about 2r2(n ) flops. Then
it remains to compute the SVD of the r r matrix R(M)R(N); actually, we only need
the d largest singular values r2,..., a and the first d columns of the matrices G and
H. We may apply various effective iterative algorithms, which are numerically stable
and rapidly convergent. This stage is relatively inexpensive if r is much less than n, which
is usually the case where we deal with Toeplitz or Toeplitz-like matrices. For instance,
about 21 r flops usually suffice to yield the solution within the machine precision if we
apply the old approach; that is, if we first compute the product R(M)R(N) and then its
SVD by using algorithms essentially reduced to a sequence ofGivens rotations (see [GL,
p. 239 ). We refer the reader to EL ], FH ], and HLPW for the more recent effective
and numerically stable approach (based on the Jacobi method) to computing the SVD
of the product R(M)R(N) without explicitly computing the product itself.

The overall computation requires about 2n r2 + O( r flops and allows a substantial
parallel acceleration. (From a theoretical point of view, this computation can be placed
in NC, even where r n; see [P88b].)

Remark 2.1. Clearly, if W is symmetric, then U Vand Wa is symmetric too, but
the transition to Wa does not generally preserve the persymmetricity of W.
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3. Decreasing the length of a displacement generator. To solve Problem (a), we
apply the algorithm of the previous section to the matrix MNT. We refer to (2.6) for
substantiation and to the previous section for the computational cost estimates.

The meaning ofthis solution is better understood when we also solve Problem (b),
by relying on the displacement representation

d

(3.1) S=o(G,H)= L(gi)LT(hi),
i--1

which is equivalent to 1.1 ), provided that G [g, g2 gd], H [h, h2,..., hd],
and that L(v) denotes the triangular Toeplitz matrix defined by its first column v. (This
representation, due to [KKM], is actually fundamental to the study of Toeplitz-like
matrices.)

To estimate the norm Bd- CII2, we apply (3.1) to the matrix S B, replace d by
r in (3.1), and obtain that

(3.2) B B(G, H) L(gi)L(hi),
i=l

d

(3.3) B B(G,, H) ] L(g;)LT(h;),
i=l

where gi and hi denote columns of the matrices G and H, respectively, for l,
r, which are also columns of the matrices G and Hd, respectively, for l, d
(compare (2.4) and (2.5)). Equations (2.2)-(2.4) imply that

(3.4) Ilg;]12= ]lh;ll2=(r; fori= 1,...,r.

It follows from (3.2) and 3.3 that

liB- Ball2 E L(gi)LT(hi) <= ., [IL(g,)L(hi)[12
i=d+ 2 i=d+

Apply (3.4) and obtain

(3.5) liB- Bail=
i=d+l

We are prepared to deduce the following result.
PROPOSITION 3.1. Let the matrices B, B and C, and a positive scalar A be defined

as in Problem 1. Then C- B [[2 =< + 2n(r- d))A.
Proof. Apply 1.1 for S B and S C to define the matrices W(B) and W(C)

and deduce that

(3.6) I[W(B)- W(C)IIz <= 2,.

Let ai
2 (B) and r: (C) denote the th singular values of the matrices W(B) and W(C),

respectively, so that a (B) a2(B) a(B) 0, a (C) a(C) 0 and

(3.7) a(C) 0 if i> d.

Apply the well-known estimate [GL, p. 428 and deduce that

a (B) a: (C)] < W(B) W(C)I]:
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Substitute the relations (3.6) and (3.7) and obtain a2i(B) =< 2A if > d, so that
Z = a+l r/2 (B) =< 2(r- d)A. Substitute this bound into the inequality (3.5) and deduce
that

IIc- BII2 --< IIC- BII2 / lIB BII2 =< ( / 2n(r- d))A.

Remark 3.1. Ba B if A 0, so that we have an algorithm that computes a dis-
placement generator of length d(A) for a matrix A given with its (longer) displacement
generators of d > d(A). This problem has other effective solutions (see, for instance,
CKL-A and P90a]). Our present solution has the advantage of being both simple for
smaller d and numerically stable.

Remark 3.2. Originally, the author encountered Problem while trying to approx-
imate to the inverse A -1 of a Toeplitz-like matrix A. The displacement ranks of the
computed approximations to A - grew (even though d(A -) was small), which com-
plicated the computations and thus lead to Problem 1.
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ON THE CONVERGENCE OF THE MSOR METHOD
FOR SOME CLASSES OF MATRICES*

D. HERCEG?, M. M. MARTINS:I:, AND M. E. TRIGO

Abstract. This paper is concerned with the solution of the linear system Ax b by the modified successive
overrelaxation (MSOR) method, ifA belongs to some classes of matrices. It is proven that the classes presented
here are subclasses of H-matrices. Since, the general conditions for convergence of MSOR method for the class
ofH-matrices are not always easy to check in practice, some more practical conditions concerning these subclasses
of H-matrices are given in this paper.

Key words, linear systems, MSOR method
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1. Introduction. Let us consider the linear system

where x, e Cn with known and x unknown, s Cn’ has the property , i.e., is
diagonal or there exists a permutation matrix P such that A p-lp has the form

(1.1) A=
S D:

with Dl and D2 square diagonal matrices of order k and n k., respectively.
From now on, we consider the linear system

(1.2) Ax= b,

where A has the form 1.1 and DI and O2 are nonsingular matrices.
To approximate the solution of 1.2), we can use the SOR method with the param-

eters co, co’ and from [16] we obtain the modified SOR method (MSOR) given by

x(i+ 1) Mo,,,o,x(i) + koo,,o’, O, 1, 2,...,

where

and

with

M,, (I- co’Q)-[( 6o)I + cob

k,,,,o,, -co(I- co’Q)d,

(1.3) Q
-DIS 0

B=
0 0 I2
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and

-D-{l bl

Dlb2

where the vectors bl and b2 are obtained splitting the vector according to the partition
used for A.

In 16 ], Young shows that some variants of the MSOR method are faster than the
SOR method. Some results about the convergence of the MSOR method were also pre-
sented in 16 ].

Sufficient convergence conditions for the MSOR method were also presented in
10 and 13 ], when A of 1.1 is a strictly diagonally dominant matrix and an H-matrix.

Below, we will introduce some subclasses of H-matrices, which were considered in
the study of convergence of the linear and nonlinear accelerated overrelaxation (AOR)
method 2 ]-[ 9 ].

In 10 ], 13 ], and 14 general conditions ofconvergence for the class ofH-matrices
were presented, but, in practice, they are not always easy to check. In [10] the class C1
was also considered.

Therefore, we.obtain more practical sufficient convergence conditions for the MSOR
method, where the matrix A of 1.1 belongs to some subclasses of//-matrices.

2. Preliminaries and notation. Let M [mij] be a real n n matrix. We need the
following notation

N= {1,2,...,n},
N(i) N\ { i}, e N,

N1 {1, 2,...,k},

Nz={k+ l,...,n},

Nl(i) Nl\ {i},

Nz(i) N2\ { i},

jN(i)

ieN1,

eN2,

ieN,

i-1

P(M)= [mj[, ieN\{1), P’(M)=O,
j=l

bi Pi(B), qi Pi(Q), ri Pi(R),

b=maxbi and q=maxq;, withB, Q, andRdefinedin(1.3).
iNl iN2

We use the following definitions and theorems in this paper.
DEFINITION 2.1 ]. A matrix A e C’ belongs to the class Co if and only ifA has

the form 1.1 and is a strictly diagonally dominant matrix.
DEFINITION 2.2 12]. A matrix A e C’ belongs to the class C if and only ifA has

the form 1.1 and there exists c e [0, 1] such that

(2.1) laiil > oPi(A) + (1 c)Pi* (A), e N.

P/*(M)= X Imjil, e N,
jeN(i)
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DEFINITION 2.3 [2]. A matrix A Cn’n belongs to the class C2 if and only ifA has
the form 1.1 and it holds that

(2.2) la.I lal > Pi(A)Pj(A), N,, j N2.
DEFINITION 2.4 [2]. A matrix A 6 Cn’" belongs to the class C3 if and only ifA has

the form 1.1 and if there exists N such that

(2.3) laiil(layl Pj(A) + la.l) > Pi(A)[aji[, j N(i).

DEFINITION 2.5 ]. A matrix A C’ is a lower semistrictly diagonally dominant
matrix if and only if ai/,] >-- Pi (A), e N, and a/,/] > P} (A), e N.

DEFINITION 2.6 [15]. A matrix A R"’n is an M-matrix, if it is nonsingular, A -1 >

0 and ao <= 0, for all i, j e N, 4: j.
DEFINITION 2.7 [16]. A matrix A is an H-matrix if the comparison matrix M(A)

defined by m/,/, ag/l, m0 a/,l, i, j e N, 4: j is an M-matrix.
THEOREM 2.1 (see 10 ). If lo’lqi < 1, N2 then the spectral radius ofLo,,, i.e.,

p(Lo,,), satisfies

where

and

p(L,,) _-< max {r,, r2},

max {ll wl + Iwlb/,, e N1 },

r2=max
1- Iw’lqi

THEOREM 2.2 (see [10]). IfA belongs to the class Co, then the MSOR method
converges if

w 0,
+b

and 0’ 0,1 +q
3. Convergence conditions for the MSOR method. First, we prove that the class C2

is a subclass of H-matrices in the following.
THEOREM 3.1. IfA belongs to the class C2, then A is an H-matrix.

Proof. Let W diag (3,1,..., 3’k, 1,..., 1), with 3’1 3’k ", a real
parameter, such that b < - < ?.

As A belongs to the class C2, it is obvious that AWhas the form 1.1 ). From (2.2),
we have b < ? and then we can choose some 3’ e (b, ).

Since

I(AW)[ {’la,/l, e NI,

[aii[, - N2,

IP(A)’ e NI,
Pi(AW)

3,P(A), e N2,

and

Pi(A
r N1 <3’, -->max r N2max

aii "Y aii
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we obtain

I(AW)ii] > Pi(AW),

i.e., AW belongs to the class Co.
Then A is a generalized diagonally dominant matrix by rows [11], and by [15] we

can say that A is an H-matrix.
We also need the following theorem.
THEOREM 3.2 (see 13 ). Let L,, andLo,, be the iteration matricesfor the MSOR

methodfor A and A W. Then L,, and Lo,, have the same eigenvalues.

THEOREM 3.3. Let A be a matrixfrom the class C2 and b < "y < -. Then the MSOR
method is convergent if

(3.1) we 0,
b+ y +qy

Proof. Let L,, be an iteration matrix associated to W-A W, i.e.,

Lo,, (I- co’()-’[(1 co)I + co/ + (co co’)/] w-’ Lo,,W,

where W-QW, w-1BW, and W is the diagonal matrix, defined as in the
proof of Theorem 3.1.

It is clear that the matrices AWand W-AWare both strictly diagonally dominant
matrices.

Since o(L,’) o(L,’), from Theorem 2.2 we can say that O(L,’) < if

(3.2) w e 0,1 and co’e 0,

where b max { hi, N } and t max { 4i, 6 N2 }, with b, Pi (/) and 4 P (0).
It is easy to see that b , t 3’q, and from (3.2), we obtain (3.1). Then we get

the required result. [2]

THEOREM 3.4. Let A be a matrix from class C2. Then the MSOR method con-
verges if

( 2 ) and’(O’ck())’O’l+be
(3.3)

where

2
ifoo<=+bq

4(w)
2(2 w)

ifo > 1.
2 w(1 bq)

Proof. The function (w) defined above is a nonincreasing function for w e
(0, (2 / + bq ], so we have

4)() >= 4 + bq
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Therefore, for oa and oa’, which satisfy (3.3), we may consider the following intervals:

ifoa e (0, II,
qoa’

2-oa’q +bq

2 oa qoa’

oa’ 6 1, 4)(w)),

oa’ (0, 1],

(2)ifoa6 1’1 +bq 0’ e , (0)).

We prove that the interval I’ is well defined in each of our four cases, that I’ c (b, 7),
and that for any 3" e F, the condition (3.1) is satisfied. Then if we use the previous
theorem, we can conclude that the MSOR method is convergent.

In the first case, it is obvious that 3.1 is valid for all 3’ e (b, ). In the second case
we have

2 2 oa’
4(oa)- and b< <-,+ bq qoa’ q

i.e., I’ c (b, a). Therefore, for 3" e I’, we have

23" 2
0<oa=< < and 0<oa’<

b+3" l+q3"

In the third case it holds that I’ c (b, a) because

boa
b< <-

2-oa q

and for 3" e I’, (3.1) is valid. In the fourth case from oa’ < 4(oa), we obtain

boa 2 oa’
b< < <-.

2 oa qoa’ q

Then for 3" I’ it follows that (3.1) is satisfied.
COROLLARY 3.1. IfA is Cl matrix oftheform 1.1 and lower semistrictly diagonally

dominant, then the MSOR method converges for oa and oa’ given in Theorem 3.4.
Proof. It is easy to verify that in this case it holds that

bi <= l, iN, qa< l, jeN2,

and thus bq < 1.
COROLLARY 3.2. Let A be a matrix oftheform 1.1 with S Tr, and let

laii[ lajjl > P T)Pj( T), 6 N1, j N2;

then the MSOR method is convergentfor oa and oa’ given in Theorem 3.4, but with

q=max{ Pff(T)
lajjl

"j e N2

COROLLARY 3.3. Let A be a matrix oftheform 1.1 with S 0 or T O, then the
MSOR method is convergent for oa, oa’ (0, 2).
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We would like to point out that the class C2 presented here is not the same as that
given by

la.I lal > Pi(A)Pj(A), N, j N(i),

which was considered in [2].
THEOREM 3.5. IfA belongs to the class C3, then it is an H-matrix.

Proof. We must find a diagonal matrix W, such that AW is a strictly diagonally
dominant matrix. Let W diag (COl, o2,..., o,) with oj. 1, j N(i), and wi 3’ F,
where

(3.4)

Pg(A) )[a,[
o if ai O, j N(i),

F=

a,l "Yo ifa; 4:0 for some j e N(i),

3"0 + min
J

ajj[ P(A
[aji[ "J N(i), aji 4:0

Since

I lajl, j e N(i),
I(AW)jI

"Yla.I, j i,

P(A) + la;,l(v ),
Pj( A W)

Pi (A ),

as A belongs to the class C3, we have

jeN(i),

I(AW)jjl > P(AW), jEN,

i.e., A W is a generalized diagonally dominant matrix by rows [l 1]. Now, by [15], we
can conclude that A is an H-matrix. W1

THEOREM 3.6. Let A be a matrixfrom the class C3 with N1 and 3" F, with F
from (3.4). Then the MSOR method is convergent if

(3.5) we 0,1 +b 6 0’1 +q
where

b max [ max b: j 6 Nl( i) } ]
) max [q + Iqjl(3" 1)’j 6 N2].

Proof. Let W be the matrix used in the proof of the previous theorem and (
W-1QW, W-I BW.

Since A is a matrix from the class C3 from (2.3), we have for e N1 that

b > O, j e N(i),

qj + Iqj,.l(1 bi) > O, jNz,
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and then

m) {1-qj jaN2 qji4:0}.(3.6) 3’0 + .n qyl

NOW,

max { hi" N },

max { i" N2 },

and following the proof of Theorem 3.3, we get the required result. Ul
In the same way we can prove the following theorem.
THEOREM 3.7. Let A be a matrixfrom the class C3 with N2 and let 3" F where

F {(qi, ), ifbji O, jN2(i),

qi, 3"o), ifbji 4:0 for some j N,

3"0 + min
b.l

The MSOR method is convergent if

where

we 0,1+ 1+

max {bj + Ib#;l( 1)’jN,},

q=max ,max{qj:jeN(i)}
THEOREM 3.8. Let A be a matrixfrom the class C3 with N and 3"0 defined by

(3.6). Then the MSOR method converges if

b) ’ (o,(3.7) oe O, +
where

2
ifw(O 1]

1+’
4()

{ 2(2- ) }min
(2 oo)(1 + qa [q;I) + oabi Iqail

"j N2

bi ,b’}max
3"0

b’ max { bj" j N1 },

max {qj + Iqjil(bi- 1)’j6N2}.

/fw>= 1,

Proof. We use the same technique as in the proof of Theorem 3.4. Since A belongs
to the class C3, it holds that b < 1, 4 < and b(w) > 1, if w >- 1.
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So, for w and co’, which satisfy (3.7), we may consider intervals

F,

(b;, 3’ (co’)),

G= ( b;co )2-co’ f3I’,

2 co’ Yl(co’)

where r is defined by (3.4). Thus

r={( bi, ),

b;, ro),

if co, co’ 6 (0, 1],

ifco(0, 1], co’ 1,

ifoe 1, e(0, 1],

ifco 1, +

ifqji 0, j6N2,

if qji # 0 for some j N2,

and

o ifqi=0, j-N2,
y (oY)

+min[2- co’(1 + qfl
co’l q "J N2, q # 0

In the following, we also use/ and , defined in Theorem 3.6. Note that for -y 6 F
it holds that/ < and < 1.

First we prove that interval G is well defined in each of our cases and that G F.
Then, for any 3/6 G, we can prove that the condition 3.5 is satisfied and apply Theorem
3.6 to conclude the proof.

In the first case, it is obvious that (3.5) is satisfied for all 3’ 6 F. In the second case,
if G F then 3.5 is also valid for all 3’ 6 F, and if G (bi, "y), we have

(2)b y + < Y(co’) < y(1) yo,

i.e., G c F. Therefore, for 3’ G it holds that

0<co=< <1+ , 6 1,

In the third case, we must prove only that

< 3’0 for co 6 1,b; <2-co 1+

It is easy to verify that < for co > 1, from which follows the first inequality.
From (3.7), we obtain

2

+ (bi/yo)

and thus

2 CO
< 3/’0,
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i.e., G c I’. Now, if

and

3.5 follows.
In the last case we have to prove only that

bio)
2-00

< 7(o’) =< "r0,

since we know that in this case it holds that

bio)
bi < and 3’(o) =< o.

The above inequality follows from w’ < (w), which we can obtain after simple manip-
ulations. Now, for each 3’ G, (3.5) is satisfied, f--1

4. Numerical examples. In this section, we present some matrices in order to show
that each ofour classes is not contained in the others. We also give intervals ofconvergence
for these matrices.

Example 1. Let

1.2
0 0

It is easy to see that A1 does not belong to the classes Co, C2, and C3, but belongs to the
class C for < a < . From [10], we have the following intervals of convergence for the
MSOR method for a 0.7, when it approximates the solution ofA2x b:

15 185
0<w=< and -w<w’<l--,

or

164 15 w, {200 15w 200 163w}<o<1- and -i-o< <min
184 36

Example 2. Let

.1 .9]1.1 0
.9 0

For this matrix we can see that A2 belongs to the class C2, but does not belong to
the classes Co, C,, and C3. From Theorem 3.4, we have the following intervals of con-
vergence for the MSOR method:

w 0, and o0’ 0,
+0.05w
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Example 3. Let

0 1.3 0 0
0 .5 .1 0

A3 .3 .5 0 0
.2 .1 0 0
.5 .1 0 0

This matrix belongs to the class C3, but does not belong to Co, C, or C2. Following
Theorem 3.8, we obtain the intervals of convergence for the MSOR method given by

(2)co6(0,1] and co’6 0,1--.-
or

with

2
and co’6 0,

1.5 .555co
coe 1, 9.75

1, 3’0=, b 1.3, b’=.6.
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gestions.
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Abstract. For arbitrary n n matrices A, B, X, and for every unitarily invariant norm, it is proved that
2111A XB --< AA X / XnB* III.

Key words, geometric mean, singular values, unitarily invariant norm
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In an earlier paper [3] it was proved that, for arbitrary n n matrices A and B,

(1) 2sj( A * B < sj( AA * + BB * ), j 1, 2,..., n,

where s9 are the singular values in decreasing order. This means, in particular, that

(2) 2 III A * B !11 --< Ill AA * + BB * III
for every unitarily invariant norm.

Our main result is a considerable strengthening of the latter inequality.
THEOREM 1. For arbitrary n n matrices A, B, X,

(3) 2IIIA*XB]II <= IIIAA*X / gOB*Ill

for every unitarily invariant norm.
(The corresponding strengthening of statement is easily seen not to hold, even

for positive-definite 2 2 matrices.)
An incidental benefit from our proof is the insight it may afford into the order of

the factors in and (2). That the order is critical was shown in [3]; Theorem may
make it look less surprising.

For the special case of the bound norm, (3) was discovered earlier by McIntosh 6
with a different proof (and a different motivation). Fuad Kittaneh found the Hilbert-
Schmidt case of (3), with conditions for equality, before we began our work. He also
made subsequent contributions, which are being published elsewhere.

COROLLARY. Forpositive semidefinite matrices A, C, andfor any unitarily invariant
tlorm,

IIIAC2A III --< IliA 2c2 I1[.

(The case of the p-norm, with p a power of 2, is a known inequality 7 ].) This follows
from Theorem by

I[IAC2AI[I-< 1/211IA2C2 / CZAZlll __< IIIA2C2111.
The theorem can be strengthened in case A and B are positive semidefinite.
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isid!rbh@ncst.ernet.in).
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THEOREM 2. For n n matrices A, B, X with A >= 0, B > 0, andfor any unitarily
invariant norm, the realfunction
(4) f(p) ][IA +PXB ’-p + A ’-PXB
is convex on [-1, 1] and takes its minimum at p O.

Another result, akin to Theorem but with a separate proof, is proved in Theo-
rem 3.

THEOREM 3. Fix an n n matrix G, and any unitarily invariant norm. Among
choices ofF and H which make the matrix

positive semidefinite, that which minimizes its norm is F G*I, H GI.
customary, GI denotes (G’G)1/.)

This is an especially simple example of efficient completion of a partial matrix [4],
5 ], in this case of

G* ?

It differs from many other situations in that here the same completion is efficient for
many norms; contrast [4 ].

Proofof Theorem 1. The main features already appear in a particular case.
Case 1. B A > O, X >= 0. First take the bound norm II. It is to be proved that

2[IAXAll <= IlAuX / XA21l.
With both sides depending continuously upon A, it is enough to treat the case where A
is invertible. Then, introducing the notation T AZx A(AXA)A- we note that
(T) ( T* (AXA); the norm of 2AXA is to be compared with that of T + T*.

Now, AXA is positive, so its norm is the maximum among its eigenvalues, say X.
In light of 3 (T)

__
W(T), the numerical range of T, there is some unit vector x

with x*Tx X (it could be an eigenvector belonging to eigenvalue X1, but it need not
be). For the same x, x* T*x k kl, SO that

211AXA 2) x * T + T* x <= T + T*

as desired.
We go from this to the assertion for arbitrary unitarily invariant norms by a familiar

procedure. First, it is enough to obtain the conclusion for the kth Ky Fan norm Ilk for
arbitrary k 1, 2 n; see [2, 7]. We have now done it for

By AkA denote the operator A (R) (R) A (k factors) restricted to its invariant
subspace 3.*(Cn) consisting of all skew k-tensors; by Ttkl denote the operator T (R) (R)

(R) + (R) T(R) (R) + + (R) (R) (R) T restricted to itsinvariant subspace
A*(Cn), and similarly (AXA)II; see [2, 6]. Now TIk (3*A)(AXA)L(A*A)-I, so
r( TIk) cr((AXA)tkl) and the reasoning used above for AXA and T can be invoked.
Remember that the eigenvalues of (AXA) are obtained from the eigenvalues X >=
)k2 ofAXA as all sums XI + + Xik formed using distinct indices i,..., i,, and
remember that (AXA) O. So the conclusion is that for some unit vector y of 3* C ),

2]IAXAI[ 2(3 + +
()

21](AXA)I[I y*(T + (Tt*)*)y <= ]I(T + T*)t*[I.
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On the right we have the norm of a Hermitian matrix, in particular, the modulus of one
of its eigenvalues. But we know these are sums of eigenvalues of T + T*; hence, the
right-hand member of (5) is less than or equal to the sum of the top k singular values of
T + T*, viz., T + T* Ilk. Case is complete.

We turn to the general case. This is proved by reducing it, not to Case 1, but to a
form where the same ideas can be tricked into serving.

First, consider the polar resolutions A A1V, B BI W (with A and B positive
semidefinite and V and W unitary). On the right-hand side in (3), we are considering
AA*X + XBB* A2X + XB2, while on the left we are considering A*XB
V*AXB W, which has the same norms as AXBI. Therefore, the general case will be
established if we prove the result for A >= 0, B >- 0, X arbitrary. As before, we are also
free to assume that A and B are invertible.

We begin by defining the operators

A 0
A=

0 B
>_-0, X=

* 0

With this definition,

{6)

0 AXB ]AoXoAo
BX *A 0

0
A }Xo + XoA }

BZx . + X .A 2

A2X -1- XB2 ]
0

These matrices have eigenvalues that come in pairs Thus we may write the eigenvalues
of AoXoAo as X >= X2 kn --n --kl, where the hj are the singular
values of AXB, and the eigenvalues of AoX} + XoA} as +gj., where g > >= tsn are
the singular values ofA 2X + XB2.

To adapt the ideas of Case 1, we will estimate the quantity (AoXoAo) Ik] (1 =<
k =< n). As the norm of a Hermitian operator, it is given by an eigenvalue, hence by a
sum ofsome +X. Choosing these to maximize the modulus ofthe sum requires choosing
all to have the same sign; that is, [](AoXoAo)I]]l + + X [[AXBI]. Similarly
for the other matrix in (6).

Now let T A}Xo Ao(AoXoAo)A Its spectrum is the same as that ofAoXoAo.
We must consider the second matrix in (6), which is T + T*. Reasoning as in Case 1,
there is some unit vector z A(C2n) such that

2IIAXBII- 2(h + + hk)= z*(T + T*)I]z

<-II(T+ T*)[]II + + = [IAzX+XB2}I.

That is, 2II[AXBI[] <- [[IA2X-t- XB21]I holds for all the Ky Fan norms, whence it holds for
all unitarily invariant norms. U]

We have an alternative proof of Theorem which is in some respects preferable.
In particular, the recourse to tensor algebra can be avoided. We sketch the key part, the
proof that for A A * and X X *, we have that

k k

(7) 2 s(AXA) <- s(AzX+ XA2).
j=l j=l

Assume without loss of generality that A is invertible. Then, letting T A2X so
that T* XA 2, we have that T A(AXA)A- and T* A- (AXA)A whence the three
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matrices AXA, T, and T* all have the same spectrum. Denote these eigenvalues by X l,

X2, in order of decreasing Xjl. Because AXA is Hermitian, its singular values are
sj ]Xj], so that the left-hand member of (7) is just

k

j=l

When T is put in Schur upper-triangular form with diagonal (Xl, k2, ...), we are
referring it to an orthonormal basis, (el, e2, en), for which

(T* takes lower-triangular form relative to this basis.) Therefore
k k k

2 Ixjl ]e2(r+ T*)ejl N sj(T+ T*),
j=l j=l j=l

the inequality by Ky Fan’s variational criterion [2 ]. This establishes (7).
ProofofTheorem 2. Again, by continuity, we may assume that A and B are invertible.

Since f is plainly continuous andf(-p) f(p), both conclusions of the theorem will
follow if we now show that 2f(p) _-< f(p + q) + f(p q) when p + q both lie in
[-1, II.

Consider the mapping on positive matrices defined by

2///p(Y) APYB-p + A-PYBp.

Theorem tells us that III.//gu(Y)[ll >_- III Y[II. Apply this to Y /tp(AXB), using the
identity 2’/[q(/I/[p(Y)) /[/[p+q(Y) nt- ’gp_q(Y), and the result is

2f(p) 4 III/tp(AXB)III ----< 4 [II//q(J/Ip(AXB))III

<= 21]I//tp+u(AXB)II[ + 2111J/tp_u(AXB)II] f(p + q) + f(p- q). [--1

Proofof Theorem 3. Consider the polar resolution G UK with U unitary. Then
the matrix under study,

G*

has the same norms as its unitary transform

0 G* H 0 K

This, in turn, has the same norms as its unitary transform

[0 1]0 K 0 K

Without increasing any norm, we can go from one of these to their mean. [] where
M 1/2 (H + L). This positive-semidefinite matrix has the same norm as its unitary
transform (by the unitary 2-1/2[I 21])

0 M-K
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This evidently satisfies

M+Ko M-KO]>--[2K 0]>0’00

which is known to imply

M+K 0 ]0 M-K

But this comparison matrix [2ff ] is just what matrix

M+K 0 ]0 M-K

reduces to when, in particular, F [G*[, H [G[, H L K M. Therefore, undoing
all the unitary similarities leads to the inequality announced.

The reason we see this result as related to Theorem may be seen in the special
case in which G >= 0 is invertible. Those pairs (F, H) that retain positivity of[ ]/] while
minimizing the rank are those obtained by H GF-G. Such pairs all have the property
that G F # H, the geometric mean of F and H ]. The most efficient of them, in
some sense, should be (G, G). Theorem 3 gives one sense in which this holds. Another
is that F + GF-G >_- 2G, a familiar elementary computation. (Taking traces in this
inequality gives Theorem 3 in the special case of the trace norm.)

Acknowledgments. Davis thanks the Indian Statistical Institute and the Natural
Science and Engineering Research Council (Canada) for making possible a visit during
which this work was done. We thank two referees for correcting our faulty version of
Theorem 2 and for contributing the corollary.
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SOME RESULTS ON HOMOGENEOUS MATRIX EQUATIONS*

D. VON ROSEN"

Abstract. New representations of general solutions to the matrix equations AXB 0 and AXB 0,
A2XB2 0, based on vector space decompositions, are given. In a certain sense the solutions are natural and
show an easily interpretable structure. Furthermore, the solutions enable the finding of solutions to AX B1 +
A2XaB2 0 and AXB O, AzXBz O, A3XB3 0 where for the latter equations no solutions have hitherto
been derived. Some other extensions are also considered.

Key words, matrix equations, decomposing vector spaces, tensor product, growth curve model
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1. Introduction. Matrix equations play an important role in many fields and this
paper deals with homogeneous matrix equations. Although several of the equations dis-
cussed here have been treated by other authors, our solutions will, in our opinion, be
more natural. For instance, consider the following equation in X, AXB 0, where the
included matrices are supposed to be ofproper order. The well known and most commonly
applied solution is given by X Z A-AZBB-, where Z is an arbitrary matrix and
signifies an arbitrary g-inverse in the sense of GG-G G. Note that Z has the same size
as X, which is unnatural since all solutions to AXB 0 can be generated by a fewer
number of arbitrary elements than the size of X. Keeping this in mind, we obtain here
an alternative representation of the solution.

The aim is to present an approach that rests on the idea of decomposing vector
spaces. It is easy to apply the method to AXB 0 and AiXBi 0, 1, 2, and the
solutions obtained in that manner are fairly useful. In this paper they are utilized when
solving A1XB1 + A2X2B2 0 and AiXBi 0, 1, 2, 3. Furthermore, AiXBi 0,

1, 2, s is discussed under certain constraints on the B’s.
The matrices in this paper consist of real elements, stands for the transpose, and

R (.) and O(. denote the range space and orthogonal complement. A matrix A o is any
matrix satisfying R(A) O(A). The symbol @ indicates that the sum of vector spaces
consists ofdisjoint subspaces and [] means that the subspaces, additionally, are orthogonal.
Moreover, vec (.) signifies the vec-operator defined by R

__
R"m, xy’ y (R) x where

x: n 1, y: rn 1, and (R) stands for the right Kronecker product. Some further definitions
of minor importance will be given in the text. Finally, we note that the results can be
easily extended to comprise complex matrices and the necessary alterations are indicated
after Theorem and Theorem 2.

In order to characterize classes of g-inverses, Ben-Israel and Greville [3, p. 77]
discussed the equation AXA 0. They obtained a solution X FZ + BZzK where Z1
and Z2 are arbitrary matrices and F, B, and K are matrices whose columns generate
certain vector spaces. Our solution to AXA 0 is almost identical to Ben-Israel and
Greville’s, but the method of obtaining it differs.

Another application where the solutions in this paper appear to be advantageous is
when finding estimators for parameters under linear restrictions in a multivariate linear
statistical model, namely, the well-known Growth Curve model (Potthoff and Roy [8]).
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We end the introduction by giving some details on this topic and making some com-
parisons between the solution X Z A-AZBB- and Theorem (i) in this paper.

The Growth Curve model is defined by the equation X ABC + W, where A and
C are known matrices and the columns of Ware independent normally distributed with
mean zero and a covariance matrix . The matrices B and consist of the unknown
parameters, which are to be estimated. We suppose that DBE 0 holds where D and E
are known matrices. By a reparametrization, utilizing Theorem (i) in this paper, it
follows that we can equivalently study a model defined by

(1.1) X A(D’)O1C + AD’O2E’C + W,

where 0 and 02 now are new parameter matrices. Instead of( 1.1 ), if using the "classical"
solution for DBE O, B 0 D-DOEE- (0 is a new parameter matrix), the model

(1.2) X AOC- AD-DOEE-C + W

is obtained. We are going to make some comparisons between the models in 1.1 and
1.2) leading to the conclusion that 1.1 is easier to handle than (1.2). The likelihood

equations for 0, 02, and in 1.1 ), and 0 and in (1.2), are, respectively, given by (n
is the number of columns in X)

(A(D’))’-I(x A(D’)OC- AD’O2E’C)C O,

(1.3) (AD’)’Z-(X A(D’)OC- AD’OzE’C)(E’C) O,

nZ (X- A(D’)OC- AD’OE’C)(X A(D’)O1C- AD’O2E’C) ’,

and

(1.4)

A’- (X- AOC + AD-DOEE-C)C’

D’D-’A’-I(X AOC + AD-DOEE-C)C’E-’E’ 0,

n, (X- AOC + AD-DOEE-C)(X- AOC + AD-DOEE-C)’.

Both 1.3 and 1.4) are nonlinear equations. To find explicit expressions for the param-
eters in (1.4) seems rather difficult and is still an open problem. However, for (1.3) it is
feasible, and we briefly show how to solve this nonlinear equation system. This may be
of interest to some readers since solving, in fact, is fairly easy and can be useful in other
situations. Further details are presented by von Rosen 10 ]. Set (I denotes the identity
matrix

A A(D’), A2 AD’, C C, C E’C,
2

V1 XCI (CICI)-CI AiOifi,
i=1

V2 X C’z( CzC’ )-C_ AOC2,

S X(I- Ctl(CICCl)-C1)X’

P2 I- A A S-F A A S-( 1,

s s + ex( c’ cc’ )-c, c’( cc’)-c)x’e’.
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The likelihood equations in (1.3) can be written

(2 )(1.5) A’rZ-1 X , AiOiCi C 0, r 1, 2,
i=1

(1.6) n X AiOifi X AiOifi
i=1 i=1

Starting with r in 1.5 after some manipulations we have the equations

(1.7) A’ Z- VC’ O,

(1.8) n , S + V1V
Now the key to solving the likelihood equations is to use the well-known relation (S +
V V’)-V S- VH, where H is some positive definite matrix, and obtain, by inserting
(1.8) into (1.7),

(1.9) A’ SI VHC’ O.

However, since by definition of C and C’, R(C)
_

R(C’ ), and since H is positive
definite, we have R(CHC) R(C), implying by the definition of V that (1.9) is
independent of H and therefore is a consistent linear equation in 0 with an easily ob-
tainable solution, e.g., use Theorem (i) in this paper. Inseing the solution for 0 into
1.5 for r 2 and in (1.8), and doing some calculations, we obtain

(1.10) AZ-Pz(X A202C2)C O,

1.11 nZ $2 + Pz(X- AzOzCz)(X AzOzCz)’P.

Using the same ideas as above leads to the equation in 02:

(1.12) A S PzVzHC O,

where H, although differing from H in 1.9), is positive definite. Thus (1.12) is a linear
equation in 02, and inseing the solution for 02 into 1.1 and into the solution for 0
obtained with the help of (1.9), enables all parameters to be estimated. In summaff, we
have the following maximum likelihood estimators (note that P$5 P2 $5 P2)"

b, (AqS{A)-AqS(X A2b2C2)C](CC])- + (A’)Z1 +

b2 (APSP2A2)-APS’XC(C2C) + (AP)Z3 + APZ4C’,

n X- AibiCi X- AibiCi

where the Z’s are arbitraff matrices.
One reason why it is easier to discuss 1.3 instead of 1.4 is that in 1.1 we obtain

a correct parametrization, whereas in (1.2) the model is ovearametfized. Hence, in
comparison with 1.2), we have indicated some advantages of 1.1 which, in turn, was
obtained with the help of the results on homogeneous matrix equations given in the next
section.

2. Main results. The object in this section is to find solutions to the following
equations in X:

(2.) AX O,
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where A" p q, B" k n, and

(2.2) AXB 0,

(2.3) A2XB2 O,

where Ai: Pi q and Bi: k ni, 1, 2. Solutions to (2.1) can be found in many
textbooks and one reference is Rao and Mitra [9 ]. A solution to (2.2) and (2.3) was
first obtained by Mitra 5], who went on to discuss it further in [6]. With the help of
vector space decomposition, Banken 2 treated a special case of(2.2) and (2.3), namely,
when R(A’)

_
R(A’). Here we will see that (2.2) and (2.3) can be handled in a manner

similar to the equation given by (2.1). The approach in this section is designed for dealing
with homogeneous equations, whereas Mitra’s intention [5 ], [6] was to discuss inho-
mogeneous equations. Therefore, this paper, in the homogeneous case, gives more detailed
information about the solutions than the approaches taken by Mitra.

THEOREM 1. A representation ofthe general solution to (2.1) is

or

or

X (A’)ZB + A’Z2B’ + (A’)Z3B’

X (A’)Z1 + A’Z2B’

X ZB’ + (A’)Z2B’,

where the Z’s are arbitrary matrices ofproper order.
(ii) A representation ofthe general solution to (2.2) and (2.3) is

X T3ZS + T4ZzSI + T4Z382 + TZ4S3 + T4ZsS3
q- TZ6S4-- T2ZTS4 + T3Z8S4 + TaZ9S4

or

or

X (A’2)ZS’ + (A’ "A’z)ZzS’2 + (A’I)Z3S’3 + Z4S’4

X= TZB’ + T2Z2(B" B2)’ + T3Z3B’ q T4Z4,

where the Z’s are arbitrary matrices of proper order and S $4, T T4 are any
matrices satisfying ((A B) means the partitioned matrix ofA and B)

R(S) R(B B2) f-) O(B), R(T) R(A’ A ’2) f-) O(A’),

R(S2) R(B1) CI R(B2), R(T2) R(A’) R(A),

R(S3) R(B B2) f-) O(B2),

R(S4) O(B Bz),

R(T3) R(A’ A’2) f") O(A’2),

R(T4) o(m’ A2).

Proof. Since AXB 0 is equivalent to (B’ (R) A) vec (X) 0, we must consider
O(B (R) A’), which equals

O(B (R) A’) R(B (R) (A’)) [-+-]R(B (R) A’) R(B (R) (A’))

R(B (R) (A’)) R(B (R) I)

R(I (R) (A’)) [] R(B (R) A’),
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showing (i). Statement (ii) follows since

O((B1 (R) A’) (B2 (R) A)) R((S1 (R) T3) (S1 (R) T4) (S2 (R) T4) (S3 @ T1)"

(33 (R) T4) ($4 @ T1) ($4 (R) T2) ($4 (R) Z3) ($4 (R) T4))

(R(S1 (R) (A’2)) @ R(S3 (R) (A’))) []R(S2 (R) (A’" A’2)) []R(S4 (R) I)

(R(B2 (R) T)@ R(B (R) T3))]--] R((B1 "B2)(R) T2)[S]R(I (R) T4).

One way of verifying these relations is by applying the orthomodular law (see, e.g.,
Birkhoff [4]) to tensor products of finite-dimensional vector spaces. Some details of
doing this can be found in Nordstrfm and von Rosen [7]. Another way is to note that
the fight-hand side is a subspace of O((BI (R) A’ (B2 (R) A )) and thereafter show that
both sides have the same dimension.

Remark. When dealing with complex matrices, instead of O(B (R) A’) and O((B
(R) A )" B2 (R) A ), we must consider O(/ ’) and O((/ (R) .’ )" (/2 (R) z ), where
the overbar represents the conjugate. Moreover, we note that it is fairly easy to find
representations for the S’s and T’s in part (ii) of the theorem.

In (i) and (ii) of Theorem we can replace the matrices with full-rank matrices as
long as the spaces are unaffected. This implies that the number of "free" elements can
be chosen to be in direct correspondence with the restrictions imposed by the equations.
As already mentioned, we mean that this property implies that the solutions presented
in the theorem are more natural than those commonly applied. Another advantage with
the above solutions is that it is possible to obtain conditions on matrices K and L such
that KXL, under the restrictions in Theorem 1, belongs to a certain subspace. A special
case is, of course, KXL 0. From the theorem it is also easy to get conditions on the
matrices so that other solutions than the trivial one X 0 are obtained. Furthermore,
in a statistical context the Z’s in the theorem may have natural interpretations. For
example, models of the form 1.1 are discussed by Verbyla and Venables [11].

The orthogonal complement used in the proof of Theorem (ii) rests on a decom-
position of the entire space based on

R(I) R(S) + R(S2) + R(S3) + R(S4),

R(I) R( Z + R(Z2) + R(T3) + R(Z4).

However, if .R(B)
_
R(B2) holds in Theorem (ii), we obtain solutions that do not

immediately follow from the theorem. Under the condition R (B1)
_
R B2 ), it is straight-

forward to show that

O((B, (R) A’)" (B2 (R) A)) R(B (R) T3) [-+q R(B2 (R) A’2) R(I (R) T4),

and hence

X T3ZB + A’2 Z2B2 + T4Z3.

In 5 this result is extended. Furthermore, if, in addition to R(B
_
R(B2), the condition

R(A’2)
_
R(A’) exists, the solution to (2.2) and (2.3) reduces to

(2.4) X (A’z’(A’))ZB + A’zZzB’ + (A’)Z3.

3. The equation AXB + AzXzBz 0. In this section we consider the following
equation in X and X2"

(3.1) AXBI -+- AzX2B2 O,
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where A;: p qi, Bi: k n, and 1, 2. A solution to (3.1) was first derived by
Baksalary and Kala [1 ], and here we give an alternative solution that is based on the
results in the preceding section.

THEOREM 2. A representation ofthe general solution to (3.1) is

X1 -A-{Az(A’zA (A2))Z3(B2(B’l))’B2B-{ nt- (AI)Z1 q- A’,Z2Bl ’,

or

X2 (A’A (A’))Z3(Bz(B’))’ + A’zA Z4B + (Ai)Z5

XI -A-fA2(A’zAI )(A’zAI )’A’Z6(B(B’I))’BzB-{ + (A)Z1 nt- A’IZzB ’,

X (A’zA )((A’zAI )’AI)Z5 + (AIA )(A’Af)’A’zZ6(B2(B’I))’
+ A’A Z4B2’

where the Z’s are arbitrary matrices.
Proof. We are going to show that to an inhomogeneous equation in X, AXB C,

there exists a solution if and only if R(C)
_
R(A) and R(C’) c_ R(B’). Moreover, by

aid of the particular solution A-CB- and Theorem (i), a representation of the general
solution is given by

X A-CB- + (A’)Zl q- A’Z2B’.
From the above it follows that (3.1) is equivalent to

(3.2) AI ’A2X:Bz O,

(3.3) A2XzB2(BI )o O,

(3.4) X1 A -{AzXzBzB -{ + (A’)Z + A Z2B

Equations (3.2) and (3.3) do not depend on Xl and (2.4) implies the representation of
Xz, which is inserted in (3.4).

The alternative representation is readily established by using Theorem (i) twice.
When solving (3.2),

(3.5) X2 (A’zA )Z3 + A’zA Z4Bf
is obtained, and inserting (3.5) in (3.3) leads to the equation

Az(A’A )Z3Bz(B’) O.

Hence

(3.6) Z3 ((A’2A )’A’)Z5 + (A’2A )’A’zZ6(B2(B’))’,
which, in turn, is inserted into (3.5). X follows once again from (3.4). Ul

Remark. Note that A2(A’zA) in (3.6) generates R(A) f-) R(A2). In the complex
case, in (3.2) and (3.3) we must use o, and (/’)o instead of A o, and (B’)o, respectively,
and in 3.4 ), (’)o and 1 O, instead of(A o and B1’ respectively. For the alternative
representations some additional alterations are needed, which follow from the remark
after Theorem 1.

Parenthetically, we may note that the ideas for obtaining the alternative represen-
tation for X can also be applied to (2.2) and (2.3), since from Theorem (i) it follows
that

(3.7) X (Al)Zl + AIZ2BI’
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and plugging this into (2.3) implies that

(3.8) A2(A’ )Z B: + AzA’I ZzB ’B: O,

which in turn determines Z and Z2.
As with Theorem 2, the next lemma, which will be used in 4, can be verified. The

modifications for treating complex matrices are also straightforward.
LEMMA. Let Ai: p qi, Bi: ki n, and 1, 2, 3, 4. Also let the Z’s represent

arbitrary matrices, and let

A1XB + A:X:B2 + A3X3B3 + A4X4B4 0

be an equation in X X4, where R(B’4)
_

R(B’3) R(B’) and R(B’4)
_

R(B’2)
R B’ ). Then

Xl -A-{AzXzBzB-{ A-(A3X3B3B-{ A-{A4XaBaB-( + (A’)Z + A’Z2B ’,

X2 -C-{ CzX3B3B- C-{ C3X4B4B + C’ )Z3 + C’ Z4Bf’,

x3 (C’)z + C’Y( B3(B’2))’,

X4 D D YE1B-g + D’z Z6 + D’z ZvB4 ’,

0)0, + D,Do2 Z9EO, + (D,)OzY= (D’D]: (D’))Z8(E(B’4) 10,

C A ’A2 C2 A ’A3, C3 AI’A4,

D C?’C2C2, D2 C’C3, E (B3(B’))’. [--]

4. The equations AIXB O, AzXBz O, AsXBs 0. Here we discuss the following
equations in X:

(4.1) AXB O,

(4.2) AzXB: O,

(4.3) A3XB3 O,

where Ai: Pi q and Bi: k ni, 1, 2, 3. This is a much more complicated equation
system than (2.2) and (2.3). For (2.2) and (2.3), a general representation ofXwas given
as a sum 2iTZ Si, which arose from a decomposition of tensor spaces. However, for
(4.1)-(4.3), we cannot write X as a sum with arbitrary Z matrices. Instead, some re-
strictions on these matrices must be imposed. The following example illustrates this.

Consider the equation in X: 2 2 given by

(4.4) (0: 1)X(I: -1)’= 0,

(4.5) (: )x(0: )’= 0,

(4.6) (1: 2)X(l: 1)’= 0,

which, by using the Kronecker product, can be written

0 0 vec(X) =0.
2 2

where
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The rank of the matrix describing the constraints equals 3. Hence, a general solution is

vec (X)= (-3: 1"-1" 1)’Z,

and this solution is impossible to write as X SZT’ for some vectors S and T. On the
other hand, it is still possible to find a matrix satisfying the above equations, and

X (-1" 1)’Z(I" 1) + (l’0)’Z(-2: 0)

is one choice of a solution. Thus the technique of solving linear equations in 2 is not
sufficient for this section. However, it is still fruitful when combining it with the technique
applied in 3.

Applying Theorem (ii) to (4.4) and (4.5), we get a solution which can be inserted
in (4.6) and then the following equation in Z Z4 is obtained:

(4.7) A3TZB2 B3 + A3T2Z2(B" B2)’B3 + A3T3Z3B’B3 + A3T4Z4B3 O,

where T T4 are as defined in Theorem (ii). Since R(B3(B B2))
R(B’3) and R(B’3(B" B2))

_
R(B’3B])

_
R(B’3), a solution to (4.4) is found with

the help of the lemma in 3, and thus the next theorem is established.
THEOREM 3. A representation ofa general solution to (4.1)-(4.3 is given by

X= TZB2’ + T2Z2(B" B2)’ + T3Z3B’-f T4Z4,

where T T4 are defined in Theorem l(ii) and Z Z4 are obtained by solving
(4.7).

$. A hierarchical structure. We are going to prove the following theorem, which,
among others, extends (2.4).

THEOREM 4. A representation ofthe solution to

AiXBi O, 1, 2,..., s,

when the nested subspace condition R(Bs)
_
R(Bs_

_
R(B holds, is given by

(set Hi A A ’2 A
S--1

X= HZ,B’ +
i=I

Or

X: Hs Z, + Z (Hi- Hi)ZiBi’ + Zs+B ’,
i=2

where the Z’s are arbitrary matrices.
Proof. Before verifying the theorem, we note that the condition R(Bs)

R(Bs_)
_ _

R(B) enables the solution to be written as a sum Yi TiZiSi, which
implies that the solution has an interpretable structure. In fact, in order to write down a
relatively nice solution, we can relax the condition and just assume that the subspaces
commute, i.e., R(Bi) R(Bi) N R(Bg) [-qR(Bi) O(Bg) for all i, j. However, the
inclusion criterion seems to have more natural applications (for example, for multivariate
linear models in statistics, see von Rosen 10 ]) and therefore we present a solution based
on this criterion.

In order to verify the theorem, for notational convenience, we use A, B;, and
respectively, instead of R(A ), R (Bi), and R(Hi). Moreover, the tensor product is de-
noted (R) and, as an example, the tensor product of B; and A is denoted B; (R) A. Let
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V1 and V2 represent the whole space to which Bi and A}, respectively, belong. By rewriting
Ai XBi into a vectorized form, it follows that the theorem is true if it can be shown that
(+/- denotes the orthogonal complement)

., B (R) A B (R) H + [-- B B{+ (R) H{ i-+q B f (R) V2
i=l i=l

(.)

V (R) H + [3] (B{ (R) H; (q H{_) IB{ (R) A’.
i=2

By applying the orthomodular law (Birkhoff [4 ]), we get
S--1

Bi=Bs+J7-] Bif"IB-+, 1,2 ,s- 1,
i=l

and thus

(5.2)

s-I s-I

Z Bi(R)A Bs(R)Hs +V- 17-1Bf"IBJ-+(R)A
i=1 i=lj=l

s-1

B, (R) H + J-4-I Bi CI B-+ (R) Hi,
i=1

which obviously is orthogonal to the first statement in (5.1). Moreover, summing the
first statement in (5.1) with (5.2) gives us the whole space. Hence an orthogonal com-
plement to Bi (R) A} has been found. The second statement in the theorem follows by
straightforward manipulations and by noting that

H-_ H- [] Hi f"l H{-1. [-I
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SPECTRAL PROPERTIES OF PRECONDITIONED RATIONAL
TOEPLITZ MATRICES*

TAKANG KUt AND C.-C. JAY KUOt

Abstract. Various Toeplitz preconditioners PN have recently been proposed so that an N x N
symmetric positive definite Toeplitz system TN x b can be solved effectively by the preconditioned
conjugate gradient (PCG) method. It has been proven that if Tv is generated by a positive function
in the Wiener class, the eigenvalues of the preconditioned matrices P1TN are clustered between

(1 e, 1 + e) except for a fixed number independent of N. In this research, the spectra of P1TN
are characterized more precisely for rational Toeplitz matrices TN with preconditioners proposed by
Strand [Stud. Appl. Math., 74 (1986), pp. 171-176] and Ku and Kuo [IEEE Trans. Signal Process.,
40 (1992), pp. 129-141]. The eigenvalues ofP1Tv are classified into two classes, i.e., the outliers and
the clustered eigenvalues, depending on whether they converge to 1 asymptotically. It is proved that
the number of outliers depends on the order of the rational generating function, and the clustering
radius e is proportional to the magnitude of the last element in the generating sequence used to
construct these preconditioners. For the special case with TN generated by a eometric sequence,
this approach can be used to determine the exact eigenvalue distribution of PTN analytically.

Key words. Toeplitz matrix, preconditioned conjugate gradient method, rational generating
function

AMS(MOS) subject classifications. 65F10, 65F15

1. Introduction. The system of linear equations associated with a symmetric
positive definite (SPD) Toeplitz matrix arises in many applications, such as time series
analysis and digital signal processing. The N N symmetric Toeplitz system TNX b
is conventionally solved by algorithms based on the Levinson recursion formula [10],
[16] with O(N2) operations. Superfast algorithms with O(Nlog2N) complexity have
been studied intensively in the last ten years [1], [2], [3], [13]. More recently, Strand
[19] proposed using an iterative method, i.e., the preconditioned conjugate gradient
(PCG) method, to solve SPD Toeplitz systems and, as a consequence, the design of
effective Toeplitz preconditioners has received much attention.

Strand’s preconditioner SN [19] is obtained by preserving the central half-diagonals
of TN and using them to form a circulant matrix. Since SN is circulant, the matrix-
vector product Slv can be conveniently computed via fast Fourier transform (FFT)
with O(N log N) operations. It has been shown by R. than and Strand [5], [7] that
if TN is generated by a positive function in the Wiener class, the eigenvalues of the
preconditioned matrices PITN are clustered between (1 e, 1 + e) except for a fixed
number independent of N. Another preconditioner CN was lroposed by T. Chan
[8] and is defined to be the circulant matrix that minimizes the Frobenius norm

IRN TNIIF over all circulant matrices RN of size N N. This turns out to be a
simple optimization problem, and the elements of CN can be computed directly from
the elements of TN. The spectrum of CTN is asymptotically equivalent to that
of STN [6], and thus CN and SN have similar asymptotic behavior. In addition
to preconditioners in circulant matrix form, preconditioners in skew-circulant matrix
form [9] have been studied by nuckle [14]. We recently proposed a general approach
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for constructing Toeplitz preconditioners [15]. Under this framework, preconditioners
in circulant and skew-circulant matrix forms can be viewed as special cases and, more
interestingly, preconditioners that are neither circulant nor skew-circulant can also be
derived.

In [15], four new preconditioners Ki,g, 1, 2, 3, 4 were constructed, and it was
demonstrated numerically that they have better convergence performances than other
preconditioners for rational Toeplitz matrices. It was also observed in [15] that for TN
generated by a positive rational function of order (p, q) in the Wiener class, the spectra
of the preconditioned matrix pITN with preconditioners SN and Ki,N, i 1, 2, 3, 4,
have strong regularities. These regularities are stated as follows. Let the eigenvalues
ofP1TN be classified into two classes, i.e., the outliers and the clustered eigenvalues,
depending on whether they converge to 1 asymptotically. Then, (1) the number of
outliers is at most 2max(p, q); and (2) the clustered eigenvalues are confined in an
interval (1- e, 1 / e) with the radius e proportional to the magnitude of the last
element in the generating sequence used to construct the preconditioner. The main
objective of this research is to prove these two spectral properties analytically.

With the above spectral regularities, the number of iterations required to reduce
the norm of the residual lib- TNXI by a constant factor does not increase with
the problem size N so that the solution of the system TNX b can be accomplished
with max(p, q) O(Nlog N) operations. In addition, the superior performance of
preconditioners Ki,N can be easily explained by these spectral regularities. That is, for
TN generated by a positive rational function in the Wiener class, the last elements used
to construct Ki,N and SN are, respectively, tN and t[N/2 SO that the corresponding
radii are 5K O(ItNI) and es O(It[N/2]l ). Since O(ItNI << O(It[N/2]l for
sufficiently large N, the PCG method with preconditioners Ki,N converges faster
than with preconditioner SN.

We should point out that the first spectral property was recently proved by Tre-
fethen. In [23], he used the theory of CF (Caratheodory and Fejr) approximation
[22] to show that SITN has at most 1 + 2max(p, q) distinct eigenvalues asymptot-
ically. A different approach is adopted in this paper to prove this property for both

SITN and K,vTN (see Lemmas 2 and 8). Besides, since the first property only
characterizes the spectrum of pITN for infinite N, whereas the second property
characterizes the spectrum of PTN for both finite and infinite N, our results have
a greater generality.

There exist direct methods that solve rational Toeplitz systems with max(p, q)
O(i) operations [11], [24], [25]. However, the PCG method has three advantages
compared with these direct methods. First, to implement the PCG algorithm, we
only need a finite segment of the generating sequence tn, n 0, 1,..., N- 1, which
is provided by the problem, rather than the precise formula of the rational gen-
erating function. Second, the PCG method can be easily parallelized due to the
parallelism provided by FFT, and it is possible to reduce the time complexity to
max(p, q) O(log N). In contrast, these direct methods are sequential algorithms,
and the time complexity cannot be further reduced. Third, the PCG method is
more widely applicable. For example, it can also be applied to Toeplitz systems with
nonrational Toeplitz generating functions or those arising from the multidimensional
space.

This paper is organized as follows. In 2, we briefly review the construction of
preconditioners Ki,N and summarize some of their spectral properties studied in [15].
In 3 and 4, we prove the desired spectral properties of K,vTN described above. The
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main idea is to transform the original generalized eigenvalue problem to an equivalent
problem with nearly banded Toeplitz matrices. A similar approach is used to study
the spectral properties of SITN, which is presented in 5. In 6, we use the analysis
in 3-5 to determine the analytical eigenvalue distributions of K,TN and SITN
for Toeplitz matrices with a geometric generating sequence.

2. Construction and spectral properties of Toeplitz preconditioners
K,N, i 1, 2, 3, 4. Let Tm be a sequence ofm m symmetric positive definite Toeplitz
matrices with generating sequence tn. Then,

to ];1 ];N-2
];1 ];0 ];1 iN-2

TN ];1 ];O
];N-2 ];1
];N-1 tN-2 ];1

Preconditioners gi,N, i 1, 2, 3, 4, for TN are constructed by relating TN to a 2N 2N
circulant matrix R2N,

R2N /XTN TN
where XTN is determined by the elements of TN to make R2N circulant, i.e.,

(2.1) /TN

C ];N-1 ];2
tN-1 C tN-1 t2

tN-1 C

];2
];i ];2 ];N- C

with a constant c. If the behavior of the sequence ];n is known, we choose c to be ];N.
Otherwise, c 0.

Consider the following augmented circulant system:

/XTN TN x b

The solution of the above circulant system can be computed efficiently via FFT with
O(Nlog N) operations. Since (2.2) is equivalent to

(TN +/kTg)x b,

this implies that (TN //kTN)-lb can be computed efficiently and that

K1,N TN +/TN
can be used as a preconditioner for TN. Three other preconditioners can be con-
structed in a similar way by assuming negative, even and odd periodicities for x and
b. We summarize the augmented systems and the corresponding preconditioners as
follows:

TN
/TN

/TN x

/T x b

TN --JNx --JN

and K2,N TN- /TN,

and K3,N TN + JNxTN,

and K4,N TN JN/TN,
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where JN is the N x N symmetric elementary matrix which has, by definition, ones
along the secondary diagonal and zeros elsewhere (JN,,j 1 if i + j N + 1 and
JN#,j 0 if +j N + 1).

Since preconditioners KS,N, i 1, 2, 3, 4, correspond to 2N-circulant systems, the
matrix-vector product K,v for an arbitrary v can be achieved via 2N-point FFT
with O(N log N) operations. However, we should point out that K1,N is circulant and
K2,N is skew-circulant so that g,vV and K,vV can be computed via N-point FFT.
Although preconditioners K3,N and K4,N are neither circulant nor skew-circulant,
K,v and g-1

4,gTM can be computed via N-point fast cosine and sine transforms,
respectively. The operation count for N-point fast cosine (or sine) transform is ap-
proximately equal to that of N-point FFT in both the order and the proportional
constant [17], [18], [27]. Therefore, the computational cost for the preconditioning
step K/v with 1, 2, 3, 4 is about the same. For more details in implementing the
PCG algorithm, we refer to [15].

To understand the relationship between the spectra of K-1i,NTN, i 1, 2, 3, 4, we
rewrite the eigenvalues of K,TN as

(2.3)
[A(K,TN)] -1  (T I(TN + Ki,N TN) A(I + T I(Ki,N TN)

1 + A(T I(Ki,N TN)),

and examine the relationship between the spectra of T (Ki,N TN). This is char-
acterized by the following theorem.

THEOREM 1. Let Qi be the set of the absolute values of the eigenvalues of
T;I(K,N TN), i.e.,

Q {[A[" (K,N- TN)X ATNx}, i- 1,2,3,4.

Then, Q Q2 Q3 Q4.
Proof. See [15] for the proof.
The above theorem can be stated alternatively as follows. Let be an arbitrary

eigenvalue of T (K,N TN); then there exists an eigenvalue of T (Kj,N TN),
where j # i, with magnitude I1. From (2.3), spectra of T (K,N TN) clustered
around zero are equivalent to those of K[f,TN clustered around unity. Since spectra
of TI(K,N TN) are clustered in a very similar pattern, so are those of K,TN.

We assume that the generating sequence t, for the sequence of Toeplitz matrices

Tm satisfies the following two conditions:

(2.4) Itnl < ,

(2.5) T(ei) E tne--int > > 0 VO,

and the resulting matrices are said to be generated by a positive function in the
Wiener class. Since T(ei) describes the asymptotic eigenvalue distribution of T,,
the above conditions assume that the eigenvalues of Tm are bounded and uniformly
positive, asymptotically. With (2.4) and (2.5), two spectral properties of K[f,TN are
derived.
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THEOREM 2. Preconditioners Ki,N, i 1, 2, 3, 4, for symmetric positive defi-
nite Toeplitz matrices TN with the generating sequence satisfying (2.4) and (2.5) are

uniformly positive definite and bounded for sulCJiciently large N.
Proof. See [15] for the proof. [-1

THEOREM 3. Let TN be the N N matrix in a sequence of m m symmetric
positive definite Toeplitz matrices Tm with the generating sequence satisfying (2.4) and
(2.5). The eigenvalues of the matrix TI(Ki,N- TN) are clustered between
except for a finite number of outliers for sufficiently large N(e).

Proof. See [15] for the proof. []

Theorems 2 and 3 hold for both rational and nonrational Toeplitz matrices satis-
fying (2.4) and (2.5). However, when TN is additionally rational, we are able to obtain
stronger results and characterize the spectra of K,TN more precisely. In 3 and 4,

--1we focus on the spectrum of KI,NTN, from which the spectra of K,TN, 2, 3, 4,
can be estimated based on Theorem 1.

3. Rational generating functions for ATN. Due to (2.3), the spectral prop-
erties of K,NTN can be determined by examining those of T/kTN, where ATN is

given in (2.1) with c tN. Let tn, -oo < n < oc, be the generating sequence of a
sequence of m m Toeplitz matrices Tm. The Laurent series

T(z) E tnz--n

is known as the generating function of these matrices. If matrices Tm are symmetric,
we decompose T(z) into

T+(z + T+(z),

where

(3.2) T+(z-1)- -- + E tnz-n"
n=l

Thus T(z) is completely characterized by T+(z-). Additionally, if

A(z- ao + az- +... + %,z-’(3.3) T+(z-) B(z-) bo + biz- +’" + bqz-q

where b0 1, apbq # O, and polynomials A(z-) and B(z-1) have no common factor,
we call Tm the rational Toeplitz matrices generated by a rational function of order
(p,q). From (3.1) and (3.3), we have

A(z-1) A(z)(3.4) T(z) B(z_) + B(z)"
It is well known [12] that there exists an isomorphism between the ring of the

power series P(z-1) EnCX=opnz-n (or P(z)) and the ring of the semi-infinite lower
(or upper) triangular Toeplitz matrices with PO,Pl,’",Pn,"" as the first column (or
row). The power series multiplication is isomorphic to matrix multiplication. By
applying the isomorphism to (3.4) and focusing on the leading N N blocks of the
corresponding matrices, we derive the following relationship [12]:

(3.5) TN LaL- + UaU
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where La (or U) is an N x N lower (or upper) triangular Toeplitz matrix with first
N coefficients in A(z-1) as its first column (or row). Matrices Lb and Ub are defined
similarly with respect to B(z-). We can also establish an expression similar to (3.5)
for ATN. To do so, we first note that the sequence tn is recursively defined for large
n. This is stated as follows.

LEMMA 1. The sequence tn generated by (3.2) and (3.3) follows the recursion,

(3.6) tn+ -(btn + b2t,-i +"" + bath_q+1), n >_ max(p, q).

Proof. From (3.2) and (3.3), we have

+ E tnz-n (bO - blz-1 -"" -- bqz-q) aO -- alz-1 --"" - apz-p"
n--1

The proof is completed by comparing the coefficients of the above equation.
With Lemma 1, the number of outliers ofT ATN is determined by the following

lemma.
LEMMA 2. Let TN be an N N symmetric Toeplitz matrix generated by T(z) with

T+(z-) given by (3.3), and the corresponding generating sequence satisfies (2.4) and
(2.5). T ATN has asymptotically at most 2 max(p, q) nonzero eigenvalues (outliers).

Proof. Let us define a matrix

/kEN AFN + AFI
where

/kFN

tN tN-1 t2 tl
tN+l tN tN-1 t2

tN+ tN
t2N-2 tN-1
t2N-1 t2N-2 tN+l tN

Since elements t in AFN satisfy (3.6), there are at most max(p, q) independent rows
in/’XFN and therefore, the rank of/EN is at most 2 max(p, q).

Let /PN AEN ATN; it is easy to verify that the l and l norms of/kPN
are both less than

2N-1

TK=-2 E Itnl"
n--N

Consequently, we have

[IAPNII (IIAPNIIIlIAPNII)1/ TK.

Since TK goes to zero as N goes to infinity due to (2.4), and since the eigenvalues of

T are bounded due to (2.5), the spectra of T1ATN and T1/kEN are asymptoti-
cally equivalent. It follows that both T1/kEN and T ATN have at most 2 max(p, q)
nonzero eigenvalues asymptotically. [:]

As a consequence of Lemma 2, T ATN has at least N- 2 max(p, q) eigenvalues
converging to zero as the problem size N becomes large. For the rest of this section and
in 4, we study the clustering property of these eigenvalues. Our approach is outlined
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as follows. First, we associate ATN with some appropriate rational generating func-
tion 2(z) +(z-1) + 2+(z). The forms of +(z-1) for p <_ q and p > q are given in
Lemmas 3 and 4, respectively. We then transform the generalized eigenvalue problem
involving TI/kTN into another generalized eigenvalue problem involving Qvl/kQg.
We show that QN and /kQN are nearly banded Toeplitz matrices in Lemma 5 and
examine the spectral property of QI/kQN in Lemma 6.

Since TN is a symmetric rational Toeplitz matrix, and the elements of/kTN are
those of TN with reverse ordering, it is not surprising that /kTg is also generated by
a certain rational function, which is determined below. Let us use the elements tn of
a given TN with N > max(p, q) to construct a new sequence {n. The cases p <_ q and
p > q are considered separately.

Case 1. p <_ q. We choose

tN_n,
q

O<_n<_q--1,(3.7) ’n --(Ek--1 b-k-k)/b, q < n.

Note that elements {n above with n :> q are obtained based on the recursion (3.6)
examined from the reverse direction.

Case 2. p > q. We decompose T+ (z-1) into

T+(z-1) g+(z-1) - TI,+(z-1),

where

(3.8a) g+(Z-l) fo t_ flZ-1 t_...

__
L_qz-(p-q)

and

(3.8b) Tl,+(z-1) A’(z-1) ao -- aIz-1 _ -- atsz-s
bo + blZ-1 +’" + bqz-q

with s < q. Let tl,n be the generating sequence of T,+(z-). There exists a simple
relationship between the elements of generating sequences for T+ (z- and TI,+ (z- ),
i.e.,

f tl,n+fn, O<_n<_p--q,
tn tl,n, p--q < n.

With respect to T,+(z-) and F+(z-), we choose the corresponding {1,n and {2,n,
respectively, as

{ tl,N-qn,tl,n --(-:k=l bq-kl,-k)/bq,

and

t2,n O,
N-p+q <_ n <_ N,
elsewhere.

Finally, we define

(3.9) ’n l,n
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We associate the sequence n given by (3.7) or (3.9) with a sequence of symmetric
Toeplitz matrices Tin. It is straightforward to verify that for N > max(p, q), TN
ATN. The generating function for matrices m is

(z) +(z-1) + +(), where + z-1) + EnZ
-n

n=l

The forms of +(z-1) with p < q and p > q are described, respectively, in Lemmas 3
and 4.

LEMMA 3. If TN is generated by T(z) with T+(z-1) given by (3.3), and p < q <
N, then/XTN is generated by T(z) with

C(z-1) co -4- el z-1 --... - eqZ-q(3.10) T+(z-)
n(z-) do + dz- +’." + dqz-q’

where

bIbq_i, 0 < < q, j=o dj_j,(3.10a) di O, q < i, c O,
O<i<q,
qKi,

and where

, ,, #o,
(3.10b) t

7, n=0,

with t given by (3.7).
Proof. By (3.7), the sequence n satisfies the recursion

(3.11) t-k --(dlk- + d2k-2 +"" + dqk-q), for k > q,

with d given by (3.10a). Let us define Gk(z-k), k > q, as

Gk(z-k) (k + dik_ + d2-2 +’-" + dqk-q)Z-k.

It is evident from (3.11) that G(z-k) 0 for k > q. Therefore, we have

(1 + dz- +... + dqz-q)r+(z-1) E djti-jT! z-i t_ E Gk(z-k)
i-0 j-0 k=q-t-1

CO "- 1Z-1 --’’"-- Cqz-q,

with ci and t defined in (3.10a) and (3.10b), respectively. This completes the
proof. [3

LEMMA 4. If TN is generated by T(z) with T+(z-1) given by (3.3), and q < p <
N, then/NTN is generated by (z) with

C(z-) z_N(3.12) T+(z-) D(z_l)
-4- F+(z)

where

{ {b-lbq_i, 0 < i < q, -j=0 < q,djti_j 0 i<(3.12a) di= 0, q<i, ci=
0, q<i,
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and where

, , n0,
(3.125) tn t’o-, n=O,

with n given by (3.9).
Proof. Due to (3.8), we express +(z-1) as +(z-1) /+ (z-) + ,+(z-),

where

N cx)

+(z_l) s_z_, ,/(z_) ,0-y+ ,.z-.
n=N-p+q n--1

It is clear from Lemma 3 and (3.8a) that

+(-) F+(z)z-, l,+(z-) C(z-1)
D(z-1)"

(3.14) /NTN LcL + UcU.
4. Spectral properties ofTI/TN. With the results given by (3.5) and (3.14),

we then transform the generalized eigenvalue problem,

(4.1) /TNx ATNx,

to an equivalent generalized eigenvalue problem,

(4.2) /QNY AQNY,

where

(4.2a) QN LbTNUb LaUb + LbUa

and

(4.2b) /QN Lb/TNUb LbLcLIub + LbUcUIUb
It is clear that (4.1) and (4.2) have identical eigenvalues and their eigenvectors are
related via x Uby. The reason for (4.2) is that QN and /QN are nearly banded

Thus the proof is completed. [:]

We rewrite (3.12) as

(3 13) +(Z-1) 61(2;--1)
with el(z-1) C(z-1) - D(z-1)F+(z)z-ND(z_l)

Applying the isomorphism to (3.10) or (3.13) and focusing on the leading N x N
blocks of the corresponding matrices, we obtain

g LL +UU1,

where L (or U) is an g N lower (or upper) triangular Woeplitz matrix with the
first g coefficients of C(z-1) (p _< q) or C1 (z-1) (p > q) as its first column (or row).
Matrices Ld and Ud are similarly defined with respect to D(z-1). Since/NTN N,
we obtain
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Toeplitz matrices which can be more easily analyzed. The properties of matrices QN
and/kQN are characterized below.

LEMMA 5. Let Tm be a sequence of m m symmetric Toeplitz matrices gener-
ated by T(z) with T+(z-1) given by (3.3), and the corresponding generating sequence
satisfies (2.4) and (2.5). The southeast (N- max(p,q)) (N- max(p,q)) blocks of
QN and/kQN are symmetric banded Toeplitz matrices with generating functions

(4.3) Q(z) A(z-)s(z) + S(z-)A(z)
and

(4.4) AQ(z) bqzqC(z-1)B(Z-1) -+- bqz-qC(z)B(z),
respectively.

Proof. Consider two Toeplitz matrices FN and GN of size N N, where FN is a
lower triangular Toeplitz matrix with lower bandwidth r and the generating function
F(z-), GN an upper triangular Toeplitz matrix with upper bandwidth s and the
generating function G(z). It is easy to verify that the product FNGN, except for its
northwest r s block, is a banded Toeplitz matrix with the lower bandwidth r, upper
bandwidth s, and generating function F(z-)G(z). We generalize the above result to
QN naUb q- LbUa and find that the southeast (N- max(p, q)) (g- max(p, q))
block of QN is a symmetric banded Toeplitz matrix with the generating function

Q(z) A(z-1)B(z) + B(z-1)A(z).
Since the product of lower (or upper) triangular Toeplitz matrices is commutative,

we rewrite (4.2b) as

/QN /Q1,N q-/kQg, where /QI,N LbLcLIUb
When p < q, the product LbLcL- results in a lower triangular Toeplitz matrix with
the generating function B(z-)C(z-)D-(z-). The matrix/kQI,N, except for the
first q columns, is a Toeplitz matrix with the generating function

/kQl,N(Z-1) S(z-1)C(z-1)D-l(z-1)B(z).
We use (3.10a) to relate D(z-) with B(z), i.e.,

q q

D(z-1) dnz-n b-lz-q bq-nZq-n blz-qB(z).
n:0 n:0

Thus /Ql,y(z-1) bqzqS(z-)V(z-1) Similarly, T/QI,N, except for the first q
rows, is a Toeplitz matrix with the generating function /kQl,g(Z). Therefore, the
southeast (N- q) (N- q) block of/QN is a symmetric banded Toeplitz matrix
with the generating function

AQ(z) AQ,N(Z-) + AQI,N(Z) bq (zqS(z-1)C(z-1) + z-qB(z)C(z)),

where the coefficients of C(z-) are given in Lemma 3.
When p > q, the generating function of matrix Lc is C (z-1) in (3.13). Conse-

quently,/kQl,N except for the first q columns, is a Toeplitz matrix with the generating
function

/kQ1,N(Z-1) B(z-1)CI(z-1)D-I(z-1)B(z)
B(z-1)C(z-1)D-(z-1)B(z)+ z-gB(z-1)F+(z)B(z).
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Recall that the orders of polynomials B(z) and F+(z) are q and p- q, respectively.
The lowest order in z of the polynomial z-NB(z-1)F+(z)B(z) is -(N-p), and the
elements of the leading N N Toeplitz matrix generated by z-NB(z-)F+(z)B(z)
are zeros except for the southwest p diagonals. Therefore, the matrix/kQ,N, except
for the first q columns and the southwest p diagonals, is a Toeplitz matrix with the
generating function

/kQ1,N(Z-1) B(z-1)C(z-1)D-l(z-1)B(z).

Then it follows that the southeast (N- p) (N- p) block of/kQN is a symmetric
banded Toeplitz matrix with the generating function

+

where the coefficients of C(z-) are given in Lemma 4. The proof is completed.
The following lemma gives the bound of the clustered eigenvalues of Qv/kQN.
LEMMA 6. Let Tm be a sequence ofm m symmetric Toeplitz matrices generated

by T(z) with T+(z-) given by (3.3), and let the corresponding generating sequence
satisfy (2.4) and (2.5). Then Qvl/QN has at least N- 2max(p, q) eigenvalues with
magnitude bounded by

a.oJ e max
Q(z)

Proof. Let us denote the southeast (N-max(p, q)) (N-max(p, q)) blocks of QN
and AQN by g-max(p,q) and/N-max(p,q), respectively. By the minimax theorem
(or Courant-Fisher theorem)of eigenvalues [20], [26], there are at least N-2 max(p, q)
eigenvalues of QI/kQN bounded by the maximum and the minimum eigenvalues of
--1 //VN-max(p,q) -max(p,q)

It is clear from Lemma 5 that N-max(p,q) and /kN_max(p,q) are symmetric
banded Toeplitz matrices with bandwidth _< max(p, q). We construct two N N sym-
metric circulant matrices 7N andN with N--max(p,q) and N_max(p,q) aS their
leading principal submatrices, respectively. By the separation theorem (or intertwin-
ing theorem) of eigenvalues [20], [26], the eigenvalues of Q-N_max(p,q) QN-max(p,q)
are bounded by the mimum and the minimum eigenvalues of N. It is well
known that the eigenvalues ofNare

AQ(e-ie/N /Q(e-iE/N), n-O, 1,...,N- 1.

Thus the proof is completed.
We then focus on the bound of (4.5). By using (3.1) and (3.3), AQ(z)/Q(z) can

be further simplified as

(4.6)
AQ(z)/Q(z) [bqzqB(z-)C(z-) + bqz-qB(z)C(z)]/[B(z-)B(z)T(z)]

[bqzqC(z-)]/[B(z)T(z)] + [bqz-qC(z)]/[B(z-)T(z)].

Since T(e) A(e-i)/B(e-i) + A(ei)/B(ei), and IT(ei)l is finite from (2.4),
IB(ei)l is uniformly positive, i.e.,

(4.7) IB(e)l >_ > O.
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Combining (2.5), (4.6), and (4.7), we obtain

(4.8)
/XQ(e-) 2bqC(e-iO)

f16
with arbitrary 0.

We then focus our discussion on the bound of IbqC(e-ie)]. First, we have

j=0

bq-jtN-i+j
j=0

where the last equality is due to (3.7), (3.10a), and (3.10b). Since tn satisfies the
recursion (3.6), we use the equality

q

bq-jtN-i+j 0
j=0

with N > max(p, q) to simplify (4.9), i.e.,

q q q q

i=0 j=i+ i=0 j=i+

q q

(4.10) <_ max Itnl y Ibq_jl.
NKn<N+q

i=0 j=i+

Furthermore, the term q qY’i=0 Ibq_j bounded byj=iq-1 is

q q q q q

(4.11) Ibq_jl < yy Ibq_jl < (q + 1) Ibjl < (q + 1)2q,
i=0 j=i+ i=0 j j=0

where the last inequality is due to the following lemma.
LEMMA 7. Let Tm be a sequence ofm x m symmetric Toeplitz matrices generated

by T(z) with T+(z-1) given by (3.3), and let the corresponding generating sequence
satisfy (2.4) and (2.5); then

q

lbjl < 2q.
j=0

Proof. Since B(z-1) is a polynomial in z or order q, B(z-1) can be factorized as

(4.12)
q

B(z-1) biz-i (1 rlz-1)(1 r2z-1) (1 rqZ-1),
i=0

where ri, 1 <_ i <_ q, are poles of r+(z-1). A direct consequence of (2.4) is that all
poles of T+(z-1) should lie inside the unit circle, i.e., Irl < 1, 1 _< i _< q. It is clear
from (4.12) that

Ibkl<-- ( qk ) (maxlril)k< ( .qk )’ ( ) q’
where --- (q k) k!"
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Therefore, we have

q
2q

j=o j=o

and the proof is completed. [:1

Combining (4.8), (4.10), and (4.11), we have

2q+l(q + I)
max I/kQ(e-i2rn/N)/Q(e-i2rn/N)l <

N<n<N+q

Since Iril < 1, 1 < i < q, tn is monotonically decreasing and

max It=l ItNI,
N<n<N+q

for sufficiently large N. Thus

2q+X(q + 1)ltNI(4.13) max < eK.

By Lemma 6, there are at least N- 2max(p, q) eigenvalues of QvlAQN with
magnitude bounded by eK in (4.13). Since eigenvalues of TI/TN are equivalent
to those of Qvl/XQN, there are at least N- 2max(p,q) eigenvalues of TI/TN
with magnitude bounded by eK as well. When eK is small enough, there are at least
N- 2 max(p, q) eigenvalues of K,TN, i 1, 2, 3, 4, clustered between (1--eK, 1 +eK)
for sufficiently large N. We summarize the analysis in this section into the following
theorem.

THEOREM 4. Let Tm be a sequence of m rn symmetric Toeplitz matrices gen-
erated by T(z) with T+(z-1) given by (3.3), and let the corresponding generating
sequence satisfy (2.4) and (2.5). For sufficiently large N, the spectra of the precondi-
tioned Toeplitz matrices K-1i,NTN, 1, 2, 3, 4, have the following two properties:

P1. The number of outliers is at most 2 max(p, q).
P2. There are at least N-2 max(p, q) eigenvalues that lie between (1 K, 1 -4- K),

where eg i8 given by (4.13).
5. Discussion on Strang’s preconditioners. We adopt a procedure similar

to that described in 3 and 4 to examine the spectral properties of SITN, where SN
is Strang’s preconditioner. Only the cases where p < q and N 2M are discussed.
Since the analysis for the cases where p > q or N is odd can be performed in a
straightforward way, it is omitted to avoid unnecessary repetition.

Recall that Strang’s preconditioner SN is obtained by preserving the central half-
diagonals of TN and using them to form a circulant matrix. That is, when N 2M,
SN is defined as a symmetric Toeplitz matrix with the first row

SN [to, tl,’’’,tM-l,tM,tM-l,’’’,tl].

Let us denote the difference between SN and TN by/SN, i.e., ,/SN SN- TN. The
number of outliers of SITN is determined by the following lemma.

LEMMA 8. Let TN be an N N symmetric Toeplitz matrix generated by T(z)
with T+(z-1) given by (3.3), and let the corresponding generating sequence satisfy
(2.4) and (2.5). T1/XSN has asymptotically at most 2max(p, q) nonzero eigenvalues
outliers ).
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Proof. The proof is similar to that of Lemma 2. We use

AFM ]/kEN AOFI 0

to approximate /SN, where

/XFM

tM tM-1 tM-2 t3 t2 tl

tM+2 tM+l tM t3

tN-3 tM tM-1 tM-2
iN--2 iN-3 tM+I tM tM-I
tN-I iN-2 N-3 tM+2 $M-4-1 tM

Since elements tn in /XFM satisfy the recursion described in Lemma 1, there are at
most max(p, q) independent rows in /XFM. Therefore, the rank of/kEN is at most
2 max(p, q). Let us define APN /kEN --/XSN. Then we find that

0 AGM ]APN AGTM 0

where /GM is an M x M symmetric Toeplitz matrix with the first row

ACM [tM, tM+l, tM+2, tN-3, tN-2, tN-1].

It is easy to verify that, for sufficiently large N, the 11 and loo norms of/XPN are both
less than

N-1

n--M

Consequently, we have

Since TS goes to zero as M goes to infinity due to (2.4), and since the eigenvalues ofT
are bounded due to (2.5), the spectra of T/SN and TI/XEN are asymptotically
equivalent. It follows that both TI/kEN and TIASN have at most 2 max(p, q)
nonzero eigenvalues, asymptotically.

The matrix ZkSN can be expressed as /XSN ASI,N AS2,N, where

0 F1,M and AS2,N F,TAS1,N F.T 0 01,M 2,M

and where F1,M and F2,M are M M upper triangular Toeplitz matrices with the
following first rows:

F1,M [tM, tM-1, tM--2,’’’, t2, tl],
F2,M [tM, tM+l, tM+2," tN-2, tN-1].
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We use tn, which satisfies (3.6), to construct two new sequences:

O, O<_n_<M-1,
l,n tN-n, M <_ n <_ M + q- 1,

(5.1)
--(=lbq-kn-k)/bq, M + q <_ n,

O, O<_n<_M-1,
2,n= t, M<_n,

and associate l,n and 2,n with two sequences of symmetric Toeplitz matrices l,m
and 2,m, m 1, 2,..., whose generating functions are defined as

+ where Sl,+(z-1) -- - E 81,nz-n’
n=l

and

+ where 2,0
c

-V +
n--1

respectively. We can easily verify that for N > 2 max(p, q),

I,N /S1,N and 2,N /S2,N.

Then, by using the same approach for proving Lemma 3, we obtain the following
lemma.

LEMMA 9. If TN is generated by T(z) with T+(z-1) given by (3.3), then

z-M(z-l) 0 -- 1z-1 -+-’’" + qz-q
(5.2a) 1,+ (z-1) D(z-1) do + dlz-1 +"" + dqz-q

and

(5.2b) 2,+(z-1) z-M(Z-l) 0 -- 1z-1 --’’" "- qz-q

bo + blz-1 -- -- bqz-qB(z-1)

where the coefficients bi and di are given by (3.3) and (3.8), and

-j=o bjtM+i-j, 0

_ _
q,

5i -=o djl,M+i-j,
ai

0, q < i, 0,

with 1, given by (5.1).
Thus /SN can be decomposed into

/kSN /kS1,N --/kS2,N LaL- + UU1 LaL-1 UaU-1,

where Le (or Ue) is an N N lower (or upper) triangular Toeplitz matrix with the
first N coefficients of z-U(z-1) as its first column (or row), and matrices La, Lb,
and Ld (or Ua, Ub, and Ud) are similarly defined with respect to z-Uft(z-i), B(z-1),
and D(z-1), respectively.

By using the decomposition formulas (3.5) and (5.3), we transform the generalized
eigenvalue problem

(5.4) /kSNX ATNx
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into another generalized eigenvalue problem

(5.5) /XQs,NY-- AQNY,

where

QN LbTNUb LaVb + LbUa,
AQs,N LbASNUb (LbLeLIUb / LbUeUIUb) (LaUb / LbUa).

The systems (5.4) and (5.5) have the same eigenvalues and their eigenvectors are
related via x Uby. The matrix/XQs,N is a nearly banded Toeplitz matrix charac-
terized by the following lemma.

LEMMA 10. Let Tm be a sequence of m m symmetric Toeplitz matrices gener-
ated by T(z) with T+(z-) given by (3.3), and the corresponding generating sequence
satisfies (2.4) and (2.5). The southeast (N- max(p,q)) (N- max(p,q)) block of
/XQs,N is a symmetric banded Toeplitz matrix with the generating function

(5.6) AQs(z) B(z-1)S(z)S(z) /kQs, (z)- AQs,2(z),

where

Qs,I(Z) bqz-(M-q)B(z-)(z-) + bqzM-qB(z)(z),
AQs,2(z) z-Mt(Z-1)B(z) + zMB(z-i)t(z).

Since the generating sequence tn of TN satisfies conditions (2.4) and (2.5), we can
use arguments given in the previous section and obtain

2q+l(q + 1)ltMI e’<

and

AQs,e(e-)
Q(e-)

2q+l(q + 1)ltMI e,<

for arbitrary 0. By using arguments similar to those in Lemma 6, it can be derived
that T ASN has at least N- 2 max(p, q) eigenvalues bounded by

(5.7) es 2e’=
2q+e(q + 1)ltN/21

for sufficiently large N. The analysis in this section is concluded by the following
theorem.

THEOREM 5. Let Tm be a sequence ofm m symmetric Toeplitz matrices gener-
ated by T(z) with T+(z-) given by (3.3), and the corresponding generating sequence

satisfies (2.4) and (2.5). For sufficiently large N, the spectrum of the preconditioned
Toeplitz matrix STN has the following two properties:

P1. The number of outliers is at most 2 max(p, q).
P2. There are at least N-2 max(p, q) eigenvalues that lie between (1 as, 1 + as),

where es is given by (5.7).
Let us compare the preconditioners Ki,N and SN. From Theorems 4 and 5,

the spectra of K[(,TN and STN have the same number of outliers, and the other
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eigenvalues are clustered around 1 within radii eg and es given by (4.13) and (5.7),
respectively. It is clear that the parameters q, f, and 5 are independent of the problem
size N, and that the terms ItNI and ItN/21 determine the convergence rate of the PCG
method. For sufficiently large N, we have O(eg) O(e2S). This implies that, after the
first several iterations which eliminate the effects of the outliers, the residual reduced
by one iteration of the PCG method with preconditioners Ki,N is about the same as
that reduced by two iterations of the PCG method with preconditioner SN. This has
been confirmed by numerical experiments reported in [15].

6. The special case with geometric generating sequences. It has been
observed from numerical experiments [15], [21], that the eigenvalues of K,NTN and

SITN with TN generated by the geometric sequence tn tn, It < 1, are very regular.
The observations are summarized as follows.

R1. The eigenvalues of K,NTN are (1 + t) -1, (1- t) -1, and (1- tN)- with
multiplicities 1, 1, and N- 2, respectively.

R2. When N is even (N 2M), the eigenvalues of SITN are (l+t)-, (l-t)-,
1, (l+tM)-, and (1--tM) -1 with multiplicities 1, 1, 2, M-2, and M-2, respectively.

In this section, we provide an analytical approach to explain these two regularities.
First, we examine the preconditioner K1,N. For the generating sequence t, tn,

its generating function is

T(z) T+(z-) + T+(z), where T+(z-1) A(z-t) 0.5 + 0.htz-1- tz-1

so that the order (p, q) of T+(z-) is (1, 1). From Lemma 3, we obtain

C(zT+(z-1) D(z_)
tN (0.5 q- 0.ht-lz-1)

l_t-lz-

which is related to/TN K,N TN. By using (4.3) and (4.4), we have

(6.1) Q(z) A(z-t)B(z) + B(z-)A(z) 1 t2

and

(6.2) AQ(z) -t[zB(z-1)C(z-) + z-tB(z)C(z)] --tN(1 --t2).

Note that q-- 1 and bq -t are used in deriving (6.2). Due to (6.1) and (6.2), the
southeast (N- 1) (N- 1) blocks of QN and AQN are identity matrices multiplied
by the constants 1 t2 and --tN(1 t2), respectively. Consider the following linear
combination of QN and/kQg"

VN --/kQN + tNQN.

It is clear that the southeast (N- 1) (N- 1) block of VN is a zero matrix. Since
the first two columns are linearly independent, and any two columns of the last N- 1
columns of VN are linearly dependent, VN has a null space of dimension N- 2.
This implies that Qv/kQg, or equivalently, T ATN, has the eigenvalue -tg with
multiplicity N 2. Therefore, (TN + ATN)-ITN g,vTg has the eigenvalue

(1 tN) -1 with multiplicity N- 2.
To determine the remaining two eigenvalues, i.e., the outliers, we use the tech-

nique described in [4] to transform the problem ATNx ATNx to another equivalent
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problem. Consider the case with even N (N 2M). Since ATN and TN are both
symmetric Toeplitz matrices, they can be expressed in the following block matrix
form:

/TN /T2,M /T1,M
and TN T2,M T1,M

Let WN be the orthonormal matrix

WN--- --JM JM

where IM and JM are M x M identity and symmetric elementary matrices, respec-
tively. By using the transformation

W1/kTNWNy AWITNWNy,

we obtain two decoupled subproblems,

(6.3) /T1,M JM/T2 M y ) T1,M JMT2 M Y

(6.4) (/T1,M + JM/T2,M)Y+ +(T1,M + JMT2,M)Y+,

where A_ and + are also eiger,values of the original problem ATNx ATNx. Since
the first rows of matrices on both sides of (6.3) are proportional by a constant -t,
A_ -t with y_ el (the unit vector with 1 at the first element) satisfies (6.3).
Similarly, we can argue that + t with y+ e: is an eigenvalue-eigenvector pair for
(6.4). Thus 1/(1 t) and 1/(1 + t) are two outliers of (TN +/TN)-:TN K,NTN.
When N is odd, the same result can be derived with a slightly modified WN given
in [4].

By using the relationship among preconditioners Ki,g, i 1, 2, 3, 4, we can deter-
mine all eigenvalues of K,TN. They all have three distinct eigenvalues (two outliers
and N- 2 clustered eigenvalues) summarized in Table 1.

TABLE 1
Eigenvalues of -1Ki,NTN.

1 (1 -t- t) -1

A2 (l--t)-1

A3 (1 tN)-1

-1K2,NTN
(1 + $)-1

(1 + iN)-I

-iK3,NTN K4,NTN
(l+t)-1 (1-)-I

(1 + N)-I (1 -- tN) -1(I --/N) -I (1-- N)-I

Next, we examine Strang’s preconditioner SN with even N. When N 2M, the
two central rows of SN TN are zeros. This implies that S:TN has the eigenvalue
1 with multiplicity 2. By using (5.2a) and (5.2b), we have

-MO(z-1 z-MrM&,+(z-:) D(z-:) 1-t-:z-:’

z-M(z-1) z-M,M

B(z-:) 1- tz-l’



164 T. KU AND C.-C. J. KUO

respectively. By substituting (z-1), B(z-), (z-), and D(z-) into (5.6) and
using (6.1), we obtain

AQs(z) --tM(z-M + zM)(1 t2).

Then, the nonzero elements of/k QS,N-1, which is the southeast (N 1) x (N 1) block
of/kQs,N only occur along the +/-Mth diagonals and take the same value -tM (l-t2).
Consider the linear combination of/kQs,N and QN,

V1,N AQs,N + tMQN

By adding the k/ lth column to the M/k/ lth column of V1,N, for k 1, 2,... (M
1), we find that the southeast (N- 1) (M- 1) block of the resulting matrix is the
zero matrix. Consequently, VI,N has a null space of dimension M- 2 and Ql/kQs,g
has the eigenvalue -tM with multiplicity M- 2. Similarly, we can show that

V2,N /kQs,N tMQN

has a null space of dimension M- 2 by subtracting the k / 1 column from the
M + k + lth column of V2,N, for k 1, 2,... (M 1). Therefore, Qv/kQS,N has the
eigenvalue tM with the same multiplicity M 2. As a consequence, SITN has the
eigenvalues (1 + tM)- and (1 tM)- with multiplicity M 2.

To determine the remaining two eigenvalues of SITN, we use the same transfor-
mation discussed earlier and consider the eigenvalues of the following two subproblems:

(T1,M JMT2,M)Y- -(S1,M JM2,M)Y-,

(6.6) (T1,M -- JMT2,M)Y+ +(I,M -- JN2,M)Y+,where S1,M and S2,M are the northwest and southwest M M blocks of SN, respec-
tively. Since the first rows of matrices on both sides of (6.5) are proportional by a
constant 1- t, A_ 1/(1- t) with y_ e satisfies (6.5). Similarly, + 1/(1 + t)
with y+ -el satisfies (6.6).

7. Conclusion. In this paper, we have proved the spectral properties of the pre-
conditioned rational Toeplitz matrices PTN with the preconditioner SN proposed
by Strang [19] and the preconditioners Ki,g proposed by the authors [15]. The eigen-
values of PTN are classified into two classes, i.e., the outliers and the clustered
eigenvalues. The number of outliers depends on the order of the rational generating
function. The clustered eigenvalues are confined in the interval (1- e, 1 + e) with the
radii eK O(ItNI) and es O(ItN/21) for K,TN and SITN, respectively. When
the symmetric Toeplitz matrix TN is generated by the geometric sequence tn with

Itl < 1, the precise eigenvalue distributions of K,TN and ST2M have been deter-

mined analytically. Since the eigenvalues of K,TN are more closely clustered than

those of SITN, preconditioners Ki,N are more efficient for solving rational Toeplitz
systems.
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BIDIRECTIONAL CHASING ALGORITHMS FOR THE
EIGENVALUE PROBLEM*

DAVID S. WATKINS

Abstract. The QR eigenvalue algorithm and its variants are usually implemented implicitly as
chasing algorithms. The matrix whose eigenvalues are sought is first reduced to Hessenberg form by
a similarity transformation, then the chasing iterations are begun. Each iteration is a sequence of
similarity transformations that create a bulge in the Hessenberg form at one corner of the matrix,
then chase the bulge along the diagonal to the opposite corner and finally off the edge of the matrix.
Byers’s Hamiltonian QR algorithm is an example of a chasing algorithm that has a special feature.
In order to preserve the Hamiltonian structure of the matrices, the algorithm forms and chases two
bulges simultaneously. Viewed in the appropriate coordinate system, this process can be seen as one
in which two bulges are created at opposite corners of the matrix and chased toward each other.
They collide in the middle, they interact, and then they continue to the corners of the matrix, where
they vanish. In this paper it is shown that the single-shift Hamiltonian QR algorithm is just one of a
family of bidirectional chasing algorithms that can be applied to arbitrary matrices. Thus the basic
mechanism underlying the Hamiltonian QR algorithm does not rely on the Hamiltonian structure in
any way. The structure is exploited to make the algorithm more efficient and to improve its numerical
stability.

Key words, eigenvalue, QR algorithm, GR algorithm, chasing the bulge, Hamiltonian matrix

AMS(MOS) subject classifications. 65F15, 15A18

1. Introduction. Let A E (Tnn be a matrix whose eigenvalues we would like
to know. One of the most popular algorithms for finding the eigenvalues is the QR
algorithm [6], [9], [12]. Similar algorithms named LR [12], SR [1], [3], and HR [1],
[2] are also sometimes used. Recently, Watkins and Elsner [10] developed a general
theory of GR algorithms that encompasses this entire family. One step of the generic
GR algorithm consists of a similarity transformation

A1 =G-IAG,

where the nonsingular transforming matrix G satisfies an equation of the form

p(A) GR.

Here p is a polynomial of low degree, and R is an upper triangular matrix. We
place no conditions on G except that it be nonsingular. (However, when it comes
to implementing practical algorithms, we would like our G to be well conditioned.)
The simplest choice of p is p(A) A aI, where a is a shift chosen to approximate
an eigenvalue of A. Another common choice, which yields a double GR step, is
p(A) (A-aI)(A-’I), where a and T are approximations of eigenvalues. Repeated
steps of the generic GR algorithm produce a sequence (A) of similar matrices. If the
p and G for each step are chosen in a reasonable manner, the sequence (A) usually
converges to a block triangular form from which the eigenvalues of A can be read.
For details, see [10].
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In certain contexts, we wish to perform GR steps for which p is not a polynomial.
For example, we can take p to be a linear fractional transformation p(A) (A-
aI)(A- TI) -1. If a and T are good approximations to distinct eigenvalues of A, then
p(A) has one eigenvalue that is much larger than all others and one that is much
smaller, suggesting rapid convergence of certain subspace iterations that drive the
GR algorithm (see [10]).

A specific example of an algorithm that uses a linear fractional p is Byers’s single-
shift Hamiltonian QR algorithm [5], in which A is a real Hamiltonian matrix, and
T --a E . The advantage of using this form of p is that if A is Hamiltonian, then
p(A) (A- aI)(A + hi)-1 also has a special structure; it is symplectic. This permits
the construction of a QR algorithm that preserves the Hamiltonian structure. The
payoff is that arithmetic, data flow, and computer storage space are cut in half.

Byers’s derivation of the Hamiltonian QR algorithm made heavy use of the Hamil-
tonian and symplectic structures. The object of this paper is to demonstrate that the
basic mechanism that drives Byers’s algorithm does not in any way rely on these spe-
cial properties. We demonstrate here that the single-shift Hamiltonian QR algorithm
is a special case of a class of bidirectional chasing algorithms that can act on arbitrary
matrices in

The plan of the paper is as follows. Section 2 begins with the observation that
generic GR step with a linear fractional p is equivalent to a combination of a conven-
tional GR step with a conventional RG step, in either order. We then consider how
such a step can be implemented implicitly by chasing a bulge either down the diagonal
and then back up, or up the diagonal and then back down. In 3, we consider bidi-
rectional chasing steps, which chase bulges up and down the diagonal simultaneously.
We prove a theorem showing that, if executed properly, the bidirectional chasing step
effects one step of the generic GR algorithm with linear fractional p. In 4, we study
Hamiltonian matrices and derive Byers’s Hamiltonian QR step as a special case of
the generic bidirectional chasing step. Of course, Byers’s algorithm is the paradigm
for all of the developments of this paper. In 5, we discuss briefly the difficulties
we encountered when we attempted to extend the theory to cover the double-shift
Hamiltonian QR algorithm.

2. The generic GR algorithm for linear fractional p. In [10] we discussed
the generic GR algorithm. We could equally well have studied the RG algorithm.
Each step of the generic RG algorithm is a similarity transformation

AI -GAG-,
where the transforming matrix G is obtained from a decomposition q(A) RG, in
which R is upper triangular. Again, the only condition on G is that it be nonsingular.
Notice that if q(A) is nonsingular, the RG iteration driven by q(A) is equivalent to a
GR step driven by q(A)-" the equation q(A)- G-R- is a GR decomposition,
and A (G-)-AG-.

If we wish to perform a GR step driven by p(A) (A aI)(A TI)-, we should
do a GR step driven by (A- 7-I)-, followed by a GR step driven by A- oI. But
the former is just an RG step driven by A- 7-I, SO we can carry out the step without
inverting A- 71. Thus we let

(1) A/. --1GI/.AGI/2,
where GI/2 is from an RG decomposition A- TI R/.GI/. Then we let

(2) A1 (-IA/G1,
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where G1 is from a GR decomposition A1/. -aI GIRI. To verify that these two
steps do indeed constitute one GR step driven by p(A), notice that

A G-lAG,

where G GI/.G, and G satisfies the equation

p(A) --1 VR.

We easily verify that performing the steps in the opposite order produces the same
effect.

Each of the half-steps (1) and (2) can be implemented by chasing. In [11] we
showed how to effect a GR step by chasing. The RG step can be effected by an
analogous procedure, which we outline briefly here. Recall that a matrix A is upper
Hessenberg if aij 0 for i > j + 1. An upper Hessenberg matrix is irreducible if

aij 0 for j + 1. The key theorems are Theorem 2.4 of [11] and its RG analogue.
THEOREM 2.1. Let A E (nn be an irreducible upper Hessenberg matrix, and let

p be any analytic function defined on the spectrum of A. Let G be a nonsingular matrix
whose first column is proportional to x p(A)ei, such that B G-AG is upper
Hessenberg. Then there exists an upper triangular matrix R such that p(A) GR.

This is essentially Theorem 2.4 of [11], except that in [11] we took p to be a

polynomial. The proof carries over to analytic p without change.
THEOREM 2.2. Let A (nn be an irreducible upper Hessenberg matrix, and

let p be any analytic function defined on the spectrum of A. Let G be a nonsingular
matrix whose last row is proportional to yT eTnP(A), such that B GAG- is upper
Hessenberg. Then there exists an upper triangular matrix R such that p(A) RG.

The proof is essentially the same as that of Theorem 2.1.

We now outline briefly how an RG step can be implemented by chasing. Assume
that A is in irreducible upper Hessenberg form. Let ( be a nonsingular matrix that
differs from the identity matrix only in the 2 2 lower right-hand corner submatrix,
whose last row is proportional to the last row of A- -I. Perform the similarity trans-
formation CA(-, which creates a bulge in the upper Hessenberg form at position
(n, n- 2). Now let n be a matrix that differs from the identity matrix only in rows
and columns n- 2 and n- 1, such that multiplication ofA-1 by1 on the right
annihilates the bulge. In other words, (A(-( has upper Hessenberg form. Com-
plete the similarity transformation by multiplying by (n on the left. The resulting
matrix (,(A(-I( has a bulge at position (n- 1, n-3). The bulge has been moved
up and to the left. Subsequent transformations of the same type chase the bulge up
the diagonal and off the edge of the matrix. The result is a matrix A/2 G/.AG-/I,
where the last row of G/2 is proportional to the last row of A- TI. By Theorem 2.2
there exists an upper triangular matrix RI/ such that A- TI R/G/2. Thus the
chasing step is an RG step. The GR half-step (2) can be implemented analogously,
except that the bulge is formed at the top and chased to the bottom. Hence the entire
step consists of chasing a bulge from bottom to top, and then chasing another bulge
from top to bottom. If we decide to do the GR half-step before the RG half-step, the
chasing directions are reversed.

That is, we get fi-1 (-IA(, where p(A) . It is not necessarily true that ( G; this
depends on which of numerous possible GR and RG decompositions are used in the half-steps.
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3. Bidirectional chasing. We now consider the possibility of chasing in both
directions at once. Partition A into a 2 2 block matrix

where A E Tjj. The blocks At and A22 are irreducible upper Hessenberg, and
A2 consists of zeros, except for the entry aj+l,j in the upper right-hand corner.

T where e E n-j andIn particular, A21 has rank one. Clearly A21 aj+t,jeej,
ej d are the usual standard unit vectors. Suppose we initiate a chasing step at the
upper left-hand corner of A with a transformation whose first column is proportional
to that of A- aI, and chase the bulge to the bottom of At. At the same time we
initiate a chasing step at the lower right-hand corner with a transformation whose
last row is proportional to that of A- TI, and we chase the bulge to the top of A22.
These transformations effect a complete GR step on A and a complete RG step
on A22" All and A22 are transformed to G-IAtG1 and G2A22G1, respectively,
where G1 satisfies A -aI GIRI for some upper triangular R1, and (]2 satisfies
A22 TI R2G2 for some upper triangular R2. The effect on the whole matrix A is
to transform it to

(3) B
B2 B22 G2 A2 A22 G

[ G-IAIG1 G-IAIG ]G2A21G1 G2A22G

B and B22 are upper Hessenberg, and so are the transforming matrices G1 and G2.
Since A2 has rank one, so does B21 G2A2G. Indeed B21 aj+l,jxyT, where
x G2e and yT eG. Since G1 and G2 are upper Hessenberg, only the first two
entries of x and the last two entries of y are nonzero. Thus the only nonzero entries
of B2 lie in the upper right-hand 2 2 submatrix. This small rank-one matrix is the
product of the collision of the two bulges. How can we sort out the bulges and send
them on their separate ways? There are two possibilities, the naive one and the one
that works.

Let us consider the naive solution first and see why it fails. The Hessenberg form
is disturbed by the bulge in the (2, 1) block; we have to get rid of it. Let 3 JJ
be a matrix that differs from the identity matrix only in its lower right-hand 2 2
submatrix, whose last row is proportional to yT. Then the similarity transformation
diag{(3,/}B diag{(l,/} sets the entries bj+,j-1 and bj+2,j-1 to zero and creates
a bulge at position (j, j 2). A sequence of similarity transformations can then chase
this bulge up through the (1, 1) block and off the edge. Let G3 denote the product
of these similarity transformations, including 3. The last row of G3 is proportional
to yT.

We can chase a bulge down the (2,2) block at the same time. Let G4
(n--j)(n--j) be a matrix that differs from the identity matrix only in its upper left-
hand 2 2 submatrix, whose first column is proportional to x. Then the similarity
transformation diag{I, (-}B diag{I, (4} sets the entries b+2,j- and bj+2, to zero
and creates a bulge in position (j + 3, j + 1). This bulge can be chased down through
the (2, 2) block by a sequence of similarity transformations. Let G4 denote the prod-
uct of these transformations, including Ga. The first column of G4 is proportional
to x.
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Applying the G3 and G4 transformations simultaneously, we obtain an upper
Hessenberg matrix

B21 B22 G4 1"
The problem with this similarity transformation is that it simply undoes the work done
by the transformation from A to B. To see this it is helpful to have the following
results, which are actually special cases of Theorems 2.1 and 2.2.

THEOR,M 3.1. Let A E (nn be an irreducible upper Hessenberg matrix, and
let G be a nonsingular matrix whose first column is proportional to el, such that
B G-AG is upper Hessenberg. Then G is upper triangular.

THEOREM 3.2. Let A (nn be an irreducible upper Hessenberg matrix, and let
T such that BG be a nonsingular matrix whose last row is proportional to

is upper Hessenberg. Then G is upper triangular.

Proof. Theorem 3.1 (respectively, 3.2) follows from Theorem 2.1 (respectively,
2.2) by taking p 1. [:]

The complete similarity transformation from A to C is given by

(4) C [ G3G- A12 GG_IG2] [AI 1

eTf f-iG1 and G3 have proportional last rows; each is a multiple of yT. Thus j t_3t. 1

(yTGI 13e for some constants a and/3. This means that the last row of G3G is
T Applying Theorem 3.2, we find that G3G is upper triangular. Aproportional to ej.

similar relationship holds between G2 and G4: the first column of each is proportional
to x, so the first column of GIG4 is proportional to el. By Theorem 3.1, GIG4
is upper triangular. Thus the transforming matrix in (4) is upper triangular; the
similarity transformation makes no progress toward triangular form.2 In the QR
case, all of the "G" matrices are unitary, so the transforming matrix in (4) is both
upper triangular and unitary. Thus it is diagonal with main diagonal entries of unit
modulus, and C and A are practically identical. In the LR case without pivoting, the
transforming matrix in (4) is I, so C A.

Aside from the analysis, it is already evident from the form of (4) that the pro-
cedure that we have just outlined will fail: the transforming matrix in (4) is block
diagonal, so there is no interaction between the top and bottom portions of the ma-
trix. To see what might be done to remedy this, we return to the matrix B in (3).
Recall that B fails to be upper Hessenberg only in that B21 has four nonzero entries
in its upper right-hand corner instead of one. These form a 2 2 block of rank one.
Before we return the matrix to upper Hessenberg form, we must perform some kind
of similarity transformation that mixes the top and bottom blocks. It is easy to check
that a transformation that recombines only rows (and columns) j and j + 1 does not
alter the pattern of zeros in B. In fact, this is the only type of similarity transforma-
tion that combines rows from the upper and lower blocks without disturbing the zero
pattern. Let S be a matrix that performs such a similarity transformation. Then S

2 The entire transformation can be viewed as a step of the GR algorithm driven by p(A) I,
for C G-lAG, where G diag{G1Gl,GlG4} satisfies the GR decompositon p(A) I GR
with the upper triangular R given by R G-:I. Thus the underlying subspace iterations (driven by
p(A) I) are stationary.
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has the form

811 812
821 822

where Sll is the (j, j) entry. We call a matrix of this form a mixing matrix. The
submatrix

811 812]821 822

is called the essential submatrix of the mixing matrix S. The matrix T S-1 is also
a mixing matrix. Its essential submatrix

is the inverse of .
We wish to examine the effect on B of a similarity transformation by a mixing

matrix. In particular, we are interested in the effect on the 2 x 2 submatrix in the
upper right-hand corner of B21. For typographic simplicity we let

denote this submatrix. The transformation S-1BS changes it to

(5) (t21bj,j + t227)s11 + (t21bj,j+1 + t22bj+l,j+1)821 ]
6811 -- bj+2,j+1821 J

If we wish to return the resulting matrix to upper Hessenberg form by transformations
that do not mix the upper and lower blocks, we must choose S so that (5) has rank
one, for its rank will not be altered by the subsequent transformations. Setting the
determinant of (5) to zero and using the equations cti- - 0, t21 -s21/d, and
t22 81lid, where d is the determinant of S, we obtain

821 {811[fl(bj,j bj+l,j+l) q- obj+2,j+l bj,j-l] s21[bj,j-1bj+2,j+1 flbj,j+l]} 0.

The solution 821 0 is the "naive" one; it just rescales the rows and columns of B21.
The subsequent reduction to upper Hessenberg form essentially undoes the first part
of the transformation. Thus the only solution that might be of any use is

(6) 811[(bj,j bj+l,j+l) -1- obj+2,j+l bj,j-l] 821[bj,j-1bj+2,j+l /bj,j+l].

There are many mixing matrices S that satisfy this property, but they all have essen-
tially the same effect. (We ignore the issue of numerical stability for now.) All that
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TABLE 1
Bidirectional chasing step.

do simultaneously
choose shift a
construct ( for which el o (A- a)el
A +-- (-A( (create bulge at a31)
for i 1,2,...,j- 2
A +- (-A(i (chase bulge from hi+2# to a+3#+1)

and
choose shift T

construct ( for which enT( eT(A- -)
A +-- (A(-1 (create bulge at an,n--2)
for n,n- 1,...,j + 3
A +-- (A(- (chase bulge from a#-2 to ai-#-3)

end do
construct mixing matrix S satisfying

Sll[aj+2,j-l(ajj aj+lh+l) + a+l,-aj+2,j+ aj,j-laj+2,j]
821[aj,j-laj+2,j+l aj+2,j-lajj+l]

A +-- S-AS
do simultaneously

for i=j + l,j,...,3
A - (iA(-1 (chase bulge from hi,i-2 to ai-#-3)

and
fori=j,j+l,...,n-2
A +- (-A(i (chase bulge from ai+2,i to ai+3#+)

end do

matters is the proportion 821 811, for this determines the proportions in which the
jth and (j + 1)st rows (and columns) are combined to form the new (j + 1)st row (and
jth column). Suppose we perform a transformation of this form and then reduce the
resulting matrix to upper Hessenberg form by a similarity transformation of the form

[GI G4 ]
as before. Then the combined transforming matrix has the form

G_[G
G1,..., G4 are upper Hessenberg matrices, and S is a mixing matrix whose entries
satisfy (6). As we shall see, this transformation is the right one; that is, it effects a

step of the generic GR algorithm driven by (A- aI)(A- rI) -1. The key result to
this end is Theorem a.a, which is stated and proved below.

The bidirectional chasing step is summarized in Table 1. Each of the transfor-
mations used in the chasing step consists of a nonsingular 2 x 2 essential submatrix
embedded in what would otherwise be an n x n identity matrix. In order to per-
form the tasks in this algorithm, we need essential submatrices whose first column or
last row is proportional to any prescribed vector in .a The mixing matrix does not

3 Notice that specifying the direction of the first column of a 2 x 2 matrix is the same as
specifying the direction of the last row of 5-1, since the last row of -1 is orthogonal to the first
column of .
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differ in form from the bulge-chasing matrices. In general, we allow the use of any
nonsingular matrices that can perform the required tasks. If we wish to restrict our
transformations to some subclass of the nonsingular matrices (e.g., unitary matrices),
we need only ensure that the subclass contains matrices of the form just stated above.
In 4, when we consider bidirectional chasing algorithms that preserve Hamiltonian
structure, we impose one additional requirement: our mixing matrices must have
determinant 1. Finally, in practice, stability and convergence considerations dictate
that the transforming matrices be well conditioned.

We now state and prove the key result.
THEOREM 3.3. Let A E (nn be in irreducible upper Hessenberg form, and

suppose cr and T are distinct complex numbers that are not eigenvalues of A. Let j be
an integer satisfying 1 <_ j < n, and consider the partition

JAil A12]A
A21 A22

where All (JJ. Let G1,R1 (JJ and G2, R2 ((n-j)(n-j) be nonsingular
matrices, R1 and R2 upper triangular, satisfying

All- aI GIR1, A22 TI R2G2.

(This implies that G1 and G2 are irreducible upper Hessenberg.) Let S be any mixing
matrix satisfying (6), where B is as in (3). Then there exist G, R (nn such that

(d aI)(d TI) -1 GR,

R is upper triangular, and G has the form

(7)

where G3 and G4 are upper Hessenberg.
Proof. We will construct a matrix G of the stated form and another nonsingular

matrix Z such that UI G-1 (A-aI)Z and U2 (A--TI)Z are both upper triangular.
Then, letting R UU-1, we have (A-aI)(A--I)- GR, with R upper triangular.

We need to reduce A-TI to upper triangular form by multiplication on the right.
First of all,

(A_ Tl)diag{i,Gl } I All TI X ]A21 R2

Here and throughout the proof, the symbol X in the (1, 2) block denotes a matrix
whose entries are of no immediate interest. The value of X can change from one
occurrence to the next. R2 is upper triangular, and A21 consists entirely of zeros,
except for the entry aj+,j in the upper right-hand corner. We wish to eliminate

aj+,j. Let r denote the (1, 1) entry of R2, let

V21 V22

be any nonsingular matrix for which

/

Vll V12 ]V21 V22
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and let V E (nXn be the mixing matrix whose essential submatrix is . Then

(A TI)diag{I, Gl}v [ 10
where/2 is upper triangular, and 11 is upper Hessenberg.

Finally, let FI be a nonsingular matrix such that HllF1 is upper triangular.
Letting/l llF1, we note that F1-1 --/i-1/11, so F1-1 is upper Hessenberg. Let
Z diag{I,G }Ydiag{F1, I}. Then

(A- TI)Z [ I10 R2X ]
which is upper triangular.

Now we have to find G, of the stated form, for which G-I(A- aI)Z is upper
triangular. First notice that

R1diag{G-1, G2}(A aI)diag{I,G } G2A2 G2A22Gl-hI

R1 is upper triangular, and G2A22G -aI G2R2 + (T- a)I is upper Hessenberg.
Letting g denote the (2, 1) entry of G2, and recalling that the (1, 1) entry of R2 is
called r, we see that the (2, 1) entry of G2R2 + (T- a)I is yr. The block G2A21 has
zeros everywhere except positions (1,j) and (2,j). The (2,j) entry is gaj+l,j. Since

gaj+l,j gl" [ vllv21 v22V12 ] 0

by (8), we can set the (2, j) entry of G2A21 to zero by multiplying by V on the right.
That is,

diag{G-1 G2}(A aI)diag{I, Gl}V |
[ /i21

where /l is upper triangular, //22 is upper Hessenberg, and 21 consists of zeros,
except for an entry (lj+l,j in the upper right-hand corner.

The next task is to eliminate (j+l,y. Let denote the (j, j) entry of/1. Let
T S-1, where S is the mixing matrix named in the statement of the theorem. As
we shall see, the essential submatrix of T satisfies

(9)
t21 t22 (1,j+l,j 0

Indeed, this is so if and only if t21 nu t22gtj+l,j 0, which is equivalent to

(10) 811(ljWl,j 821.

This equation determines the proportion s21 s11. We will see below that this is
exactly the proportion specified by (6), so the essential submatrix of T satisfies (9).
Accepting for now that this is true, we have

/2/22 0
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where/1 is upper triangular, and/2/22 is upper Hessenberg.
Let G3 be any nonsingular matrix for which G3RIF is upper triangular. Calling

this product R, we have G3 RIF-I1. Since F1- is upper Hessenberg, so

is G3. Let G4 be any nonsingular matrix for which G-/22 is upper triangular.
Calling this matrix R22, we have G4 /2/22R21, so G4 is upper Hessenberg. By a
straightforward computation we have

G- 0 I 0 R
which is upper triangular. Call this matrix U. Letting

we eily compute that G- (A aI)Z U.
The proof will be complete as soon we show that (10) is (6). We begin by

noting that the construction that we have just outlined can be carried through with
S replaced by any mixing matrix whose inverse T satisfies (9), which is equivalent
to (10). There are many matrices that satisfy this property, and for any such , the
resulting G satisfies (A- aI)(A- TI)- GR for some upper triangular R. Let
C G-AG. Then, as G p(A)R-1, C RAR-, so C is upper Hessenberg. Let

K
K21 K22 G2

A G
Then K has the same zero pattern B. Also, the rank of K2 is 1, for the similarity
transformation C diag{G3, Gl}Kdiag{G,Ga} implies K2 GaC2G3, and

C2 h rank one. Thus must satisfy either (6) or 2 0. We show that the
latter is impossible. If 21 0, then G is block upper triangular, which implies
that p(d) (A- aI)(A- TI)- is also block upper triangular. Since a T, the
linear fractional transformation p has an inverse q, and A q(p(A)). Thus A is also
block upper triangular. But this contradicts the fact that A h irreducible upper
Hessenberg form. Therefore 21 0, and must satisfy (6). Since also satisfies
(10), we see that (6) and (10) are the same.

The main theorem follows directly from Theorem 3.3.
THEOREM 3.4. Under the same assumptions and terminology as in Theorem 3.3,

let G jxj and G (n-j)x(n-j) be any nonsingular upper Hessenberg matrices

for which C G-AG is upper Hessenberg, where

G G1 -1

Then there is n pper triangular mtri R’ sch that (A- I)(A- rI)- G’R’.
N other words, the similrit transformation from A to C petrols one step of the

eneric GR lgorithm driven b p(A) (A I)(A rI) -1.
Pro@ Let Ga, G4, and G be in Theorem a.a, and let C G-lAG. In the

proof of Theorem a.g we noted that C is uper Hessenberg, since C RAR-. This
equation implies that it is even irreducible upper Hessenberg. G and G are related
by G GV, where

=-1’-- [ a-I ]
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We will show that V is upper triangular. Let V1 G3G and V2 G-1G, so that
V- diag{V1-1, V2}. Then, as C- VC’V-, C21 V2CI V1. Since C2 -cele and

Cl oz’el ejT, where c and cd are scalars, we have ele o’(V2el)(eV1), so that

eV1 ye and V2el e
for certain scalars/ and 9’. Since also

Cl V1C11V- and C2 V2-1 C22V2,
Cll and C22 are irreducible upper Hessenberg, and CI and C2 are upper Hessenberg,
we can conclude from Theorems 3.2 and 3.1 that both V1 and V2 are upper triangular.
Thus V is upper triangular. We know from Theorem 3.3 that G satisfies (A-aI)(A-
TI) -1 GR for some upper triangular R. Let R’ be the upper triangular matrix
V-R. Then (A aI)(A- TI) -1 G’R’.

4. Byers’s algorithm. Our final task is to show that Byers’s single-shift Hamil-
tonian QR algorithm is a special case of the generic bidirectional chasing algorithm
described in the previous section. We begin by recalling some definitions.

We now restrict our attention to real matrices, and we take n to be even, say
n- 2m. Define J E :nxn by

J- --Ira 0

A matrix A jnXn is Hamiltonian if (JA)T JA. Equivalently, A is Hamiltonian
if and only if it has the form

K -FT

where K K and N N. The eigenvalue problem for Hamiltonian matrices is
important because it arises in the solution of the quadratic regulator problem of linear
system theory [7].

In solving the Hamiltonian eigenvalue problem by a chasing algorithm or any
algorithm that uses similarity transformations, it is desirable to preserve the Hamil-
tonian structure. A class of transforming matrices that achieves this end is the group
of symplectic matrices. A matrix S tnxn is symplectic if STJS J. We easily
show that if H is Hamiltonian and S is symplectic, then S-1HS is Hamiltonian.

Byers’s algorithm and the generalizations that we consider make use of two dif-
ferent types of symplectic transformations. First, if G mxm is any nonsingular
matrix, then

0 G-T

is symplectic. In particular, if P mXm is orthogonal, then diag{P, P} is both
orthogonal and symplectic. This type of symplectic transformation, when applied
to a Hamiltonian matrix (11), transforms the blocks separately. We need a class of
mixing matrices to mix up the blocks. First note that in the 2 x 2 case a matrix

821 822
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is symplectic if and only if det() 1. More generally, the matrix

(12) 811 812
Im-1

821 822

is symplectic if and only if det() 1. In particular, if is taken to be a rotator

S is both orthogonal and symplectic. There are obvious generalizations of this con-
struction, but this is all we need.

We need a Hamiltonian version of upper Hessenberg form. Paige and Van Loan
[8] found a method of reducing a Hamiltonian matrix by finitely many orthogonal
symplectic similarity transformations to a form

M D -HT

where H is upper Hessenberg (thus -HT is lower Hessenberg) and D is diagonal. Of
course N NT as well. If the underlying control problem has a single input, then D
can be taken to have the even sparser form D diag{0,..., 0, dm}. We call this form
Hamiltonian Hessenber9 form. It is on this form that Byers’s algorithm operates.
Notice that the Hamiltonian Hessenberg form can be converted to a true Hessenberg
form by the similarity transformation that reverses the last m rows and columns of
the matrix.

We describe a generalization of Byers’s single-shift algorithm. In order to make
the connection with bidirectional chasing algorithms, we describe the algorithm in the
coordinate system in which the last m rows and columns are reversed. Let P E iimxm

denote the permutation matrix that reverses rows or columns. Instead of operating
on the Hamiltonian Hessenberg matrix M, we operate on the true Hessenberg matrix

diag{I,P}Mdiag{I,P}- [ H NP ]PD -PHTP

Our algorithm is just the bidirectional chasing algorithm applied to this matrix, but
we put some constraints on how the step is carried out. First of all, the shifts a and
T are chosen to be real numbers such that T --a. Thus we begin by forming two
bulges and chasing them to the middle of the matrix. This portion of the algorithm
performs a similarity transformation by a matrix diag{G1, G-1 } such that

H- aI GIRl and pHTp + oI R2(2,

where R1 and R2 are upper triangular. It is possible to do this in such a way that
and (2 have a simple relationship: the equation H aI GIR implies that

--pHTp + aI (-pRTI P)(pGT p).

Since --pRT1P is upper triangular, we can (and will) take G2 pGT1P. Thus the
transforming matrix is diag{G1, PG-TP}. The equivalent transforming matrix in the



178 DAVID S. WATKINS

original coordinate system is diag{G1, G-T), which is symplectic. Thus the Hamil-
tonian structure is preserved in this portion of the step. In carrying out the step,
only one of the two bulges needs to be chased in practice, since the two bulge-chasing
procedures are essentially identical.

Our matrix has now been transformed to the form (3). The next step is to apply a
mixing matrix S that satisfies (6). In addition we require that the essential submatrix

satisfies det() 1. This is always possible; we can take to be a rotator, for
example. The equivalent transforming matrix in the original coordinate system has
the form (12), so it is symplectic. Thus this step also preserves the Hamiltonian
structure.

At this point our matrix has the form

/:/ P
PD --Pf-ITp ]"

The block P/ has nonzeros only in the 2 x 2 patch in the upper right-hand corner,
and it has rank one. Furthermore,/ is symmetric, so/ avvT for some a E K/and
v E m that has nonzeros only in its last two components.

The step is continued by annihilating three of the nonzero entries of P/, leav-
ing only a single nonzero in the upper right-hand corner. This creates bulges in/:/
and --Pf-ITp, which we then chase out to the edge of the matrix to complete the
bidirectional chasing step.

The net effect of this second chasing phase is to apply a similarity transforma-
tion of the form diag{Gl,G4} such that G3[-IG and -G-Ip[-ITpG4 are upper
Hessenberg. Since PD a(Pv)vT, G3 and G4 must also satisfy TeraG3 VT and
G4el "TPv for some / and 7- Once again, it is possible to perform these op-
erations in such a way that G3 and G4 are related. First, note that the equation
TemG3 vT implies that (pGT3P)el Pv, which suggests that it might be pos-

sible to take Ga pGT3P. This is confirmed by noting that with this choice of
G4, we have -GIp[TpG4 -P(G3GI)TP, which is upper Hessenberg. We
make this choice of G4. Thus the transforming matrix for this part of the step is
diag{G,PGP}. The equivalent transforming matrix in the original coordinate
system is diag{G-1, G3T}, which is symplectic. Thus the Hamiltonian form is still
preserved. In carrying out the step, it is again the case that only one of the two
bulges has to be chased, since the two bulge-chasing procedures are again essentially
identical.

Byers’s Hamiltonian QR algorithm is the special case in which all of the transform-
ing matrices are taken to be orthogonal. This is the best choice from the standpoint
of stability, but there are other less expensive options that might also work well. For
example, the Gi can be built up by Gaussian elimination with partial pivoting, giving
a Hamiltonian LR algorithm. Also possible are hybrid algorithms that mix Gauss-
ian elimination transformations with orthogonal transformations. The convergence
of all of these algorithms is governed by the theorems in [10], which state that if the
condition numbers of the accumulated transformation matrices stay bounded and the
shifts converge, then the algorithm converges. If the generalized Rayleigh-quotient
shift strategy is used (in this case a -hl), the local convergence rate is quadratic.

5. Problems with the double-shift algorithm. Byers also developed a dou-
ble-shift algorithm for use with complex conjugate shifts [4]. If H is a real Hamiltonian
matrix and a is a complex shift, then (H aI)(H I)(H + aI)-(H + I)- is
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a real symplectic matrix that can be used to drive a double Hamiltonian QR step
that uses only real arithmetic. If we wish to develop a bidirectional chasing algorithm
that generalizes this double step, we must consider GR steps driven by matrices of
the form (A alI)(A a2I)(A TII)-I(A T2I) -1. Such a GR step is equivalent
to a (double) GR step driven by (A- alI)(A- a2I) followed by a (double) RG step
driven by (A- TII)(A- T2I), or vice versa. This can be implemented by chasing a
double bulge down the diagonal and back up again or up the diagonal and back down
again. If one wishes to chases bulges in both directions at once, one must consider
what happens when the bulges collide. Now the resulting rank-one matrix is not 2 x 2
but 3 x 3, and the mixing matrices can have essential submatrices as big as 4 x 4. We
were unable to determine how the mixing matrix should be chosen so as to obtain
the desired outcome. In an effort to gain some insight into the nature of the mixing
matrix, we attempted to prove an analogue of Theorem 3.3, but we failed there as
well. We have no doubt that such algorithms and theorems exist and await discovery
by a sufficiently insightful investigator.
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DEFERRED SHIFTING SCHEMES FOR PARALLEL QR METHODS*
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Abstract. Parallel implementation of the QR algorithm for solving the symmetric eigenvalue
problem requires more than a straightforward transcription of sequential code to parallel code. Ex-
perimental adjustments include new shifting techniques and omission of the initial reducing to upper
Hessenberg form. In this paper, the theory of the convergence of algorithms of decomposition type for
the algebraic eigenvalue problem developed by Watkins and Elsner is generalized. The results are ex-
tended to deferred shifting schemes, which allow pipelining of iterations in parallel implementations,
and analyzing the deterioration of the convergence rate. Furthermore, it is shown that eigenvalues
need not be simple to Obtain quadratic convergence for nondefective nonsymmetric matrices and
cubic convergence for symmetric matrices.

Key words, convergence, eigenvalue, parallel computing, QR algorithm, Schur decomposition

AMS(MOS) subject classifications. 65F15, 15A18

1. Introduction. QR algorithms have traditionally been the algorithms of choice
for finding all eigenvalues of dense, tridiagonal, and upper Hessenberg matrices. The
main objective of this paper is to discuss shifting techniques for such algorithms that
can be used to increase the efficiency of implementations of these algorithms on con-
current computers. In addition, we extend some earlier theoretical results for general
(QR-like) algorithms of decomposition type, such as the QR and LR algorithms.

With the advent of parallel computers, the preferred status of QR algorithms
for the symmetric eigenvalue problem has had to be reevaluated. For tridiagonal
symmetric matrices, divide and conquer techniques [4] and bisection methods [2],
[8] have proven to parallelize more conveniently, yielding algorithms that have been
reported to outperform the symmetric QR algorithm, even on sequential computers.
For dense symmetric matrices, parallel Jacobi methods [3], [11] are competitive with
parallel versions of the above-mentioned methods, which have to be preceded by a
reduction to tridiagonal form.

Efficient parallel implementation of algorithms for the nonsymmetric eigenvalue
problem has been more difficult. Jacobi-like algorithms have been developed by Stew-
art [13] and Eberlein [5], however, convergence of these methods is not guaranteed.
Efficiency of fine-grained, parallel, nonsymmetric QR algorithms is hampered by the
fact that while iterations of unshifted QR algorithms can be pipelined, inclusion of a
shifting scheme is necessary to speed convergence [15]. Since the data used to calcu-
late the shifts are among the last to be computed during an iteration, the addition
of a shifting strategy hinders pipelining of iterations. Efficiency of coarser-grained al-
gorithms is hindered by the amount of communication that is necessary to broadcast
transformations [16]. The effects of this can be reduced by simultaneously performing
several iterations with different shifts.
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One approach that has been successfully used for improving efficiency on vector
computers and shared memory multiprocessors generalizes techniques used for the
double-shifted implicit QR algorithms by implicitly performing several iterations as-
sociated with multiple shifts known as generalized Rayleigh-quotient shifts [1], [18]. In
this paper, we propose and analyze a deferred shifting strategy that allows pipelining
of iterations by using "old" shifts, i.e., shifts from an iteration other than the current
one. Convergence is shown to be slower than that of traditional shifting strategies,
yet may be acceptable under some circumstances.

It is not clear that fine-grained parallel implementations of the QR algorithm will
start by reducing the matrix to upper Hessenberg form, as is customary for sequential
algorithms. One consequence of the reduction to upper Hessenberg form is that if
the eigenvalues of the original matrix are nondefective, all eigenvalues of the upper
Hessenberg matrix can be assumed to be simple, since otherwise the problem can
be deflated. As a result, analyses that show the convergence rates to be quadratic
and cubic for nonsymmetric and symmetric matrices, respectively, have been able to
assume that all eigenvalues are simple. To date, no efficient fine-grained reduction to
upper Hessenberg form has been discovered. It is not clear that a large number of
processors can be usefully utilized during subsequent iterations, even if the matrix is
first reduced. As a result, it is conceivable that fine-grained parallel QR algorithms
will skip this reduction. One such example can be found in [15]. This prompted the
question of how convergence is affected by the presence of multiple eigenvalues.

In 2, we informally examine the effects of deferring the Rayleigh-quotient shift.
Section 3 formally generalizes the results of Watkins and Elsner [17] to include the
deferred shift. In addition, we show how some conditions required in their results can
be relaxed. In 4, we discuss the deterioration of the convergence rate when the shift
is deferred. Results from numerical experiments are reported in 5. Conclusions are

given in 6. It should be noted that 3 may be bypassed without loss of understanding
of the concepts.

2. Deferred Rayleigh-quotient shift. In this section, we informally examine
how the convergence rate of the shifted QR algorithm is affected by deferring the shift.
We only consider the special case where the deferred QR algorithm is applied to a
real upper Hessenberg matrix with real eigenvalues. In the next section, a thorough
analysis is given for more general deferred shifting schemes and a generalization of
the QR algorithm.

Given an n n matrix A, there exists unitary matrix Q and upper triangular
matrix R so that A QR. This decomposition, known as the QR decomposition of
A, forms the basis for the QR algorithm, which is given by Algorithm 2.1.

ALGORITHM 2.1. QR Algorithm
A0 A
for i =0,1,...
A sI QR (QR decomposition)
Ai+l - RiQi + siI(= QAiQi)

The algorithm is typically preceded by a reduction to upper Hessenberg form.
Under mild conditions, Ai converges to a block upper triangular matrix. The shifting
sequence {s} can be chosen to speed the converge [6]. A simple choice is the Rayleigh-

quotient shift, s a(n)n, the (n, n) element of the ith iteration. This shifting strategy
is generalized to the deferred Rayleigh-quotient shift by taking si a(h) where
h >_ 0, i.e., the shift is deferred for h iterations.
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Assume that the matrix A, whose eigenvalues are to be computed, is of upper
Hessenberg form. This automatically implies that all iterates of the QR algorithm
are of upper Hessenberg form. Following the techniques in [14], assume that the QR
decomposition of the ith iteration in Algorithm 2.1 has proceeded to the point where

Ai siI QR Q ( Ri)
.()0

where "11](i) is upper triangular, Qi is unitary, ’22 is the 2 x 2 matrix

.(i) l a
22 a(i)- 1)n(n

"()
nn 8i

a is "large," and a(nn_l) and (i)
(ann si) are "small."

completed by annihilating the (n, n- 1) element:
The QR decomposition is

r(n-1)nrnn I
where

/ac a/
2 + an(n_l and s -() an

_
"n(n_l)/a + 1)"

It can be easily verified that after the formation of Ai+l,

a(i+l)
n(n- 1)

() )a (a() b" ()ann 8i n(n 1) )an(n-l)
a2 - a(i)2

n(n-1)

and

in(i+1
"(i)

(1) n(n-1)] - ,nn

]al
/ O(la(n-1)12)"

If the shift equals the nondeferred Rayleigh-quotient shift, the first term is zero,
implying that the convergence rate is quadratic.

Assume the Rayleigh-quotient shift is deferred for h iterations, where h > 0, so
,.(i-h)that s nn Assuming the method converges, a(n/n_l) -- 0 and nn

A(A). Hence la()n si ]a(:)n- a(:: h) in (1) converges to zero and the method is
a(i+l) (i)superlinearly convergent. Moreover, under the same assumption, (n-1)l

for large i.
()We now examine how quickly a converges to zero by boundingn(n--1) nn

If is a simple eigenvalue of A and a(n_l) O, then for largeLEMMA 2.2.
enough i,

a(i)nn --"1 < Cla(in-l> I,

where C depends on A and A.
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Proof. Partition

b(2i1)T a(n/)n

Without loss of generality, assume that : a(n/)n. Furthermore, assume that AI/1
is nonsingular. Then there exists a nonzero vector x (xT, x2T)T, such that

"’lhl(i)W .(i) A X2 0
’21 nn

where x2 is a nonzero scalar. Hence

(a() M)-()Xl --X2.’11 ’12,

() )x: -blXnn

and

a(i) h(i)T(A(i) i)_1(i)nn ’21 k’’11 ’12

If II(Ai AI)-1112 -< C for all sufficiently large, Lemma 2.2 follows with C

CIIAII2. Clearly, IIbi1)l12 la(inn_i) if A(i) is upper Hessenberg. The condition

that the norm of ((i) AI)- must be bounded for large is automatically satisfied,’11

if the method converges and is a simple eigenvalue, as we shall see in the next
section. D

It follows that for large i,

_(i-h) la(i) /1 -- ’l < n(n-1)l -- n(n--1) l--< 2Cla(n’(h-)l)l"nn --(tnn 1<, nn la(h) C’a() CIa(-h)

Combining (1) with Lemma 2.2 and the above equation yields Theorem 2.3.
THEOREM 2.3. Under the conditions of Lemma 2.2, there exists a constant K

K(A) such that for large i,

n(n--1) - gla(*(nl) I(-1)

3. Generalizations. We now treat the deferred shifting scheme more formally.
To do so, we adopt the notation and approach of Watkins and Elsner [17].

The QR algorithm is generalized in [17] as follows.

ALGORITHM 3.1. GR Algorithm
A0 A
for 0, 1,...

P+I(A) GR
A+I G: AiG

where Gi and Ri are nonsingular and upper triangular, respectively, and pi+ is a
polynomial. Since Ai (-lA0i, A(Ai) A(A0) for all i, where i GoG... Gi_.
For the QR algorithm, all Gi are unitary.

We will concentrate on GR algorithms that use deferred generalized Rayleigh-
A(i--h)quotient shifts, which compute pi+l to equal the characteristic polynomial of-’22
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Here h is the number of iterations by which a shift is deferred and Ai is partitioned
like

(2) Ai -’11
() a()

A(i) Ckkli E For simplicity, Pi+l is computed to equal the characteristic polynomial
of A(22 when < h.

DEFINITION 3.2. Let 8 and T be subspaces. Then the distance between them,
d(S, T), equals lIP8 P’]I2, where P8 and Pr are orthogonal projections onto , and
T, respectively.

The following theorem generalizes and formalizes the results in the previous sec-
tion for the GR algorithm.

THEOREM 3.3. Let {A} be the sequence generated by Algorithm 3.1 using deferred
generalized Rayleigh-quotient shifts with polynomials of degree m n-k and deferring
parameter h. Let (Al,... n} be the eigenvalues of Ao, partitioned into two disjoint
sets, A (,...,k) and A2 (Ak+l,...,An), and let the eigenvalues in A2 be
nondefective. Define T to be the invariant subspace corresponding to A1 and let , be
the subspace spanned by the first k columns of. Assume () <_ k, some positive
constant. Then there exist e > 0 and C > 0 so that if d(,i, T)

_
e, 0 <_ i <_ h, then

d(8i, T) -- O, and

(3) d(8i+h+l, T) <_ Cd(,i+h, T)d(Si, T).

If, in addition, one or both of the following conditions are true:

(i) IIAII2 IIAi)II2 and A is normal for all i, or

(ii) IIAII2 -IIAi)ll2 and all eigenvalues of A are simple,
then if e is small enough,

(4) d(Si+h+l, T) <_ Cd(Si+h, T)d(S, T)2.

Here a((i) denotes the condition number of (i.
Note that in the case of the QR algorithm a((i) 1 for all i. Also, if the QR

algorithm is applied to a symmetric matrix, condition (i) is met.
This theorem generalizes Watkins and Elsner’s Theorem 6.3 [17] as follows:

In the case of general or normal matrices, some of the eigenvalues of A are
only required to be nondefective as opposed to all having to be distinct.

Deferred shifting is included.
Furthermore, we choose to formulate the theorem as a local convergence theorem, since
the condition that the starting matrix must be close to convergence (d(S, T) < e)
can typically be met by first iterating using an unshifted GR algorithm, i.e., by taking
pi+l(Ai) Ai and setting A0 Ai once the iteration has converged sufficiently. In
practice, shifting from the start typically leads to convergence. Precise conditions can
be derived from [17].

The following key lemma allows us to relax the restriction made in [17] requiring
the eigenvalues to be distinct. It is essentially a generalization of Lemma 2.2.

LEMMA 3.4. Let A, G Cnn and

BIIB G-lAG
B21 B22
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where Bll e Ckk, F(@) . Let )(Bll) {]Zl,...,k} and ,(B22) {]Zkq-1,...,
#n}. Then there exists e e(A,k) such that 11821112 <_ e implies that A(A) {A}
can be ordered so that

where

min min "k
,ke,k(A) E (A)

If {A1,... ,Ak} V {Ak+l,... ,An} } and Ak+l,... ,An are nondefective eigenvalues,
then there exists a constant C C(A, k) such that

(6) IA- #1 <- CIIB21112, k < i <_ n.

If, in addition, either of the following conditions are true:
(i) ]1B12112 IIB21112 and B22 is normal, or
(ii) IIB12112 IIB21112 and all eigenvalues of A are simple,

then there exist : (A,k) <_ e and C C(A,k) such that IIB21112 _< implies that

for the same ordering of the eigenvalues.
Proof. Let QHBQ D + N be a Schur decomposition of B, where D is diagonal

and N is strictly upper triangular. By Theorem 7.2.3 in [6], if # E A(B + E) and p
equals the smallest positive integer such that Np 0, then

min IA #1 - max(O, 0l/p)
AA(B)

where

p--1

i---O

Since IINII: <_ IINIIF <_ IIBIIF <_ F(a)IIAIIF, and p <_ n,

n--1

o _< IEIle IAII.
i--O

Clearly, e e(A, k) can be chosen so that IIEII _< implies that max(0, O/P) < 12.
A continuity argument similar to the one used for Gershgorin discs [19] shows that
the eigenvalues {,k} of A can actually be paired with {#}, the eigenvalues of the
perturbed matrix B + E, so that I,k -/z < 5/2. Taking

-B21 0

completes the proof of (5).
For the second part, assume that A E {Ak+l,..., An} is nondefective and has mul-

n Btiplicity m. There exists a unitary matrix Q22 c(n-k) (n-k) such that Q22 22Q22
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022 + N22, where D22 is diagonal and N22 is strictly upper triangular. Moreover, the
diagonal elements of 022 can be assumed to be ordered so that the rn eigenvalues of
B22 closest to A equal the last m elements on the diagonal of 022. Then

0 Q2H2 B
0 Q22 Q2H2B21 D22 + N22

Repartition

(J11 J12 /B= /)1 /)

where B22 e C"x’. Clearly, [[B2111. lIB21112 <- e.
By the first part of the proof of this lemma, with

( o 0)E -J21 0

we know there exists an ordering of {#i}, the combined eigenvalues of A(/)ll) and
A(B22), such that [Ai-#i < 5/2. However, by the first part of this lemma, # e A(B22)
implies that [#- A] < 5/2, since the eigenvalues of/)22 equal the eigenvalues of B22
closest to A. Also, I/2- A[ > 5/2 for all # E A(B11).

If OH/)11)11 D1 -[-/rll then11

(8)

I1(/)11 A)-1112 _< I1(/)11 AI)-lll2II(I + (Dll AI)-111)-1112

2n-i (2 )i 2n--I (2
,=o

   (a)llAIl 

m 1, k IIAII.
i:0

Since A is a nondefective eigenvalue of B, rank(B11- AI) rank(B- AI) n-m
and there exists a matrix Y Cmx(n-m) such that

Y(/)ll-I /)12)-’- (/)21 /22--/I)

Hence/)22 AI =/)21(/)11 )I)-1)12. As a result, # A(/)22) implies that

(9)

where

Since A can be any element of {Ak+l,... ,,n}, (6) follows.
If condition (i) of Lemma 3.4 is met, then N22 0 and (7) follows from (9), with

C 2/. The proof when condition (ii) holds follows from Lemma 6.4 and the proof
of Theorem 6.5 in [17]. rl

Lemma 3.4 allows us to bound the difference between the eigenvalues of the
submatrix from which a shifting polynomial is computed and the eigenvalues of the
original matrix. In the context of the GR algorithm, the bound equals a constant
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multiple of II (i)-21112 provided the original eigenvalue is not defective and the method
is already close to convergence.

The proof of Theorem 3.3 invokes several results from [17]. For the reader’s
convenience, we now state the relevant results from that paper.

Lemma 3.5 relates the distance of the subspaces after coordinates have been
changed to the distance between the original subspaces.

LEMMA 3.5. Let 8 and 7" be two subspaces of Cn of the same dimension, let
V E Cnxn be nonsingular, and let V-IS and 7 V-1T. Then d(S,T) <
2(V)d(, ’).

The next lemma indicates the effect of one step of a shifted subspace iteration
when the matrix is of special form, namely block diagonal.

LEMMA 3.6. Let (el,...,ek} and ll- (ek+l,...,en}, let Cn be a
k-dimensional space such that

(10) / {0},

and let fl d(,, -) < 1. Let T Cnn be a block diagonal matrix T diag(T1, T2),
where T Ckk; let p be a polynomial such that p(T1) is nonsingular; and let
,’ p(T). Then

d(,’, ’) <

Conditions under which (10) holds are given by the following lemma.
LEMMA 3.7. Let and be subspaces of Cn of the same dimension, and let l

be the orthogonal complement of. Then N {0} if and only if d(,, -) < 1.
One final technical lemma links the convergence of the subspace Si to the conver-

gence of iterates Ai to upper triangular form.
LEMMA 3.8. Let A Cnn, and let 7" be a k-dimensional subspace of Cn which

is invariant under A. Let G Cnn be a nonsingular matrix, and let be the space
spanned by the first k columns of G. Let B G-lAG and consider the partitioning

Bll B12 )B
B21 B22

where Bll E Ckxk. Then

IIB2112 2x/2()llAII2d(S, ).

We are now ready to prove the main result.
Proof of Theorem 3.3. We first show that if e is small enough, d(Si, 7") <_ and

d(Si+h, T) < e implies that

(11) d(S+h+, 7") < Cd(Si+h, :T)d(S, 7").

Restrictions on e are indicated throughout the proof.
Since P+h+(A+h) G+hRi+h,

Pi+h+l (A)+h +h+lR+h
and

S+h+l P+h+l (A)Si+h.
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Let A X-1JX be a Jordan decomposition, J diag(T1, T2), where

T diag(Jml(,kil),..., Jm(’i)) and T2 diag(,kk+l,...,

Let X-1Si, X-I- (el,... ,ek} and/ (ek+l,..., e,). Then

8i+h+1 Pi+h+ (J)Si+h.

Lemma 3.5 implies that d(,i+h, ) <_ (X)d(Si+h, T) <_ (X)e and hence if e is small
enough, Z d(,i+h,’) _< V/2. This implies that i+h C?/ {0} by Lemma 3.7,
and thus we can apply Lemma 3.6 to obtain

(12)
d(,i+h+ ) < [Pi+h+ (T2)1121 ]Pi+u+ (T1)- 1112x/i-2_

<_ 2(X)d(Si+h T) lpi+h+ (T2)11211Pi+h+l (T1)-11 ]2.

Since T2 is diagonal, we can bound

max

Note that Pi+h+l(/j)= YI=k+(/j (i) )(i) {#i)}=-, ), where A(A and A(A(2)

In order to bound Aj (i)
--t , k < n, note that Ai lA0i and hence

Lemma 3.8 implies that

()11--2 I1 -< 2/2(O,)ltAol12d(S, 7") <_ 2v2[lAol12d(,5,

Defining 6 as in Lemma 3.4, if e is small enough, Lemma 3.4 implies that the eigen-
values of AI and A(2 can be ordered so that

(13)

and there exists a constant C1 such that

(14) IA-/z) _< CIIIA) <_ C12x/-k2I}A}12d(S T), k<l<n.

Since

[A (i)

if e _< 1/(C2x/k2), in which case

(15) I]P/h/I(T2)II2 (311AII2)-C12x/&211AII2d(,:T).

Finally, we bound

(16)
IIp+1(T1)-ll12 _< max_ IIp+h+l(Jm(Aj))-l[12

O<j<_k
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From (13) we know that

min min [A-#)[>/2.
l</<k l_j_m

By using techniques similar to those used to prove (8) in Lemma 3.4, we can bound

(17) [[(gm(Aj (i) -1,) <
Mm((5/2)-, (5/2)-M),

where M mjgmj. Combining (12), (15), (16), and (17) proves (11). Finally,
an induction argument can be used to show that if e < 1/(2C), d(S, T) e for all i,
d(Si+, T) < d(Si, T)/2 for all i, and hence d(Si, T) 0.

If condition (i) or (ii) of Theorem 3.3 is met, then (14) can be replaced by

(18)

and (15) by

IlPi+h+I(T2)II2 <_ (311AII2)m-lc18kIIAII22d(Si, T)2.

Combining (12), (19), (16), and (17) proves (4).
If A0 has a multiple eigenvalue, there is no guarantee that the m chosen for the

degree of the polynomial pi+l is greater than the multiplicity of the eigenvalue. This
poses no problem, as is shown by the following theorem.

THEOREM 3.9. Let A E A(A0) have algebraic and geometric multiplicity m
n-k. Let {Ai} be the sequence generated by Algorithm 3.1 using deferred generalized
Rayleigh-quotient shifts with polynomials of degree < m and deferring parameter
h. Partition the eigenvalues of Ao into two disjoint sets, A1 {A1,...,Ak} and
A2 {A,..., A}. Define T to be the invariant subspace corresponding to A1 and let
qi be the subspace spanned by the first k columns of Gi. Assume that ()

_
k, some

positive constant. Then there exist e > 0 and C > 0 so that if d(qi, T)

_
e, 0

_
i

_
h,

then d(q, T) --. O, and

(20) d(Si+h+l, T)

_
Cd(Si+h, T)d(Si, T).

If, in addition, [](i) a(i) and ()--12 ]]2 I] --21 ][2 -22 is normal for all i, then

(21) d(,i+h+l, T) <_ Cd(qi+h, T)d(Si, T)2’.

Proof. It suffices to show that if e is small enough, d(q, T) _< e and d(qi+h, T) <_
implies that

(22) d(Si+h+l, /)

_
Cd(qi+h, T)d(Si, T).

Again, restrictions on e are indicated throughout the proof.
The proof is identical to the proof of Theorem 3.3, except for the bound on

m [Pi+h+(Ay)[ [2.
k<jn

Partitioning

](i) ](i)
--21 -22



190 R.A. VAN DE GEIJN

where (i) C,,-22 E we can bound

max IlPi+hTl(’j)]12 I]Pi/h/l()ll2 <

where -’k--11 and n know that if}j:l (a(2i)2) {#i))j:n_+ From (9) welj
e is small enough,

Since

xr()for all # E -’w-22 ),

n--Cn< _n

and (22) follows by carrying this change through in the proof of Theorem 3.3.
a(i) a(i) and A is normal follows similarly.The proof when ,--12 2 ,--2 I]2

4. Convergence rates of deferred shifted methods. Naturally, we would
like to compare the convergence rates of the deferred shifted algorithm to the nonde-
ferred shifted algorithm. We concentrate here on the nonsymmetric case.

The Q-convergence rate of a sequence is defined follows.
DEFINITION 4.1. Let {x} be a sequence that converges to limit x*. Then the

sequence is said to converge with Q-convergence rate of at least 7 if there exists a
X* X* ]T.constant C > 0 so that for large k, ]Xk+l Cxk

Theorem 3.3 shows the Q-convergence rate of the nondeferred shifted GR algo-
rithm to be quadratic (T 2), while, if the conditions for (4) are met, the convergence
rate is cubic (T 3). In general, it is not possible to find the Q-convergence rate of
deferred shifted methods. However, there is a related convergence rate that does allow
us to perform the comparison.

DEFINITION 4.2. Let {xk} be a sequence that converges to limit x*. Then the
sequence is said to converge with R-convergence rate of at least T if there exists a
sequence that bounds {xk- x*[) and converges to zero with Q-convergence rate T.

(This is an alternative definition to the one found in [10].)
To find the R-convergence rate of the deferred shifted algorithm, we need the

following well-known result.
THEOREM 4.3. Let {Xk } be a sequence that convewes to limit x*. If there exists

ko such that for k ko,

(23)

where K and m are constants, then the sequence has an R-convergence rate of at least
T, where T is the unique positive root of

(24) th+l th m O.

The proof of this theorem is a generalization of the proof of Theorem 9.2.9 in [10].
An immediate consequence of Theorems 3.3 and 4.3 is now given.
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FIG. 1. Convergence rate of the deferred shifted GR method as a function of h.

COROLLARY 4.4. Under the conditions in Theorem 3.3, the R-convergence rate
of the GR algorithm with deferred shifts equals at least Th, the unique positive root of

(25) th+l th 1 O.

a(i)If for each iteration, 1112112 IIAI) II and A( is normal, then the R-convergence
rate equals at least h, the unique positive root of

(26) th+l th 2 O.

In particular, T1 (1 + X/)/2 and 2.
The expected deterioration of the convergence rate is plotted in Fig. 1.
As the deferring parameter h increases, we expect to require more iterations

before the method in the previous section converges. We now theoretically estimate
the amount by which we expect the number of iterations to increase and compare this
result with timings from numerical experiments.

The increase in the number of iterations can be estimated as follows: Eventually,
the convergence can be modeled by d(qi+l, 7") _< Chd(Si, /-)’, where T Th. Letting
k kh be the number of iterations required to obtain the same amount of reduction
as one iteration of the nondeferred algorithm, we find that k must satisfy

C(hl-’r)/(1-’r)d(i, K)"r’ Cod(S, T)2,

where T Th is the convergence rate of the deferred method. Hence

1 Tk

1--T
log(Ch) + T

k log(d(,Si, 7")) log(C0) + 2 log(d(Si, 7")).

If i is large enough, log(d(S, T)) will be negative and large in magnitude, and the
terms involving Ch and Co can be dropped. After canceling log(d(Si, T)), we find
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6- projected
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FIG. 2. Projected factor by which the number of iterations required for convergence of the GR
algorithm is multiplied vs. ratios of computation time of the deferred and nondeferred double shifted
QR algorithm, as a function of deferring parameter h.

that

kh , log(2)/log(’r).

Hence the total number of iterations required can be expected to increase by a factor
log(2)/log(Th), reported for different h in Fig. 2.

5. Numerical experiments. To test the effects that deferred shifting has on

convergence, we coded a simple double-shifted implicit QR algorithm, which incor-
porates deflation and deferred shifting with variable deferring parameters, along the
lines of Algorithm 7.5.2 in [6]. When this algorithm is executed with h 0, the shift
is not deferred, and the execution time is comparable to that of the EISPACK code
HQR2. The total computation time was measured for 10 random test matrices of
dimension 50 50 generated much like the test matrix for the LINPACK benchmark.
The matrices were first reduced to upper Hessenberg form, which we did not consider
part of the algorithm.

In Table 1, we report the convergence of the a(n-1)(n-2) element for various
deferring parameters h for one of the random test matrices. The convergence rates
for each iteration are estimated by -rh

(i) 1og’[a(n_l)(n_2))/(i) log(al11))_(n-2) ") They
compare favorably with the theoretical results.

In addition, we report the ratios of computation time for the deferred algorithm
divided by computation time for the nondeferred algorithms in Fig. 2. It is not
surprising that the predicted constant by which the number of iterations required for
convergence differs from the measured ratio of the computation times of the deferred
versus nondeferred shifted algorithms. After all, while one of the elements of the
first subdiagonal converges to zero with convergence rate as predicted in the previous
section, the other elements of the first subdiagonal tend to zero as well, although much
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TABLE 1
Convergence of element b(i) ali2_l)(n_2 of a 50 50 random matrix for various deferring

(--1)

final row gives the theoretical R-convergence rate.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

Th

h--0

7.1e-01
6.4e-01 1.28
5.9e-03 11.60
7.0e-05 1.86
9.2e-09 1.94

2.00

h-1

Ib()
7.1e-Ol
6.4e-01
1.5e-01
3.9e-03
2.6e-04
7.2e-07
4.3e-li

1.28
4.26
2.94
1.49
1.71
1.69

1.62

h=5 h-- 10

Ib(’) %(’) Ib(01 ,)
7.1e-01 7.1e-01
6.4e-01 1.28 6.4e-01 1.28
1.5e-01 4.26 1.5e-01 4.26
1.1e-01 1.17 1.1e-01 1.17
3.1e-02 1.57 3.1e-02 1.57
2.3e-02 1.08 2.3e-02 1.08
6.1e-03 1.36 6.1e-03 1.36
1.0e-04 1.80 4.8e-03 1.05
9.8e-06 1.26 1.3e-03 1.25
1.3e-07 1.37 1.0e-03 1.03
4.8e-09 1.21 2.6e-04 1.20

2.1e-04 1.03
1.1e-06 1.62
2.0e-07 1.13
3.4e-09 1.26

1.29 1.18

more slowly. As a result, if the deferred shifted algorithm takes longer to reach the
point where the first deflation can occur, the iterate is typically closer to convergence
after deflation than the iterate would be after deflation when the nondeferred shifted
algorithm is used. This effect is more obvious as the deferring parameter h increases,
since as h gets large, the algorithm behaves like an unshifted QR algorithm.

6. Conclusion. Deferring the shift allows iterations of the algorithm to be pipe-
lined, potentially permitting more efficient use of the processors of a concurrent com-
puter [12], [15]. However, 4 and 5 show that the convergence is clearly affected by
deferring the shift. Whether there is a benefit depends on the specifics of the parallel
implementation of the algorithm.

It should be noted that pipelining iterations results in one more complication: the
order in which deflation information becomes available will likely require deflation to
be delayed just like the shift. This could increase the number of iterations required,
since convergence may not be detected until after a new iteration has started. Again,
the details of the parallel implementation will determine whether this offsets any gain
that resulted from pipelining the iterations.

The main theorem in 3 also shows that the local convergence of nondeferred
shifted QR algorithms and their generalizations is quadratic or cubic if the matrix
is symmetric or other conditions are met. This remains true even if the matrix has
multiple eigenvalues, as long as they are nondefective. This implies that the usual
convergence rates can be expected even if the QR algorithm works with a full matrix
which has nondefective eigenvalues that are not necessarily simple. In fact, Theorem
3.9 shows that the convergence rate may even improve if an eigenvalue has multiplicity
larger than unity.

In addition to the generalized Raleigh-quotient and deferred shifting strategies,
the statement of the GR algorithm allows other strategies. After all, Pi+l(X) can be
chosen however the user pleases. For example, let Ci+l(X) represent the characteristic
polynomial of A22. One possibility would be to choose pi+l (x) ci+2 1 (x), the square
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of the characteristic polynomial. A straightforward modification of Theorem 3.3 will
show that under the same conditions, the convergence rates for the nondeferred shifted
QR algorithm are 3 and 5 for the nonsymmetric and symmetric case, respectively.
Naturally, this can be generalized to Pi+l (x) ci+l (x), leading to convergence rates
of r d- 1 and 2r d- 1, respectively. In the future, we intend to pursue this strategy,
perhaps combined with deferred shifting.
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BOUNDS ON PERTURBATIONS
OF GENERALIZED SINGULAR VALUES AND

OF ASSOCIATED SUBSPACES*

REN-CANG Lit

.Abstract. The sensitivity of the generalized singular value decomposition of a matrix pair to
perturbations in the matrix elements is analysed. It is shown how the chordal distances between the
singular values and the angular distance between the generalized singular spaces can be bounded in
terms of the angular distances between the matrices. The main results are generalizations of several
results on the standard singular value problem.
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1. Introduction. The generalized singular value decomposition (GSVD) for a
matrix pair of two matrices with the same number of columns was proposed by Van
Loan in 1976. This article addresses the following question: when a matrix pair is
perturbed, by how much can its generalized singular values (GSVs) and subspaces
associated with its GSVD change? This problem was first analysed by Sun in 1983.
(Paige also gave a bound for GSV variations in 1984.) Our main results that are
different from those of Sun and Paige are generalizations of several results on the
standard singular value problem.

Throughout the paper, capital letters are for matrices, lowercase Latin letters are
for column vectors or scalars, and lowercase Greek letters are for scalars; C"n is
the set of m n complex matrices; b/n C C is the set of n n unitary matrices,
C" Cml, C C1; is the real number set. The symbol I() stands for the
n n unit matrix, and 0m, for the m n null matrix (also we just write I and 0 for
convenience when no confusion arises). AT, AH, and A+ denote the transpose, con-
jugate transpose, and Moore-Penrose inverse of A, respectively. 7(X) is the column
space, the subspace spanned by the column vectors of X, and Px is the orthogonal
projection onto the column space 7(X). It is easy to verify that

Px XX+, Px X+X.

We will consider unitarily invariant norms I1" of matrices. In this we follow [34,
pp. 74-87]. To say that the norm is unitarily invariant on Cmxn means it satisfies,
besides the usual properties of any norm,

(1) IIUAVll- IIAII, for any U E Hm, and V E ’n.
<2> IIAII IIAll2, for any A C"xn, rank A 1.

Two unitarily invariant norms used frequently are the spectral norm II" li2 and the
Frobenius norm I1" IIF.
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In this paper, very often matrices with different dimensions enter our arguments
together, so we adhere to the agreement made on [34, p. 79]. In this way, we have

(1.1) for any C E Cmxn D Cnx

This inequality will be used extensively below Henceforth, the symbol II" without
any subscripts is reserved for a unitarily invariant norm.

For any A C.mx’, its singular value decomposition (SVD) may be written as
(see, e.g., [34] and [7])

(1.2) A UVH, E diag (al, a2,... ),

where U b/m, V L/n, and crl _> _> 0 are singular values (SVs) of A. With
the help of SVD, any unitarily invariant norm can be written as IIAII--
where is a symmetric gauge function (see, e.g., [23] and [34]). The set of SVs of
A is denoted by a(A). Due to the numerical stability of SVD, it has been applied to
a variety of practical problems with moderate dimensions. It is an especially major
tool for solving ill-conditioned problems in linear algebra. There are quite a number
of excellent papers written for various topics relating to SVD and its applications in
the literature; see, e.g., [7], [8], [9], [22], [23], [27], [34], [36], [40], and other references
therein.

Motivated by SVD, Van Loan [381 and Paige and Saunders [25] suggested several
forms of the GSVD of two matrices having the same number of columns. GSVD
immediately attracted the attention of a number of numerical analysts. Now, a few
algorithms for its numerical computation are available, and applications to practical
problems are also being made; see, e.g., [10], [12], [13], [14], and [38].

As to the perturbation theory for the standard singular value problem, the follow-
ing result has been known for nearly thirty years. It was proved by Mirsky [23] with
the help of a powerful theorem for Hermitian matrices of Lidskii [21] and Wielandt [42].
Let A, A Cmxn, and let OZl .’. 2 Ceq and 1 ’’" q (q min{m, n}) be their
SVs, respectively. Then for any unitarily invariant norm I1

(1.3) I]diag (OZl 1,...,

Also, Wedin [40] has generalized the celebrated Davis-Kahan sin 0 theorems [4] relating
to the invariant subspaces of two self-adjoint operators to cover the SVD. A problem
which naturally arises is how the generalized singular values (GSVs) and associated
subspaces behave under a perturbation. In 1983, Sun [30] gave a detailed analysis
of this problem. In that paper, he generalized several noted results for the standard
singular value problem. Although [30] is an excellent paper, there are still a few
questions left to be answered. For example, the generalization of (1.3) to cover
general unitarily invariant norm is still open. Part I of this paper is written for this
purpose.

The paper is divided into two parts. In the first part, we concentrate our attention
on the perturbations of GSVs, and in the second part we focus on the perturbations of
subspaces associated with GSVD. The main idea comes from Li’s recent papers [17],
[18]. Our results are completely different from those in Sun [30].

Now, we outline definitions relating to GSVD. Readers are referred to Sun [30]
for the motivations of these definitions.
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DEFINITION 1.1. Let A, B E Cnxn. A- AB is called a regular matrix pencil
of order n if det(A- AB) 0 for A e C. A complex number pair (a,/) (0, 0) is
termed a generalized eigenvalue of a regular matrix pencil A-AB if det(/A-aB) 0.
Denote by A(A, B) the set of the generalized eigenvalues (counted according to their
algebraic multiplicities) of A- AB.

DEFINITION 1.2. Let A CmXn and B C.pXn. A matrix pair {A,B} is an

(m, p, n)-Grassmann matrix pair (GMP) if rank A

DEFINITION 1.3. Let {A, B} be an (m, n,p)-GMP. A nonnegative number-pair
(a, ) is a GSV of the GMP {A, B} if

(a, ) # (0, 0), det(/2AHA a2BHB) O, , >_ O,

(1.4b) (a, ) (x/, vffi), where (A, it) e A(AHA, BHB) and A, it >_ 0.

The set of GSV of {A, B} is denoted by a{A, B}.
The fact we should bear in mind in giving (1.4b) is that for H, K Cnn,

H, g _> 0, if (A, it) e A(H, g), then ([A[, lit[) e A(H, g).
Clearly, if {A,B} is an (m,p, n)-GMP, then AHA- ABHB is a definite matrix

pencil, i.e., xHAHAx + xHBHBx > 0 for all 0 x C, and vice versa. The definite
pencil AHA-ABHB has n generalized eigenvalues, hence GMP {A, B} has n GSVs. A
well-developed perturbation theory for the generalized eigenvalue problem of definite
pencils is available; see, e.g., Sun [31], [32]; Stewart [28]; and Li [17]. Perturbation
bounds for the generalized singular value problem can be obtained with the help of the
close relation between the two problems. However, the bounds obtained in this way are
often unsatisfactory, just like the perturbation bounds for the SVs of a single matrix A
obtained through the perturbation bounds for the eigenvalues of the Hermitian matrix
AHA. So special attention deserves to be paid to perturbations for the generalized
singular value problem.

GSVD has several forms in the literature. In this paper, we adopt the following
form (see Van Loan [38], Paige and Saunders [25], and Sun [30] ).

THEOREM 1.1 (GSVD). Let {A,B} be an (m,p,n)-GMe. Then there exist ma-
trices U Llm, V Llp, and Q Cn n nonsingular such that

(1.ba) UHAQ- A, VHBQ-

where

(1.bb)
(1.5c)

A diag (a, a2,... ),
B diag (... flu-l, fin),

meaning that EA is zero except for the diagonal starting in the top left corner (leading
diagonal), and B i8 zero except for the diagonal finishing in the bottom right corner
(trailing diagonal), am+l an 0, if m

_
n; 1 n-p O, if p

_
n;

2 2 i--12 n.and a, >_ O, a + -1,
By Definition 1.3, we have a{A, B} { (ai,/i), 1, 2,..., n} for the (m, p, n)-

GMP {A, B} in Theorem 1.1.
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LEMMA 1.1. If (A, B} is as described in Theorem 1.1, then for any unitarily
invariant norm I1" II,

where Z (AB)"
Proof. Bearing rank Z n and Z+Z I in mind, we have

VH Z.

Now, from the above equations, (1.1), and

(1.6) follows. C]

Remark 1.1. We note that in order to have rank n, m + p >_ n. When m 4-p n
we can choose Q Z-1 and get a trivial GSVD with

(1.7) a{A,B} {(1,0),..., (1,0), (0, 1),..., (0, 1)}.

We use the chordal metric on the Riemann sphere to measure the difference be-
tween two generalized singular values, and metrics on the Grassmann manifold to
measure the difference between two matrix pairs (see Sun [29]-[35] and Li [16]-[18]).
For (,) = (0,0), (3’,5) : (0,0), the chordal distance between the two points is
defined by

(1.8) p( (a, fl), (-),, 5) aCd

Let X, Y E Cmxn (m > n) both have full column rank n, and define the angle
O(X, Y) between X and Y as [34]

(1.9) O(X,Y) de_=y arccos((XHX)_1/2XHy(yHy)_IyHX(XHX)_1/2)_ 1/2 >_ O.

Here and in the following, A > 0 (A >_ 0) denotes that A is a positive definite (non-
negative definite) Hermitian matrix. A1/2 is the unique positive definite (nonnegative
definite) square root of A >_ 0; and A-l2 (A1/2) -1 for A > 0. The difference
between these two points in the Grassmann manifold can be measured by appropri-
ate unitarily invariant norms of sin O(X, Y) or of Px PY. The reader is referred to
Lemma 3.1 below for the relations between the unitarily invariant norms of sin O(X, Y)
or those of Px PY.
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LEMMA 1.2. Let X, Y e 12mn (1 _< n <_ m- 1) have .full column rank n.

Suppose that Y (Y, Y1) E Cmm is a nonsingular matrix with

y-1
$1H

S CmXn.

Then for any unitarily invariant norm

Ilsin O(X, Y)Jl II(SS1) -1/2 sHX(XHX)-1/2 Ii"
Lemma 1.2 is now well known. For a proof of it, the reader is referred to, e.g., Li

[17, Lemma 2.1].
Throughout this paper, (A,B} and (A, B} are always reserved for two (m,p, n)-

GMPs except when otherwise stated.

Part I. Perturbation bounds for GSV. In 2 we study a geometric repre-
sentation of a GSV and pairing problems for two sets of GSVs. The former is similar
to the statements in [17] for a real generalized eigenvalue, and the latter may be of
general interest apart from the role it plays in this paper. We present the main results
concerning GSV in 3 and give their proofs in 4.

2. Geometric representation and pairing. By Definition 1.3, it is evident
that every GSV can be represented by a pair (a, ) of real numbers and satisfying

(2.1) c, >_ 0, 2 + 2 1.

Thus a 1 to 1 correspondence between the set of GSVs and a quarter-circular arc F of
the unit circle is established in the following way. (c, ) satisfying (2.1) corresponds
to a point z F, as shown in Fig. 1. Therefore, every z F determines a number pair
(a,) satisfying (2.1) by its coordinate. Moreover, (a,) determines a unique angle
0 O(a, fl) arccos a arcsin fl, (0 _< 0 <_ ). For convenience, in the following text,
we treat z and (a, ) equally and write z (a, fl). The symbol F is always reserved
for the quarter-circular arc.

Fic. 1. Geometric representation: z (a,f).
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Given (, ), (-, 5) corresponding to z, w E F, the notation

means

(2.3) 0((, D) < 0(/, 5) (0(c, ) < 0(-),, 5));

and the notation z w (z w) means that (2.2) holds. We will use the notation
(zwv) to mean that the points z, w, v F appear in the order z w v. Similarly,
we can deal with more than three points. A distance on F is defined by (refer to (1.8))

d(z, w) ).
It is ey to prove that (F, d) is a complete distance space (see Proposition 2.1 below).

PROPOSITION 2.1 (Li [17]). Let (, ), (, 6) be two GSVs. Then

p( (, fl), (, 6) ) sin 0(, fl) (7, 6).

Now, we consider the pairing problem for two sets of GSVs.
PROPOSITION 2.2. Let (,) and (Tj,6j), i,j 1,2,... ,n be 2n GSVs ar-

ranged in increasing order, respectively, i.e.,

(1,) (an,#n) and (71,61) (Tn,6n).

Then

(2.5) min max p( (aj, j) (’(j), 5(j)) max p( (aj, j) (j, 5) ).
"r _j_n j n

The minimum in (2.5) is taken over all permutations of {1, 2,..., n}.
Proposition 2.2 may be of great importance. The reader will find that all our

bounds in 3 involve permutations of {1, 2,..., n}. GenerMly, except for their exis-
tence, they are unknown. Proposition 2.2 may be the only result now vailable which
tells us what the exact permutations are in a few cases (refer to Theorems 3.1 and
3.2, Corollary 3.1, Remark 3.1, nd Lemmn 4.2). An insight into the importnnce of
Proposition 2.2 can also be learned by noting some fcts arising from the perturbation
theories for the standard eigenvalue and singular vMue problems. Recall that for 2n
real numbers at ... % an and %-.- % n, we have

max j min max aj %(j),
ljn ljn

and more generally, for any unitarily invariant norm [[-[,

min]diag (1 (1),""", n (n))

where min, is taken over all permutations of {1, 2,... n}. If ai and j are no longer
real but may be complex, the situation becomes very complicated, and the above two
equations are no longer true. The fact that we have not yet completely solved an open
problem [23] of extending the well-known Weyl-Lidskii theorem (see, e.g., [a4]) to the
spectral perturbation of a normal matrix should be partially attributed to the fact
that we do not know what a proper pairing of 2n complex numbers is. (Much work
on such extensions has been done by several mathematicians; see, e.g., [1] and [2].)

The following proposition will help us to finish our prooN for the nonsquare ce
in 4.
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PROPOSITION 2.3. Let (hi,) and (/j 5 ), i, j 1, 2,... n, be 2n GSVs; let
p, q >_ 0 be two integers; and define

i=

(OlnTpTj, n+pTj) (/n-t-p-t-j, n-i-p+j) (0, 1), j 1, 2,..., q.

Also, let # be a permutation of (1, 2,... n + p + q}. Then there exists a permutation
T Of (1, 2,..., n} such that for any unitarily invariant norm I1"

(2.6)
Ildiag (p( (o/1, 1), ("y/(1), /(1))),... ,p((Ol.n-l-p-l-q,n-t-p-t-q),

_> [[diag (p((Cl,l), (V,r(1), ,r(1))),... ,p(

In order to keep the paper fairly short, we do not give the details of the proofs of
Propositions 2.2 and 2.3, which are based on constructive arguments.

Proposition 2.2 solves the problem: Find a permutation T of {1, 2,..., n} such
that

(2.7)
min max p( (a, y) (3’t,(), 5.()) )

tt l<_j<_n

min Ildig (( (1, ), (%(1), 5,(1))),... ,p((n,n),

[[diag (p((1,1), (,(1), e,(1))),... ,p((n,n), ((n), e,(n)) ) ) [[ 2
m p( (aj, j) (7r(j), 5r(j)) ).
ljn

Let g and u be two permutations of {1, 2,... n} with the property

(O/q(1),q(1))
_____

(O/(n),(n)) and (’u(1),(u(1))
___

then T =/]q-1 is a solution to the problem. In other words, - satisfies (2.7). Generally,
there is no global solution (independent of I1" II) to the optimization problem

(:.8) minlldiag (p( (o/1, 1), (’)’it(i), (tt(1))),... ,p((Oln,n), (/tt(n), (tt(n))) )ll

if the minimum is taken over all permutations of {1, 2,... n}. To see this, we give
a counterexample: n 2, Zl (al, 1) (1, 0), z2 (a2, 2) (,./-/2, 1/2),
wl (’1,51) (1/2, v/-/2), w2 (72,52) (0,1), and I1" I1" liE- It is easy
to verify that Zl - z2, Wl -< w2. Therefore , u and T ug-1 are all the identity
permutation of {1, 2}. Only two permutations exist: one is the identity permutation
w, i.e., w(i) i for i 1, 2; the other is # defined by #(1) 2, #(2) 1. It is easy to
verify that

Ildiag (p( (0/1, ), P( (0/2,

2
< 1= Ildig (p((0/1.1). (tt(1).(tt(1))).p((C2.2). ("//t(2).(.(2)))
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whereas

lldig (p( (a, 1), (), 6))),p( (,), (<), 6)) ) )II 

Remark 2.1. ]. ]2 is unitarily invariant, and for . ]2, Proposition 2.3 is
corollary of Proposition 2.2. To see this, we note that the spectral norm of a diagonal
matrix is the mimal modulus of its diagonal elements (refer to (2.7)), and that the
values of the qualities before in the inequality (2.6) re reduced if the permutations
p are replaced by those optimal ones obtained analogously to the permutation T of
Proposition 2.2 by arranging (,,,) and (Tj, j) in cending order. Under these
optimal permutations, (1,0) must be paired to (1,0), and (0, 1) to (0,1); and thus
(1, 0) and (0, 1) can be eliminated required. We note that for a general unitarily
invariant norm, Proposition 2.3 may not be regarded a corollary of Proposition 2.2
(refer to the counterexample above).

Remark 2.2. Proposition 2.3 plays an important role in our proofs in 4. In
fact, in order to complete our proof for the ces m n and/or p n, we augment
A nd B of an (m,p, n)-GMP {A,B} suitably to a bigger GMP {A,B}, with A, B
being square, and a{A,B} being a union of a{A,B} with a few (1, 0) and/or (0, 1).
Proposition 2.3 guarantees the possibility of removing the added (1, 0) and/or (0, 1)
from the bounds via those for the ce m p n (refer to 4).

3. Main perturbation theorems for GSV.
THEOREM 3.1. Let {A,B} and {A,B} be two (m,p,n)-GMPs, and leta{A,B}

{(a,,fl,),i 1,2,...,n} and a{,} {(Gj,j),j 1,2,... ,n}. Then there
exists a peutation of {1, 2,..., n} such that

m p( (aj, j) ((j), .(j)) ) sin O(Z,(a.1)
1

where

B
EC(re+p)n.

THEOREM 3.2. The conditions and notations are as described in Theorem 3.1.
Then there exists a permutation # of {1, 2,..., n} such that

(.) ( (,) ((), ()) ) <- sin (Z,
j--1

For two square matrix pairs, we have Theorem 3.3.
THEOREM 3.3. To the assumptions of Theorem 3.1, we add that m p- n.

Then there exists a permutation of {1, 2,..., n} such that

(.) ( (,) ((), ,()) )
ljn

u,v 2

We present two corollaries obtained from Theorems 3.1 and 3.2. But first we need
the following lemma.
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LEMMA 3.1. If X, Y e Caxt (q > t) have full column rank t, then P:(Y
X)(yHy)-1/2 Py(Y-X)(XHX)-1/2 and sin O(X, Y) have the same nonzero singular
values, where P: I- Px, and Py I- Py. Moreover if their nonzero singular
values are al, a2, the nonzero singular values of Py- Px are al, al, a2, a2,

Therefore,

IIPY PxII2 IIPx(Y X)(yHy)-1/2112 IIPy(Y X)(XHX)-1/2112
(3.5a)

II sin O(X, Y)112,
(3.5b)

1
IlPy PxllF ]]Px(Y- X)(yHy)-1/2]IF --IIP(Y- X)(X’X)-1/2l[F

]] sin O(X, Y)I]F.

Proof. Choose U E b/q such that

0 Y2

Obviously, X1 is nonsingular. Thus we have

X Y Ctt.

PY Px y(yHy)-lyH X(XHX)-IXH

U (YI(YIHy1 + Y2Hy2)-IYIH I(t)

Y2 (YIHyI + Y2Hy2)- Yy
and

(PY Px)H(PY Px) (PY Px)2

(3.6)

On the other hand, from

follows

P U ( 0
0

1(1" + y’Y:)-yy )Y2 YlI-Iy1 -1- Y2Hy2 Y2H
UH

o )Y2 YIHy1 -1- Y2HY2 Y2H
UH

(P(Y X))(YHy)-I(Px(Y X))H

-U( 0
0

Note also that

0 )Y2 YyYl -[- Y2tIy2 Y2I-I
UH_

Y2 YYY1 k- Y2Hy2 Y2H)

_
Y2Hy2 YyYI ’F YyY2) -1_
I Y1HyI YYY1 -- Y2Hy2) -1A_ I YI YIHyI + Y2Hy2 yI-I

and

sin20(X, Y) I yI-Iy + Y2Hy2 1/2YYI yHy + Y2Hy2 1/2

= _A(sin20(X, Y) )
_
I YI-Iy yI-Iy1 + Y?Y2)-1)

A_(I- YI(yHy1 + Y2I-Iy2)-IYIH),
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where A(.) denotes the set of nonzero eigenvalues of a matrix. From (3.6) and (3.7),
we deduce that if the nonzero singular values of Px(Y X)(yHy)-1/2 are hi, a2,

..., then so are those of sin O(X, Y), and moreover, those of Py Px are hi, hi,

O’2 SO

IIPY exII2 IIP:(Y X)(yHy) -1/2 I1 sin O(x,
1
IIPY PXIIF IIP(Y X)(yHy)-1/2 IIF II sin O(X, Y)IIF.

These prove the first equations in (3.5a) and (3.5b). By a symmetry argument, other
equations in (3.5) also hold. [3

COROLLARY 3.1. The conditions and notations are as described in Theorem 3.1.
Then there exists a permutation T of {1, 2,... n} such that

(3.8) max p( (aj, y) (-r(j), fl-,-(j)) )
l<_j<_n

< min {ll(- Z)(H)-1/2 112, [[(2 Z)(ZHZ)-1/2112 }
COROLLARY 3.2. The conditions and notations are as described in Theorem 3.2.

Then there exists a permutation # of {1, 2,..., n} such that

(3.9)
j--1

< min {I](5 Z)(22)-1/2 liE, I1( Z)(ZHZ)-1/21IF}.
The inequalities (3.1) and (3.3) correspond to two inequalities for perturbations

of the ordinary SVD. Let A, A e Cmn, with a(A) {al,... ,aq} and 0-(A)
{l,...,Gq}, q- min{m,n}. We also assume a _> _> a _> 0 and 1 >_ _>

>_ 0. Then

max
l_j_q

q

j=l

which are nothing but the inequalities (1.3) for the special unitarily invariant norms

I1" 112 and I1" liE. The generalizations (3.1) and (3.3) of (3.10) and (3.11) are new. A few
other generalizations have appeared in the literature. Sun [33] proved the following
generalization of (3.10):
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under the condition that

max i I[(’ A)x[l + II(J- B)xll
c IIAzll -+-IIBxll2

and for (3.11), Sun [30, Thm. 2.1] gave the following result:

H 1- p((cU,C/j), (G,(j),/(j)))
2

j=l

detZHI 2... }1/2det ZHZ det ZHZ

from which follows [30, Corollary 2.1]
(3.14b)

j--1

< n 1
det ZHZ[2

det ZHZ det ZHZ

2 2 "2 2Also, Paige [24], along the lines of [30], proved that if a + /i aj +/3j 1,
i, j 1, 2,... n, then there exists a permutation r of {1, 2,... n} such that

(3.15) E (hi -(j))2 + (3j (j))2 < min IIZo 2oQ[IF,
j=l

QE/A,

where Z0 Z(ZHZ)-1/2 and 0 2(H2) -1/2 As can be easily seen, the right-hand
side of (3.15) involves a minimization over all Q E L/n. Thus it would be very difficult to
compute, although the minimization may always provide a good estimation, so Paige
[24] also gave (in our notations): if Z1 E C.(m+p)x(m+p-rO such that (Z0, Z1) Ltm+p,
then

(3.16) 1121Hz011F min IIZo- oQIlF _< VII2HZoIIF IIZo- 011F.
QEbt

Now, we are in a position to compare those bounds with ours. First we consider
the case for I1" [12. When m p n, it is easy to see that (3.4) is the best one among all
bounds. It is extremely difficult for us to relate the right-hand side of (3.12a) to that
of (3.8) and to sin O(Z, Z)II2 as well. Therefore, we are unable here to say exactly
which one of (3.12a) and (3.8) is better than the other and which one of (3.12a) and
(3.1) is better as well. As to (3.12b), from

II(ZHZ)- 112 the smallest singular value of Z- IIZ+[[2,

11(2 Z)(ZHZ)- 112 _< 112 ZII2II(ZHZ)- 112 IIZ/lll12 Zll,

it follows that (3.8) improves (3.12b), and so does (3.1).
For the case of I1" IIF, we could not compare (3.14a) to ours and to (3.15), but

comparisons can be done if (3.14b) is used instead of (3.14a). A rather detailed
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comparison was conducted by Paige [24], whose conclusion is that the bound (3.15)
(cf. (3.16)) is always just about as effective as the bound (3.145). However, for large
n the reverse cannot be said, i.e., for large n there is a possibility that the right-hand
side of (3.14b) is quite large, while that of (3.15) remains small. Now we show that
(3.3) and (3.15) are almost equivalent, but independent. To this end, we note [24,
(2.11)]

By Lemma 1.2, it follows that for any unitarily invariant norm

Now, it will not be difficult for the reader, with (3.16)-(3.18) in mind, to derive a bound
of the kind (3.15) via (3.3) and vice versa. The derived bound of one kind via the other
is slightly weaker than its original by a factor v/. Comparing (3.9) with (3.15) seems
to be somewhat troublesome. We end our comparisons with the following typical
example [17], [31]: let {A,B} be an (m, p, n)-GMP, and {A,B} {(1 +r)A, (1 +r)B}
its perturbed GMP. In this example, a{A,B} a{A,B} and the right-hand sides
of (3.1), (3.3), (3.4), (3.123), (3.14), and (3.15) are all zero, thus those inequalities
produce the best estimates. Those of (3.8), (3.9), and (3.12b) may be very large if r
is chosen badly. This says that metrics on the Grassmann manifold have their own
advantages in measuring the differences between two GMPs.

In short, we can say that our bounds are completely different from and at least
as effective as, if not better than, those of Sun and Paige. Also, ours are formulated
in an elegant way in very simple and intuitive terms.

Paige [24] and Sun [35] also included discussions on the case when {A, B} is not an

(m, p, n)-GMP, i.e., rank AB) < n. In my opinion, the GSVD problem for such a case
should be regarded as an ill-conditioned one, as any small arbitrary perturbation to A
and B may change the rank of (AB). The situation is quite similar to the generalized
eigenvalue problem for singular matrix pencils [12], [13], [36]. Thus, without imposing
any additional assumptions such as

A
rank (B)=rank (),

it is almost impossible for us to develop a perfect perturbation theory for GSVD of
{A,B} with (AB having no full column rank. The work done by Paige [24] and Sun
[35] is indeed valuable for understanding the behavior of GSVD of a non-GMP in the
presence of perturbations.
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Remark 3.1. The reader may notice that we have used the same symbol T in
(3.1), (3.4), (3.8), (3.12), (3.14), and (3.15) for several permutations. This is not a
result of our carelessness, but is intentional. Recall that ([24], [35]) all these T’S can
be given explicitly, as we noted after (2.7). This is not the case for tt in (3.3) and
(3.9). Generally, T and # are different (refer to the counterexample at the end of 2).

Remark 3.2. The bounds (3.10) and (3.11) can be obtained from (3.1) and (3.3)
using a special limiting procedure. Such a procedure has also been used to derive
the perturbation bounds for the standard eigenvalue problem and for the standard
singular value problem via bounds for generalized problems; cf., e.g., Stewart [28],
Sun [29], and Li [17]. We omit the derivations here.

We have given perturbation bounds in the two special unitarily invariant norms

I1" 112 and I1" liE. Now, we consider the case when a general unitarily invariant norm
is employed.

THEOREM 3.4. The conditions and notations are as described in Theorem 3.1.
Let

(3.19)

Then there exists a permutation of { 1, 2,... q} such that for any unitarily invariant
norm I1" II
(3.20) ][diag (p( (o1, ]1), (u(1), u(1))),... ,p((Olq,q),

2

where

q=2n, if m <_ n and p <_ n;

q +
(a2,+i,/32,+i) (2,+, 2,+j) (1, 0), 1 <_ i,j _< 2(p-n), if m <_ n < p;

q 2n + 2(m- n),
(O2n+i, 2n+i) (2n+j, 2n+j) (0, 1), 1 <_ i,j <_ 2(m- n), if m > n >_ p;

q 2n + 2(p- n) + 2(m n),
(a2n+i,2n+i) (2n+j,2n+j) (1,0), 1 <_ i,j <_ 2(p--n),

=(0,1), l<_i,j_<2(m-n),

ifmn

and p > n.

The appearance of (ai, i) and (j, j) (i, j > n) in this theorem makes it un-

satisfactory, since the permutation u may pair some of the (ci, i) (i _< n) to some

of the (, j) (j > n). Therefore, it will be important to find a permutation u with
the property (i) _< n, i 1,2,... ,n, such that (3.20) holds. On the other hand,
when max{m, p} > n quite a few (1, 0) and/or (0, 1) that are not GSVs of the pairs
considered intrude themselves into (3.20). This also makes (3.20) unsatisfactory. The
reader will find in 4 that in the derivation of Theorems 3.1 and 3.3 there are also
the same intruders (1, 0) and/or (0, 1). Fortunately, Propositions 2.2 and 2.3 help us
to eliminate them. So, we intend to eliminate (1,0) and/or (0, 1) in the right-hand
side of (3.20) by choosing suitably. If we, indeed, could do all these, then Theo-
rem 3.4 would become definitive. To this end, any answer (positive or negative) to
the following conjecture would be helpful.
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CONJECTURE. Let (ai, ) and (j, ), i,j 1, 2,..., n, be 2n GSV, and let

(an+i, Z,+i) and (n+y, n+j) (i, j 1, 2, n) be defined by (3.19), and be a
permutation of {1, 2,... 2n}. Does there exist a permutation # of {1, 2,... n} such
that for any unitarily invariant norm I1" II,

E

Ildiag (p( (0/1, ]1), (v(1), ,(1)) ),..., to( (O/2n, 2n), (v(2n), (2n)) )11’

where E diag (p( (Cl, 1), (tt(1), (1))),... ,P((On,n),
If there is a positive answer to this conjecture, elimination of (1, 0) (or (0, 1) from

(3.20) becomes possible. This can be seen from (and by the proof of) Proposition 2.3.
We finish with a corollary of Theorem 3.4, but first we need the following lemma.
LEMMA 3.2. The conditions and notations are as described in Lemma 3.1. Then

.for any unitarily invariant norm ][.

(3.21b)

Equation (3.21a) becomes an identity if I]" is the trace class norm, i.e., the sum of
all the singular values of a matrix.

Proof. Let (I)(.) be the symmetric gauge function associated with the I1" II. Then
by Lemma 3.1, we have

I]gy gxII--- (I)((71, (71, (72, (72,...)_
(I)((71,0, (72, 0,... -- (I)(0, (71,0, (72,..-)

This establishes (3.21) and means that (3.21) is an equality if ]1" is the trace class
norm.

COROLLARY 3.3. The conditions and notations are as described in Theorem 3.4.
Then

(3.22)

4. Proofs of Theorems 3.1-3.4. Before proving Theorems 3.1-3.3, we give
five lemmas, the first four of which may also be of independent interest.

LEMMA 4.1. Partition X E bln as

X__. (Xll X12) Xll E CkgX21 X22
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If k + g > n, then IIx11II2 1.

Proof. It follows from k + g > n that

, (XllX-21) R/’ (I(k)o)# O,

in other words, there exist g E C, h E Ck with Ilgll llhll 1 such that

(Xll) (I(k)) de/

X21 g--
0

h x.

Obviously, Ilxll 1. On the other hand

( ) (Xll)Xll =: IlXlllle > hH I(k), 0) X21
g xHx 1.Xll I(k), 0

This, together with the fact IlXlll _< Ilxll 1, leads to IIXl1112 1. rn
2 2 "2 2LEMMA 4.2. Suppose that ci, i, j, j >_ O, a + li aj + j 1, i,j

1,2,... n, and set

A diag (CI, an),
and(4.1)

ft diag (1, n),
diag (1,... n),
diag (fl, n).

Let U, V be two n x n unitary matrices.
{1, 2,... n} such that

Then there exists a permutation T of

(4.2) max p( (aj, j) (0), 0)) ) < IIiU5 avails.
l<_j<_n

Remark 4.1. An alternative formulation of (4.2) is

min max p((aj,j) (it(j),it(j))) min IIAU avXIl .
It <_j <_n U, VElgn

This is because permutation matrices are also unitary.
A proof of Lemma 4.2 using Lemma 4.1 was implied in the proofs of Proposi-

tion 3.4 in Li [17]. But in the special case of Lemma 4.2, for convenience, we give an
easy proof here.

Proof of Lemma 4.2. Without loss of generality, we assume that

(O/1,1) "__ "’"--__ ((n,/n) and (1,/1) _--4 ..._ (n,n).
Choose an index t satisfying

(4.3) ? def= l<_j<_nmaX p( (a, 3), (,) p((at,3t), (t,t) ) > O.

If r] 0, then (4.2) becomes trivial. So we assume also > 0. The possible relative
position of (at, t) and (t, t) on F is one of
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By a symmetry argument, it suffices to consider the first case, i.e., (at, t) -< (t, ).
Denote by

)0i 0(cn,Zi), Oj 0(, i,j 1,2,... ,n.

It is ey to verify that

(4.4)

(4.5)
min ai ot cos

max fli fit sin Or,
l<i<t

Next, we partition A, t2, A, t2, U, and V as

max j t cos Or,
t<j<_n

min j fit sin Or.

A diag (AI, A2),
A diag (A1, A2),

f/= diag (f/I,
f/= diag (fi, t22),

AI, ’1 Ctxt,

A1, 1 E C(t-1)x(t-1),

and
t--1 n--t+l t--1

U-- (gll g12 ) g-- (Viin--t U21 U22 n-t V21
Therefore,

E dry AU t2VX ( A1Ul1-1 fllVllA1
A2U21I 2V21X1

which yields

n--t+l

V22

A1U122 1V12A2 )A2Ug.2f12 122Vg.2A2

(4.6) IIEII Ilhl U129 flVxeAelle.
We will now prove that the right-hand side of (4.6) is greater than or equal to 7. From
(4.5) it follows that

(4.7)
[IA-ltl min ai cos0t,

l<i<t

max fli sin0t,112
l<i<t

IIA2112 max j cos0t,
t<_j<_n

I1;111-1 min j sin0t,
t<_j<_n

and by Lemma 4.1, it follows that

U, V Ct(-t+)

t+(n-t+ 1) =n+ 1 >n

Combining (4.6) with (4.7) and the above equations produces

IIEll: _> I]iiUx2t22112- IIt2V12A2112

sin Ot cos Ot cos Ot sin Ot

sin(0t Or).

By (4.4) and (4.3), this is exactly what we need.
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LEMMA 4.3. The conditions and notations are as described in Lemma 4.2. Then
there exists a permutation # of {1, 2,... n} such that

n

j--1

<-1 [IIAU nv.ll / IIAV5 nUXlI]
Proof. Denote U (uiy), V (vii). Then (A denotes the real part of the

complex number )

IIAga- aVAll + liAVa- agAII 2
F

i,j

Z )(11 +

( + + Iv 1-(lul
i,j

+
i,j

where

H-- (hij) de--f ( ’uijl2-[-lvij[2)2
is, evidently, a doubly stochastic matrix [22]. Thanks to the celebrated Birkhoff theo-
rem: every doubly stochastic matrix is a convex combination of permutation matrices
(see, e.g., Marshall and Olkin [22], [34, pp. 85-86]), and by a technique used fre-
quently (see Hoffman and Wielandt [11] and Sun [29]), we can prove that there is a
permutation # of (1, 2,... n} such that

n

j=l

j=l

which yields (4.8) in a straightforward way.
Remark 4.2. It can be seen from the above proof that (4.8) can be reversed in

the sense that there is a permutation of {1, 2,... n} such that

1 [IIAU5- fV-II / IIAV5- fUll](4.9)

-< }2
j=l
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Readers may also find that the assumption a + N2 2
cj + j 1 is not essential. If

this assumption, indeed, does not hold, it is sufficient to replace the left-hand side of
(4.8) by

and the right-hand side of (4.9) by

n

j=l

Then (4.8) and (4.9) with the modified left-hand side and right-hand side, respectively,
remain valid.

Remark 4.3. Similarly to Remark 4.1, we see that Lemma 4.3 and Remark 4.2
yield the following results:

min E P( (aj. flj). (.(j). L(J)))
2

j=l

min
1 [[]AU ftV_[[ + []AV fU_l[] 1/2

U, VLI,

and

max
1

mffx E P( (a, j), (-(j), ()) ) 2.
j=l

LEMMA 4.4. The conditions and notations are as described in Lemma 4.2. Let
(Ogn+i,n+i) and (n+j,/n+j) (i,j 1,2,... ,n) be defined by (3.19). Then there
exists a permutation of {1, 2,..., 2n} such that for any unitarily invariant norm

Ildiag (p( (01,/1), (u(1), (1))),... ,p( (o2n,/2n),
< - Ildiag (AU fWX, AV fuX)
-2

Proof. Set I I(n) and

(4.10) One=/ 1 (V V)’a2_/ 1 (I I)ay_/ 1 (I -I)xfl U -U x/ I -I x/r I I

An easy verification shows that , I", f E/2n, IH IH, i"2 I(2n), and

(4.11) I
h -A a
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Note that

A
A

diag (AUfl flVA, AVfl 9tUA)I,

so by (4.11),

A

Now, a result from Li [19] completes the proof. [:1

LEMMA 4.5 ([4, Chap. II, Thm. 5.1]). Suppose X E Cn is partitioned as

X
X21 X22

then for any unitarily invariant norm I1" we have

Now, we are ready for the proofs.
Suppose that (re, p, n)-GMP {A,B} and {A,B} have the GSVDs

UHAQ E,UHAQ EA,
and(4.12) VHBQ EB, HQ E,

where Y]A and Y]B are defined by (1.5b) and (1.5c), EA and E are also defined by

(1.5b) and (1.5c), but with ai, fli replaced by , fli, U, V e L/m, and V, V Up,
2 2mQ, Q Cx are nonsingular. Suppose also, without loss of generality, that c +/3

j-2 + 1, i, j 1, 2,... n. Define A, f, A, f by (4.1).
We first show our theorems for the square case, i.e., m p n.

For this case EA A, EB ft, E A, ft. It is easy to verify that

BHVUHA AHUVHB Q-HfAQ-1 Q-HAfQ-1 0

:=(BHVUHA AHUVHB)Z+ O,

therefore,

(BHVUHA- AHUVHB)Z+

-(BHVUHA- AHUVHB)Z+ + (BHVUHA- AHUVHB)Z+_,.
UVH (Pz- P).
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Because rank Z n, Z+Z i(n), postmultiplying both sides of the above equation
by Z leads to

(4.13) BHVUH) AHUVH _(BH, -AH) ( VUH uv. ) (Pz P )2.

Inserting (4.12)into (4.13) we obtain

(4.14)

Now, by VHV 6 J[n, UHU 6 n, and Lemma 4.2, it follows that there is a permutation
T of {1, 2,..., n} such that

IIPz P 112 > IIEII2 ]1AVH5 gtUHII2 > max p( (%,) (.(.i), ’()) )
<_j <_n

which is (3.1).
To prove (3.3), we have, by interchanging the positions of {A, B} and {A, B} in

(4.14), that

ff.) ( u
which gives

(4.15) AUHU- tVHVA

(h, Ft) ( UH v.) (Pz-P ) (
In the above derivation, the fact that Pz and P are Hermitian is employed (see, e.g.,

[34, p. 106]). Now, by VHV E bin, UHU bin, and Lemma 4.3, it follows that there
is a permutation # of {1, 2,... n} such that

n

(4.16) I]EI, + I,F,] _> 2E [p( (aj,/j), (,(i), ()))]2
j=l

We also have

(4.17)

-IIPz
v.) ( 5

since

Inequality (3.3) is a consequence of (4.16) and (4.17).
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In order to prove (3.4), we note that

ZHZ AHA + BHB Q-HQ-1, ZHZ Q-HQ-I

Q1 Q-(ZHZ) -1/2 e 11, 1 (--1(2H2)-1/2 e /n.

Therefore, from Lemma 4.2 and Proposition 2.2 (see Remark 2.1), it follows that there
is a permutation T of (1, 2,... n} independent of U and V such that

Since U, V1 are arbitrary unitary matrices, and the equality above holds for some
special U and V1, we have proved (3.4).

To prove Theorem 3.4, it suffices to use Lemmas 4.4 and 4.5 with the two matrices
E and F defined by (4.14) and (4.15), respectively, and noting that E and F are the
two n n diagonal blocks of the following 2n 2n matrix:

E Ft -A

So far, we have completed the proof for Theorem 3.3 and proved Theorems 3.1,
3.2, and 3.4 for the case of m p n.

Remark 4.4. We describe how (4.14) and (4.15) relate to the projective matrix
spaces [26]. We note that the matrix space considered by [26] is all n 2n complex
matrices with full row rank n. Let {A, B} and {A, B} be two (n, n, n)-GMPs having
GSVD as described above. Then Z and Z defined by (3.2) are two 2n n complex
matrices with full column rank n, and ZH and ZH are two n 2n complex matrices
with full row rank n. We now want to show that the chordal distance x(ZH, ZH)
introduced by Schwarz and Zaks [26] as a generalization of the chordal distance of the
scalar case (refer to (1.8)) is nothing but sin O(Z, Z)II2; more specifically, we show

(4.184)

(4.18b)

x(ZH, ZH) --IIAVHV- UHUAll2 --IIAUHU- VHVA][2
sin O(Z, Z)[[2 IIPz P[12.

To this end, we see by easy verification that

are four 2n 2n unitary matrices. Thus, for any unitarily invariant norm ]]. [], by
Lemma 1.2 we have

[IsinO(Z, 2)11- [[sinO(ZQ, 2Q)[ (refer to (4.12))

{ au’OXll,
IIAUH  --aVH NII.
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For I1" I1" 112, this proves the first equation in (4.18b), while the second equation
follows from Lemma 3.1. The equation (4.18a) follows immediately from the definition
of x(ZH, ZH) in [26]. By the way, we point out an interesting result following from
(4.18). The reader can easily deduce that

(4.20)
]IAVHV -  UHUAIIu < IIPz P IIu, I[AUHUt- VHVAII2 <_ [IPz

In fact, we have already employed these two inequalities to prove (3.1). Equations
(4.18a) and (4.185) say that both equalities in (4.20) are always attained for some Z
and Z.

The rest of our proof is to reduce the case when A or B is not square to the square
case that has just been proved above by augmenting the considered matrices suitably
with zero block and unit matrices with appropriate dimensions and then applying our
theorems for the square case together with Proposition 2.3. For instance, we consider
the case: m > n and p > n. The augumentation is done as follows:

) (A Om+p--n,m--n B Om+v-n,p-n I(,_,)
(4.21)

( ) ( )A
I(p-n) BOm+p--n,m--n B- Om+p-n,p-n i(m_n)

from which we have

a(,} {(1,0),..., (1, 0),,} U a{A, B} U{(O, 1),... (0, 1)},
p--n m--n

a{A,B}- {!1,0),..., (1, 0)} Ua{,/} U{,(O, 1),.... (0, 1)}.
p--n m--n

We leave to the reader to fill in the details.
We have completed the proofs of Theorems 3.1-3.4.

Part II. Perturbation bounds for generalized singular subspaces. This
part is organized as follows. We outline the background of the problem in 5, based on
material from Sun [30, 1]. Our main results are discussed in 6 and 8 according to
the different features of the results. We will clarify these features in the two sections.
The proofs of those results in 6 are given in detail in 7, while the proofs of those in

8 are only outlined in their own section.

5. Preliminaries to generalized singular subspaces. Let {A,B} be an

(re, p, n)-GMP, whose GSVD is given by (1.5). We take a natural number g satis-
fying

(5.1) max{n p, 0} < g < min{m, n}.
From (1.5) we obtain formally

n-g g m-g
oA Q1, Q u, u

m--g 0 A22
(5.)

t n-

B(Q1,Q2)-(V1, V2)xP+-n Nil 0

,- 0 B
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and

(5.2b)
n-- 0 A

BH(V1, V2) (P1, P2) x

p+g--n n--g

o Bg

Here (U, U2) and (V1, V2) are unitary matrices; Q (Q1, Q2) and

n--

(5.3) p Q-H ( P1, P2 )

are nonsingular matrices. Motivated by (5.2) and (5.3), Sun [30] suggested the follow-
ing definition.

DEFINITION 5.1. Suppose that {A,B} is an (m, p, n)-GMP and (5.1) holds for
a natural number t. Let A’l E Cm, A’3 and A’4 E be subspaces of dimension g; let
A’2 CP be a subspace of dimension p+ t- n. Then {A’j,j 1,2,3,4} forms a set of
generalized singular subspaces (GSSSs) for {A,B} if

(5.4) AA’3 C ,’, B,’3 C ,’2, AH,I C ’4, BH,2 C ,4.

Clearly, according to (5.2) and (5.3), the subspaces A’ 7(U1), A’2 T(V),
X3 7(Q), and A’4 T(P) form a set of GSSSs for {A,B}. Further, [30] also
proved that if there is a set {Xj,j 1,2, 3, 4} of GSSSs of {A,B} as described in
Definition 5.1, then there exist unitary matrices U (U, U2) and Y (V1, V2) and
a nonsingular matrix Q (Q,Q2) with ,’1 (Vl), ,2
and A’4 n(P) such that formally we have decompositions (5.2) and (5.3), where
{A, BI } and {A22, B22} are (g, p + n, g)-GMP and (m g, n g, n g)-GMP,
respectively.

In the sequel, we assume the (m, p, n)-GMP {A,B} has the decomposition (1.5),
and that (m, p, n)-GMP {A,B} has the same decomposition with notation marked
with tildes, e.g., corresponding to U, we have U1.

Note that in this paper we do not require the blocks A, Bll, in (5.2) to
be diagonal as we did with the corresponding blocks in (1.5). Moreover, we do not
require P1 and Q to have orthonormal columns as Sun did [30], we only require the
completed matrices P and Q to be nonsingular.

Now, we define

def def(5.5) O1 O(U1,51), 02 def O(gl, 1), O3 O(Q1, 01), 04 de.__f O(P1, 1).

By Lemma 1.2, we have

[Isin O1 I[ I[ 52/-/U1 [l’
I]sino ll- [[  QlOll,
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Here

(5.7) Pj0 Pj(PfP)-1/2, Qo Q(QQ)-1/2, j 1,2,

and thus PoPjo QQo I, similarly for Pjo and Qi0.
In the theorems of 6, as well as those of 8, there is an essential assumptionman

assumption on the separations of two sets of GSVs.
Let F1 and F2 be two connected arcs on F which separate each other as shown in

Fig. 2, where Fj is the arc corresponding to the angle Oj, j 1, 2. It is easy to verify
the following.

FIG. 2. Separation.

DESCRIPTION I (Li [17]). In Fig. 2,

min p((a, ), ("/ 5)) sin al
(,)er
(,5)er.

Besides, there are two other descriptions.
DESCRIPTION II. There exist a >_ 0, 5 > 0, a + 5 <_ 1, such that

(5.9) max d(w, (0, 1) <_ c and min d(z, (0, 1) > c + 5.
weF2 zF1

For Fig. 2, it suffices to choose a sin 02, ( + 5 sin(02 + ). Description II was
used by Sun [30] for establishing perturbation bounds for GSSSs.

DESCRIPTION III. There exist a >_ 0, 5 > 0, ( + 5 _< 1, such that

(5.10) maxd(z, (1, 0) _< c and min d(w, (1, 0) > a + 5.

For Fig. 2, it suffices to choose a sin 01, C -- ( sin(01 + p).
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PROPOSITION 5.2. The above three descriptions are equivalent. Moreover, if
Description II or III holds, then Description I holds with

(.) ( + ),/ V/ ( + ).
According to the standard sense for a distance between two sets with respect to

a metric, r/, as well as , , and , which will be introduced in 6 and 8, is more
reonable than b in describing gaps, and it would be better not to refer to , in the
finM bounds. Although Sun’s bounds [30] could be related to W without referring to, (see our discussions at the end of 8), Sun [30] indeed used to describe it and
regarded it the gap between two sets of GSVs. It is ey to verify the following:

(2a + )1 (a + )2 < (a + )1 a2 + al (a + )2 < (2a + )1 a2

11 2a+5
>

1- ( +)
>
( +) + ( +) 1-"Given a set consisting of several GSVs, we hereafter prefer to use the notation

C FI (or C F2), which means that all points in F corresponding to elements of
belong to FI (or to F2).

6. Perturbation theorems for GSSSs. In this section, we are only concerned
with establishing bounds for unitarily invariant norms of sin Ol and sin

THEOREM 6.1. Let {A,B} and {A,B} be two (m,p,n)-GMPs with the decom-
positions (5.2) and (5.3), ,nd u (u1, u) v (v,, v)
o t,t {,1,11} {(,), 1,,... ,e} .{,} {@,),j
+ i,..., n}, with F1 and F2 as shown in Fig. 2 and with as defined by (5.8). If

(6.1) a{A11,B11} C rl, a{A22,B22} c F2,

then .for any unitarily invariant norm I1"

(6.2)

(6.3)

r/>O,

sin O < 1- lll
max ilsinOll < _1 max
i=1,2

Here Z and Z are defined by (3.2).
Among all unitarily invariant norms, [[. lie often attracts additional attention due

to its own properties. Here this is also the case.
THEOREM 6.2. Let {A,B} and {A,B} be two (m,p,n)-GMPs with the decom-

positions (5.2) and (5.3), and U (U1, U2) E Ltm and Y (V1, V2) hip. Sup-
pose that a{All,Bll} {(ai,i),i- 1,2,... ,g} and a{22,22} {(j,j),j-
g + 1,... ,n}. Let

def(6.4c) r2
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and

n_
dI min{, 7}

min{_, /}
min{, /1, /}

if m
_
n and

ifm<_n<p,

if m > n >_ p,

if m > n and

Then if > O, we have for the Frobenius norm IIF,

1
[llsinelll + sineell] 1/2 <_

sin 01]1 + sin o 11 11/2 _<

) (z 2)(znz)-1/2

Equations (6.4) and (6.5) also provide a description of the separation between
two sets a(A11, Bll and a(A22, B22 of GSVs. This description is much weaker than
that employed in Theorem 6.1 (cf. Descriptions I, II, and IiI in 5). In fact, if (6.1)
holds with end points of F1 and F2 being elements of a(All,Bll} or a(A22, B22},
then (6.4a) and (6.5) both hold with r/ - , but the reverse cannot be said,
because generally (6.4) and (6.5) in no way guarantee that there are F1 and F2 as
shown in Fig. 2 such that (6.1) holds. The definitions (6.4) and (6.5) have some
straightforward interpretations. Equation (6.4a) describes exactly how a(A,B}
and a(A22, B22} separate in the sense of the chordal distance. Equations (6.4b),
(6.4c), and (6.5) say that in some cases we should regard (1,0) or (0, 1) as GSVs
of a(Ail,BII} or of a(A22, B22}. In one way, the reader might think inclusion of
(1, 0) or (0, 1) unsatisfactory, but we think it is quite reasonable in view of (5.2) as

well as the GSVD described in Theorem 1.1. In fact, (0, 1) E a(A22,B22} if m < n,
while (1, 0) E a(A,B} if n > p, and in giving v] of Theorem 6.1, we indeed regard
(1,0) a{All,Bll} and (0,1) cr{A22,B22} as (1,0) F1 and (0,1) F2.

It can be seen that in the case of I1" I1" liE, (6.6) is formally just (6.2), but the
former is valid under much weaker conditions. The following theorem gives bounds
in a general unitarily invariant norm in terms of . Here a constant enters into our
bounds.

THEOREM 6.3. The conditions and notations are as described in Theorem 6.2.
Then there exists a constant c >_ 1 such that for any unitarily invariant norm I1" we
have

(6.8)

(6.9)

]1( sin01 sin 02 )
(sin01 sin02)
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We do not know what the smallest constant c that satisfies (6.8) and (6.9) is, but
thanks to Bhatia, Davis, and Koosis [3], we shall prove that it can always be chosen
so that

(6.10)
r j0 __sint dt < 2.91.c_< t

Theorem 6.2 tells us that for the Frobenius norm the best constant c is 1.
Remark 6.1. The assumption that there must be positive gaps, say 7, > 0,

between a{A11, Bll} and a{A22, B22} is essential. It is not difficult for the reader to
find an example with 0 or 0 for which small perturbations in A and/or B
lead to big angles O1 and O2 (refer to Davis and Kahan [4] and Stewart [27], [34] for
more intuitive insight on this matter).

7. Proofs of Theorems 6.1-6.3. Without loss of generality, let (m, p, n)-GMPs
{A,B} and {A,B} have decompositions (5.2) and (5.3)with

andA22) ( Bll )B22

being the matrices A and EB, respectively, described in Theorem 1.1 and partitioned
suitably, and with

(11 ) and (/11 )A22 B22
denoted by E2 and E, being the matrices obtained from EA and EB by replacing

aj, y by Gj,/j, respectively. Otherwise, for example, because {nyy, Bjy } is GMP, we
can find its GSVD, say MAyyLy Eaj and NBjyLy Ebj, where My and Ny are
unitary matrices with appropriate dimensions, and Lj is a nonsingular matrix, also
with appropriate dimension. Thus (5.2) becomes

A(QIL1, QLe) (UIM1, U2M2) (Eal
B(QIL1, Q2L2) (VIN1, V2Ne) ( Ebl

as required.
Set

(7.1) Eaj Ajj, Ebj Bjj, Y]aj Ajj, Ebj Bjj,

and set

(7.2) { A _--diag(A1,A2) de__f diag (al,..., On),
A1, 9tl E Ctt

t diag (’-1, 2) dej diag (jl, jn),

Similarly, we define A, , Aj, ’j, j 1, 2. It is easy to see that

(7.3) A1 Eal, A1 Eal, 2 Eb2, 2 Eb2.

We first consider the square case, i.e., rn p-- n.
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Now, besides (7.3), we also have A2 Ea2, A2 Ea2, ’1 ]bl, 1 ’]bl.
Identity (4.14) from 4 and

(7.4) AVHV- 12UHUA

A2Vf’yS1 2U2lX1
yields

A2v2Hvenf2 gt2U2U2A2

(1,-hi) (
Similarly, by (4.15) we have (cf. (7.4))

(7.5b) AuH’H52 nlVf2X2

yy ) (p P) (:

yf ) (P-P (
Similarly to (4.13) one may also get

AHUVH _(BH, -AH) ( VUHBHVUH

and thus

% fi2 E.

2 -X2 F.

(7.6a) AVHVh- FtUH= (Ft,-A) ( UH )V" (Z Zl(Z"Z)- (2

where Q Q-(ZHZ)-1/2 e bin (refer to the proof of Theorem 3.3 in 4). Therefore

(7.7a)

vf ) (z )(.)-"
By treating (A,B} and (A,B} equally, (7.6a) produces. ) (2 z)(znz)-1/2 O"
and thus

(7.6b) AUH- gtVHX Q(ZHZ)-1/2(Z- 2)H ( ]
where Q-I(ZHZ)-1/2 E bin. So

(7.7b) A1 glI-tg2"2 1vHV2A2
(i(), o)O(z.z)-1/2 (z 21" (5"
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holds.
We are now ready for the proofs. First, we prove Theorem 6.1.
It follows from the assumption (i,/i) E F1, i 1,2,... ,g and (j,j) E F2,

j g/ 1,... ,n that

(7.8)
IIA?XlI min I1 cosO,

l<i<g

112 max I/1 <- sin01,
l<i<g

e.-b <_j <_n

IIA211= max I1 _< cos(01 + ).
g+l<_j<_n

We claim that

(7.9)

>_ r/max { IIvH= II, IIUxH= II } ,,m=,allsin o,11.

If (7.9) holds, then (6.3)is trivial. We have to prove (7.9). In fact, if liyH=ll
IIu1H2[I, then with the help of (7.8), we have

(7.10a)

If, on the other hand, IIvWP=II <- IIv=ll, then again with the help of (r.s), we
obtain

(7.lOb)

Combining inequalities (7.10a) and (7.10b) leads to (7.9). As in the proof of Lemma 4.4,
to prove (6.2), we see that

(7.11) (A
where unitary matrices I and I are defined by (4.10) with I having appropriate di-

mensions, and

1 (UU2x=--
It is evident that (7.8) still holds with A, f, ’2, and A2 replaced by
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respectively. Therefore, as in (7.10a), one obtains from (7.11) that

(7.12)
1

All the SVs of UH2 and those of V1H2 are the same as those of sin O1 and those of
sin 02, respectively, so the SVs of

are the same as those of

thus

sin O1
sin2

It follows from Lemma 4.5 and

F A1 fl V1H 2 2-2
and

that

il i 42 2 -X2

VlH) (Pz ( )11"
Equation (6.2) is a consequence of (7.12), (7.13), and (7.14).

Now, we prove Theorem 6.2. Denote by VV2 -(vii), uIHU2 (uij), then,

(7.15)

Equation (6.7) follows in a straightforward way from (7.7) and (7.15). Identities (7.5a)
and (7.55) and inequalities (7.14) and (7.15) then yield (6.6).



PERTURBATION BOUNDS FOR GSVD 225

We now prove Theorem 6.3 for the square case. Again, (7.11) is the key. For the
fact that hi, i, j, j >_ 0, we easily see that

>_
for 1 l, g + 1 j n. So from Li [18, 4, Lemma 4.1], whichw proved by the
author using results due to [1] and [a], it follows that there exists a constant c 1,
which can be chosen such that (6.10) holds, so that (note E E and F F)

I[ (U 1 1
c. /

This together with (7.13) and (7.14) yields (6.8), and with (7.13),

and (7.7) produce (6.9).
We treat the ce when A or B is not square in the same way we did in 4.

For an example, suppose that m > n and p > n. Let A, B, A, B be defined by
(4.21). It is ey to verify that

where

and
A1 A2 (a2, 0), (0, ),

U AQ def I I I

5H Q
I

I ’2

AI= I
where

Moreover,

Y]a2, 0

def 51
I f2

1’ A2--(a2, 0), 1- (0, bl), 2-- 2

a{A, f} {(1,0),..., (1, 0)} o{AI,BI},
p--n

a{A2, f2} a{A22, B22) U{(.0, 1),..., (0, 1)}.
m--n

Therefore, if the conditions of Theorem 6.1 or those of Theorem 6.2 hold for {A, B}
and {A, B}, they also hold for (m + p n, m + p n, m + p n)-GMP {A, B} and

{A, B} with p- n + . The reader must finish the details.
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8. More perturbation theorems for GSSSs with comparisons. In this
section, we present not only more bounds for sin O1 and sin O2, but also bounds for
sin (3 and sin

A very interesting feature of Theorems 6.1-6.3 is that none of the bounds for
sin (1 and sin2 bear any relation to P and Q, or to 3 and Oh. This is not the
case for the theorems we will develop below. Another different feature is that here we
start by defining four residual matrices due to Sun [30] instead of (7.5)-(7.7) in 7.
But here, our derivation of perturbation equations from the four residuals seems more
elegant.

Assume now that we have (5.2) and (5.3) for (A, B} and (A, B}. Define

RA de Q1 U1All (- A)Q1,

(8.1)
R, Q VBxx (- B)Qx,

HA, HU PA (- A)HU,
def HRB, V PB ( B)HV.

Suppose more strongly that (5.2) and (5.3) are described in the beginning of 7 up
to (7.3). Assume for the moment that m p n. Then

(8.2) A=A,B=, A=A,B=j, j=1,2.

om (8.1) it follows that

(8.3) B de RB 2Q1 V,
Q PA,

BH

Therefore, we get

(S.da) C1 de=y _2__RA + X2__RB 522HUIA X2rfUl_l
(8.4b) C2 deAH B-A X2ffUlfl 2ffVA1,

63 de X2A + AHA1 XQ1- OyPIA,
64 def 2RB +BH 2HuP2 Q OPl,

(s.) c J ca -c4 Qa 5Q1,,
(S.b) C -5C +XC - -"Q PIA AeQe PI.

THEOREM 8.1. The conditions and notations are as described in Theorem 6.1.
Then

mx
i=1,2

v ) (z )o ,2+
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and

(8.7)

(s.s)

2H) (Z- 2)Q10 IIZ+ll2

( IQo

where Qjo, are defined by (5.7),

def(8.9) , min
(,r (. +)( +)
(a,mler.

If, instead of Description I, we use its equivalence, Description II, to describe the
separation between a{A11, B11} and a{A22, B22}, i.e., there exist a
1 such that
(8.10)

max p((K,j, j), (0, 1))

then

(8.11)

(8.12)

Proof. Without loss of generality, assume that {A, B} and {A, B} have decom-
positions as described in the beginning of 7 up to (7.3).

For the case of m p n, (8.6) follows from (5.6), (7.9), and (8.4), since by (8.1)
and (8.3), we have

C (ftl,-A1) __Rg = 11C211 _< II(al,-A1)ll

R__A
R___B ) RA

(i.R_. )
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and

(8..3)

(a.14)

vy ) (z )

=. ) (z )Qo

vf ) (z 2)Oo

Here we have used the following facts in the above derivation.

Inequalities (8.7) and (8.8) follow from the proof of (7.9) in 7 (see also Li [18]),
(8.5), (8.13), (8.14), Lemmas 1.1 and 1.2, and (5.6), since

and

C5 (2RA q- R__.AH A1)2 (2RB _+_ R__BH. )A

( _)(R _R.)( flA)+(RA" R’’)(’ -AI)21Al’
C6 -n22(A2RA + _RA, A1) + A(fl2RB + __RB-I)

A2fle(-fl2,A2) _RB
+ (fl,A) _RB- fll

which produce

(8.18)

RA

I(
1



PERTURBATION BOUNDS FOR GSVD 229

and

_RA

In the derivation of (8.18), we have noted

1
IIFAII2 maxc/3 <

r2H( B)Qlo ) IIZ+ 112,

VH( B)Q2o [Iz+ ]12.

and some other inequalities of the same kinds. In proving the last relation in (8.15),
we need

II(Q1HQ1)-1/2 I1-1-- (Tmin(Q1)

_
O-min(Q),

where O’min(’) denotes the smallest singular value of a matrix Inequalities (8.11) and
(8.12) follow from the second and the third equations in (8.3), (8.16), (8.17), and
(8.10), since a + 5 >_ r/, v/1 a2 >_ r/by (5.11), and

The proof of the theorem for the case of rn n or p - n can be given in an
analogous way to those in 7. We omit the details here.

The following theorem, in a somewhat similar spirit to Theorems 6.2 and 6.3, can
also be proved analogously.

THEOREM 8.2. The conditions and notations are as described in Theorem 6.2.
Then there exists a constant c >_ 1 such that .for any unitarily invariant norm I1" II we
have

sin O2 )

and

(8.o)

Ilsin Oall < c. :[12/ll=llZI}

(8.21)
1

[Isin 0411 C" =ll ll lIZ/ll 

2s(- A)Qlo ) Z+llv2H(B B)Qo
1 v/(z-2)o

U1H( A))2o
vH(B B)Q20 )

m/ax V/a/4 +/3/4 <_ 1,



230 REN-CANG LI

where

def
2 2Ol j 22

min
<< (+ 2 2 2
+<_<_ i )(% +)

aI 12y 022
+(: + o)( + Z)

2 rain
1<, (. + )(o + )’

and

(8.23) 0 < "-- min{_, }
min{_, 2}
min{,,2}

ifm <_n and p<_n,
if m <_ n < p,

if m > n >_ p,

if m > n and p > n.

Generally, c can be chosen so that (6.10) holds, but for I[" [1" [IF, (8.19)-(8.21) can
be improved in the following way: replacing c in (8.20) and (8.21) by 1 and

(8.4)

[11 sinOl[l + [I sin02[]] 1/2 <_

We have illustrated in detail in 6 how much weaker the gap (defined by (6.5))
is than r/(defined by (5.9)). Similar arguments hold for the weakness of defined by
(8.23) with respect to defined by (8.9). There is a straightforward interpretation
of the appearance of (cf. ). We now have an idea of how the generalized singular
value problem closely relates to the generalized eigenvalue problem for definite pencils.
Specifically, (a, fl) e a{A,B} = (a2,fl2) e A(AHA, BHB), the subspace spanned
by the column vectors of Q1, is an eigenspace of the definite pencil AHA- ABHB
belonging to the generalized eigenvalues (a2, fl), i 1, 2,..., , and so on. (cf. )
should then be regarded as a gap in a sense of the chordal metric between two certain
subsets of the spectra of the corresponding definite pencils, since for a, fl, , fl _> 0,

1
( (-, z), (:, Z:) ) _<

In this case, bounds (8.7), (8.8), (8.20), and (8.21) reflect on the hidden relation
between the problems, though it might be impossible to get these bounds via those
for the eigenspaces for definite pencils [17], [18], [32].

As to the sharpness of our bounds in 6 and 8, to our knowledge, it may be
impossible to know exactly which one is better than others. But generally we propose
that, apart from weak assumptions on gaps between certain sets of GSVs, bounds



PERTURBATION BOUNDS FOR GSVD 231

(6.2), (6.3), (6.6), (6.7), (6.8), (6.9), (8.6), and (8.19) are equally effective. They may
be only a constant factor apart. For sin 03 and sin Oh, bounds (8.7) and (8.8) may be
much less sharp than (8.11) and (8.12). To see this, we note

and approaching 7]2 indeed occurs in some cases. Thus, if 7] is also very small,
then the right-hand sides of (8.7) and (8.8) must be much larger than those of (8.11)
and (8.12). Why should we bother to establish (8.7) and (8.8)? We argue that (8.7)
and (8.8) are of theoretical interest. Also, the perturbation equations (8.5) used to
prove (8.7) and (8.8) can be used to prove (8.20) and (8.21), which are valid under
weaker assumptions that certain subsets of GSVs of corresponding matrix pairs are
not required to be well separated, as shown by Fig. 2 and (6.1).

As our derivation for bounds seems a little more elegant than that of Sun [30],
it would be natural for us to expect that our bounds should be better. To enable us
to compare ours with Sun’s, we first simplify bounds due to Sun [30]. In our process
of simplification, no essential amplification is involved, i.e., there is no essential loss
of sharpness in the simplified bounds in comparison with the original ones of Sun
[30]. We note that Sun [30] presented only bounds for sin Oi, i 1, 2, 3, 4, under the
assumptions of Theorem 6.1. So now we assume that the conditions and notations
are as described in Theorem 6.1, and Description II (refer to (8.10)), as a description
equivalent to Description I, is also referred to when suitable; 7] is defined by (5.11). In
our notation, Sun’s bounds are read as

(8.26)

where

ilsinO211 _< -T2 [W3w4(ra + Wlrb)llZ+ll2 + (w3ra + r)l[+l]2]

]lsin O311 _< -IIZll211 112 (w2W3wdra + rb)[IZ+l]2 + w2(w3ra + r)][Z+ll2

(a + 6)(1 a2) (a + 6)2v/1 a2

T1-- T2--
2a + 6 2a + 6
0/ /1 (0/+ 6)2 V/1 (0/+ 6)2 0/

wl
V/1 0/2

w2 V 1 0/2 w2 w40/+6 0/+6’

ra---I1<-A)QIolI, I1< - B>QIolI, IIu ’< -A>II, IIVI"< - B>II"
Denote d (0/+ 6)v/1 0/2 + O/V/1 (0/+ )2. For sin O1 and sin 2, it follows from
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and

that

(8.29) max ,lsin Oi,,<
1 (V/ V

/ }max ra2 +r IIZ+ll2, ra2 + rb2 ll2+ll2
i----1,2 ?

The simplifications of (8.27) and (8.28) are in the same spirit. Here we give the
final results and leave the details to the reader:

(8.31)

Now turning to our bounds (8.6), (8.11), and (8.12), we note that

Therefore (8.6) and (8.29), thus (8.25) and (8.26) as well, would be equally effective.
By the way, we should say that the simplified bounds (8.29)-(8.31) of Sun’s bounds
seem more favorable than their original (8.25)-(8.28).
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PRECISE MATRIX EIGENVALUES USING RANGE ARITHMETIC*

OLIVER ABERTH AND MARK J. SCHAEFER$

Abstract. A recent paper by Aberth and Schaefer Trans. Math. Software, to appear] described
how the programming language C++ can serve as a vehicle for replacing floating-point arithmetic
with the more advanced range arithmetic. This arithmetic makes it easier to generate accurate
answers to scientific computation problems. This paper discusses the use of range arithmetic to solve
precisely the eigenvalue problem for square matrices of modest size, that is, of about twenty rows or
less.

Key words, matrix eigenvalues, range arithmetic, C+- language, precise computation
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1. Introduction. Range arithmetic is a variable precision, interval arithmetic
system. Here each number has the usual fields of ordinary floating-point arithmetic,
that is, a sign, an exponent, and a mantissa, but the mantissa is permitted to vary
in length. A global constant under program control called precision sets an upper
bound on the mantissa length of numbers produced by computation. Each number
has an additional small field, called the range, giving the number’s maximum error or
interval width. This field is zero for input constants, since these are without error, but
quickly becomes nonzero for computed numbers derived from constants. The range
field is calculated according to interval concepts [4], [6], but its small size keeps the
speed of the arithmetic comparable to that of ordinary floating-point arithmetic. As
a long computation proceeds, the range field causes the gradual discard of suspect
trailing mantissa digits, so that mantissas tend to get shorter. This effect depends
also on the precision setting, with a higher setting leading to more mantissa digits
being retained. A program can monitor the mantissas of key results and adjust the
precision accordingly.

As an example consider the Gaussian elimination method of solving a system of
nonsingular linear equations. With range arithmetic an initial precision is chosen, more
or less by guessing, but the choice can reflect the number of correct decimal places
desired and the number of equations to be solved. After the elimination and back
substitution procedures are carried out, the answers are checked to determine whether
the required number of decimal places have been obtained. If not, the discrepancy
between the number of correct decimals obtained and the number required is used to
estimate the higher precision needed, and after the precision is reset, the computation
routine is re-entered. With a good choice of the initial precision, the first computation
pass usually succeeds. Cases where the computation must be repeated are likely to be
cases where ordinary floating-point arithmetic would yield poor results.

For a square matrix A, finding its eigenvalues precisely with range arithmetic is
somewhat more complicated. We consider here methods that solve this problem by
transforming A to upper triangular form B T-1AT so that the diagonal entries
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of B yield the eigenvalues. The range of a diagonal element of B does not give its
complete error as an eigenvalue because B is usually only in "near upper triangular
form," that is, the elements of B below the diagonal are small but not necessarily zero.
An additional computation is required to bound the error in the eigenvalues caused
by the impure form of B. After eigenvalues have their ranges increased to reflect this
additional error, the test for the required number of decimal places and a recycling of
the procedure where necessary are as described before.

In the next section we present a method for bounding the eigenvalue errors of
near upper triangular matrices that is based on the well-known Gershgorin Theorem
and generalizes an approach of Wilkinson [8, pp. 638-639]. We made use of these
bounds to develop a program for obtaining precise eigenvalues, first using the QR
method for achieving the near upper triangular form. Unfortunately, for reasons
given in 3 where the procedure is described, the program proved disappointingly
slow in delivering answers. A second, more successful, eigenvalue program utilizing an
adaptation of the Danilevsky method is described in the succeeding section.

2. Eigenvalue error bounds for near upper triangular matrices. For ref-
erence, we list the basis for our eigenvalue error estimation.

GERSHGORIN’S THEOREM. Let B be an n-square matrix with real or complex
elements bi. In the complex plane define the n disks

n

j--1

These n disks may or may not overlap; in general, they form a number of disjoint
connected sets. Every eigenvalue ofB lies in one of these connected sets, and, counting
multiplicities, each connected set consisting of k disks contains k eigenvalues.

For a complex n-square matrix B define the two quantities

n i--I

(B) max Ibijl and lower (B) m/axupper
j--i+l j--1

That is, upper (B) is the maximum row sum of element absolute values for elements
above the diagonal, and lower (B) is similarly defined for elements below the diagonal.
For a near triangular matrix B, upper (B) may be sizeable but lower (B) is small.
Assume that ti is an eigenvalue error bound we are trying to achieve. We attempt to
ensure that every eigenvalue lies in one of the ti-disks Iz bii] <_ 5, i 1, 2,..., n. As
with the Gershgorin circles, these disks may overlap and, in general, form a certain
number of connected sets.

THEOREM 1. Let the n-square matrix B have 5-disks which form a number of
connected sets, with at most t disks to a set. Let d be the minimum distance between
any two connected sets and take d equal to upper(B) if there is only one set. If q
min{1, d/upper(B)} and r min{1, 5/(2 upper(B) q)}, then if lower(B) <_ rtqn-1
every eigenvalue of B lies in a connected set, and counting multiplicities, every con-
nected set of k disks contains k eigenvalues.

To prove this result let Q be the n-square diagonal matrix with diagonal elements
qn-1, qn--2, q, 1. The matrix B QBQ-1 has the same diagonal elements as B,
and being a transform of B, has the same eigenvalues. It satisfies the relation

upper (B’) <_ upper (B) q _< d,
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since we have

E IbJ E IbiJ Iqj-i - Ibil q - upper (B) q.
j=i+l j=i+l j=i+l

For each connected set formed by the &disks with centers bilil, bi.i., biik, we
define a further transformation from B to B" which again leaves diagonal elements
and eigenvalues unchanged. Define the n-square diagonal matrix R with diagonal
elements equal to rk for rows 1 to il, equal to rk-1 for rows il + 1 to i2, equal
to r for rows ik- + 1 to ik, and equal to 1 for all rows following ik. If we set
B" RBR-1, then for rows il, i2, or ik, the sum of absolute values of elements
above the diagonal is

n

j=i+l
E IbJ Irm <- E IbJ Ir <- upper (B’)r _< upper (B)qr <_ -,

j=i+l j=i+l

since for these rows an exponent mij is never less than 1. The corresponding sum for
the other rows is

n n n

E Ib E IbJ Irm <- E IbJ <- upper(B’)<_ d,
j=i+l j=i+l j=i+l

since here an exponent mij is never negative. Each element b} below the diagonal has
magnitude not greater than Ibijl/rtqn-1. Therefore, any row sum of absolute values
of these elements cannot exceed lower (B)/rtqn-1

_ . Thus the Gershgorin radius
for a diagonal element of B" with row index chosen from il, i2, ik is at most
5, so its Gershgorin circle is within its &disk. The Gershgorin radius for any other
diagonal element cannot exceed d + . Therefore the two sets of Gershgorin circles
cannot intersect and this proves the theorem.

As an example, let B be the matrix

2 1 0 1121 2 0 0
31 32 3 1
41 42 43 3

Suppose that we wish to bound the error of diagonal elements as eigenvalues by the
amount 5 .01. We have d .98, upper (B) 2, t 2, q .49, and r .0051. Then
according to Theorem 1, we satisfy this error bound if lower (B) is not greater than
r2q3 1.53.10-s, which occurs if all e elements are not greater than a third of this

value.
When the transformation to near upper triangular form is made using range

arithmetic, the real and imaginary parts of diagonal elements are obtained as intervals.
Thus a diagonal element will lie in some rectangle in the complex plane, and its &disk
will lie in a larger rectangle with the same center but with both dimensions increased
by 25. If several of these augmented rectangles overlap, we can cover them with a still
larger rectangle. The following corollary is helpful in dealing with this situation.

COROLLARY l. For the n-square matrix B let a number of rectangles R, R2, ...,
R8 in the complex plane be defined with each rectangle containing the 5-disk for one or
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more diagonal elements of B, with at most t disks to a rectangle. Let d equal the min-
imum distance between any two of these rectangles. If the inequality in the statement
of Theorem 1 is true with this new interpretation of d and t, then every eigenvalue of
B lies in a rectangle, and counting multiplicities, every rectangle containing k disks
contains k eigenvalues.

This result follows by repeating the steps of the proof of Theorem 1.

3. Near upper quasi-triangular form by the QR algorithm. This was the
first method we tried programming in range arithmetic. By a series of transformations
the matrix A is first brought to upper Hessenberg form A and then to upper quasi-
triangular form A", which allows both 1-square and 2-square blocks along the diagonal
[7, pp. 368-379]; the eigenvalues of the diagonal blocks are those of the original matrix
A. By permitting 2-square blocks the method avoids complex arithmetic.

Theorem 1 in the preceding section is easily adapted to deal with real matrices
in near upper quasi-triangular form, which are produced by a range arithmetic im-
plementation of QR. For this purpose we define two new quantities related to our
previous upper (B) and lower (B):

lower (B) 3 max Ibil
\ =1

where the sum runs to i- 2 if bi,i-1 is part of a diagonal 2-square block, and otherwise
to/- 1,

upper (B) rn/ax ]’i[ + 3 [bij[
i+ or i+2

where the sum starts at i+2 if bi,i+l is part of a diagonal 2-square block, and otherwise
at + 1. The term Iq’il is zero unless row coincides with the upper row of a diagonal
2-square block, and then is given by

/ Ibi’i+l bi+i,i[

4(bi,i bi+l,i+l)2 nt- (bi,i+l -t- bi+l,i)2

if the block eigenvalues are real,

if the block eigenvalues are complex.

COROLLARY 2. Assume that the n-square matrix B is real and that an arbitrary
but fixed structure of 1-square or 2-square diagonal blocks is associated with B. The n
6-disks are now formed with centers equal to the eigenvalues of these diagonal blocks.
The conclusion of Theorera I remains true provided we replace the quantities upper (B)
and lower (B) by the quantities upper (B) and lower (B), respectively.

This result follows simply by applying a sequence of 2-square unitary similarity
transformations to B in order to triangularize each 2-square diagonal block. The
resulting matrix B is then handled by Theorem 1.

When applying one of these transformations, a typical 2-square diagonal block

bi+l,i bi+l,i+l 0

and the equation for [’i[, already given, may be derived from the relation for unitary
transformations

Ibi,il 2 + Ib/,i+l 2 + Ibi+t,tl 2 + ]bi+,i+12 IAll 2 + 1212 + Iril 2.
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When the unitary transformations are performed, this may increase the magnitude of
some of the matrix elements not in the diagonal blocks. An extreme case may occur
when some 2-square block composed of the four elements bq,, bq,r+, bq+,r, bq+,+
gets multiplied on the left and on the right by unitary matrices to become the block
with elements We havebq,r, bq,r+l, bq+l,r, bq+l,r+l.

Ib,l / Ib,r+l <_ V. v/Ib,l2 / Ib,r+l2 by the Cauchy inequality

_< V/Ib ,, l + + + Ib+l,,.+ll2

v/Ibq,,.I 2 / Ibq/x,,.I 2 + Ibq,,./ll 2 / 2

_< (Ibq, l / Ibq/x,,-I / Ibq,,-/ll / Ibq/l,,-/ll).

This explains the factor of 3 (which could be replaced by 2x/) in the definitions of
upper (B) and lower (B).

The implementation of the QR method is somewhat more involved than it would
be in floating-point arithmetic. First, we cannot generally guarantee a reduction of A
to pure upper Hessenberg form. One has to be content with a near Hessenberg matrix
A, which may contain columns of approximate zeros (ranged numbers containing zero
in their interval) in its lower triangular part. This is because, during the course of
reducing a matrix to upper Hessenberg form, one repeatedly transforms vectors of the
form [,, ,,..., ,IT to the new form [,, 0,..., 0]T, but the transformation is impossible
to specify if all elements in the initial vector are approximate zeros, so in this case the
vector must be left unchanged.

Second, the question of when to decouple [5, p. 235] should be based on a sound
estimate of how small lower (A") needs to be to allow printing of the eigenvalues to
the desired accuracy, using Corollary 2, which in turn requires some knowledge of
the eigenvalues of A (so that one can estimate various parameters such as d and t in
Theorem 1). To obtain at least crude approximations of the eigenvalues, the entire
problem is first solved in low precision (using an ad-hoc strategy for decoupling) and
the results are subsequently used as a guide for when to decouple during the second
approach. Third, because the elements below the subdiagonal are not generally zero,
the orthogonal similarity transformations need to be applied to the full matrix (or,
after decoupling, a full leading principal submatrix) rather than to just the nonzero
part as in the case of floating-point arithmetic. Here it is interesting to note that during
these transformations the matrix tends to "bleed" into its lower triangular part, so
that even if we initially start with a true Hessenberg matrix A, we soon encounter
approximate zeros or small nonzero elements below the subdiagonal. (This bleeding
can be prevented only at the cost of using transformations with significantly larger
ranges.) Finally, the procedure is especially troublesome when applied to a defective
matrix: here convergence of subdiagonal elements to zero is only linear and many
transformations are necessary to reduce these elements sufficiently. Unfortunately,
especially high precision is required in this case because otherwise the growth of the
ranges of the matrix elements will make it impossible to get the desired accuracy. This
situation usually requires several repetitions of the procedure before sufficiently high
precision is reached, compared to mostly two to three runs in the nondefective case
(including the initial one to get approximate eigenvalues). Whenever the reduction of
A to A" is complete, Corollary 2 is used to make sure that the number of requested
decimal places can indeed be printed; otherwise, the procedure is restarted at a higher
precision.
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4. Near upper triangular form by Danilevsky’s method. Danilevsky’s
method [4, pp. 251-2601 consists of attempting, by a series of transformations, to
bring the matrix A to companion matrix form C, shown below:

0 0 0 -co
1 0 0 -Cl

0 0 1 -c,_l

The characteristic polynomial of C, det(C- zI), is

P(z) (-1)n(zn + Cn--lZn-1 +... + ClZ -I’-CO).

If the matrix C could always be found, precise values for the eigenvalues of A could
be obtained by getting approximations to the roots of P(z) and then determining
their error by making use of the ranged coefficients of P(z) [2, pp. 78-86]. There
are difficulties, however, which sometimes occur in obtaining the companion matrix
C. By amending the usual Danilevsky procedure to cover the cases of difficulty [2,
pp. 124-128], we can generally transform the matrix A to a form C, which either
equals the matrix C, or else is composed of companion matrices of intermediate sizes
C1, C2, Cd, all in diagonal position. In the latter case, however, the elements of
C not belonging to the companion submatrices may not all be zero, but instead some
of them may be only "approximate zeros," that is, ranged numbers which contain the
zero point in their interval. This precludes multiplying together all the characteristic
polynomials of the submatrices Cj to obtain a correctly ranged characteristic polyno-
mial of A, and using this to find the error of root approximations. Instead we use the
root approximations only to continue the transformation process toward a near upper
triangular form.

We then review how to transform the companion matrix C. If A is a root of P(z),
the row vector

X--[1,,2,...,An-l]

is a left eigenvector of C, that is,

(1) XC AX.

If A has multiplicity m, then taking derivatives of (1) with respect to leads to the
equations

(2) X(J)C AX(J) + jX(J-1) j 1, 2,..., m 1.

If we set X0 X and Xj Xg) for j 1,2,...,m- 1, then (2) shows that the
row vector

Xj=-[0,0,... 0,, (), (J+I)A,.j (n-1)An-l-j]j
satisfies the equation

XC /Xj + Xj-1 for j 1,2,...,m- 1.
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Therefore, if U is an n-square matrix such that m successive rows are taken equal to
X,-I, Xm-2, Xo for each root A of multiplicity m, the matrix J UCU-1 gives
the Jordan canonical form of C, with each eigenvalue of multiplicity m contributing
a diagonal m-square block with m- 1 ones just above the m diagonal elements A.

In the general case of the matrix C, we proceed as follows. For each submatrix Cj
we obtain all the roots of its characteristic polynomial by the Bairstow method, and
their multiplicity by the Euclidean algorithm applied to polynomials [2, pp. 63-67].
The root approximations have their ranges reset to zero and no attempt is made to
correctly range them. Their computed multiplicity is not necessarily correct, but in
any case, counting computed multiplicities, the number of roots matches the degree
of the characteristic polynomial of Cj. There is no difficulty in constructing the
matrix U and a correctly ranged inverse U- needed to transform Cj to near upper
triangular form. After we transform C to near upper triangular form J by using all
the matrices Uj and their inverses, the diagonal elements can be tested by the method
of 2 to determine if the number of correct decimal places is satisfactory, and if not,
the whole procedure can be repeated at a higher precision.

The program following this procedure was much superior to the program using
the QR procedure, for two reasons. Finding roots by solving a polynomial is clearly
more efficient than finding these roots by repeated matrix transformations. Also, by
using fewer matrix transformations to achieve the final near upper triangular form, a
lower precision of computation is needed to get diagonal elements with an assigned
number of mantissa digits and subdiagonal elements that are sufficiently small.
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Abstract. A simple characterization of fundamental supernodes is given in terms of the row
subtrees of sparse Cholesky factors in the elimination tree. Using this characterization, an efficient
algorithm is presented that determines the set of such supernodes in time proportional to the number
of nonzeros and equations in the original matrix. Experimental results verify the practical efficiency
of this algorithm.
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1. Introduction. In the Cholesky factorization of large sparse symmetric posi-
tive-definite matrices, factor columns with the same sparsity structure are often clus-
tered together to form a storage or computational unit. Such a grouping of columns
has been referred to in the literature as a supernode. The term "supernode" first
appeared in [4], although the basic idea behind the term was used much earlier.

Indeed, the use of supernodes is found in many algorithms and techniques con-
nected with sparse Cholesky factorization. The related notion of indistinguishable
node subset is used to accelerate the popular fill-reducing minimum-degree ordering
algorithm [9]. The success of the column-compressed factor storage scheme by Sher-
man [18] can be attributed mainly to the existence of many nontrivial supernodes
in most sparse Cholesky factors. Duff and Reid [7] use the term supervariables to
refer to supernodes, and they explore their use in the multifrontal method. The tech-
nique of static condensation in finite element applications can also be viewed as the
elimination of columns/nodes associated with a supernode.

In [4], Ashcraft et al. discuss supernodal implementations of general sparse and
multifrontal factorization methods for vector supercomputers. In their work, super-
nodes play an important role in achieving a high level of vectorization on such ma-
chines. In sparse factorization on shared-memory or distributed-memory parallel ma-
chines, the use of supernodes is also central in obtaining good performance. The recent
compute-ahead implementation of the fan-in distributed sparse scheme [2] relies quite
heavily on the use of supernodes. Preliminary results of work using supernodes in
sparse Cholesky factorization on shared-memory parallel machines [14] indicate that
substantial improvements in performance can be obtained. The use of clique trees in
speeding up a reordering algorithm for parallel elimination [10] is also related to the
notion of supernodes. The merits of exploiting supernodes in sparse factorization on
modern workstations have been considered by Rothberg and Gupta [16].

The purpose of this paper is to provide an efficient algorithm that determines a set
of supernodes of a given sparse matrix using only the structure of the original matrix
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and its elimination tree. Given the many uses of supernodes, this scheme should be
a useful addition to practical sparse matrix software packages. The algorithm allows
a more modularized, and hence flexible, approach to the symbolic processing phase
of the solution process. This flexibility should become more valuable as develop-
ers of production-level software contend with a growing array of complex computer
architectures.

An outline of this paper follows. In 2, we formally define the notions of super-
nodes and so-called "fundamental" supernodes [3]. We then use the column and row
structures of the sparse Cholesky factor matrix to characterize these supernodes. An
efficient algorithm for finding fundamental supernodes is described in 3. We show,
moreover, that the execution time of the algorithm is linear with respect to the num-
ber of nonzeros and equations in the original given matrix. Section 4 contains timing
results that demonstrate the practical efficiency of the algorithm. Section 5 contains
our concluding remarks and discusses some possible applications of the algorithm.

2. Supernodes and fundamental supernodes.

2.1. Cholesky factor characterization of supernodes. We assume that the
reader is familiar with the terminology used in the study of sparse elimination, such
as fill, ordering, and related concepts; moreover, we assume familiarity with the use
of graphs to model the sparsity structure of matrices. All the necessary material can
be found in [5] or [8]. We also assume familiarity with the definitions and relevance
of the elimination tree structure and tree postordering in sparse elimination. Details
on elimination trees and postorderings can be found in [13].

Let A be a given n n sparse symmetric positive-definite matrix, with L as
its Cholesky factor. The (i,j)th entries of A and L are represented by aij and
respectively. Without loss of generality, the matrix A is assumed to be irreducible,
so that its elimination forest is indeed a tree. Furthermore, we assume that the
matrix A has been preprocessed so that its ordering is already a postordering of the
elimination tree. (Reasons for this assumption are given later in this section and also
in subsequent sections of the paper.) For our discussion, we use T to represent the
elimination tree of A, and T[i] to represent the subtree consisting of node and all
its descendants. The nodes in each subtree T[i] are numbered consecutively by the
postordering. We let G(A) denote the graph of A, G* the filled graph associated with
L, and m adjG(i the set of nodes j > i adjacent to in G.

We define a maximal supernode with respect to the postordering to be a maximal
block of contiguous columns of L, whose diagonal block is full lower triangular, and
whose off-block-diagonal column sparsity structures are identical. Figure 1 shows the
maximal supernodes in the Cholesky factor of a matrix defined by a 7 7 finite element
grid ordered by nested dissection; columns between two vertical lines belong to the
same maximal supernode. For brevity, we shall use the term "supernode" to refer to
a maximal supernode. To formalize this notion, we need the following notation and
terminology. For a sparse n-vector v, we define the structure of v to be

Struct(v) {jlv. = 0}.

Furthermore, we use the notation r(v) to represent IStruct(v)l, that is, the number of
nonzeros in the vector v. Finally, we use "column subset" to refer to a subset of the
column subscripts.

Using this terminology, we can express the notion of supernodes as follows. The
column subset S {s, s + 1,..., s + t 1} is a supernode of the matrix L if and only
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FIG. 1. Supernodes for the 7 x 7 grid problem ordered by nested dissection. x and refer to
nonzeros in A and fill in L, respectively.)

if it is a maximal contiguous column subset satisfying

Struct(L,,s) Struct(L,,s+t_l)U {s,..., s +- 2}.

In graph terminology, a supernode is a maximal clique of consecutively numbered
nodes S {s, s + 1,..., s + t- 1} for which

m adj(. (s) m adjG. (s + t 1) U {s,... ,s + t 2}.

The maximal property of a supernode implies that neither SU {s- 1} nor SU {s + t}
satisfies this structural condition. We can verify that the set of supernodes shown in
Fig. 1 satisfies the maximal property.

The particular set of supernodes obtained by applying this definition depends on
the particular postordering used to number the nodes. Indeed, one postordering may
give rise to fewer supernodes than another. It is trivial to generalize the definition so
that it applies to any topological ordering of the elimination tree, but many of these
orderings would define far too many supernodes and therefore capture little of the
supernode structure actually available in the factor. In contrast, postorderings define

A topological ordering of an elimination tree is an ordering in which each parent is labelled after
its children [13].
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supernode sets that in practice take advantage of almost all the redundant column
structure to be found in the factor.

Finding the set of supernodes of L is an almost trivial task once the structure
of the Cholesky factor L is determined. Indeed, we need only the factor column
nonzero counts, rather than factor column structures, to find the set of supernodes. An
algorithm using nonzero counts and the elimination tree structure can be formulated
based on the following result, which follows easily from the definition of supernodes
and the fact that

madja. (i) {k k _< j} c_ madja. (j)

for any two nodes i and j for which j E m adja. (i). Formal proof of a very similar
result appears in [15].

THEOREM 2.1. The column subset S {s,s + 1,... ,s + t- 1} is a supernode
of the matrix L if and only if S is a maximal set of contiguous columns such that
s + 1 is a child of s + i in the elimination tree for i 1,..., t 1, and

(n,,8) (n,,8+t-1) + t- 1.

Algorithms that use results much like Theorem 2.1 to find supernodes are pre-
sented in [3] and [15]. Our goal is an efficient algorithm that generates the supernodes
before the symbolic factorization, that is, before the structure of the Cholesky factor
is computed. We might try to achieve this goal by applying Theorem 2.1, as in the
following scheme.

1. Compute the elimination tree, postorder the tree, and compute the factor
column nonzero counts.

2. Use Theorem 2.1 to generate the supernodes.
An algorithm for determining the factor column nonzero counts appears in [13]. The
primary problem with this approach is the expense of computing the factor column
nonzero counts prior to the symbolic factorization. Indeed, computing the nonzero
counts requires O(n + (n)) operations. We have implemented this approach, and
our tests indicate that this method is much less efficient than the new algorithm
introduced in the next two sections. The new approach finds the supernodes directly
from A by determining the leaves of the row subtrees, which requires O(n + (A))
operations, and has possible application in situations where a more modular approach
to the symbolic factorization is desirable.

2.2. Row-subtree characterization of fundamental supernodes. In [3],
Ashcraft and Grimes introduce the notion of fundamental supernodes. A fundamental
supernode is a maximal contiguous column subset {s, s + 1,..., s + t- 1} such that
s + 1 is the only child of s + in the elimination tree for 1,..., t 1 and

Struct(L.,) Struct(L.,+t_l)t2 {s,..., s + t- 2}.

This restriction on the columns that can appear together in the same supernode is
appropriate for several reasons. First, unlike the set of maximal supernodes, the
set of fundamental supernodes is necessarily the same regardless of the particular
postordering in use. Second, while our new algorithm could be designed to generate
maximal rather than fundamental supernodes, the difference between the two is rarely
of any practical consequence--typicMly, very few maximal supernodes are replaced
by more than one supernode in the corresponding set of fundamental supernodes.
For example, for the matrix shown in Fig. 1, the set of fundamental supernodes
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FIG. 2. Supernodal elimination tree induced by the fundamental supernodes for the matrix
shown in Fig. 1. Supernodes containing more than one node are enclosed by ovals; all nodes in the
elimination tree not enclosed by ovals are singleton supernodes.

is the same as the set of maximal supernodes with one exception: the supernode
(40, 41, 42, 43, 44, 45, 46, 47, 48, 49} is partitioned into two supernodes {40, 41, 42} and
{43, 44, 45, 46, 47, 48, 49} because node 43 has two children in the elimination tree (see
Fig. 2). Third, the supernodal version of the elimination tree induced by a set of
fundamental supernodes (see Fig. 2) preserves in a strict sense the data dependency
results that hold for the nodal elimination tree: that is, for a set of fundamental
supernodes, no column in a supernode can be completed until after the completion of
all columns belonging to descendant supernodes in the supernodal elimination tree.
For a given set of maximal supernodes, it may be the case that some columns in a
supernode can be completed before all columns belonging to descendant supernodes
are completed. The strict form of data dependency that holds for fundamental super-
nodes is useful in designing parallel factorization algorithms that make explicit use
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of supernodes.
Finding the set of maximal or fundamental supernodes is equivalent to finding

the first columns of the supernode subsets. In this subsection, we shall provide a
characterization of such first columns/nodes of fundamental supernodes in terms of
the elimination tree. The characterization uses the row structure of the Cholesky
factor.

As before, let T be the elimination tree of the matrix A, and T[i] the subtree
rooted at node i. We also use T[i] to represent the node subset associated with the
subtree, namely, node i together with all its proper descendants in the elimination
tree. The notation IT[i][ is used to denote the number of nodes in the subtree T[i].
Therefore, the number of proper descendants of node i is given by ]T[i][ 1.

In [17], Schreiber shows that the structure of the ith row of the Cholesky factor L is
a pruned subtree of the elimination tree rooted at node i. Liu, in [12], gives a complete
characterization of the structure of factor row Li., and calls the corresponding pruned
subtree the ith row subtree. We quote the following result without proof.

THEOREM 2.2 (see Liu [12]). Node j E T[i] is a leaf node of the ith row subtree
of L if and only if aij 0 and ak 0 for every k T[j] {j}.

Note that the characterization in Theorem 2.2 is in terms of nonzeros in the
original matrix A. We are now ready to characterize fundamental supernodes using
row structures and row subtrees of the factor matrix.

THEOREM 2.3. Column j is the first node in a fundamental supernode if and
only if node j has two or more children in the elimination tree, or j is a leaf of some
row subtree of the elimination tree of A.

Proof. "if": In the first case, if node j has two or more children in the elimination
tree, it is clear from the definitions that it must be the first node of the fundamental
supernode to which it belongs. In the second case, assume that node j is a leaf of some
row subtree, say the ith row subtree. If j has no children, it must start a fundamental
supernode. Therefore, we need consider only the case when j has exactly one child.
Its only child must be j- 1 because of the postordering assumption. Since j is a leaf of
the row subtree rooted at i, it follows from Theorem 2.2 that aij 0 and aih_l 0,
which implies that/iy is structurally nonzero while gi,j-1 is structurally zero. It then
follows that Struct(n,,j_l) C Struct(L,5)U (j- 1}, and thus node j cannot belong
to the same supernode as j- 1. Node j must, therefore, start a new fundamental
supernode.

"only if": Assume that node j is the first node of its fundamental supernode. We
need to show that if j has one or no children, it is a leaf of some row subtree. The
result is obvious if j has no children. Consider the case when j has exactly one child
j- 1. Since j starts a fundamental supernode and has only one child, the maximal
condition implies that there exists i > j such that gi,j-1 0 and gii 0. In other
words, the node j belongs to the ith row subtree of L, whereas its only child j 1
does not. This is possible only if j is a leaf of this row subtree.

Theorem 2.3 provides a simple condition to determine the starting node of fun-
damental supernodes. Computing the number of children for each node in the elimi-
nation tree is a trivial task. It can be done in O(n) time by traversing the elimination
tree in a postorder sequence. All we need is an efficient algorithm to identify those
nodes that are leaves of at least one row subtree in the elimination tree. A simple
marking scheme can be used to detect the leaves of successive row subtrees in the
algorithm that generates the elimination tree. Implementing this scheme, however,
requires removal of the path compression technique [13], which is essential for efficient
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computation of the elimination tree. We have implemented this scheme, but found
the resulting O((L)) algorithm to be too inefficient.

3. A linear-time algorithm for finding fundamental supernodes. The-
orem 2.3 gives a simple characterization of fundamental supernodes. To use this
characterization, we need to identify the nodes that are leaves of at least one row
subtree. In this section, we consider an efficient linear-time algorithm to determine
the Boolean vector ISLEAF(,), where ISLEAF(j) is true if and only if node j is a leaf
of some row subtree of the elimination tree T.

The result in Theorem 2.2 can be used to find the leaves of each row subtree.
However, it does not immediately lead to a practical algorithm, since determining if
ak is zero for every proper descendant k of j in the subtree T[j] is far too expensive.
By making use of the postordering property, Liu [12] gives a more usable form of the
same result, which we quote here.

THEOREM 3.1 (see Liu [12]). Let cl < c2 <.’. < c8 < i be the column subscripts
of all the nonzeros in Ai, less than i, that is, the structure of row i of A to the left of
the diagonal. Node ct is a leaf of the ith row subtree if and only if t 1 or ct- T[ct].

The testing of ct-1 T[ct] in Theorem 3.1 can be further simplified by using a
property that holds for ancestor-descendant pairs when the nodes are postordered [1].

COROLLARY 3.2 (see Liu [12]). Let co < Cl < < cs < i, where co O, and
Cl,..., Cs are as in Theorem 3.1. Node ct is a leaf of the ith row subtree if and only
iI < IT[  ]I + 1.

One way to compute ISLEAF(*) is to apply Corollary 3.2 to the rows of A one by
one, determining the set of leaves for each row subtree and flagging the nodes accord-
ingly. However, this involves sorting the column subscripts of nonzeros in Ai, to the
left of its diagonal entry for every row of A. Although this can be accomplished with
a bin sort in time proportional to IAI, our experience indicates that it is necessary to
avoid such sorting in order to obtain a method whose practical efficiency is acceptable.

The following observation can be used to avoid such sorting: j is a leaf of some
row subtree of the elimination tree of A if and only if for some i E m adjc(A)(j),
we have m adjc(A)(k for all k e T[j]- {j}. Using this observation and the
postordering, we obtain an algorithm that uses a simple new marking scheme to
avoid the undesirable sorting (see Fig. 3). In this algorithm, the columns of the
matrix A are processed in postorder. While processing column A,j, for each nonzero

aij below the diagonal, the algorithm checks to see if node j is a leaf of the ith row
subtree (using Corollary 3.2). A temporary integer vector PREV_ROWNZ(*) is used
to remember the location of the latest nonzero encountered for each row. It is also
necessary to compute the subtree sizes IT[j]I, which can be done in O(n) time. It is
obvious that the overall algorithm runs in O(n+(A)) time. However, the linear-time
complexity of the algorithm is obtained by exploiting a postordering of the elimination
tree, which can be obtained only by first computing the elimination tree itself. It is
worth noting that the algorithm for this task has greater complexity than the new
algorithm; it is almost linear in vi(A) [13].

4. Timing results. In this section, we provide results of some experiments ver-
ifying the practical efficiency of the algorithm in Fig. 3 for computing fundamental
supernodes. The experiments were performed on a Sun 3/80 workstation with eight
Mbytes of main memory. The programs were written in Fortran and compiled using
the Sun Fortran compiler with optimization turned on. The test problems used in the
experiments were selected from the Harwell-Boeing Sparse Matrix Collection [6], and
they are listed in Table 1. Structural and timing statistics are provided in Tables 2



FINDING SUPERNODES 249

for column j :-- 1 to n do
ISLEAF(j) false;
PREV_ROWNZ(j) 0;

end for

for node j :- 1 to n do
compute

end for

for column j :- 1 to n do
for each aij 0 with i > j do

k PREV_ROWNZ(i)
if k < j -IT[j]I + 1 then

ISLEAF(j) :---- true;
endif;
PPEV_IOWNZ(i) :--j;

end for
end for

FIG. 3. Determination of row-subtree leaves in the elimination tree.

and 3, respectively. Each matrix was reordered by the minimum-degree algorithm.
Three times are reported for each matrix: the time to compute the elimination tree
and its postordering, the time to compute the supernodes with the new algorithm,
and the time to compute the symbolic factorization using the routine smbfct from
SPARSPAK.

TABLE 1
List of test problems.

Problem Description
BCSPWR10
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK21
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK28
CEGB2802
CEGB3306
CEGB2919
CEGB3024
LOCK2232
LOCK3491

Structure of representation of entire U.S. power network
Stiffness matrix, fluid flow generalized eigenvalues
Stiffness matrix--roof of Omni Coliseum, Atlanta
Stiffness matrix--module of an offshore platform
Stiffness matrix--Corps of Engineers dam
Stiffness matrix--elevated pressure vessel
Stiffness matrix--R.E.Ginna nuclear power station

Stiffness matrix--clamped square plate
Stiffness matrix--portion of a three-dimensional globally triangular bldg.
Stiffness matrix--winter sports arena

Stiffness matrix--76-story skyscraper
Solid element model (MSC NASTRAN)
Finite element problem. Turbine blade
Finite element framework problem, essentially in two dimensions

Finite element problem. Three-dimensional cylinder with flange
Finite element problem. Two-dimensional reactor core section

Finite element problem. Lockheed tower problem
Finite element problem. Lockheed cross-cone problem

The timing statistics in Table 3 demonstrate the practical efficiency of the new



250 J. W. H. LIU, E. G. NG, AND B. W. PEYTON

TABLE 2
Structural statistics on test problems.

Problem
BCSPWR10
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK21
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK28
CEGB2802
CEGB3306
CEGB2919
CEGB3024
LOCK2232
LOCK3491

n
5,300
2,003
1,806
3,948
4,884
10,974
11,948
3,600
3,134
3,562
15,439
4,410
2,802
3,306
2,919
3,024
2,232
3,491

?(A)
21,842
83,883
63,454
117,816
290,378
428,650
149,090
26,600
45,178
159,910
252,241
219,024
277,470
75,000

321,603
79,876
80,376
160,519

28,064
271,671
112,267
651,222
741,178

1,005,859
662,725
90,454

420,311
278,922

1,416,568
346,894
267,972
68,205

375,642
115,702
73,308

236,339

Number of
supernodes

4,960
599
503

1,295
691

2,595
7,438
2,420
1,522
414

7,288
454
271
599
252
685
318
479

TABLE 3
Timing statistics (in seconds).

Problem
BCSPWR10
BCSSTK13
BCSSTK14
BCSSTK15
BCSSTK16
BCSSTK17
BCSSTK18
BCSSTK21
BCSSTK23
BCSSTK24
BCSSTK25
BCSSTK28
CEGB2802
CEGB3306
CEGB2919
CEGB3024
LOCK2232
LOCK3491

Tree and Super-
postord, nodes

0.20 0.16
0.36 0.22
0.28 0.18
0.56 0.32
1.26 0.74
1.90 1.14
0.90 0.56
0.20 0.12
0.26 0.16
0.68 0.42
1.44 0.82
0.92 0.56
1.12 0.68
0.34 0.22
1.28 0.78
0.38 0.22
0.34 0.22
0.68 0.42

Symbolic fact-
orization (smbfct)

0.58
1.10
0.68
1.46
3.74
5.06
2.22
0.56
0.76
1.74
3.58
2.40
4.62
0.72
5.34
0.80
0.74
1.74

algorithm for finding the fundamental supernodes. The elimination tree and a pos-
tordering must be computed before the fundamental supernodes can be computed
with the new algorithm. In every case, the time spent computing the supernodes is
less than the time spent computing the elimination tree and postordering, as might
be expected. Also note that the time to compute the supernodes is a very modest
fraction of the time to compute the symbolic factorization using the routine smbfct
from SPARSPAK. Based on these timings, it appears that the new algorithm for find-
ing the fundamental supernodes is potentially useful in cases where the supernodes
are needed before the symbolic factorization is completed.
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5. Concluding remarks. We have introduced a new characterization of funda-
mental supernodes that depends on the structure of A and its elimination tree, and
requires no knowledge of the structure of L. We have used this characterization to
devise an efficient algorithm for determining the fundamental supernodes of a sparse
symmetric matrix prior to the symbolic factorization step.

A possible application of this scheme is the development of the following two-step
method to perform the symbolic factorization.

1. Compute the supernodes with the new algorithm.
2. Compute a supernodal symbolic factorization that takes advantage of access

to the supernodes to improve its efficiency.
We have implemented this two-step method to perform the symbolic factoriza-

tion. Preliminary experiments were reported in [11], and the results demonstrated
that the two-step approach was much more efficient than performing the symbolic
factorization with the routine smbfct from SPARSPAK. However, it was pointed out
by Dr. Stan Eisenstat of Yale University and an anomymous referee that the perfor-
mance of smbfct could be improved by reorganizing the computation to eliminate
some unnecessary sorting operations, and by removing a type of subscript compres-
sion not computed by the supernodal symbolic factorization. Additional experiments
indicate that the improved version of smbfct was somewhat more efficient than the
two-step method, though the two approaches are quite comparable in most cases.

Thus, it appears that the two-step approach may not be appropriate for general sym-
bolic factorization.

Nonetheless, the more modular approach has desirable features and may be prefer-
able in certain situations, such as the following:

Parallel symbolic factorization on distributed-memory parallel machines.
Implementation of the supernode amalgamating strategy introduced in [3],

which has been used in three multifrontal codes that we are aware of: Ashcraft and
Grimes (Boeing), Chao and Vu (Cray Research Inc.), and Amestoy and Duff (CER-
FACS).

Production quality sparse matrix software, where a tight bound on the space
required for the symbolic factorization may be needed before that computation can
begin.

Production quality sparse matrix software, where some ordering modules gen-
erate the elimination tree and the supernodes as a natural by-product (e.g., minimum
degree), while others currently do not (e.g., automatic nested dissection).

It is worth noting that even though the two-step symbolic factorization appears
to be slightly less efficient than its one-step counterpart, each of the two routines used
in the two-step approach is much siinpler than smbfct and its variants, which are
fairly intricate codes.

Acknowledgments. The authors would like to thank Dr. Stan Eisenstat and
one of the referees for pointing out how to reorganize the symbolic factorization rou-
tine smbfct from SPARSPAK in order to obtain substantial improvements in its
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A NOTE ON NESTED DISSECTION FOR RECTANGULAR GRIDS*

M. V. BHATt, W. G. HABASHI:, J. W. H. LIU, V. N. NGUYENt, AND M. F. PEETERS

Abstract. A new ordering scheme is presented for sparse matrices associated with rectangular
grid problems. The new scheme combines features of both the nested dissection and natural orderings
to obtain orderings superior to either of these methods for such problems. Asymptotic bounds and
experimental results on sparse factorization operations are provided to demonstrate the advantages
of the new ordering.

Key words, sparse matrix, reordering, nested dissection, grid

AMS(MOS) subject classifications. 65F50, 65F25

1. Introduction. It is well known that matrix ordering can have a dramatic
impact on the storage and computational costs in the direct solution of sparse sym-
metric positive definite linear systems. For sparse matrices associated with regular
square grid problems, the nested dissection ordering by George [3] is known to give
asymptotically optimal results in both storage and operation counts in factorization.

In this paper, we describe a new ordering appropriate for rectangular grid prob-
lems. The scheme orders a set of rectangular subgrids locally by the standard nested
dissection ordering. The remaining nodes are numbered in a manner similar to the nat-
ural ordering of grids. It can be viewed as combining the advantages of the nested dis-
section and natural orderings. Asymptotic bounds and experimental results are used
to demonstrate that significant reductions in arithmetic operations can be achieved.
It is also observed that this ordering can provide insight into finding better orderings
for general sparse matrix problems, and it can be a useful example to study when
considering parallel sparse matrix factorization schemes.

2. Motivation: Natural and nested dissection orderings for rectangular
grids. Consider a given rectangular grid with a nine-point operator. Let the grid be
h-by-k. Without loss of generality, we assume that h _> k. The natural ordering is
given by numbering the nodes on successive horizontal grid lines (the narrow side),
as shown in Fig. 1. This ordering is well suited for band-type sparse schemes.

On the other hand, the well-known nested dissection ordering by George [1], [3],
[4] is more suited for sparse schemes that take advantage of all possible nonzeros. This
scheme is known to be asymptotically optimal in terms of fills and factorization oper-
ations when the grid is square. The standard scheme can be adapted for rectangular
grids by choosing the dissecting grid line on the narrower side of the grid. Therefore,
the first dissector for the given h-by-k grid is the middle horizontal grid line. The
overall ordering is obtained by recursively dissecting each subgrid on the narrower
side of the rectangle, and numbering nodes of the dissector last in the ordering. In
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FIG. 1. Natural and nested dissection orderings for 15-by-7 grid.

Fig. 1, we illustrate thenatural and nested dissection orderings for the 15-by-7 grid
problem.

Table 1 contains statistics on the natural and nested dissection orderings for a
sequence of h-by-15 grids. The columns labeled "Nonz." give the number of off-
diagonal nonzeros of the corresponding sparse Cholesky factor, and "Opn. Count"
the number of multiplicative operations to compute the factor. It is interesting to note
that the natural ordering is better than the nested dissection ordering in operations
for h _> 50, and subsequently better in the number of factor zeros for h >_ 100. Note
that for h 300, there is a saving of more than 30 percent in operations if the natural
ordering is used.

TABLE 1
Factorization statistics for h-by-15 rectangular grids.

h Natural ordering
Nonz. Opn. count

1 3360 31164
50 11725 110369
100 23675 223519
300 71475 676119

Nested dissection
Nonz Opn. count
2553 21327
11003 121056
23759 283918
76156 974396

The experimental results in Table 1 can be explained easily from analysis results
in the literature. We only address the differences in factorization operation counts.
For the natural ordering on a given h-by-k grid, it is easy to verify that the sparse
Cholesky factorization of such matrices requires hk3/2+O(hk2) arithmetic operations.
For the standard nested dissection ordering (where the narrower side is dissected), an
asymptotic bound of 18.99hk2 + O(k3) on the arithmetic operations can be obtained.
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FIG. 2. Local nested dissection orderings for 15-by-7 grid.

Using these bounds, we note that for any value of k < 37 and relatively large h,
the nested dissection ordering requires more factorization operations than the natural
ordering. This explains the .results in Table 1.

3. A local nested dissection ordering for rectangular grids. The observa-
tions in the last section provide motivation to consider a new ordering scheme, which
combines the advantages of both the natural and nested dissection orderings for grid
problems. As before, let the given grid be h-by-k, where h _> k. The new scheme
orders the two rectangular subgrids consisting of the first k/2 rows and the last k/2
rows, respectively, of the grid using the standard nested dissection ordering. The re-
maining h- k rows of the grid are numbered as follows. Consider a partitioning factor
p, with 1 <_ p < k. Partition the remaining (h- k)-by-k rectangular grid into smaller
square subgrids of size approximately k/p, by a set of horizontal and vertical grid
lines. Horizontally, there are p partitions; vertically, there are p(h- k)/k partitions.
This gives p2(h- k)/k square subgrids of size kip.

The new ordering numbers the nodes associated with each square subgrid by the
standard nested dissection ordering. The remaining nodes associated with the parti-
tioning grid lines are then numbered using a scheme similar to the natural ordering.
The only difference is that a set of nodes associated with the boundary of a square
subgrid is numbered consecutively. To illustrate the numbering scheme, we show in
Fig. 2 the orderings of a 15 7 grid, with partitioning factor p- 2 and 4.

Since standard nested dissection ordering is applied locally to a number of smaller
subgrids, we refer to this ordering as a local nested dissection ordering. It should be
noted that when the grid is square, this local ordering becomes the standard nested
dissection ordering.
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FIG. 3. Factorization operation counts (in millions) versus partition factor for 500-by-60 grid.

3.1. Choice of partitioning value. It is interesting to point out that the local
nested dissection ordering with a partition value p 1 corresponds to a hybrid nested
dissection strategy introduced by Rose and Whitten [6]. We can therefore view the
new scheme as a generalization of the hybrid dissection scheme of Rose and Whitten.
On the other hand, for a large partition factor p close to k, the new ordering is simply
the natural ordering.

In Fig. 3, we plot the number of factorization operations (in millions) against
different values of p for the 500-by-60 grid problem. The minimum operation count is
attained for a partition value of about 5. For comparison, we note that the standard
nested dissection ordering requires 29.1 million operations to factor, while the natural
ordering requires 58.4 million operations.

The observation that the operation count is minimum around p 5 can be estab-
lished formally for general rectangular grids. We now proceed with the analysis. The
following bound on the arithmetic operations can be obtained by a straightforward
count, and its tedious proof is omitted. The derivation uses complexity formulae given
in [5, p. 266].

THEOREM 3.1. The number of arithmetic operations required for factoring the
sparse matrix associated with the local nested dissection ordering with partition value
p is asymptotically bounded by

(h-k)k2 +- 12p 6p2 + k3"

COROLLARY 3.2. The asymptotic bound in Theorem 3.1 is minimized at p 4.67.
Proof. Differentiating the coefficient expression for the term hk2 with respect to p

and equating to zero, we obtain 12p3- 369p+ 500 0. The solutions to this equation
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are 1.46, 4.67, and -6.13, respectively. It is easy to verify that p 4.67 gives the
minimum.

The optimal choice of p between 4 and 5 has a very intuitive explanation. For
square subgrids, we definitely want to use nested dissection. For an s-by-s subgrid,
the number of nodes on its boundary is roughly 4s. When 4s has reached k, it now
pays to switch to a scheme similar to the natural ordering.

3.2. Computational results. In this section, we provide statistics to demon-
strate the practical improvements of the local nested dissection ordering. We always
use a partitioning factor p of 5. Substituting into the expression in Theorem 3.1, we
obtain an asymptotic bound of 13.82hk2 3.95k3. For a large value of h, this bound
compares favorably with the bound of 18.99hk2 for the nested dissection scheme.

In Table 2, we tabulate statistics for various rectangular grids. We choose h-
by-k grids so that the number of unknowns is hk 30,000. The columns "Nonz."
and "Opn. count" give the number of factor nonzeros and the number of arithmetic
operations, respectively. In both columns, the numbers provided are scaled by a factor
of 10-6

TABLE 2
Factorization statistics for h-by-k rectangular grids (scaled by 10-6).

h-by-k
Grids

2000 15
1000 30
500 60

250 120
200 150

Natural ordering Standard ND Local ND
Nonz. Opn. count Nonz. Opn. count Nonz Opn. count
0.478 4.523 0.533 7.221 0.430 4.161
0.928 15.758 0.716 15.351 0.621 9.794
1.826 58.376 0.887 29.098 0.819 21.022
3.615 223.842 1.008 44.679 0.990 39.781
4.507 346.474 1.009 45.148 1.022 45.493

The statistics in Table 2 show that the new ordering can reduce arithmetic oper-
ations by as much as one-third over that of the nested dissection ordering. Even for
the 250 120 problem, there is a saving of more than 10 percent. A simple exten-
sion of this approach can be applied to three-dimensional grid problems. A different
partitioning factor p is obtained using the same analysis technique on such problems.

4. Concluding remarks. We have described a new ordering for rectangular
grids, which combines the strengths of both the nested dissection and natural order-
ings. Substantial savings in factorization operations can be achieved for grids with
large aspect ratios. The ordering depends crucially on the rectangular grid require-
ment. Nevertheless, this ordering is still useful in two ways.

First, it has been observed [7] that for a few practical sparse matrix problems,
the profile-oriented reverse Cuthill-McKee ordering gives better results than the fill-
reducing minimum degree ordering [5]. For example, for the problem BCSSTK16
(Engineers dam) in the Uarwell-noeing collection [2] of sparse matrices, the reverse
Cuthill-McKee ordering yields a factor of 622,603 off-diagonal nonzeros, which re-
quires 43.1 million operations to compute. However, the factor from the minimum
degree ordering has 736,294 off-diagonal nonzeros, and takes 74.9 million operations.
The minimum degree ordering is clearly undesirable. The performance of the local
nested dissection ordering on the rectangular grids will give some insight into the pos-
sible remedy of the minimum degree ordering, so that it could be consistently better
than the profile-oriented orderings in reducing fills.

Second, this new ordering on rectangular grids will be useful in the study of
parallel sparse factorization algorithms. In the context of parallel elimination, the



258 BHAT, HABASHI, LIU, NGUYEN, AND PEETERS

standard nested dissection ordering is desirable since its divide-and-conquer paradigm
provides for independent eliminations. However, the total serial operation count for
the nested dissection ordering is significantly more than that of the new ordering on
rectangular grids. This gives an interesting example to study the role of fill-reducing
orderings in parallel factorization.
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Abstract. The use of multicoloring as a means for the efficient implementation of diverse it-
erative methods for the solution of linear systems of equations, arising from the finite difference
discretization of partial differential equations, on both parallel (concurrent) and vector computers
has been extensive; these include SOR-type and preconditioned conjugate gradient methods as well
as smoothing procedures for use in multigrid methods. Multicolor orderings, corresponding to re-
orderings of the points of the discretization, often allow a local decoupling of the unknowns. Some
new theory is presented which allows one to quickly verify whether or not a member of a certain
class of matrices is consistently ordered (or vr-consistently ordered) solely by looking at the structure
of the matrix under consideration. This theory allows one to quickly ascertain that, while many
well-known multicoloring schemes do give rise to coefficient matrices which are consistently ordered,
many others do not. Some alternative orderings and multicoloring schemes proposed in the literature
are surveyed and the theory is applied to the resulting coefficient matrices.

Key words, multicoloring, consistently ordered matrices, iterative methods, concurrent
computers
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1. Introduction. The discretization by finite differences, or finite elements, of
elliptic partial differential equations often leads to the solution of linear systems of
equations

(1) Au- y.

With the advent of parallel computers and vector processors, it has become appar-
ent that the use of alternative orderings, i.e., other than the natural or lexicographic
ordering, may increase efficiency in the implementation of many iterative methods
for solving (1); these methods include the Jacobi, Gauss-Seidel, and successive over-
relaxation (SOR) iterations, and various preconditioned conjugate gradient (PCG)
methods, as well as smoothing procedures for use in multigrid methods.

This leads naturally to the use of the technique of multicoloring to decouple the
unknowns at the grid points of a finite difference, or finite element, discretization
of a partial differential equation. The basic idea is to "color" the grid points so
that unknowns corresponding to grid points of a particular color are coupled only
with unknowns of other colors. Thus all unknowns of a single color can be updated
simultaneously, i.e., in parallel, or with a single vector instruction, assuming that the
unknowns are stored appropriately.

In general, multicoloring with p colors corresponds to a partitioning r of the
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coefficient matrix of the system (1) into the block p p form

(2) Ap

A1,1 AI,2 A,p
A2,1

Ap-l,p
Ap, Ap,_ A,

where the diagonal blocks A are square. Full decoupling of all unknowns of a given
color from those of other colors obtains if the A are diagonal, and, in general, a
significant number of the off-diagonal blocks Aj contain only zeros. Throughout this
paper we maintain the notational convention that a single subscript on a matrix name
is used to emphasize the block order of that matrix; when necessary for clarity, the
corresponding partitioning r carries the same subscript as in "rp."

Multicoloring has been used ubiquitously for the solution of linear systems by it-
erative methods on both parallel and vector computers (for a review, see, e.g., Ortega
and Voigt [16]). Although more often a multicoloring scheme is used in conjunction
with SOR-type iterative methods (e.g., Adams and Ortega [2] and O’Leary [15]), it
can also prove useful with PCG methods. Poole and Ortega [18] use multicoloring
to carry out incomplete Cholesky preconditioning on vector computers, and Harrar
and Ortega [11] used a red/black ordering to efficiently vectorize a symmetric succes-
sive overrelaxation (SSOR) preconditioner. The parallel and vector implementation
of SSOR PCG (as well as SOR) via multicoloring is also discussed in Harrar and
Ortega [10], where a compromise is proposed between the faster convergence rate
obtained with the natural ordering and the superior degree of parallelism and/or
vectorization provided by the red/black ordering (see 5.2).

When solving elliptic problems using multigrid methods, much of the computa-
tion time is spent on the relaxation procedure used at each grid level. Multicoloring
is useful in this area as well. For example, Gauss-Seidel smoothing with a red/black
ordering is quite effective (Foerster, Stiiben, and Trottenberg [5]), alternating direc-
tion line methods are particularly robust, and zebra orderings (5.1) are useful for
anisotropic equations (Stiiben and Trottenberg [20]).

Not long ago a fair amount of attention was given to the concept of consistently
ordered (CO) matrices (see 2) and some generalizations thereof: generalized CO
(GCO), CO(q, r) (see 6), GCO(q, r) (we note that GCO (q, r) matrices are p-cyclic
in the sense of Varga [23]), and r-CO matrices (Young [25]). Much of the foundation
of the work done in this area can be found in the classical texts, Young [25] and
Varga [23]. Lately, however, interest in whether or not the coefficient matrix A of
(1) is consistently ordered has somewhat waned. As a result, we often work with a
system of equations that is not CO (or GCO, r-CO, etc.) when a simple permutation
of the elements of A might yield a matrix with one or more of these properties. The
motivation for wanting the coefficient matrix A to have one or more of these properties
is discussed in 2 along with some concepts related to consistent ordering.

In 3 and 4, we give some new theoretical results as to when matrices with a
certain underlying block structure may be CO or r-CO ("block" CO). In 5, we apply
these results to show the consistent ordering of some standard alternative orderings
and the lack of this property for some other orderings proposed in the literature.
Section 6 contains some applications of the results to another class of matrices, and
in 7 we summarize our results.
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2. Consistently ordered matrices and related concepts. One property
that may or may not obtain for the coefficient matrix A as a result of a reorder-
ing of the unknowns is that of being a CO matrix. Rather than appealing directly to
the definition of a CO matrix (Young [25, Def. 5.3.2]), it is often more convenient to
use the notion of a compatible ordering vector.

DEFINITION 2.1. The vector / (’)’1, ")’2, , n)T, where the - are integers, is a
compatible ordering vector for the matrix A of order n if, for aj 0,

1 if i >j,(3) "-’J -1 if i < j.

The usefulness of compatible ordering vectors is made clear by the following theorem.
THEOREM 2.2 (Young [25, Thm. 5.3.2]). A matrix A is consistently ordered if

and only if a compatible ordering vector exists .for A.
Determination of the optimum relaxation parameter for the SOR method applied

to the system (1) via Young’s classical SOR theory [25] is based upon the relationship
(A + w- 1)2 AT2#2 between the eigenvalues # and A of the Jacobi and SOR
iteration matrices, respectively, associated with A; w is the relaxation parameter.
The derivation of this eigenvalue relation is based upon a determinantal invariance
which is true for T-matrices (see Definition 2.8 in 3). CO matrices were introduced as
a more general class of matrices for which this eigenvalue relation holds. Analogous
relations relating Jacobi eigenvalues to those of the corresponding SSOR iteration
matrix have been obtained by Chong and Cai [3] for GCO(k,p- k) matrices and
Li and Varga [13] for GCO(q, r) matrices. We note also that CO matrices possess
property A as defined by Young.

Young [24] conjectured, and Varga [21] proved, that orderings resulting in CO
coefficient matrices were optimal in terms of rate of convergence for the SOR method
with w 1, i.e., the Gauss-Seidel method. However, the usefulness of this theory is
not limited solely to the use of SOR-type methods. For example, Harrar and Ortega [9]
used the fact that a 2-cyclic matrix is CO and a result relating the eigenvalues of the
corresponding SOR and SSOR iteration matrices, to derive an optimality result for
the relaxation parameter w in the context of the m-step SSOR PCG method. We
note that the effect of consistent ordering, if any, on the rate of convergence of SSOR
PCG methods is not known. For more details on the motivation for desiring that a
matrix be CO, see Harrar [8] and, of course, Young [25].

In the sequel, we are concerned primarily with the property of being CO for block
p x p matrices of the form (2). To this end we have a weaker version of consistent
ordering.

DEFINITION 2.3. Let the matrix A be partitioned as in (2) and define a p p
matrix Z (zrs) by

0 ifArs=O,(4) z 1 ifA 0.

The matrix A is rp-consistently ordered (rp-CO) if Z is consistently ordered.
We note that, according to our notation, an (n n)-CO matrix is also rn-CO.
Analogous to Definition 2.1 for a compatible ordering vector, we now introduce

the concept of a rp-compatible ordering vector for a block p p matrix. This definition
is intimated in Young [25]; we formalize it here.
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DEFINITION 2.4. The vector 7 (’1, "2,’.’, .)/p)T, where the 7i are integers, is a
rp-compatible ordering vector for the block p x p matrix A if, for Z corresponding to
A, as defined in (4), (3) holds.

We state without proof the following analog of Theorem 2.2.
THEOREM 2.5. A block p x p matrix A is rp-CO if and only if there exists for A

a rp-compatible ordering vector.
Obviously, a matrix of the form (2) can be r-CO and still not be CO. For example,

a full 4 x 4 matrix partitioned as a block 2 x 2 matrix is r2-CO but is not CO, since
we cannot construct a compatible ordering vector for it. This is because in such a
matrix we have aij - 0 for all indices i, j, and the following observation holds.

OBSERVATION 2.6. It is impossible to construct a (rp)-compatible ordering vector
for a matrix of (block) order p > 2, all of whose (block) elements are nonzero; that is,
no (block) full matrix of (block) order p > 2 is (rp)-CO.

We also note the following.
OBSERVATION 2.7. All matrices of order greater than one are r2-CO.
As shown in Theorems 2.9 and 2.10 below, one type of matrix of the form (2)

that is both r-CO and CO is a T-matrix.
DEFINITION 2.8. A matrix with the block tridiagonal form

T,

D1

where the Di are square diagonal matrices, is a Tp-matrix.
It is easily verified that / (1, 2,..., p)T is a rp-compatible ordering vector

for a matrix of the form (5) where the Di need not be diagonal. Thus we have the
following theorem.

THEOREM 2.9. A block p p tridiagonal matrix is a rp-CO matrix.
(This is proved in a different manner by Hageman and Young [6].) Of course, an
immediate corollary is that Tp-matrices are rp-CO.

Now, although block tridiagonal matrices are not generally CO, T-matrices are.
THEOREM 2.10 (Young [25, Thm. 5.3.1]). A T-matrix is a CO matrix.
The property of being r-CO is important because it is often the case that, al-

though a given matrix may not be CO, it is r-CO for some partitioning r of A into
blocks. And, in such circumstances, we may apply the results of the classical SOR
theory to the partitioned matrix, i.e., we obtain an eigenvalue relation between the
eigenvalues of the Jacobi and SOR iteration matrices, respectively, corresponding to
the block partitioning of A. Of course, since the eigenvalues of the block Jacobi itera-
tion matrix are a function of the matrix elements, it is generally nontrivial to compute
them. But, for example, we can compute the optimal relaxation parameter Wopt and
the corresponding spectral radius Popt for line SOR methods (see 5.1).

3. The addition of block bidiagonal matrices Br to Tp. In this section we
investigate what types of matrices can be added to block tridiagonal matrices (and
hence also to T-matrices) so that the resulting matrix sum is still r-CO or even CO.
This section is divided into three subsections. First, we examine the case in which the
block tridiagonal matrix has no zero blocks on the first sub- or superdiagonal, that
is, Hi 0 or Ki 0 for i 1,... ,p- 1 in (5). Next, we consider the case in which
the block p x p tridiagonal matrix has intermittent zero blocks on these diagonals,
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say Hkq 0, Kkq 0 for k 1,..., r where r p/q and q is some integer that
divides p evenly; the generalization to the case for which these zero blocks are spaced
nonuniformly should be obvious. Finally, we investigate the case in which the block
tridiagonal matrix is a T-matrix.

Note throughout this paper that all results on r-consistent ordering for block
matrices imply concomitant corollaries for the case of consistent ordering of nonblock
matrices as a result of the correspondence inherent in Definition 2.3. That is, all
results for block p x p matrices with blocks Aij in terms of r-consistent ordering
imply exactly analogous results for n x n (where n p) matrices with elements aij in
terms of consistent ordering.

3.1. Tp has no zero blocks on the first sub- or superdiagonal. Here we
consider the class of block p x p tridiagonal matrices Tp which have no zero blocks on
either the first subdiagonal or the first superdiagonal. We find that, for the matrix
sum Tp / An to be rp-CO, Ap must also be block tridiagonal. Although somewhat
obvious, we state the result as a theorem in order to facilitate reference to it below.
The proof illustrates the general method of proof used throughout.

THEOREM 3.1. Let Tp be a block tridiagonal matrix of the .form (5) where the
Di are not necessarily diagonal, and suppose that Ap has the block p p form (2)
where the blocks are partitioned commensurately with those of Tp. If Hi 0 and
Hi -Ai,i+l, or Ki 0 and Ki -Ai+l,i, for i 1,... ,p- 1, then the matrix
Tp + Ap is a rp-CO matrix if and only if Aiy 0 if > j + 1 or j > i + 1, i.e., An is
block tridiagonal.

Proof. Clearly the sum of block tridiagonal matrices is also block tridiagonal, so
that if Ap is, then so is Tp / Ap. Therefore, Tp + Ap is rp-CO by Theorem 2.9.

Now, assume that Tp + An is rp-CO, and suppose that Aij 0 for some i, j with,
without loss of generality, j > i + 1. Since Tp / Ap is rp-CO, we can, by Theorem 2.5
construct a rp-compatible ordering vector /for Tp + An. Now, either [Tp + Ap]i,i+
Hi + Ai,i+ 0 or [Tp + Ap]i+, Ki q- Ai+,i O, for 1,... ,p- 1 since

Hi -Ai,i+l or Ki -Ai+,i, respectively. Therefore, we must have /i+1 -i 1
for i 1,..., p- 1. Now, [Tp + Ap]ij Aij O, so that we also require /j -/i 1.
However,

since j > i + 1, a contradiction. Therefore, we must have Aiy 0 for j > + 1. The
case Aij 0 with i > j + 1 is exactly analogous. [:]

We note that, under the assumptions of Theorem 3.1, if Tp and Ap are T-matrices,
then Tp + Ap is CO by Theorem 2.10 since the sum of T-matrices is a T-matrix.
However, the corresponding "only if" part of the theorem does not hold, in general,
for T-matrices and consistent ordering. Although it is possible to add matrices other
than T-matrices to a T-matrix to obtain a CO matrix, the only type we can add
without knowing anything about the internal structure of the o-diagonal blocks of T
and A is a T-matrix.

The following is an immediate corollary of Theorem 3.1.
COROLLARY 3.2. Let the n n matrix A be such that all of the elements on

the first sub- or superdiagonal are nonzero. Then A is CO if and only if aij 0 for
j>i+l andi>j+l.

3.2. Tp has intermittent zero blocks on the first sub- and superdiagonal.
We now consider block tridiagonal matrices that have intermittent zero blocks on the
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first off-diagonals. That is, we let the matrix T have the block r x r diagonal form

T diag(Tll,T22,...,Trr),

where the q x q diagonal blocks Tkk are of the form

(7)

Al+l,l+l Al+l,l+2
A+2,+I

Al+q-l,l+q
Al+q,l+q-1 Al+q,l+q

for k 1,...,r, where (k- 1)q and p qr. According to our notational
convention, T Tr Tp, where T is block r x r unidiagonal with q x q blocks and
Tp is block p x p tridiagonal with zero blocks every qth entry on the first sub- and
superdiagonals. Since Tp is block tridiagonal, it is rp-CO by Theorem 2.9 (it is also
trivially r-CO). Of course, if the diagonal blocks A+i,g+i, 1,... ,q are square
diagonal matrices, i.e., A+i,+ D+ in (7), then Tp given by (6), (7) is also a

Tp-matrix and hence CO by Theorem 2.10.
Now consider the class of block r x r bidiagonal matrices of the form

(8) Brm
0 Bm

Brm_l,r
B" 0r,r--1

m k 1 r- 1 may have only one nonzerowhere the q q nonzero blocks Bk,k+l,
block lower diagonal (m mL

(9) " "Bk,k+ Lk,k+
Al+mL,kq+l

Akq,(k+l)q--(mL--1)

where mL 2,...,q, or a nonzero block main diagonal (mL 1 in (9)), or one
nonzero block upper diagonal (m mv)

Al+l,kq+mu

(10) m myB,+ U,+
Akq-(mv-1),(k+l)q

where mu 2,...,q. The blocks Bkm+l,k, k 1,...,r- 1 have the same block
structure as the blocks (Btm,k+)T. Note that Tp is block tridiagonal of block order p
while Bm is block bidiagonal of block order r p/q; the block orders are different.
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We now have the following lemma.
LEMMA 3.3. Let Tp be given by (6), (7) and B be given by (8) with (9) or (10).

Then the matrix Tp +B is rp-CO for all values of

mL 1,..., q,(11) m
mu 2, q.

Proof. We show that the matrices Tp +B are rp-CO by showing the existence of
rp-compatible ordering vectors /. We treat separately the cases in which the blocks
Bk,k+1" have the form (9) or (10), i.e., m mi or m mu, respectively. First, assume

m mLthat Bk,k+ Lk,k+l, so that they have the form (9). In this case a rp-compatible
ordering vector for Tp + BmL is given by

L [1,..., q, mL - 1,..., mL + q, 2mL - 1,..., 2mL + q,

(r- 1)mL + 1,..., (r- 1)mL + q iT,

or, in a somewhat more compact form notationally,

(12) /L=[((k_l)mL+l,(k_l)mL+2,...,(k_l)mL+q),k=l,...,r]T.
m muNow, suppose that m mu, i.e., Bk,k+ Uk,k+ has the form (10). Then we obtain

the ’-compatible ordering vector

(3)
vu [((k- 1)(mu 2)+ 1, (k- 1)(mu 2)+ 2,...,

(k- 1)(mu 2) + q),k 1,...,r]T

for Tp + Binv. We may verify that the vectors L and v given by (12) and (13),
respectively, are rp-compatible ordering vectors for the matrices Tp + Bm where the
blocks Bk,+l ofB have the form (9) and (10), respectively. Thus, by Theorem 2.5,
Tp +B is rp-CO for all values of m given by (11). [:]

The regularity among the elements of the rp-compatible ordering vectors for the
matrices Tp+Bm is quite striking. Note that the elements of these vectors correspond-
ing to a given block Bk,mk+l are consecutive integers beginning with the (k- 1)q + 1st
element of the vector; this is true for k 1,..., r. That is, we have

(14) "(k-1)qTi "(k-1)qTi-1 - 1, i 2,...,q, k 1,...,r.

Therefore, for a given k, the only element of /that depends on elements corresponding
to another value of k is the (k 1)q + 1st; the rest of the elements for that given k
can be obtained using (14). This suggests that it may be possible to construct p-
compatible ordering vectors for matrices Tp + Br (Tp given by (6), (7)) where the
matrix Br now has the somewhat more general block r r bidiagonal form

(15) Br

0 Bl,m
B,

r,r--1

l:mr--1

0

mkwhere each of the q q nonzero blocks B,k+l, i 1,..., r- 1, has the form (9) or

(10); that is, each mk can take on any value m in (11)
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LEMMA 3.4. Let Tp be given by (6), (7) and let Br be given by (15) with each
mkBk,k+ given by (9) or (10), and where each mk takes on a value of m from (11).

Then the matrix Tp + Br is rp-CO for all choices of Br, i.e., .for all combinations of
the ink.

Proof. Using the rp-compatible ordering vectors which we constructed in the
proof of Lemma 3.3, we show how to construct a 7rp-compatible ordering vector for

mTp + B, given any B of the form (15). Consider the block Bk,k/1. If this block has
the form (9) so that mk mL for some mL, then we notice from (12) that in going

L to L If has the block strictlyfrom /kq /kq+l, we need only add mL to (k--1)q+l’L Bk,k+lmk
upper triangular form (10), we see that v

q+l can be obtained by subtracting mv 2
from v

/(k- 1)q+ 1" In summary, then, we have

/(-1)q+1 + mk, if mk mL,(16)
(k-1)q+ (m 2), if mk raG.

Of course, as noted above, the remaining elements are contiguous and would be
calculated using (14). Now, the construction of a rp-compatible ordering vector for
Tp +Br proceeds as follows. We take as the first q elements of the vector , the integers
1,..., q, i.e., -yi i,i 1,..., q. Next, we consider the block Bl,m. If this block is
block lower triangular, then we set "q+l 1 -- ml 1 + ml, "qnUi "qTi--1 -- 1, i
2,..., q. However, if B, is block strictly upper triangular, we cannot simply use

(16) to calculate /q+ since for ml > 2 we would obtain a value for 7q+ which was
nonpositive. To mitigate this problem, we would add m 2 to the first q elements of
7, then calculate 7q+1 using (16) and the next q- 1 elements again using (14); we can
do this because, clearly from Definition 2.1, if 7 is a r-compatible ordering vector, then

mk k--2 r-1 weso is 7+ ti where ti is any constant vector. With the blocks Bk,k+l, ,..
proceed in exactly the same fashion obtaining q+l from /(k-)q+ using (16) with

mm mk and then using (14) to calculate the next q- 1 elements of 7. If Bk,k+ has
the form (10), we first check if /kq+l /(k-1)q+l --(ink- 2) > 0; if not, then we
first add mk 2 to the thus far computed kq elements of . When we have proceeded

mthrough all of the blocks Bk,k+, we have constructed a rp-compatible ordering vector
for Tp + Br, thus, by Theorem 2.5, Tp - B is 7t’p-CO. []

We now show that, if Br is of the form (15), then Tp + Br cannot be rp-CO unless
each of the blocks B,e+l, k 1,... ,r- 1, has one of the unidiagonal forms (9), (10).

THEOREM 3.5. Let Tp be given by (6), (7) and let Br be given by (15). Then the
matrix sum Tp + B is rp-CO if and only if each Bk,k+, k 1,..., r 1, is given by
(9) or (10), where each mk takes on a value of m from (11).

Proof. If each B,+I is given by (9) or (10) with mk taking on a value of m from
(11), then Tp + B is rp-CO by Lemma 3.4.

m has a form different from (9) andWe now show that if any of the blocks Bk,k+
(10), then it is impossible to construct a rp-compatible ordering vector for Tp + B;
thus the matrix sum Tp + B is not 7rp-CO by Theorem 2.5. Consider the block

Bk,k+m where k is now fixed and is chosen from the range of values k 1,. r 1.
We assert that given one nonzero block Al+,kq+j (recall that (k- 1)q), where

mk" the only other blocks of Bk,k+ which can be nonzero arei, je{1,..,q},inBk,k+,
those lying along the diagonal of which Al+i,kq+j is a member.

We treat two cases: In Case 1 (i >_ j), Al+i,kq+j is in the lower triangular portion
of Bk,+ or on the main diagonal of Bk,k+1. In Case 2 (i < j), Al+i,kq+j is in the
upper triangular portion of B,+.
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mk mLCase 1 (i >_ j). From (9) we see that Bk,k+ Bk,k+ where mL i--j + l
and At+i,kq+j 0 for some i,j where mL <_ <_ q and 1 <_ j <_ q- (mL 1). The
parameter mL uniquely determines the diagonal of which Al+i,kq+j is a member, and
it can be seen that all elements of this diagonal are of the form At+i,kq+j where the
integer pair (i, j) is a member of the set

(17) AmL { (i, j)lmL <_ i <_ q, 1 <_ j <_ q (mL 1) and i j mL 1 }.

Assume now that, for some ,v/ E {1,..., q}, A+,q+v 0 and (,r/) hmL.
Then, in order that a rp-compatible ordering vector exist, the requirement (3) becomes

1 if l+ > kq+r,
71+ /kq+ -1 if + < kq + 7.

However, since ,v/ E {1,... ,q}, we can never have + > kq + 7. Noting that
kq kq (k 1)q q so that + < kq + 7 is always satisfied, we thus require

(18) /+ /q+, -1.

Now, since the elements of - are consecutive for indices from + 1 to kq,

(19)

Similarly, the elements of /are consecutive for indices from kq + 1 to (k + 1)q so that

(0)
/kqTv (’kq+, --"kq-t--l) -}- ("/kq4-vl-1 --Q/kq+,-2) -}-’’"-}- (kq-]-2 --kq-lr-1) + "/kq+

(r 1) + "Ykq+l.

Subtracting (20) from (19) and using the first line of (16), we have

(21) "Y+ "kq+vl ( ?) -}- /+1 "’kq+l ( ?) mE.

Substituting into (18) this gives

-I mi--1.

But then, from the definition of Amr, we would have (, ) A,r, a contradiction.
Therefore, we must have A+,q+, 0 for (, r/) not in AmL.

mk contains a nonzeroCase 2 (i < j). In this case we assume that the block Bk,k+
block Al+i,kq+j, where now 1 <_ <_ q- (mu 1) and mu <_ j <_ q. Thus Bk,k+

ma where mu j- + 1 From (10) we see that for any elementhas the form Bk,k+
A+i,kq+j of the diagonal determined by mu the integer pair (i, j) is a member of the
set

(22) Tma {(i,j)llEi<_q-(mv-1),mv<_j<_qandj-i--mv-1}.

Now, assume that At+,kq+, # 0 for some , r] {1,..., q} such that (, y) Tm.
Then, analogous to Case 1, in order that a rp-compatible ordering vector exist for
Tp + Br, we again obtain the requirement (18). Using (19) and (20) and the third
line of (16), from which ,t+ "kq+ mu 2, (21) becomes

+ "Ykq+v ( 7) + mu 2.
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Substituting this into (18) we get

-r] l-mu,

so that (, r/) is in Tmu, a contradiction. Thus Al+,kq+n 0 for (, r/) not in Tmu.
Therefore, we conclude that, in order that a rp-compatible ordering vector exist for

mTp / Br so that Tp / Br is Zrp-CO, the nonzero blocks Bk,k+ of B must, for each k,
have one of the unidiagonal forms (9), (10), and the proof is complete.

3.3. Tp is a Tp-matrix. Now, we consider the case in which Tp is a Tp-matrix
with intermittent zeros on the first sub- and superdiagonal. Of course, in this case, a
matrix of the form Tp + B, is still Zrp-CO by Theorem 3.5, but it turns out that such
a matrix is also CO.

THEOREM 3.6. Suppose that the diagonal blocks Al+i,+i of (7) are square diag-
onal matrices, and let Br be a block bidiagonal matrix of the form (15). Then any
matrix of the form Tp + Br where Tp is given by (6), (7) is CO if each of the blocks

Bkm,k+l Of Br is given by one of the unidiagonal forms (9), (10).
m is given by (9) or (10) with mk taking on a value of mProof. If each Bk,k+l

from (11), then we show that we can easily construct a compatible ordering vector
for Tp + Br using our previous results. Let s denote the order of the diagonal blocks
At+i,t+i. (The case in which these blocks each have different order, say st+i, is no
more difficult to prove; however, the subscripting becomes overly cumbersome.) We
assert that, in order to construct a compatible ordering vector for Tp + B, we must
only take the Zrp-compatible ordering vector (which we now denote /’) for Tp / B,
constructed as in the proof of Lemma 3.4, and repeat each element s times. That is,
with (k- 1)q, we set

(23)

In order to verify that -y constructed in this manner is a compatible ordering vector
for Tp + B, we must show that (3) holds for all nonzero elements agh of Tp / Br;
note that g, h E {1,...,n} where n qrs. There are two situations that we must
treat: agh 7 0 represents an element of one of the off-diagonal blocks At+i,l+i+ of (7)

mand agh 7 0 represents an element of some At+i,q+j of Bk,k+1. Consider the case in
which agh 7 0 is an element of one of the off-diagonal blocks of (7), At+i,t+i+l. Then
we have

h (l + i)s + ,
where i, e {1,..., s}. So, requirement (3) becomes

if (l+i-1)s+i>(l+i)s+),
if(14-i-1)s+<(l+i)s+.

Since {, e {1,... ,s}, we can never have (1 + i 1)s + > (1 + i)s + , so we require
that

q’(+i-)s+ 3’(+i)+ -1.

By (23), this is equivalent to requiring that

"Yhi "hi+l 1,
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which is true in our construction of / by (14).
Now, we consider the case in which agh 0 is in a block Al+i,kq+j of Bk,k+1.

Then we have

(24) g (1 + i 1)s + , h (kq + j 1)s +
for some 5, E {1,..., s}. Proceeding as before, we obtain the requirement

’(ITi--1)s+i "/(kqTj-1)s+j -1.

By (23), we thus require that

(25) 7+ 7kq+j 1.

This is the requirement (18) with i, j, which we found to hold if and only if
(, ) (i, j) is in t, or Tmv, depending on whether mk mL or mk= mu, that
is, if and only if At+i,kq+j lies along the diagonal determined by ink. This is true by
assumption; thus (3) holds for -a and /h corresponding to aah.

Hence, for any nonzero element of either of the two "types" of nonzero blocks
(At+i,z+i+l and Al+i,kq+j) of Tp + Br, the corresponding elements of given by (23)
satisfy the requirements set forth in Definition 2.1 of a compatible ordering vector.
Therefore, using (23), where the elements "kq+i are found as in the proof of Lemma 3.4,
we can construct a compatible ordering vector for Tp + Br, so it is a CO matrix by
Theorem 2.2. [

As was the case with Theorem 3.1 in 3.1, we cannot strengthen the above result to
be an "if and only if" statement. Although the blocks B,+I of B do not necessarily
have to have one of the block unidiagonal forms (9), (10) in order that the matrix sum
Tp + B (with Tp a Tp-matrix) be CO, we can only use the method of constructing a

mkcompatible ordering vector given in the proof of Theorem 3.6 if the Bk,k+ do have
one of these unidiagonal forms. Otherwise, we need to know something about the
internal structure of the Az+i,t+i+l of (7) and the Al+i,kq+j of Bk,k+1.

The method of proving Theorem 3.6 can be extended in a straightforward manner
to prove the following stronger and very useful result.

THEOREM 3.7. Let the block p p matrix A be given by (2), and suppose that the
diagonal blocks Aii, i 1,..., p are diagonal matrices. If A is rp-CO, then A is CO.

A proof of Theorem 3.7 would be similar to the following. If A is p-CO, then
by Theorem 2.5 there exists for A a p-compatible ordering vector, say p. Let si
denote the order of the diagonal block Aii, for 1,..., p. Now construct a vector /

7pby repeating each element /i of /’p si times. Then, using the method of proof used
for Theorem 3.6, we would show that the vector -, consisting of P-i= si elements, is
a compatible ordering vector for A. Thus A is CO by Theorem 2.2. We note that
Young intimated this result by stating: If Ap is 7rp-CO, then Cp Dp Ap is CO,
where the blocks Dij of DB are given by Dii Aii and Dij O, j (Young [25,
Whm. 14.3.2]).

Often, when using a multicoloring scheme, we obtain a matrix with diagonal
blocks which are, in turn, diagonal. In this case, Theorem 3.7 provides an efficient
way of showing whether or not that matrix is CO by simply finding a p-compatible
ordering vector for it rather than a compatible ordering vector. In general, this should
represent a substantial simplification.

We note that the following corollary of Theorem 3.7 may also be useful.
COROLLARY 3.8. Let the block p p matrix A have diagonal blocks Aii,

1,...,p, which are block diagonal of block order s. Assume that A can also be patti-
tioned as a block t t matrix with t ps. If A is up-CO, then A is t-CO.
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4. The addition of more general block matrices Mr to Tp. The rp-COm-
patible ordering vectors constructed in the manner prescribed in 3.2 allow for even
more nonzero blocks in the matrix sum; these nonzero blocks must again take one
of the unidiagonal forms (9), (10). We consider the addition of a more general class
of block matrices Mr to block tridiagonal matrices Tp where the Mr have more than
just two nonzero block diagonals. We consider matrices Mr of the form

(26) Mr

where we again assume that this matrix is symmetrically structured. That is, the
nonzero block structure of a block Mij is the same as that of M. In the language
of previous sections, these matrices would be referred to as block "(2r 2)-diagonal"
matrices.

We denote the off-diagonal blocks of the matrix Mr of (26) by Mk,k+i, where
k 1,...,r and i 1,...,r- k; associated with each of these blocks will be a
value mk,k+i, selected from (11), which will determine the unidiagonal structure.
Thus i serves as an index for the superdiagonal (and, by the symmetrical structure
assumption, the associated subdiagonal) under consideration; the case i 1 was the
subject of 3.

We begin with the case i 2. There are several possible situations. The allowable
value of ink,k+2 depends on the values of mk,k+ and mk+l,k+2; that is, ink,k+2
depends on the values of m in the block to the left and in the block below the
k, k + 2nd block. There are four possibilities, depending on whether these values of
m are of the form mL or mv; the corresponding allowable values of ink,k+2 for rp-
consistent ordering are given below. (In (27) (28) by m,+2 0, we mean that"-’k,k+2

Mm,+. has no nonzero elements.),k+2
(i) mk,k+l mL 1,..., q and mk+l,k+2 mL 1,..., q,

(27) mk,k+l -}-mk+l,k+2

_
q ==

mk,k+l "-b mk+l,k+2 q
ink,k/2 mL mk,k+l mk+l,k+2,

M’+ O.,k+2

(ii) mk,k+l mu 2,..., q and mk+l,k+2 mu 2,..., q,

mk,k+ + mk+l,k+2 2 <_ q
(28) mk,k++mk+,k+2--2>q

ink,k+2 mu mk,k+l "[-mk+l,k+2 2,
M’’+ 0,k--b2

(iii) mk,k+l mL 1,..., q and mk+,k+2 mu 2,..., q,

(29) mk,k+l > mk+l,k+2 2
mk,kq-1

_
mkq-l,k/2 2

ink,k+2 mL mk,k+l mk+l,kq-2 -k 2,
ink,k/2 mu mk+l,k+2 mk,k+l.

(iv) mk,k+l --mu 2,..., q and mk+l,k+2 ’-mL 1,..., q,

(30) mk/l,k+2

_
mk,k+l --2 ==

mk+l,kq-2 mk,kq-1 2
mk,kq-2 mu mk,kq-1 mkq-l,k/2,

mk,kq-2 mL mk+l,kq-2 mk,kq-1 2.

For values of i greater than 2, we use the values of any pair of re’s, mk,kq-t
and mkq-,kq-i, where 0 < t < i. For instance, to obtain the allowable value of,
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say ink,k+4, we could use any of the pairs mk,k+l, mk+l,k+4 or ink,k+2, mk+2,k+4 or
ink,k/3, mk+3,k/4. The formulas to be used to obtain the allowable value of mk,k/i
are exactly (27)-(30), except that we replace k -b 1 by k -b t and k q- 2 by k -b i. Note,
however, that when a block was set to zero as in the second lines of (i) and (ii) above,
we do not assume a value of 0 for m in that block; rather, m carries the value indicated
in the corresponding first line, although greater than q.

Proceeding in this manner, it is possible to check whether a block matrix is rp-
CO. If all of the diagonal blocks A+,+i are diagonal matrices, then, by Theorem 3.7,
we can check whether the matrix is CO.

5. Application of the theory to some multicolor orderings. In this section
we apply some of the results of 3 to some well-known and not so well-known orderings
that appear in the literature. Although convergence properties for these orderings are
beyond the scope of this paper, they can generally be found in the given references.
In order to concretize some of what follows, we apply the discussion to the solution
of the discretized analog of the two-dimensional Laplace problem

(31) 72U 0 in f [0, 1] x [0, 1],
u=O on 0f.

In the discretization we assume that there are an even number N of grid points in
each direction.

5.1. Line and zebra orderings. One frequently used class of orderings is the
class of line orderings. These are multicoloring schemes in which all of the points on
a given line of the grid, or group of lines, has the same color. Thus, for example, for
a two-dimensional problem on an N x N grid, a one-line ordering results in N colors,
while a k-line ordering gives N/k colors (we generally choose k so that it divides N
evenly).

Ordering the lines, or groups of lines, in the natural ordering from bottom to
top, the coefficient matrix under the usual five-point finite difference discretization,
as with a natural ordering of the grid points, has the form

(32) A tridiag(-I,T,-I), T- tridiag(-1,4- 1).
(Notationally, by tridiag(A, B, C), we mean the block tridiagonal matrix with matrices
B along the main diagonal, and matrices A, C along the first sub- and superdiagonals,
respectively.) Here T is N x N, and I is the identity matrix of order N. For k 1,
we have a block N x N structure. For general k, A would be partitioned as a block

k x matrix of kN x kN blocks. In each case, the matrix is block tridiagonal of
block order and hence is 7rN/k-CO by Theorem 2.9.

Next, consider a zebra ordering. We color all of the odd-numbered rows of the
grid, say, black, and all of the even-numbered rows white. Within each color we
then number the grid points in the natural ordering. Using a five-point stencil in the
discretization of (31), the coefficient matrix would have the red/black (block 2 x 2)
form

[ D1 C ] D1- D2 diag(T), C --tridiag(-I,-I, 0),(33) A-- cT D2
and T is given in (32). Here diag(T) is a block diagonal matrix with diagonal blocks
T. Di, C are block - x - while T, I are N x N. Since A is r2-CO with D1,D
block diagonal, Corollary 3.8 indicates that the coefficient matrix for a zebra ordering
is also rN-CO.
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5.2. Many-color red/black orderings. The many-color red/black orderings
of Harrar and Ortega [10] are of two general types: row-wise red/black orderings
and planar red/black orderings. The 1-row and 2k-row red/black orderings involve
imposing a red/black ordering on every row or 2k rows (lines) of the grid where
k 1, 2,..., N/2 and N is the number of rows. For three-dimensional problems, we
can also consider 1-plane and 2k-plane red/black orderings where a red/black ordering
is imposed on every plane or 2k planes of the grid, respectively. In either case, the
red and black unknowns of a given color are numbered in a natural ordering.

In general, for a 2k-row red/black ordering the linear system is of the form

(34)

D1 A2 0 A4
AIT2 D2 A23 0
0 ATa D3 A34 0

A1T4 0 A3T4 D4 A45
0 AaT

AcT6

A36
0

UR1
UB1

UR2
UB2

_:
Here the Di are diagonal matrices, um is the vector of unknowns associated with the
Ri grid points, and similarly for urn. For an N N grid the coefficient matrix is
block with kN kN blocks. For three-dimensional problems on an N N N
grid, a 2k-plane red/black ordering again yields a system of the form (34), where the
coefficient matrix is block --N

k
, except that now the blocks are kN2 kN2 and

consist of more nonzero diagonals.
The coefficient matrix of the system (34) is a matrix of the form Tp + Ap where

p N/k; Tp is a Tp-matrix (a TN/k-matrix), and Ap is a block matrix which
has all zero blocks except for Ai,i+3 (and Ai+3,i ATi,i+3) where 1, 3,..., N 3.
All of the blocks on the first sub- and superdiagonals of Tp are nonzero. Thus, by
Theorem 3.1, Tp+Ap is not rp-CO. In order to determine whether or not the coefficient
matrix of (34) is CO, we would need to investigate the internal structure of its off-
diagonal blocks.

Now consider a 1-row red/black ordering. The system of equations corresponding
to a five-point finite difference discretization of (31) would have the block 2N 2N
form

(35)

D1 A2 A13 0

AT2 D2 0 A24
A1T3 0 D3 A34 A35
0 A2Ta A3Ta D4 0

AcT5

UR1
UB1
UR2
UB2 =f,

where each block is - -. This is also the form of the system of equations for the
three-dimensional analog of (31) in the case of a 1-plane red/black ordering except
that each block would be N2/2 N2/2 and the Ai,i+l, 1,... ,N- 1 would have
more nonzero diagonals.

Using the nomenclature of 3, the 1-row (1-plane) red/black coefficient matrix of
(35) is a matrix of the form Tp + Br, where p 2N, r N (p 2N2, r N2). Tp
is block tridiagonal with intermittent zero blocks every second block on the first sub-
and superdiagonals. Br is block bidiagonal where each block Bkm,k+l is block 2 2
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with m mL 1. This matrix is thus rp-CO by Lemma 3.4. In fact, from the proof
of Lemma 3.4, we see that a rp-compatible ordering vector for this matrix is given by
(12) with q 2, that is, ,L (1, 2, 2, 3,..., 2N, 2N+ 1)T. (For the three-dimensional
problem with a 1-plane red/black ordering, replace N by N2.) Since the diagonal
blocks of Tp are diagonal, Theorem 3.6 indicates that a compatible ordering vector
for Tp -b Br is given by

’7
L [(1)N/2, (2)N/2, (2)N/2, (3)N/2,..., (2N)N/2, (2N -F 1)N/2]T

where (i)8 denotes the s-long vector, all of whose elements are i. Thus we know that
the matrix of (35) is CO without knowing anything about the internal structure of the
off-diagonal blocks.

Returning to the 2k-row red/black orderings, suppose that we reorder the un-
knowns as

(36) u (UR1, UB1, UB2, UR2, UR3, UB3, .)T.

Then, the coefficient matrix has the same block form as the 1-row red/black matrix
of (35), except that it is block -- x -- with kN kN blocks. Thus we again obtain
a rp-CO matrix which is, in fact, also CO. Harrar and Ortega [10] discussed this
reordering as a way to reduce the bandwidth of the coefficient matrix, but made no
mention of CO (or r-CO) matrices.

5.3. Other orderings. In this section, we discuss some other orderings that
have been proposed in the literature. The primary motivation for many of these
orderings is the need for more than two colors to decouple the unknowns under a nine-
point grid stencil (for a two-dimensional problem); in this case it is well known that at
least four colors are necessary. Adams and Jordan [1] identified 72 distinct four-color
orderings which could be used to bring about this local decoupling of unknowns. All
72 of these four-color orderings lead to matrices which are neither CO nor r4-CO.

Adams and Jordan [1] define a multicolor, or c-color, matrix to be a block matrix
of the form (2) with p c and where the diagonal blocks A are diagonal matrices.
They also define a multicolor T-matrix as a block tridiagonal matrix of the form

(37) TM tridiag(Ui_l, Mi, Li), i 1,..., s

(where, of course, U0 and L8 do not appear in the first and last rows, respectively).
In (37) the Mi are multicolor matrices, the Li are block strictly lower triangular, and
the Ui have the transposed structure of Li, respectively. Now, by Theorem 3.7, if
a multicolor matrix as defined above is rc-CO, it is CO. However, by Theorem 3.1,
if Ai,i+l 0, i 1,..., c- 1, then a multicolor matrix is not rc-CO if any of the
other Aij are nonzero. If some of the Ai,i+l do consist solely of zero entries, then
Theorem 3.5 and the theory of 4 may allow one to determine whether or not the mul-
ticolor matrix is rc-CO. However, TM given by (37) is always r-CO by Theorem 2.9,
and the main result of Adams and Jordan [1] is that TM and its associated multi-
color matrix have corresponding SOR iteration matrices with the same eigenvalues.
Thus, if the coloring is such that the multicolor matrix has an associated multicolor
T-matrix TM, we can apply the classical SOR theory to the rs-CO matrix TM to gain
information about the eigenvalues of the SOR iteration matrix associated with the
multicolor matrix which may be neither r-CO nor CO.

Kuo and Levy [12] also consider four-color orderings for a nine-point discretization
of a two-dimensional Poisson equation. Rather than analyzing the Jacobi iteration
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matrix in the space domain, they consider a simpler, yet equivalent, four-color itera-
tion matrix in the frequency domain. This matrix is not r4-CO; however, they point
out that it is r2-CO (recall Observation 2.7). Hence, they apply the SOR theory to
this frequency domain matrix partitioned as a block 2 2 matrix.

O’Leary [15] considered ordering schemes that would allow for the efficient im-
plementation on parallel computers of SOR-type iterative processes. These schemes
include the ,,p3,,, ,,T3,,, "H + H," "Cross," and "Box" orderings; the names are in-
dicative of the patterns made by the blocks of grid points of a single color, and each
ordering uses three colors. These ordering schemes give rise to coefficient matrices
of the form (2), where each of the diagonal blocks Aii is not a diagonal matrix. For
example, partitioned as a block 3 3 matrix, the coefficient matrix corresponding to
a p3 ordering of the grid points (under a nine-point stencil) has diagonal blocks Aii
which are block diagonal. O’Leary gives the sparsity structure for this matrix, and it
is immediately apparent that it is not r3-CO by Theorem 3.1 since blocks A1,2 and
A2,3 contain nonzero entries but so does block A1,3. The grid corresponding to the
sparsity structure pictured in [15] has five points "per P" if the block of points P is
internal to the grid. Thus many of the diagonal blocks internal to the Aii, i 1, 2, 3,
are 5 5 and full. Therefore, this matrix is also not CO (see Observation 2.6).

Shortley and Weller [19] considered the use of k k square blocks of points with
the Gauss-Seidel method for the solution of (31). Patter and Steuerwalt [17] point out
that k k block orderings lead to coefficient matrices which satisfy block property A
(Young [25] refers to this as property A()); in fact, these orderings give rise to T-CO
matrices. We obtain a coefficient matrix of the form Tp + Br where Tp is a block
()2 ()2 tridiagonal matrix of the form (6), (7) with zero blocks every blocks
on the first sub- and superdiagonals. Br is block bidiagonal of the form (15)
with nonzero blocks Bk,k+ which are block unidiagonal with mk= mi 1.
Thus the coefficient matrix corresponding to a k k block ordering on an N N grid
is (N/k):-CO by Theorem 3.5.

Duff and Meurant [4] considered preconditioning by incomplete factorization in 17
different orderings, including the natural, red/black, zebra, and four-color orderings
already discussed. The methods of this paper can be applied to many of the orderings
discussed there including forward, reverse, and alternating diagonal orderings (Young
showed that a forward diagonal ordering gives a CO matrix), a diagonal ordering of
k k blocks, a spiral ordering, and two block orderings attributed to Van der Vorst;
see Harrar [8].

Although the Laplace problem with Dirichlet boundary conditions (BCs) yields a
CO system of equations under a natural ordering, if we assume periodic BCs in either
coordinate direction, the coefficient matrix is no longer CO. The theory of 4 indicates
that it is also no longer N-CO. However, now consider a red/black ordering. With
an even number N of grid points in each direction, the matrix is block 2 2 with
blocks of dimension N2/2. It is trivially r2-CO (Observation 2.7), and its diagonal
blocks are diagonal matrices; thus it is also CO by Theorem 3.7. We note that with
an odd number of grid points in either direction, the matrix is not, in general, CO
under a red/black ordering since we would no longer have full decoupling. Boundary
unknowns would depend on unknowns of the same color interior to the grid so that
the diagonal blocks of the coefficient matrix would no longer be diagonal. One way to
overcome this difficulty may be to consider certain coloring schemes with more than
two colors; see Harrar [7].
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6. Tp(q, r)-matrices and (q, r)-CO matrices. As pointed out in 1, there are
several generalizations of the class of CO matrices other than that of the class of r-CO
matrices. These include (q,r)-CO, generalized (q,r)-CO ((q,r)-GCO), and r-GCO
matrices (Young [25]). In this section, we do not treat either of these "generalized"
versions, although we try to give a few examples of the ways in which our previous
results can be used to obtain some information concerning (q, r)-CO matrices. In
particular, these results apply to the class of Tp(q, r)-matrices; this class represents a
generalization of the class of T-matrices originally defined in 2. We note that in this
section, q and r have no relation to the q and r of previous sections. When we mean
q and r as used previously, we denote them by and .

A formal definition of a (q, r)-CO matrix can be found in Young [25]. We note
only that a (1, 1)-CO matrix is a CO matrix in the sense of 2. Analogous to this
generalization of CO matrices, we generalize the concept of a Tp-matrix to obtain
Definition 6.1 (Young [25]).

DEFINITION 6.1. Let q and r be positive integers less than p. The matrix A is a

Tp(q, r)-matrix if it can be partitioned into the block p p form A (Aj) where, for
each i, Aii Di is a square diagonal matrix and where all other blocks vanish, except
possibly for the blocks Ai,i+r, i 1, 2,..., p r and Ai,i_q, i q + 1, q + 2,..., p.

Clearly a Tp(1, 1)-matrix is a Tp-matrix as given by Definition 2.8. Also, just as
T-matrices are CO, so too are T(q, r)-matrices (q, r)-CO. However, we try to show
under what circumstances Tp(q, r)-matrices are also p-CO and, since their diagonal
blocks are diagonal matrices, CO by Theorem 3.7.

Now, note that for the purposes of showing (t-)consistent ordering, a Tp(q, r)-
matrix with either q 1 or r 1 can be treated as a matrix of the form Tp + Be
where Tp is a Tp-matrix and Be is a block / bidiagonal matrix with nonzero
elements on its qth or rth sub- or superdiagonal, respectively. The case q 1 is of
particular importance since Varga [22] gave a complete analysis of this case, and then
Nichols and Fox [14] showed that the SOP method is not effective if q > 1. Also, the
important class of p-cyclic matrices, p _> 2 consists of matrices with nonzero diagonal
elements which have a corresponding Jacobi iteration matrix that is permutationally
similar to a Tp(1, r)-matrix where r -p- 1. Therefore, in what follows, we consider
only the case in which one of q and r is unity.

Appealing to Theorem 3.1, we obtain our first result.
THEOREM 6.2. Let q and r be positive integers less than p. Suppose A is a

Tp(1, r)-matrix such that A,+r O, i 1,...,p- r and A,-I O, i 2,...,p.
Similarly, suppose is a Tp(q, 1)-matrix such that t,+ O, i 1,... ,p- 1 and
i,i_q 0, i q + 1, q + 2,..., p. Then A is rp-CO and CO if and only if r 1, and

is 7p-CO and CO if and only if q 1.

Proof. Let A () be as given in the hypothesis of the theorem. Then A () has
no zero blocks on its first subdiagonal (superdiagonal). Suppose that A () is rp-CO.
Then, by Theorem 3.1, A (i.) can have no zero blocks outside the first off-diagonals.
That is, we must have r 1 (q 1).

Now, assume that r 1 (q 1). Then A (i.) is a Tp(1, 1)-matrix, i.e., a Tp-
matrix. Thus, by Theorem 2.9, A () is p-CO, and, by Theorem 3.7, A () is
CO.

Analogous to our progression in 3, we now consider the case in which the first
subdiagonal (q 1) or the first superdiagonal (r 1) has some zero blocks. The
remainder of the results of this section are stated only for the case q 1, but it is
trivial to adjust the proofs to handle the case r 1; this should be clear from the
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proof of Theorem 6.2 given above.
First, we treat the case in which A is a Tp(1, r)-matrix, with r p- 1, and has

at least one zero block on the q 1 subdiagonal; in this case, A is trivially a p-cyclic
matrix.

THEOREM 6.3. Let A be a Tp(1,p- 1)-matrix, p > 2. A is 7p-CO and CO if and
only if Ai,i-1 0 .for some i 2,..., p.

Proof. Let A be a rp-CO Tp(1,p- 1)-matrix and assume that A,i_l 0 for
i 2,...,p. By iheorem 6.2, a Tp(1, r)-matrix, all of whose blocks on the first
subdiagonal are nonzero, can be rp-CO if and only if r 1. However, we have
r p- 1, a contradiction. Thus we must have that one of Ai,i-, i 2,... ,p is
zero.

Now, assume that Ak,k-1 0 where k 2,..., p is fixed. The nonzero blocks of
A are Al,p and Ai,i_, i 2,...,k- 1, k + 1,...,p. Thus, in the construction of a

rp-compatible ordering vector for A, we require p- 1 and i --yi_ 1, where
2,..., k 1, k + 1,...,p. We may easily verify that the elements of the vector

(38) /(p) (p,p+ 1,...,p+ k- 2, k + 2, k + 3,...,p+ 1)T

satisfy both of these requirements. Thus A is rp-CO by Theorem 2.5 and CO by
Theorem 3.7.

In 3.2 we considered the case in which Tp was tridiagonal with intermittent zeros
every th entry on the first sub- and superdiagonal. We conclude this section with
a natural extension of the results of that section. Recall that there we eventually
allowed mk, which determined the position of the sole nonzero block diagonal in the
block Bk,k+mk of Be, to vary with each block. However, here we must keep mk constant
for all k so that the nonzero blocks Al+i,kq+j of all of the Bk,k/l will lie along the
same diagonal. This leads us to the final result of this section, which we state without
proof.

THEOREM 6.4. Let A be a Tp(1, r)-matrix with zero blocks every th position on
the first (q 1) subdiagonal. Suppose that r (l + mv for some mv 2,..., 0 or
r - (mL 2) for some mn 1,..., (. If the rth superdiagonal has m- 1 zero
blocks following every l- (m- 1) possibly nonzero blocks (where m mv or m mL,
depending on whether r r(mv) or r r(mL), respectively), then A is p-CO and
CO.

7. Summary. Multicoloring provides a valuable technique to increase efficiency
in implementing many iterative processes (SOR-type, PCG, multigrid, etc.) to solve
linear systems of equations, especially on today’s parallel and vector computers.

Application of Young’s classical SOR theory is valid when the coefficient matrix
of the system to be solved is CO. Often, especially when a multicoloring scheme is
introduced, we obtain a coefficient matrix that is not CO; however, this matrix may
be r-CO (block CO) for some partitioning r, although determination of whether or
not a given matrix is CO or r-CO is generally nontrivial. Though computer programs
exist to determine consistent ordering (Young [25]), these may be impractical for very
large matrices and do not, in general, take into account the sparsity structure inherent
in the coefficient matrices corresponding to multicolored systems. We have presented
some theory which allows us to ascertain quickly whether matrices which have an
underlying block tridiagonal structure are (r-)CO or not; such matrices are often
obtained when a multicoloring scheme is used.

We applied the theory to ordering schemes from the literature to show that while
some commonly used orderings give rise to CO or rp-CO (p > 2) matrices, many
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others do not. This is particulary true for multicolor orderings with more than two
colors.
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FORWARD INSTABILITY OF TRIDIAGONAL QR*

BERESFORD N. PARLETTt AND JIAN LE$

Abstract. The QR algorithm is the standard method for finding all the eigenvalues of a sym-
metric tridiagonal matrix. It prpduces a sequence of similar tridiagonals. It is well known that the
QR transformation from T to T is backward stable. That means that the computed is ^exactly
orthogonally similar to a matrix close to T. It is also known that sometimes the computed T is not
close to the exact . This is caused by the occasional extreme sensitivity of to changes in T or
the shift, and will be referred to as forward instability of the (computed) QR algorithm.

For the purpose of computing eigenvalues the property of backward stability is all that is required.
However, the QR transformation has other uses and then forward stability is needed.

This paper gives examples, analyzes the forward instability, and shows that it occurs only when
the shift causes "premature deflation." It is shown that forward stability is governed by the size of
the last entry in normalized eigenvectors of leading principal submatrices, and the extreme values of
the derivative of each entry in T as a function of the shift are found.

Key words. QR transformation, tridiagonal, sensitivity

AMS(MOS) subject classification. 65F15

1. Summary. The QR transformation is a complicated similarity transforma-
tion that depends on a parameter a, called the shift, and that preserves the tridi-
agonal form of real symmetric matrices. A QR algorithm consists of a strategy for
the choice of a and the associated sequence of QR transformations. Wilkinson’s shift
strategy (see Example 2.4) produces a sequence of shifts that always converges to an
eigenvalue. This algorithm is implemented in several routines in the EISPACK and
LAPACK libraries. See [1], [4], [5], and [8].

Each QR transform of an n n real symmetric tridiagonal matrix T may be
computed by a sequence of n- 1 similarity transformations using plane rotations. In
[8], Wilkinson showed that any algorithm employing a limited sequence of orthogo-
nal similarity transformations is backward stable in finite precision arithmetic. This
means that the output matrix is exactly orthogonally similar to a perturbation of the
initial matrix that is tiny in norm.

For the purpose of computing eigenvalues, backward stability is completely sat-
isfactory. However, the QR transform has other uses as well. It occurs in inverse
eigenvalue problems (see [2]) and as a deflation procedure in contexts such as the
Lanczos algorithm. In these applications forward stability is needed. That means
that the computed output should be close, in norm, to the output in exact arith-
metic.

Unfortunately, the computed QR transformation sometimes exhibits violent for-
ward instability. In this paper we show examples of this phenomenon and an^alyze it
for real symmetric tridiagonal matrices. Definition of the QR transformation T of the
pair T, a is given at the beginning of 2.1 and the sequence of plane rotations is shown
in (2.18). In the rest of this section we summarize our findings for the knowledgeable
reader. We follow Householder conventions in notation with a few exceptions.
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1. Forward instability can appear in exact arithmetic. It is merely the extreme
sensitivity of some entries of the transform to small changes in T and/or a. Roundoff
error is not needed to provoke this phenomenon. As a thought experiment we can
consider an unreduced tridiagonal T with an eigenvalue A that is irrational. If a is
a very accurate rational approximation to A, then it is possible for the exact QR
transforms of T with respect to A and with respect to a, to differ, in certain entries,
in all figures. For this reason we need only look at the sensitivity of as a function
of a and ignore implementation details such as whether implicit or explicit shifting is
used.

2. The QR transformation is defined for all square matrices. Its instability, when
it occurs, is inherited from the sensitivity of the Q factor of a matrix (B QR) and
this sensitivity can be bounded by traditional perturbation theory. This was done in
[7] and further extension and refinement of that work is in progress.

However, for real symmetric unreduced tridiagonal matrices T, the situation is
simpler and we have been able to replace perturbation bounds by exact derivatives of
the transform with respect to the shift a.

To explain our results we need the last entries in certain eigenvectors. Let Tk
denote the leading k x k submatrix of T. Let A), i 1, k denote the spectrum
of Tk and let wik or wi,k (when the comma is needed) denote the magnitude of the

last entry of the normalized eigenvector for Ak). We chose the last letter of the Greek
alphabet to remind us that these are the last entries.

Our main result is that forward instability occurs if and only if a is very close to
a Ak) with a tiny Wik. More precisely, there are entries of whose derivatives with

respect to a are O(1/wik) when a is close to Ak). This is the only way large values
can occur in the derivatives. The details are in Theorem 4.3. We recall that the
derivatives are not proportional to IITII. The effect of varying sizes in the off-diagonal
entries i of T is hidden in the values of the (Wik }.

One simple result (see proof of Theorem 4.3(i)) is that, for the last off-diagonal
entry/, of , -- ()la- ()- (--1)itanOnn _)

where 0n is the last rotation angle in the QR factorization of T- aI and

cos Ol .
Figure 1 shows that/n is only interesting for a very close to an eigenvalue.

3. Forward instability, if it occurs, is always preceded by what we call premature
deflation of . As mentioned in the second paragraph, T may be computed by a
sequence of plane rotations. Let T(1) T, T(i) OiT(i-1)O, 2,..., n, T(n).
The intermediate matrices T(k) that occur in the transformation of T(1) into T(n) (see
(2.18)) depart from tridiagonal form only in positions (k 1, k -t- 1) and (k / 1, k 1).
If the entries (k, k 1) and (k, k + 1) of T(k) are sufficiently small and the (k, k) entry
equals a to working accuracy, then row and column k could be deleted from T(k) with
little change to the remaining eigenvalues. We say that a has been deflated from T at
minor step k instead of at the expected place T(n) . Most implementations do not
look for this phenomenon and so do not see it. In such cases the computed version
of below the kth row bears little resemblance to the output in exact arithmetic.
In particular, deflation at minor step n will not occur despite the fact that a is an
eigenvalue to working precision. This is discussed in 5 and shown in Example 2.1.
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FIG. 1. /(a) and 5(a) on [0.8,3.1] with T- W, defined in Example 2.3.

4. A standard QR algorithm is somewhat protected from suffering from forward
instability because of the preceding steps (transforms) in the algorithm. By the step
at which a is an eigenvalue, the last off-diagonal is small and the eigenvector for
a usually has a large value for Win. This protection is not complete and Example 2.4
shows instability that occurs when Wilkinson’s shift is used. However, our analysis
shows that a shift strategy that picks an eigenvalue far from On is bound to incur
forward instability when is small. We are inclined to say that such a strategy has
picked the "wrong" eigenvalue.

5. If/k+l 0, k -t- 1 < n, and if a Ak) then the kth column of Q is not
uniquely defined. Hence forward instability is inevitable close to this situation. This
is when washout of the shifts occurs in the implicit implementation of QR (see [7]).
This occurrence of local forward instability does not perturb the rest of the matrix
when the explicit shift is used. We do not pursue this aspect further in this paper.
From our point of view, when a Ak) and/k+l 0, then the deflation that occurs
at step k, though premature for T, is not premature for Tk.

6. Ultimate shifts. In [4] it was suggested that an efficient strategy for computing
the spectral factorization of T would use two phases. First find the eigenvalues by
any means. The QR algorithm without accumulation of the plane rotations is a
leading candidate for the job. Second, run the QR algorithm with accumulation
of the rotations, but using the eigenvalues as shifts. In this way the number of
transformations to be accumulated is minimized. Our analysis in this paper shows
that this strategy is likely to encounter forward instability and this might detract from
the accuracy of the computed eigenvectors. However, if the monitoring algorithm
described in 5 is used to terminate a QR transform at premature deflation, then this
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danger may be greatly reduced. More investigation is needed.

7. Deflation in the Lanczos algorithm. A good way to compute a few eigenpairs
for a large sparse symmetric matrix is to use the Lanczos algorithm; see, for example,
[1] and [4]. The algorithm gradually builds up a tridiagonal matrix adding a row and
a column at each step. After k steps some of the eigenvalues of the k x k tridiagonal Tk
"settle down" and change very little as the algorithm proceeds. It would be convenient
to deflate a converged eigenvalue from Tk. However, our analysis shows that this must
be done at exactly the right step. After that, forward instability will occur. In such
an application the monitoring scheme presented in 5 must be used. Indeed it was
the failure to deflate eigenvalues of full accuracy that led us to this study of forward
instability.

To a reader inclined to complain that we treat only instability due to a variation
in the shift a, we say two things. First, there is little loss in generality since the wik
are continuous functions of the entries of an unreduced T. A perturbed T, whatever
the cause of the perturbation, will have a new set of A) and wik. Great sensitivity
in transforming the new T will occur if a is close to any of the new Ak) with new

wik that are tiny. Second, we mention that this approach encompasses nonsymmetric
Hessenberg matrices and arbitrary perturbations. Essentially, the condition for for-
ward instability is the same. A tiny value of Wik signals that the first k columns of
T- ,kk)I are almost linearly dependent. Note that if the first k columns of a matrix
form a linearly dependent set, then the QR factorization process loses uniqueness at
step k unless k n.

Here is the plan of the paper. Section 2 presents notation and basic results on QR
and 2.3 gives a set of examples of forward instability. Section 3 says more about the
QR intermediate quantity rk (shown in (2.1) and defined in (2.13)) than the reader
will want to know. It is worth mentioning that all entries in T can be expressed in
terms of the rk and the entries in T. Not only do we give bounds on the value of r
and its derivatives, but we give a simple model for it, and related functions, near each

Ak). The results are used in 4 and so 3 could be skipped by readers who have a

little faith. Section 4 presents r, the derivative with respect to a of the QR transform. Upper bounds are given first (Theorem 4.1) and show that huge values are only
possible when a is close to an eigenvalue of some principal submatrix Tk. Theorem
4.2 shows that the derivatives at the special points Ak) can only be huge if a is close
to the spectrum of two successive principal submatrices. However, these results only
give necessary conditions for instability. To show that small wik are also sufficient we
could see no other way than to prove Theorem 4.3. Again there is more detail than
the reader may care for but the theorem is needed to establish the constants behind
the O’s and so to establish that values like 1/Wik are attained. The functions can

exhibit quite violent behavior close to some Ak) For some of our examples the models
are valid on intervals of width 10-14 and certain spectral points differ by 10-28. A
simple version of Theorem 4.3 is given in the preamble just before the detailed proof.
All the results come from applying the linear model for rk established in 3. Section
5 shows how wikJ occurs in a lower bound on the premature deflation indicator. If
neither 3k+1 nor Wik is small then premature deflation cannot occur at that step.

Finally, we mention the figures whose contemplation, at the right moment, should
help greatly in explaining the model and its application in Theorem 4.3. We chose a
tame situation for Figs. 2 and 3 to illustrate typical situations and yet to avoid drastic
rescaling of the y-axis.
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FIG. 2. oS and a7 on [A(5s) -w5,sms(5), A(5s) + w5,sms(5)] with T- W7 (see 3.2).
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FIG. 3. [’s and its approximator defined in (4.15) on [A(5s)- w5,sms(5), A(5s) + w5,sms(5)] with

T W (see 3.2).
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2. QR basics and examples.

2.1. Relationships. For any real tridiagonal matrix T and any scalar a (called
the shift), the associated QR transformation T --, is defined as follows:

T aI QR, ’ RQ + aI QtTQ.

Let

T Tn := tridiag (
and let a be the shift. T is said to be unreducedwhen /i 0, 2, 3,...,n.
Without loss of generality we may then assume that/i > 0, i 2, 3,..., n. The QR
factorization of T aI may be represented by means of a sequence of plane rotations
Ok, k 2,..., n. Here Ok differs from the identity only in rows and columns k- 1
and k where it has entries

Ck 8k I--Sk Ck

and Ck COS0k, Sk sin0k. We let the dimension of Ok be given by its context;
sometimes k k, sometimes n n. The angle Ok is chosen to annihilate the entry in
the (k, k 1) position of the matrix O(k-1)O(k-2)""" O2(T aI) and to lie in [0, r].
The result of this stage is written as

(2.1) Ok’"O2(T-- aI)

1 1 823

7k Ck]k+
k-t-1 Ok-l-1 O"

The first (k- 1) rows are in "final form" as entries of R, while the transitory but
important row k will be overwritten at the next rotation. The last row of R is

(0, 0,..., 0,) re,

where ek denotes the kth column of the identity matrix and v is the transpose of v.
The Q factor is upper Hessenberg as well as orthogonal and is specified by the

(n- 1) rotation angles 2,..., On. The detailed structure of Q is:

Q O...Otn

C2 (--82)C3 (--82)(--83)C4 (--82)’’" (--Sn)
: (-)
83 C3C4

84
Cn--lCn Cn--1 (--Sn)

8n an

The sequence {c2, c3,..., Cn} effectively defines Q and the elements are often called
its Schur parameters; see [2].
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We allow the (n, n) entry of R, namely rn, to have the same sign as det[T-
aI], and det[Q] equals one in our presentation. This is a trivial departure from the
convention that the diagonal of R be nonnegative.

The last column of the k k matrix O...O plays an important role and is given
a name:

Note that y, Qe, qn. For k < n we let y(kn) denote a vector of the form

-
The following relations are used frequently in the rest of the paper.

LEMMA 2.1. With the notation developed above,

(2.3) Ty() yp)a rkek + Ckk+lek+l, k < n,

2 2 k<n(2.4) IITY(kn) y(kn)(7112 7 + Ckk+l,

(2.5)

(2.6) (T (7I)y(n) 7men.

Proof. Equate the kth row on each side of (2.1) and transpose to get

(T (7I)0t2 Otkek Ty(k) y(kn) a rkek + Ck3k+lek+.

Since (2.1) holds for k < n, (2.3)is true for k < n. Equations (2.4) and (2.5) are the
direct results of (2.3). Equation (2.6) is a special case of (2.3) since n+l 0 when
k=n. D

Equally important is the relation between Tk E Rkk and Yk.
LEMMA 2.2. With the notation developed above,

(2.7) TkYk --Yk(7- rkek, 1

_
k

_
n,

(2.8) YtkTky (7 --rkck, 1

_
k

_
n.

Proof. Equate the first k rows of (2.3) to get (2.7) for k < n. Equation
(2.6) covers the case for (2.7) when k n. Equation (2.8) is the direct result of
(2.2). D
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In (2.1) the relations between k, ck, Sk, and rk are cl 1, rl a a, and for
k- 2,...,n,

(2.9)

(2.10) ck rk-/k-,

(2.11) Sk k/k-t,

(2.13) 7rk (--8k’ Ck) I kCk-110k 0"
--SkCk-1]k -[" Ck(Olk (T)"

Finally, for RQ + aI, we have

&
(2.15) &k ckrk Ck+lrk+l + ak+l.

The last result comes from the invariance of the trace in Ok"" O2TO..-O (see
(2.17) below)

ckTrk k+l (T k a --[- CkT17rk+l.(2.16)

When k n,

n 7rn8n n CnTrn (7".

For future reference we show the active part of the matrix Ok... O2TO... (
and the bulge in positions (k + 1, k- 1) and (k- 1, k q- 1).

k-
k-1 k-1 kSk 8kk+l

(2.17) kSk Ckk + a CkkT1

kT2
In a study of the QR transform it is useful to exploit two different interpretations

of On"" O2TO.... First interpretation:

T R= O...O2T
2

Second interpretation:

(2.18)
T T(2) O2TO

__, T(3) O3T(2)0
T(n) OnT(’-)On"

Only T and T(n) are tridiagonal matrices; the intermediate T(k) contain the
bulge.
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2.2. Deflation. The assumption that T is unreduced guarantees, in exact arith-
metic, that the spectra of Tk and its submatrix Tk-1 interlace strictly:

It will be shown in 3 that, as a function of a, rk-1 vanishes at and only at the

)-1), i 1,..., k- 1, while rk vanishes at and only at the ,X), i 1,..., k. Since

k<n,

it is apparent that the only entry of R that can ever vanish is n rn. Consequently,

’ffn8n

vanishes at and only at a A’), i 1, n. To study/n for a in the neighborhood
of ,n), we consider its derivatives

fn "ffnSn -- "ffnSn

:
Clearly, it is necessary to study the properties of rk(a) to understand ’n and ,

and this is done in 3.
2.3. Examples of forward instability. We computed the "exact" QR trans-

form by using a very expensive method that works only for singular T as follows. The
Schur parameters {c} are reconstructed from the vector Yn of (2.2), which happens to
be an eigenvector of T. These eigenvectors can be computed to high relative accuracy
when the eigenvalue is simple, as in our examples.

Example 2.1.

6683.3333 14899.672
14899.672 33336.632 34.640987

(2.19) T 34.640987 20.028014 11.832164
11.832164 20.001858 10.141851

10.141851 20.002287 7.5592896
7.5592896 20.002859

Eigenvalues 0, 2 10, 3 20, Aa 30, 5 40, A6 40000
(i) Successful deflation with shift a -0 A.

39999.925 54.726511
54.726511 33.404823 8.3017268

8.3017268 24.730751 8.8065994
8.8065994 21.646903

7.2175779
7.2175779
20.292461 -1.113d-14
1.113d-14 9.520d-13

The computed version of was indistinguishable from the exact to eight decimals,
except that the nonzero entries in the last row are (-7.943d-12, -2.344d-15).
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(ii) Failed deflation with shift a 6 40000.
First, we present the true rounded to eight decimals and then the computed

version (1) using double precision on VAX 780.

19.989995 14.142133
14.142133 20.003002 11.832160

11.832160 20.001858 10.141851
10.141851 20.002287 7.5592896

7.5592896 20.002859 -1.608d-13
-1.608d-13 40000.000

19.989995 14.142133
14.142133 20.003002 11.832160

11.832160 20.001858 10.141851
10.141851 20.002287 7.5593584

7.5593584 20.730517 -170.561
-170.561 39999.272

Insight is gained by looking at the intermediate matrices in the QR sweep. T(4)

below shows the premature deflation mentioned in comment 3 in 1 and in (2.18).
Then

T(1) matrix shown in (2.19).

19.989995 0.011185926 14.142128
0.011185926 39999.975 -31.622748
14.142128 -31.622748 20.028014

11.832164
11.832164
20.001858 10.141851
10.141851 20.002287 7.5592896

7.5592896 20.002859

T(3)

19.989995
14.142133

14.142133
20.003001

-2.76734d-6
11.832160

-2.76734d--6 11.832160
40000.000 9.35882d-3
9.35882d-3 20.001858 10.141851

10.141851 20.002287 7.5592896
7.5592896 20.002859

T(4)

19.989995 14.142133
14.142133 20.003001

11.832160
11.832160
20.001858 -8.18031d-6 10.141851

-8.18031d-6 40000.000 -2.37200d-6
10.141851 -2.37200d-6 20.002287 7.5592896

7.5592896 20.002859

T(5)

19.989995 14.142133
14.142133 20.003001 11.832160

11.832160 20.001858
10.141851

10.141851
20.002287 0.032249815 7.5592896

0.032249815 40000.000 -6.09724d-6
7.5592896 -6.09724d-6 20.002859
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T(6)

19.989995 14.142133
14.142133 20.003002 11.832160

11.832160 20.001858
10.141851

10.141851
7.5593584

20.002287
20.730517

7.5593584
-170.56153

-170.56153
39999.272

(iii) A second QR sweep. Finally, we show (2), the QR transform of (1) in
(2.20), using the same shift. This shows that, although (2) deflates nicely it is not
very close to . Thus repeated application of the transform will not recover if
forward instability occurred.

19.979990 14.142125
14.142125 20.006003 11.832161

11.832161 20.003716 10.141851
10.141851 20.004574 7.5592897

7.5592897 20.005717 8.425d-15
8.425d-15 40000.000

Example 2.2 (surprising successful deflation). This example uses a shift that is
an exact eigenvalue not only of T but of the odd principal submatrices. Nevertheless,
the computed QR transform is perfectly stable:

-2 1
1 -2 1

1 -2 1
1 -2 1

1 -2

Eigenvalues A1 =-2- x/, A2 =-3, A3 -2, A4 -1, A5 -2 + x/. With shift
(T --2

-2.0000000
1.4142136

1.4142136
-2.0000000 0.70710678
0.70710678 2.0000000

1.2247449
1.2247449
-2.0000000
0.0000000

0.0000000
-2.0000000

Example 2.3 (W2; see [9]).

T W2 := tridiag ( 1 1...1 1 \
10 9 9 -10 )1 1...1 1

Throughout this paper, matrices similar to W2 but of different sizes are used
to best illustrate the properties of the underlying quantities. For simplicity, these
matrices are denoted by W- where n 2k- 1, a k- i for 1, 2,..., n, and
3 1 for i- 2,...,n.

This is the generic example of forward instability. W2 was constructed by Wilkin-
son for other purposes; see [9]. It has almost uniformly distributed eigenvalues. Rather
than exhibit matrices of this size, we plot in Fig. 4 the exact and the computed Schur
parameters of the Q matrix
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FIG. 4. Schur parameters defining Q in QR transform on W (Example 2.3).

obtained when the largest eigenvalue is the shift. The data in the graph is scaled from
x to log10 Ixl to show the divergence.

Example 2.4 (forward instability with Wilkinson’s shift).

T=tridiag 15 0 0 15
1 1...1 1

Wilkinson’s shift is the eigenvalue of

that is closer to an.
This is another generic example of forward instability. The matrix has a double

eigenvalue (A 15.066666667) in double precision. Now we run the QR algorithm on
T in single precision with Wilkinson’s shift strategy. At the first step Wilkinson’s shift
is 15.0664. After the first QR sweep, the last off-diagonal element is -1.96302d- 05.
At the second step Wilkinson’s shift is 15.0667. Premature deflation is observed at the
seventh rotation since (see (2.17)) 7.s7 -3.98401d-04 and cT*& 4.43937d-03.
To demonstrate forward instability, we repeat the second sweep with the same shift
in double precision. The resulting &u’s and u’s from the second sweep in double
precision and in single precision are displayed in Figs. 5 and 6, respectively. Again
the data in the graphs is scaled from x to log10 ]x to show the divergence.

3. Properties of rk. The purpose of this section is to establish properties of k
that are needed in 4, and consequently 3 may be skipped without loss of continuity.
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FIG. 5. Resulting &k’s from QR sweeps in double precision and in single precision (Example 2.4).
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FIG. 6. Resulting k’s from QR sweeps in double precision and in single precision (Example 2.4).
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3.1. Derivatives of rk. We discuss the smoothness of rk(a), for a E R.
LEMMA 3.1. If T is unreduced (i.e., fli > O, i-- 2,... ,n), then r is a rational

function with k real double zeros and 2(k- 1) simple poles that do not lie on the real
axis. Thus 7rk, ck, and sk are real analytic on R. Moreover,

(3.1) 7rk(a) 0 if and only i.f a )a), 1 < i < k, 1 < k < n.

The vector Ya of (2.2) is an eigenvector of Ta when a-- )k), and

i 1, 1,

Proof. Take the leading k k submatrix on each side of (2.1) to find

O... O(T aI) R

and

det(Tk aIk) 1"" k-17rk.

By (2.8), a >_ fla+l for all a and i < n, and (3.1) follows directly from (3.3) and the
assumption that T is unreduced.

Next consider the submatrix on each side of (2.1) in the first k rows and the first
k- 1 columns:

e_lk ot

Since Oa’" 02 is orthogonal,

2 2 /)k-1(Ta-i ryIa-i 4. ea-lea_lfla tk_

and, on taking determinants,

fl]--(1"" k-1det[(Tk_l alk-1)2 4- ek-iek_

Divide (3.3)2 by (3.4) to find

r det2[Tk alkl/det[(Tk_l (:rlk_ 1)2 4- ek_lek_ll.t

Note that with fla 7 0 the denominator can never vanish for real a and consider-
ation of the diagonal shows that it is a polynomial of degree 2(k- 1). The numerator

2 is a rational function in a, asis the square of a polynomial of degree k and thus ra
claimed.

2 isNote that by (2.9), (2.10), and (2.11), -1, c, and s are rational since 7rk
rational and none have poles on the real axis.

Use (2.7) and (3.1) to find that Yk is an eigenvector of Tk when a Ak). Then

by definition of Ya in (2.2), find that wik ICk(.xk))l. Use (2.10) to see that Ck has
the same sign as ra_ does and sign[ca()k))] sign[Tra_l(.kk))] (--1)-, since

from (3.3), ra-1 > 0 for a < Ak-). That proves (3.2). E]

Applying Lemma 3.1, a fundamental relation between ra, ca and their derivatives
with respect to a is obtained. Let f’ (a) df(a)/da.
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LEMMA 3.2. For all real a and 1 <_ k <_ n,

rkCk Ckrk 1.

Proof. Differentiate (2.7)"

Multiply by (yk) and recall the definition of Yk in (2.2):

Equation (3.5) follows since (yt:)tyk 1 by (2.2) and (yk)t(Tk- alk)= rt:(e(k)) by
(.).

COROLLARY 1 OF LEMMA 3.2. For 2 <_ k <_ n,

(3.6) rk(Ak)) 1 (--1)
l<i<k.

(;)) i

Proof. Since rk(Ak)) 0 by (3.1), relation (3.5) at Ak) becomes

())(})) .
The result follows from (3.2). 0

COROLLARY 2 OF LEMMA 3.2.

(3.7) k (A k))= 0, 1 _< _< k.

Proof. Differentiate (3.5)" kck -Ckk 0. Set a A k), then k 0 by (3.1)
and ck =-t-wk 0 by (3.2). 0

We now turn to the behaviour of rk for all other values of a.
LEMMA 3.3. For T unreduced and k <_ n,

(a.s) .. < 0 fo # ).

Proof. Premultiply both sides of (2.7) by (Tk -ff/k)-lTl-1 to find

(3.9) Yk (Tk -aIk)--le(kk) for a Ak).
7rk

A consequence of the spectral factorization is

(3.10)
k 032(e(kk))t (Tk -alk)--Pe(kk)= E=I (Ak) i’k- for a Ak).

Since YYk 1 by (2.2), (3.9)yields

(3.11)
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Combine (3.10) and (3.11) to find

(a.) - :i

Differentiate both sides of (3.12):

or # ).

(3.13)
1 w2

i,k
3 7rk (k)7rk i--1 ( a)3

Differentiate the right-hand side of (3.13):

or # ).

_-1 (a "Differentiate the left-hand side of (a.la):

Therefore, for a Ak) with denoting

1 3 ()

2 2i,k i,k3 (A}k) a)2 (Ak) a)

>0

-3( 1 2

r-r) by (3.12)

i,k i,k

by the Cauchy-Schwarz inequality.

Moreover, equality holds if and only if the following two vectors,

Odl,k Odk,k
Zl Ik) ’’’’’ (kkA -a A )-a

l,k 5dk,k

are proportional. That is,

Ak) a A(kk) a.

This is impossible, since T is unreduced. Therefore,

1 Ak)----rk (a) > 0 for a =
Recall from (3.1) that rk(a) 0 for a Ak). Therefore,

--rkrk >0 fora=Ak).

by (3.13)
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COROLLARY OF LEMMA 3.3.

(3.14) # o o #

Lemma 3.3 shows that the algebraic function rk(a) is like the characteristic poly-
nomial of Tk in that it vanishes at the eigenvalues of Tk. Moreover, it is alternatingly
concave upward and downward in the intervals bounded by the eigenvalues of Tk.
That shows that rk attains its extreme values at the A k), i 1,..., k.

LEMMA 3.4. It holds that

(3.15) lim rk 1

where -’ indicates that the term j i is omitted as j 1,..., k.
kProof. Rearrange -rk/r and use (3.12) to get, with denoting =1,

To analyze (3.16) in a neighbourhood of Ak), it is convenient to abbreviate the terms.
Let

032 032i,k

where 03 03k and 5 Ak) a. Then (3.16) becomes

C02 C02 C02 )2(. + )(. + )- (. + )(m + )
CO CO(- + )(- + )

Multiply the numerator and denominator by a term 54 and simplify the terms to get

1 7vk m203
2 + O(()

3 r 4 + 0()

Then the result follows as
COROLLARY OF LEMMA 3.4. If T is unreduced, then

(3.17) 7rk (A}k))= (_1)i+1 3

where ’ indicates that the term j -i is omitted as j 1,..., k.
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Proof. Apply L’Hospital’s rule:

k (k))
lim rk (--3)

Using (3.6), the result is obtained.

The sum in (3.17) plays a role in the local analysis of
i- 1,...,k.

3.2. The linear model. Near Ak), the function r(a) can be approximated by

(3.18) p(ki)(a) (-1)-- (a- )).
o.)ik

We need to know the interval on which this approximation is accurate to within, say,
10 percent.

In this analysis we need the special quantity that appeared in (3.15).
DEFINITION.

IE’ 2 )-, l <_i <_k,m(i) := 1/ w( k)_ )

where yf indicates omission of the term j as j 1,..., k.

The quantity ink(i) is almost a mean of the singular values of T )Ik. Note
that

2 2

and so mk(i)-2/(1 --Wi2k) is a weighted average of the {(Ak)- Ak))-2}j#i. Recall that
for positive numbers T, any (weighted) harmonic mean is majorized by the (weighted)
arithmetic mean and both lie between the minimum and maximum values, i.e., if

wi 1, wi >_ 0, then

However,

min Ti <_ WiT(1 <_ WiTi <_ max Ti.

With Tj (Ak)- Ak))2, this gives

2 2
k

j--1

Thus

rain{ (k)’’i+l --)k) )k)- k_)l }2 _< (1 wk)mk(i)2
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(3.19)

Now we can compare rk with the linear function p).
LEMMA 3.5 As a Ak)

(3.20) 1 - wikmk(i) + O((a- Ak))3).

Proof. Use (3.6), (3.7), and (3.17) to find that the Taylor series of rk around )

1 ,,,(A[k))(a &k) 3(o) o + ())(- )) + o + +...

(--1)k-w---- (a- Ak)) + -(--1)k--13(aW3kmk(i)2-- ’k))3 -- 0((0" k)4)

p(O (a) 1
wim(i) + O((a AI)a)

Remark 1. It is not valid to use the linear model for rk if the quadratic term
in (3.20) exceeds 1. Thus, in the generic case when there is no happy cancellation
between the quadratic and higher terms, it is necessary to require

so that

rk 7 Ak) 3

v >g+o((- 11.

In Fig. 7, the graphs of rk and p) are shown as well as the boundary points

m(i)

in a typical case.
Remark 2. Since

(ink(i) -2 _< (k- 1)maxj#i A)wJaA)_
it follows that
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x(11) +w3,1mll (3)] with T WFIG. 7. 7rll and the linear model p31) on [A(311)-w3,11mll (3), "’3
(see 3.2).

and when the cubic terms are negligible, the constraint

3v/k- 1 J wjk

is a sufficient condition for using the linear model. Although the minimum will not
be known, the expression shows how a small value of Wjk tends to neutralize the effect

of close A.k) in restricting the domain of the linear model.
^, )In the analysis of k and ak near the following auxiliary function plays a

role:

See Figs. 2 and 3 for the shape of Ck near/kk).
LEMMA 3.6. When la- k) < 5wikm(i) and k < n, then

where

(3.21) fk(0 (a)
a Ak)

l<_i<_k.
+w +
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find
Proof. Abbreviate a- Ak) by , wk by w, mk(i) by m, and use Lemma 3.5 to

Ck 1 2( 2 +
fk(i)

Thus, when 151 < 1/2wm,

+

Ck 1
O< /-i- + 1 + O(ha) <

Equality on the left occurs only when
COROLLARY.

1If() I-<

with equality if and only if a Ak) +/- wkk+l
Remark. If /3k+1 > mk(i), then ]k] will not attain the bound on Ifk()[ since

]k] < ]f()] on the interval in Lemma 3.6, and this interval does not contain the

maximizing point of Ilk() ].

3.3. Pointwise bounds. We now give a pointwise bound on rk that reveals the
role of the distance of a from the spectrum of Tk and from the spectrum of Tk-1.
Some preliminary results are restated for easy reference.

(see definition in (2.9)),
(see definition in (2.10)),
(see definition in (2.11)),
(derivative of (B)),
(for any real a (3.5)),
(for any real a (2.7)).

DEFINITION. #k #k(O’) min<<k IAk) cr l, k 1, 2,..., n.

< ).
2 ThenProof of (G). (F)t(F) yields (yk)t(Tk aIk)2yk rk.

# min (a- Ak))2 (by definition)
l<i<k

,min((Tk r/k)2)
< (yk)t(Tk --aIk)2yk since Yk cannot be an eigenvector since a # lk)

The next result shows that Irkl can only be huge when #k(a) and #_(a) are
both tiny.
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LEMMA 3.7. For any real a,

(3.22) ()11- I1,

(3.24)

Proof of (3.22), (3.23). When a Ak), then rk 0 by (3.1), #k 0 by definition,
and (3.22) holds. Now suppose that a = Ak). Premultiply (F) by (Tk --rlk)-lTrk-l:

Differentiate (3.25)"

(3.26) Yk Yuk (T alk)-2e(kk)

Differentiate YkYk 1 to obtain YYk O. Premultiply (3.26) by y, getting

Thus

1 )t -2e(kk)r rk (yk (Tk aIk) since YkYk 0

(yk)*(Tk aIk)-lyk/rk by (3.25).

- (U)*(T )-u.
and

(3.27) Ir’k[ I(yk)t(Tk

Since a ), yk will not be an eigenvector. Therefore,

[(yk)t(Tk alk)-lyk] < m [vt(Tk alk)-lv]
VtVI

1 1

Put this inequality into (a.27) and multiply by to obtain (a.2a).
Pro4 4 (a.4). When -1, then ,k- 0, and (a.24) is immediate since
0 and 11 0 by (a.1).

Now, suppose that k-/. Then,

I-1 by(D)
k-1

ckk

-1
by (B).
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Hence,

Since a Ak-l), ck =fi 0 by (3.1). Then the above inequality can be rearranged as

by (A)

4. Sensitivity of . Recall that RQ+aI QtTQ where T-aI QR. In
terms of the intermediate quantities generated in the QR transformation, the entries
of are given in (2.14) and (2.15), namely,

2k "--kSk k(k/k-1) for k < n and

(4.0) &k=ak+:--k+l+’k fork<n and ")’k=kCk,

n 7n8n n n " 0".

Differentiating with respect to a reveals that

(4.1)

(4.3)

(4.4) &’n---"/n + 1.

Here is the plan of this section. Our first goal is to show that these derivatives
cannot be huge unless a is close to an eigenvalue of some Tk. Next we show that, in
fact, to have "huge" derivatives, a must be close to the spectrum of two successive Tk’s.
The proofs repeatedly use two results, (2.7) and (3.23), from the previous sections:

(4.5) CkTCk--CkTk=l for alla and k=2,...,n,

and

(4.6) I1 < I1/ for a spectrum (Tk).
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Here

rain a dist(a, spectrum(Tk)).-$k
l<i<k

Finally, we give realistic bounds on all these derivatives.
The first goal is met by the following result.
THEOREM 4.1. With k((r) defined in (4.7) and k < n,

spectrum(Tk) tO spectrum Tk- ),

a spectrum(Tk+ tO spectrum(Tk),

a spectrum(Tn) tO spectrum(Tn_l),

a spectrum(Tn).

Proof.

Applying the quotient rule and simplifying the result yields

( k ) ( k ) 7rkTrk 7rk-17rk--1

Use (4.6) to get

7rk_

Multiply each side by/k and use (4.1) to obtain (4.8).
(ii) From (4.2)and (4.0),

k k ")/k-t-1 Ck Trk + CkT’k Ck-F17rk-t-1 Ck+ Trk-F

^!Now use (4.5) to conclude ak 1 + 2chark (1 + 2Ck+lrrk+l) and use (4.6) to find

(< 2 I.c /
#k

ICk+17rk+ll for a tig spectrum(Tk) tO spectrum(Tk+1)-

(4.12) n/rn-I/rn- 7rn-- 1(iii) sn (n/n-1)’ 3n_1
--SnCn n--1
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1 en]n
/An /An--

for f spectrum(Tn) U spectrum(Tn_l),

r(iv) &n- n / 1 t 2rncn’
(,, + 1)

since cnrn 1 + cnrn.

Then

21%1//-,,-,-1

)I&’nl < 2 ([TrnCnl + 1
for a spectrum(Tn) U spectrum(Tn_1). El

It may be verified that the 7i, i 1,..., n are intermediate quantities that appear
on the diagonal when T aI is being transformed into by a sequence of plane
rotations. Hence I/il < liT- aIll for i-- 1,..., n and all a. Thus huge values for the
derivative of can come only from tiny values of some/Ak.

The next step is to show that the derivatives at the points excluded in the previous
theorem are of modest size unless the excluded points, in each case, are very close to
each other.

In order to simplify notation we shall label eigenvalues of the submatrices Tk so

A(+1) Formally,that the closest eigenvalue of Tk_ to Ak) is Ak-1) and of Tk+ is i+

/Ak-l(,’k)) ik__-l> ,.k> I,

In all cases, i_ is either i or i- 1 and i+ is either or i + 1.
THEOREM 4.2. With the notation above, .for i 1, 2,..., k,

(i)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)
(viii)

Proof. (i) and (ii) Recall that

f’ ((k-1)) ’’I.,,.._ 3kiwis,?-,) < 3k 4+,
(-i) ()I_ -’ ((k) c

Z’ ()

l,k((k+l)) ( "’ ),.-+ 12(cuia+) + 1)1 < 2 1 + +)2x)l+
() +

.(?)) =o,., ,.(n-l)

( ,)
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and note that one of the two terms vanishes at the evaluation points and the other
may be bounded in the same way as in the previous theorem.

(iii) Recall that ak 2(ckrt:--Ck+lrk+l) and note that one term evaluates to -1

at the evaluation point since, for example, Ckrk --Ckrk --1 and rk vanishes at A k).
Also, ck+l --0 at A).

^!(iv) Recall that ak 2+2c7c-2c+1rk+1 and note that 71"k+1 vanishes at (k+l)
i+

and that the other may be bounded in the same way as in the previous theorem.
(v) and (vi) The second term rnS’n vanishes at both evaluation points. To bound

rn at we invoke the inequality in (3.24) from the previous section. To bound rn
at A_n-1) we use the proof of Theorem 4.1 as before.

(vii) and (viii) ^’an 27rnCn 2(1 + 7rncn and 7rn(An)) 0, c,(A_n-l)) 0. D
Preamble to Theorem 4.3. Theorem 4.1 shows that it is necessary for a to be close

to some Aa), i 1, 2, k in order for and & to have large derivatives. Theorem
4.2 shows that Aa) must be very close to Ak-)_ in order for the derivatives to be
large at these points. It remains to show that this last condition is also sufficient for
extreme sensitivity of to changes in a. Indeed I’1, for k < n, may be modest at

both Aa) and Aa-l)_ even when they are extremely close, and it is only at other values

of a in the neighborhood of A) that the large values occur. Theorem 4.3 establishes
this fact.

What permits this analysis is that in an interval of width mk(i)wik centered on

Ak) (see the linear model discussion in 3 for the definition of mk(i)), both ak and

/’k may be approximated closely by much simpler functions of a whose maxima can

be estimated. Recall that Wik is the magnitude of the last entry in Ak)’s normalized

eigenvector. One difficulty in the analysis is to pin down Ak-_ 1), the closest eigenvalue

of Tk-1, which must lie within the interval that we just associated with A). Theorem
4.4, quoted at the end of this section, shows that

except in special circumstances when it is only O(wia), the width of our interval.
We digress to explain the situation. Lemma 2.1 shows that

k+1Ck k+lO.)ik,

since 7rk(Aa)) 0 and Ick(Aa))l wi. Standard results on symmetric matrices (see
[4]) let us conclude that there is an eigenvalue A of T satisfying ]A- Ak)l -< a+lWia.
Moreover, the same can be said for some eigenvalue A for each Tj with j > k. When

wia << 1, we say that A ) has stabilized as an approximate eigenvalue of T. In
many cases, there will only be one eigenvalue of Ta_ close to Ak) and, in that case,
their separation is O(wa). Theorem 4.4 gives

l<i<k.
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Here i, is the second closest eigenvalue and i_ / i, 2i- 1. Thus, in all cases when
il,k,

?_-) 1)
< ,(() ))() )))/ o(,).

In the special ces when ]Ak)- A-)] is comparable to A, our simple model for

rk is still applicable, but the mima of the derivatives of k and k are not so large,
in general, and are complicated to express. In fact, the large derivatives will occur
for a smaller value of k when the first stabilization occurs. That is why we make the
sumption A O(wk in Theorem 4.3. A simple version of Theorem 4.3 is given
next. The distribution ofm and min w a surprise to us.

k)Near a

(i) mlZ]
1, k=n,

a in

(ii) m i,kl O ( 1 )min(ik,wi_,k-1)

(iii) m lal o 1

( 1 )(iv) mll O
min {m(wik,wi_,k-1),m(wik,wi+,k+l)}

The function of Theorem 4.a is to provide the constants hidden by the O. An
interesting byproduct of the proof of Theorem 4.a is that only for ’1 does the

maximum occur in the tiny interval [), -1)]. We remind the reader that from
the preamble to the proof of Lemma

oa 4.a. Near ), for 2 <

I- -1_ < 100(- o(,

then the entries in d achieve the values indicated below.da

1 A 3
(i) max I/1- __1win 1 + g Znwi_,n-1 - \winmn(i) + O(A3)

and occurs near ()) + A_-))/2.
(ii) The function ’k, k < n, is the difference of two similarly shaped functions;

see Fig. 2. Under mild conditions, stated in the proof, the magnitude of the first term’s
model, on the appropriate interval, exceeds
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Under mild conditions, stated in the proof, the magnitude of the second farm’s model,
on the appropriate interval, exceeds

( fl+l 1

When one of these terms dominates, then the larger one gives an accurate estimate

of max IJ’kl near Ak), under the stated conditions. In all other cases, the maximum
value of the model is a more complicated expression and has a smaller value.

^#
(iii) The function lanl attains its maximum, on the intervals associated with An)

and An_-1), at the ends of those intervals. There the model achieves

n()
O.)i_,n-1 V/42n -- m2n (i)

._(_)

/4 (i_)win f12n + mn_l

if mn (i)Ogin < mn-1 (i_)i_ ,n- 1,

otherwise.

(iv) The function ^’ak, k < n is the difference of two similarly shaped functions.
On the appropriate interval about Ak), i 1,..., k, the first term’s model, in magni-
tude, achieves

2 mk(i)
if mk(i)wik K mk-l(i-)wi_,k-1,_,- v/4 +()

2 ink- (i_)
otherwise.

if4 (i_)fl + m_
On the appropriate interval about Ak) the second term’s model, in magnitude, exceeds

+1(i+)
if +(i+),+,+ < (i),,

i + +m+(i+)
2 ink(i)

otherwise.
i+,k+l 24k+l + m(i)

Whenever one of these four ezpressions dominates the others, then it 9ives an accurate
estimate 4 max I1 i the eeighborhood 4} Otherwise, the maximum is 9iven
b more complicated expression and it is smaller.

Pro4 4 (i). om 2.2 and also from (4.a),

fin 8nn + nSn

From Lemmas 3.1 and 3.2 and their corollaries,

(n) (n) n)7n()i 0 7n() ), 7rn( +l/Win, Cn(n) q-O.)in,

and so,

(4.13)
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Using (4.12) gives

(4.4) I:()1 1’’1 I’-____A 0,n--
so the maximum does not occur at An). For a - )n) use (4.12) again to find

where n-1 was defined in (3.18) and then modelled near An-l) by "(’-)
Jn--1

Although max ICn-ll 1/(2nWi,n-1) can be huge, we shall show that I’nl takes

its local maximum near (n) + A:-1))/2. We now analyze the model of the two

factors in ’n.
It is convenient to abbreviate temporarily by

Recall that 7rn_ is modelled by

(-) +(_ n-))
02i_ ,n--1

8n n/ 72and hence -1 + is modelled by

w_,n_ 1

on the interval of width i_,-lm-l(i-) centered at -1). The other factor, ’-1, is modelled by p)’ -p)(i-) where--1

and fn(-)
(-- )- p_ + (5- A)=’

from (3.18) and (3.21), on the appropriate intervals centered at ,n) and ,_n--1). Thus

(-1)n-i [ 5(A 5)p()’ p() f(ni)__.l
OJin [1 + p2 + (A 5)2

The important points are that the quantity [*] exceeds 1 only when 5(A- 5) > 0,
i.e., when a E [An), -1)] and the maximum may be evaluated exactly by calculus.
The details are omitted but the result is

m]p)’ p)r(-) 1 1( i ())in_ll 1+ 1+
Win 2

and

A

1+ v/l+ (-_)2
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The hypothesis on A gives

__A < 100(A(nn) An))w’2n O(w,n),
p- p-

and indicates that 151 IA- 51 A/2, very close to the center of both intervals.
Using this value in the model for Sn yields a maximum value for the model for/’n"

1 1+ i+(4-)2
1

1+ +-."

However, reference to (3.18) and (3.21) shows that our model for [zr’,-rnCn-:l carries
the correction factor

1-
Winmn(i)

Using 151 A/2 here and combining the estimates gives

+

Proof of (ii). For all a and 2 _< k < n,

where

lO.)ik +
(see (3.21)).

The interval associated with fk(i) is

[A}k) mk(i)wik/2, )k) + mk(i)wik/2].

To analyze the model for/’k it is convenient to abbreviate as follows:

( O" ,}k) i :-- }k) /k-1) Pk := kTl)ik Pk-1 :-- kO2i_,k-1

’k is modelled by a difference of two functions:
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We consider kkf(ki)/k_l first. By calculus we find that if k+l < mk(i)/2,
then Ifk(i)l attains its global maximum value 1/2pk at +Pk within the associated
interval. At these points,

k-F1
_

( zi)/\,_ + Z

11-1 + (0/0_1) [1 + O(wik)].

Next consider kkf/k-1. By calculus we find hat if < mk_l(i_)/2, then

I1 attains its global mimum value 1/20k-l, within its sociated interval, at- Pk-1- At these points,

]
1/2

(- a)/ +Z+
/0.}2 2- p _,- +

k 2
[1 + O(Wik)].

If, however, 3k+1 > mk(i)/2, then the maximum of If(i)l on its associated interval is

approximately mk(i)/(2}+l) of its global maximum 1/(2pk) and similarly for Ifk(Zi)
when 3k > mk-l(i_)/2. We will not consider these two cases further because they
yield more complicated expressions and smaller maxima.

Returning to the situation when Ifk(i)l and If(i-)k-ll attain their global maxima
within their appropriate intervals, as shown in Fig. 2, we distinguish two cases.

(a) Pk 3k+lwik < Pk-1 3kWi_,k-1. The first expression shows that

/k+i (1 +

Thus the first term’s model kf(ki) satisfies

k+l 1

k 2pk
1

(1 +( + 0())

(b) Pk-1 < Pk. The second expression shows that

Z+ (i + o())./Z

5 ,(i_)Thus the second term’s model tkJk-1 satisfies

/k+_____!_i 1
(i + O(wik))lk_r(-) (Ak) A + Pk-X)l > Dk p_

+1+0.

When one of the two terms derived in ces (a) and (b) dominates the other (by at let
a factor of 2) then the larger term gives an accurate enough estimate of the mimum
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magnitude of the model and of/’k" By the assumption A .= Ak-1)_ Ak) O(w2k),
f(i) and Jk-ir(i-) have the same sign at their global maxima and so cause cancellation

in the expression for ’k" When any of our conditions fail, either k+x > mk(i)/2
or k > mk_x(i_)/2, or when p_x p, then the f functions have smaller values

and/or there is a significant cancellation between them. In such ces ’{ need not
be

O
min {wik Wi_,k-i }

near

Remark. Figures 2 and 3 illustrate the preceding analysis. The matrix is W.
k 8, i 5. Then k- 1 7 and i_ 4 by its definition in (*) preceding Theorem
4.2. Note that wik 0.032, wi_,k-i 0.116, pi k+iW/kW_,k-i 0.27, ink(i)
3.337, mk-i(i-) 2.31, IAI 0.0037. Since Zk+l & 1, the chosen evaluation
points are within the domain of the model. The first graph shows Ck and Ck-i and
the second shows ’k and the model

Proof of (iii). om the proof of Theorem 4.1 we know that n 2(Cn + 1)
2rcn.’ Thus ’(A:-i))=2 since cn vanishes on the spectrum of Tn-i, and n
since rn vanishes on the spectrum of Tn. However, ]’ can attain large values when
a is close to these points but not between them. The model p) for n is valid when

]a- An) < mn(i)w,n/2 and the model

p(-)- / N+-
for cn is valid for lel := < mn-l(i-)i_,n-1/2. On the intersection of
ghese intervals the model for n is

/ ((i-1))+1) =2[(-1)i(-1)i-/2 n ,-
/ win wi_,-

[ (-1)+- )1/
2 (2w + 1

inx n i_,n--1

The function /(T2 + 2)i/2 is a monotone-increing function for all 5, and so
the model takes its mimum magnitude at the boundary of the sociated interval,
namely,

2 [ m,_(i_)
w,(az + m_

2 [ ran(i)
wi_,n-l(42n + m2n(i))l/2

+i] if mn-l(i-)w{_,n-1 < mn(i)w{n,

otherwise.

We evaluate at the left end if i + i_ is odd. The evaluation point

O" Q-mn(i)OJin ._n--1) _}_mn(i)oJin + 1)]
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is just outside the standard interval in some cases but the excess is O(w2) and permits
a cleaner expression for the model.

Proof of (iv). From (4.0) and (4.2),

(k ’k ’k+l
rc + rc (’+c+ + r+c+)

{ 2rc, 2r+ck+, by (4.15)
27rkck 27rk4_lCk4_

2 rr_ r+lr by (2.10)

Near Ak) ^,
ak is modelled by

2p(i) ’-(i- (i+)’ (i)
Pk-1 zPk+ Pk

+ (p(k/))2) 1/2(J+ +

Here is the difference of two terms of the type analyzed in the proof of (iii). Each term
is monotonic on the appropriate interval. The first term is valid on the intersection
of the intervals

center Ak),
center Ak-_ 1)

radius Tk := 1/2mk(i)Wik,
radius Tk_ := 1/2mk_(i_)wi_,t:_,

and the second term is valid on the intervals

center Ak),
(k+)center

radius Tk 1/2mk(i)wik,
radius Tk+ :--" mk+l(i+)wi+,k+l.

^!From the analysis of an, the magnitude of the first term achieves

2 mk(i)
if Tk < Tk--

wi_,_ (4 + m(i))l/
2 mk-1 (i_)

if Tk_ < Tk(i))1/2w (4 +m_

Similarly, the second term achieves

2 mk+(i+)

2 1/2wi+,k+l (4/k+ --m(i))

w (4Z+ + m+
2 mk(i)

if Tk+l Tk,

if T < Tk_t_1

Before we leave this section, we give Theorem 4.4, whose proof appears in [3].
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THEOREM 4.4. Suppose that T is unreduced. Then

Ak) (k-l)i--1
() A)i+1

i7 1, k,

and

2 Ak) (k-)
"’i--1

A(kk) (k-)

i # 1, k,

Proof. See [3]. r?

5. Premature deflation and the monitoring algorithm. The reader is re-
ferred to (2.17) for a picture of the active submatrix of the intermediate matrix T(k)

that occurs in the transformation of T T() to T(n).
Observe that if 8kTrk and k+lCk are replaced by zero to give b(k), then 2(k) must

exhibit an eigenvalue in the (k, k) position, and if row and column k are deleted, then
the new (n- 1) (n- 1) matrix is tridiagonal.

When skrk and k+ck are small enough and the (k,k) entry equals the shift
then we say that premature deflation occurred at step k in the implicit shift version
of the QR transform.

2 (compared to 1) is aThe next result implies that a negligible value of some
necessary condition for premature deflation.

LEMMA 5.1. On the interval

/
2 2 2 2
skr ++c > 2 2 2kOdi_

k-lO)ik k)
032,k- - q- i,k COik)2(l+O[(lkWi_,k_) 2]

where

(A() _A()((. (.)
i# 1, k,

i=k;
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Proof. Since A}k) O(wi2k) the linear models for rk and rk-1 are valid. Write

a k), w Wk, W_,k_l, and observe that

2 2 2 2++c8kTfk

2

"-+
+

~,2f42,q2 22kWl(_k
2 2K,2

pkw Pk+l
2

> (2Z + 2Z2 2 2-2k+)kW W
1 + 0

(the minimum for

=2(2D2 w22k W k+l

4 has beenBy Theorem 4.4, Ak) > k)wik2, the result follows. Note that the term
rearranged in the lemma’s statement. [:1

Note that at a Ak),"
2 2 2 282k7 t_ k+lCk k+lO2ik

since rk 0, and outside [Ak), ,k-1)]_ the sum rises rapidly to O(spread).
COIOLLARY. Premature deflation occurs if and only if a is very close to

2 is negligible. By neglecting the entries skrk and k+ck and deleting theand
(sr +kth row and column the changes made in the eigenvalues are bounded by 2 2

+c)/min(]a-A ], ]a-A]) and the error angles in the eigenvectors are bounded

by 2 2 2 1/2+ I).Zk+lC) / min A ]a ()

Thus premature deflation at step k accompanies great sensitivity of k, k+l, and

dk+l to small changes in a. In many, but not all, ces a tiny value of wk will be
sociated with a tiny value of w+,k+l.

The pattern is as follows. If wk is tiny then y), Tk’s eigenvector for Ak) with
zero entries appended, will be an excellent approximate eigenvector for all extensions
to Tk. The only way that subsequent values w can incree is by the presence of two
or more eigenvalues of Tn close to Ak). In such a ce, y) is a linear combination of

the eigenvectors belonging to all An) close to Ak) but not close to any of others. In

fact, y) is usually close to a bisector of a pair of eigenvectors, and their last entries
will be nearly equal and not necessarily small.

Here is an illustration of this phenomenon.
Example 5.1.

1 1...1 1
T:tridiag 13 0 0 13

1 1...1 1

as 0, (i 2,..., 24), O/1 a25 13,

This matrix has two close eigenvalues. The instability occurs midway through the QR
transform with shift at one of these two eigenvalues. Rather than exhibit matrices of
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O. 000

-2.000

-4.000

-6.000

-8.000

-i0.000

-12.000

-14.000

-16.000

-18.000

-20.000

[]

the exact

A the computed

I..I.

7.0001.000 4.000 I0.000 13.000 16.000 19.000 22.000 25.000

FIG. 8. Vector components of y25 defined in (2.2), in Example 5.1.

this size, we plot in Fig. 8 the exact and the computed vectors Y25 on a logarithmic
scale. At first sight it is surprising that the top half of y is quite wrong, while the
lower half seems reasonable. However, reference to (2.2) reveals that late bad values
of s all propagate to the top of y. Further inspection of the exact and computed c

and s values shows that the first eight are good. Then instability sets in, but the last
two rows are only wrong by a factor of 2. So the lower half of y only looks reasonable
on a logarithmic scale; it has barely one bit of accuracy.

5.1. Forward stability for suitable shift strategies. Our analysis has fo-
cused on the role of the numbers wik in one QR transform. In the QR algorithm
a sequence of QR transformations is applied to the original matrix with carefully
chosen shifts. At each transformation the eigenvectors change and the wik’s change
along with them. In the last two steps of the algorithm the last off-diagonal entry
diminishes rapidly. To see the effect on the Win it suffices to consider an extreme case.
Suppose that /n 0 but the algorithm does not notice this fact. Any reasonable
shift strategy will force a an in this case, and the associated eigenvector is en, with

2 1. The analysis ofits Win 1. All the other values of win vanish since -i Win
the previous section shows that the QR transform with shift Cn is stable, but for^any
shift at an eigenvalue of Tn-1 (not Tn), the last plane rotation is arbitrary and/n is
undefined. In this case, the QR algorithm with any sensible shift strategy is forward
stable, although the QR transform with "wrong" shifts is completely unstable.

However, forward instability can still occur in the standard QR algorithm, but
only when the shift is very close to a cluster of eigenvalues equal to working precision.
This was shown in Example 2.4 of 2.3.
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5.2. The ultimate shift strategy. The QR transformation of an n x n real
symmetric tridiagonal matrix requires about 10n flops. The most expensive feature
of a QR algorithm that produces eigenvectors is the accumulation of all the plane
rotations. This is an O(n2) process for each transform, and the cost is directly pro-
portional to the number of QR transformations.

These facts suggested the use of a two-phase process. First, compute the eigen-
values by any means, keeping a copy of the original tridiagonal. Second, apply the
QR transformation using the eigenvalues as shifts (see [4, p. 164]).

Our analysis shows that this strategy invites forward instability. In fact, it will
occur for each eigenvalue whose normalized eigenvector has a tiny bottom element.

This is the first reason we have seen for being cautious about the use of the
ultimate shift strategy. However, the simple modification of the QR transform given
below can preserve forward stability.

5.3. QR with monitoring. The idea of the algorithm is to check for premature
deflation and stop the QR transformation as soon as it occurs. Then remove the row
and column with the isolated eigenvalue. This is not a pure QR algorithm, but it
does use plane rotations and does restore tridiagonal form.

Since the monitoring test usually fails, it is preferable to break it into two parts
so that the part that is always made involves no arithmetic operations.

If I kl < v IITII/v then
If I kl + < + I kl + I k/ll + k-1 nt- then

pull up the remaining entries of T to overwrite row and column k.

Such an algorithm has been used regularly for deflation purposes in the context of
the Lanczos algorithm. Since a copy of the undeflated T matrix is preserved for
the eigenvector computations at the end of the Lanczos run there is no harm in
suppressing off-diagonal entries as large as x/llTII in the deflated T. By the Corollary
to Lemma 5.1, such modifications could indeed induce a v/ twist in T’s eigenvectors.
Whether such alterations damage the Ritz vectors (the approximate eigenvectors of
the operator driving the Lanczos algorithm) is not clear.

6. Conclusion. The occasional forward instability of the QR transformation is
not a well-known phenomenon and so we have tried to give a full account of it. In
particular, we have shown its intimate connection with premature deflation of the
shift and with the quantities Wk. Since the {wk} change at each step in the QR
algorithm, because the eigenvectors change, forward instability is unlikely to occur,
although, by Example 2.4, it can happen.

On the other hand, forward instability is seen quite frequently when deflating sta-
bilized eigenvalues in the Lanczos algorithm and sometimes when using the ultimate
shift strategy with the QR algorithm.

Our analysis of the function k(a) and of the derivative of the tridiagonal QR
transform are full of details that will burden the reader. To put this aspect in per-
spective, we would like to say that the entries in are complicated functions and it is
far from obvious where their derivatives peak. We could see no other way than direct
elucidation of max I’kl and max I&’kl to establish that small values of some w are
generically sufficient as well as necessary for the occurrence of forward instability.

Acknowledgement. The authors are grateful for the extremely careful and help-
ful reviewing by the two referees and the editor Linda Kaufman throughout several
revisions of this work.
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Abstract. A direct search method attempts to maximize a function f l R using function
values only. Many questions about the stability and accuracy of algorithms in matrix computations
can be expressed in terms of the maximum value of some easily computable function f. For a variety
of algorithms it is shown that direct search is capable of revealing instability or poor performance,
even when such failure is difficult to discover using theoretical analysis or numerical tests with
random or nonrandom data. Informative numerical examples generated by direct search provide
the impetus for further analysis and improvement of an algorithm. The direct search methods used
are the method of alternating directions and the multi-directional search method of Dennis and
Torczon. The problems examined include the reliability of matrix condition number estimators and
the stability of Strassen’s fast matrix inversion method.

Key words, optimization, matrix computations, direct search method, numerical stability,
Gaussian elimination, matrix condition number estimation, fast matrix multiplication, Vandermonde
system, matrix inverse
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I. Introduction. Is Algorithm X numerically stable? How large can the growth
factor be for Gaussian elimination with pivoting strategy P? By how much can con-
dition estimator C underestimate the condition number of a matrix? These types
of questions are fundamental in the analysis of algorithms in matrix computations.
Usually, one attempts to answer such questions by a combination of theoretical anal-
ysis and numerical experiments with random and nonrandom data. In this work we
show that a third approach can be a valuable supplement to the first two: phrase the
question as an optimization problem and apply a direct search method.

A direct search method for the problem

(I.i) max f(x), f" ]Rn - ]R
zER

is a numerical method that attempts to locate a maximizing point using function
values only, and which does not attempt to estimate derivatives of f. Such methods
are usually based on heuristics that do not involve assumptions about the function f.
Various direct search methods have been developed; for surveys, see [43], [52], and [53].
Most of these methods were developed in the 1960s, in the early days of numerical
optimization. For problems in which f is smooth, direct search methods have largely
been supplanted by more sophisticated optimization methods that use derivatives
(such as quasi-Newton methods and conjugate gradient methods), but they continue
to find use in applications where f is not differentiable, or even not continuous. These
applications range from chemical analysis [46], where direct search methods have found
considerable use, to the determination of drug doses in the treatment of cancer [4];
in both applications the evaluation of f is affected by experimental errors. Lack
of smoothness of f, and the difficulty of obtaining derivatives when they exist, are
characteristic of the optimization problems we consider here.
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Our aims and techniques can be illustrated using the example of Gaussian elimi-
nation (GE). Wilkinson’s classic backward error analysis [60] shows that the stability
of the process for A E tnn is determined by the size of the growth factor

where the a are the intermediate elements generated during the elimination. For
a given pivoting strategy we would therefore like to know how big pn(A) can be. To
obtain an optimization problem of the form (1.1) we let x vec(A) E tn, where
vec(A) comprises the columns of A strung out into one long vector, and we define
f(x) pn(A). Then we wish to determine

max y(x) =-- max pn(A).
x.Rn: A6.In

Suppose, first, that no pivoting is done. Then f is defined and continuous at all
points where the elimination does not break down, and it is differentiable except at
points where there is a tie for the maximum in the numerator or denominator of the
expression defining pn(A). We took n 4 and applied the direct search maximizer
MDS (described in 3) to f(x), starting with the identity matrix A h. After 11
iterations and 433 function evaluations, the maximizer converged,1 having located the
matrix2

-0.2760 -0.2760 -0.27601-3.3848 0.7240 -0.3492 -0.2760
-0.2760 -0.2760 1.4311 -0.2760
-0.2760 -0.2760 -0.2760 0.7240

for which p4(B) 1.23 x 105. (The large growth is a consequence of the submatrix
B(I: 3, 1: 3) being ill conditioned; B itself is well conditioned.) Thus the optimizer
readily shows that p,(A) can be very large for GE without pivoting.

Next, consider GE with partial pivoting. Here, at the kth stage of the elimination,
rows are interchanged so that -(k)

"kk [>-- ]akk)l, i= k" n. Now f is defined everywhere
but is usually discontinuous when there is a tie in the choice of pivot element, because
then an arbitrarily small change in A can alter the pivot sequence. We applied the
maximizer MDS to f, this time starting with the orthogonal matrix A t4a with
a,j (2/v/2n 1)sin(2ijr/(2n + 1)) [34], for which pa(A) 2.32. After 29 iterations
and 1169 function evaluations the maximizer converged to a matrix B with Pa(B)
5.86. We used this matrix to start the maximizer AD (described in 3); it took five
iterations and 403 function evaluations to converge to the matrix

0.7510 0.5241 0.7510
0.7317 0.1889 0.0227 -0.7510
0.7298 -0.3756 0.1150 0.7511
-0.6993 -0.7444 0.6647 -0.7500

In the optimizations of this section we used the convergence tests described in 3 with tol 10-3.
All numbers quoted are rounded to the number of significant figures shown.



OPTIMIZATION BY DIRECT SEARCH IN MATRIX COMPUTATIONS 319

for which Pa (C) 7.939. Note that this matrix is not of the form

ii 11-11 1.4
-1 11 1
-1 -1 1

identified by Wilkinson [60] as yielding the maximum possible growth pn 2n-1 for
partial pivoting. The whole set of matrices A E ]R’ for which p,.,(A) 2-1 is
described in [34], and C is one of these matrices, modulo the convergence tolerance.

These examples, and others presented below, illustrate the following attractions
of using direct search methods to aid the understanding of algorithms in matrix com-
putations.

(1) The simplest possible formulation of optimization problem is often sufficient
to yield useful results. Derivatives are not needed, and direct search methods tend to
be insensitive to lack of smoothness in the objective function f. Unboundedness of
f is a favourable property--direct search methods usually quickly locate large values
of f.

(2) Good progress can often be made from simple starting values, such as an
identity matrix. However, prior knowledge of the problem may provide a good starting
value that can be substantially improved (as in the partial pivoting example).

(3) Usually it is the global maximum of f in (1.1) that is desired (although it is
often sufficient to know that f can exceed a specified value). When a direct search
method converges it will, in general, at best have located a local maximum--and in
practice the maximizer may simply have stagnated, particularly if a slack convergence
tolerance is used. However, further progress can often be made by restarting the
same (or a different) maximizer, as in the partial pivoting example. This is because
for methods that employ a simplex (such as the MDS method), the behaviour of the
method starting at x0 is determined not just by x0 but also by the n + 1 vectors in
the initial simplex constructed at x0.

(4) The numerical information revealed by direct search provides a starting point
for further theoretical analysis. For example, the GE experiments above strongly sug-
gest the (well-known) results that p,(A) is unbounded without pivoting and bounded
by 2n- for partial pivoting, and inspection of the numerical data suggests the meth-
ods of proof.

When applied to smooth problems the main disadvantages of direct search meth-
ods are that they have at best a linear rate of convergence and they are unable
to determine the nature of the point at which they terminate (since derivatives are
not calculated). These disadvantages are less significant for the problems we con-
sider, where it is not necessary to locate a maximum to high accuracy and objective
functions are usually nonsmooth. (Note that these disadvantages are not necessarily
shared by methods that implicitly or explicitly estimate derivatives using function
values, such as methods based on conjugate directions [43], [44]; however, these are
not normally regarded as direct search methods.)

The rest of this paper is organized as follows. In 2 we summarize related work and
explain what is new about our approach. In 3 we describe the alternating directions
(AD) method and the multidirectional search (MDS) method that we have used in
this work. All our experiments were done using the interactive package MATLAB
[40]. We used 80286 and 80386 PC-compatible machines that are of similar overall
speed to a Sun 3/50 workstation. Most of the optimization runs that we describe
took less than an hour of computing time.



320 NICHOLAS J. HIGHAM

In 4 we show how direct search methods can provide insight into the performance
of matrix condition number estimators, for which the construction of "counterexam-
pies" is usually difficult. In 5 we describe some other, miscellaneous problems in
matrix computations that can be successfully explored using direct search. Finally,
in 6, we offer some conclusions.

2. Related work. This work was inspired by two papers published in the 1970s
by Miller [37], [38] and by recent work of Rowan [47]. Miller’s papers describe a way of
using a computer to search for numerical instability in algebraic processes, and so to
an extent they are concerned with "automatic rounding error analysis." In [37] Miller
defines a quantity a(d) that bounds, to first order, the sensitivity of an algorithm
to perturbations in the data d and in the intermediate quantities that the algorithm
generates. He then defines the forward stability measure p(d) a(d)/(d), where
(d) is a condition number for the problem under consideration. The algorithms to
be analyzed are required to contain no loops or conditional branches and are presented
to Miller’s Fortran software in a special numeric encoding. The software automatically
computes the partial derivatives needed to evaluate p(d), and attempts to maximize p
using the method of alternating directions. Miller gives several examples illustrating
the scope of his software; he shows, for example, that it can identify the instability of
the Gram-Schmidt method for orthogonalizing a set of vectors.

In [38] Miller and Spooner extend the work in [37] in several ways. The algorithm
to be analyzed is expressed in a Fortran-like language that allows for-loops but not
logical tests. The definition of p is generalized, and a method of computing it is
developed that involves solving a generalized eigenvalue problem. The book [39] gives
a thorough development of the work of [38] and provides further examples of the
use of the software. The potential of Miller and Spooner’s software for exposing
numerical instability is clearly demonstrated in [37], [38], and [39], yet the software
has apparently not been widely used. We suspect this is largely due to the inability
of the software to analyze algorithms expressed in Fortran, or any other standard
language.

A different approach to algorithm analysis is taken in [35], [36]. Here errors are
measured in a relative rather than an absolute sense, and the stability is analyzed at
fixed data instead of attempting to maximize instability over all data; however, the
analysis is still linearized.

Statistical modelling of rounding errors in an algorithm has been developed by
Chatelin and Brunet, and by Vignes. Their techniques involve randomly perturbing
the result of every floating point operation and using statistics to measure the effect
on the output of the algorithm; see [9], [10], and the references therein. In [8] Fortran
preprocessor tools are developed for implementing the statistical approach described
in [9] and the local relative error approach of [36].

We take an approach different from those described above. We note that for many
algorithms one can define an easily computable function f that gives an a posteriori
measure of the degree of success or the stability of the algorithm. Our approach is
to try to maximize f over the space of problem data using direct search and any
available implementation of the algorithm. This approach has several advantages.

Any algorithm for which a suitable f can be defined and computed can be
tested. There are no constraints on the algorithm or the choice of f.

When f measures numerical stability the interpretation of the results is straight-
forward, since f reflects the actual rounding errors sustained, instead of being a bound
from a linearized or statistical model of rounding error propagation.
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Existing software implementing the algorithm can be utilized.
In a recent Ph.D. thesis Rowan [47] develops another way to search for numerical

instability. For an algorithm with data d he maximizes S(d) e(d)/a(d) using a new
direct search maximizer called the subplex method (which is based on the Nelder-
Mead simplex method [41]). Here, e(d) Yacc is an approximation to the forward
error in the computed solution , where Yacc is a more accurate estimate of the true
solution than , and the condition number a(d) is estimated using finite difference
approximations. The quantity S(d) is a lower bound on the backward error of the
algorithm at d. Fortran software given in [47] implements this "functional stability
analysis." The software takes as input two user-supplied Fortran subprograms; one
implements the algorithm to be tested in single precision, and the other provides a
more accurate solution, typically by executing the same algorithm in double precision.
The examples in [47] show that Rowan’s software is capable of detecting numerical
instability in a wide variety of numerical algorithms. Rowan also gives two specific
examples of the approach we are advocating here: he uses the subplex method to find
a matrix for which the LINPACK condition estimator performs poorly (see 4), and
to find unit upper triangular matrices R with Irijl _< 1 that maximize al(R).

3. Two direct search methods. We have experimented with two direct search
methods. The first is the alternating directions (AD) method. Given a starting value x
it attempts to solve the problem (1.1) by repeatedly maximizing over each coordinate
direction in turn:

repeat
% One iteration comprises a loop over all components of x.
for/-- l:n

find ( such that f(x + oei) is maximized (line search)
set x

end
until converged

AD is one of the simplest of all optimization methods and its fundamental weak-
ness, that it ignores any interactions between the variables, is well known. Despite
the poor reputation of AD we have found that it can perform well on the types
of problems considered here. In our implementation of AD the line search is done
using a crude scheme that begins by evaluating f(x + he) with h 10-ax (or
h 10-4 max(llxllo 1) if x 0); if f(x + hei) <_ f(x) then the sign of h is reversed.
Then if f(x + he) > f(x), h is doubled at most 25 times until no further increase
in f is obtained. Our convergence test checks for a sufficient relative increase in f
between one iteration and the next: convergence is declared when

fk fk--I <-- to1 lY - I,

where fk is the highest function value at the end of the kth iteration. The AD method
has the very modest storage requirement of just a single n-vector.

The second method is the multidirectional search method (MDS) of Dennis and
Worczon [55], [56]. This method employs a simplex, which is defined by n + 1 vectors
(v} in ]Rn. One iteration in the case n 2 is represented pictorially in Fig. 3.1,
and may be explained as follows.

The initial simplex is {v0, Vl, v2} and it is assumed that f(vo) max f(v). The
purpose of an iteration is to produce a new simplex at one of whose vertices f exceeds
f(vo). In the first step the vertices vl and v2 are reflected about v0 along the lines
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v2

Vl

VO
C2

?’1
e2

FIG. 3.1. The possible steps in one iteration of the MDS method when n 2.

joining them to v0, yielding rl and r2 and the reflected simplex {vo, rl,r2}. If this
reflection step is successful, that is, if max f(r) > f(vo), then the edges from v0 to r
are doubled in length to give an expanded simplex {v0, el, e2}. The original simplex is
then replaced by {v0, el, e2} if maxi f(e) > maxi f(ri), and otherwise by {v0, r, r2}.
If the reflection step is unsuccessful then the edges v0 v of the original simplex are
shrunk to half their length to give the contracted simplex {v0, c, c2}. This becomes
the new simplex if maxi f(c) > max f(vi), in which case the current iteration is
complete; otherwise the algorithm jumps back to the reflection step, now working
with the contracted simplex. For further details of the MDS method, see [15], [55],
and [56].

The MDS method requires at least 2n independent function evaluations per itera-
tion, which makes it very suitable for parallel implementation. Generalizations of the
MDS method that are even more suitable for parallel computation are described in
[15]. The MDS method requires O(n2) elements of storage for the simplices, but this
can be reduced to O(n) (at the cost of extra bookkeeping) if an appropriate choice of
initial simplex is made [15].

Unusually for a direct search method, the MDS method possesses some conver-
gence theory. Torczon [56] shows that if the level set of f at v0 is compact and f
is continuously differentiable on this level set then a subsequence of the points v0

k

(where k denotes the iteration index) converges to a stationary point of f. Moreover,
she gives an extension of this result that requires only continuity of f and guarantees
convergence to either a stationary point of f or a point where f is not continuously
differentiable. No such convergence results are known for the Nelder-Mead direct
search method [16], [41], which also employs a simplex but which is fundamentally
different from the MDS method. Our limited experiments with the Nelder-Mead
method indicate that while it can sometimes outperform the MDS method, the MDS
method is generally superior for our purposes.

Our implementation of the MDS method provides two possible starting simplices,
both of which include the starting point x0: a regular one (all sides of equal length)
and a right-angled one based on the coordinate axes, both as described in [55]. The
scaling is such that each edge of the regular simplex, or each edge of the right-angled
simplex that is joined to x0, has length max(llx0]loo 1). Also as in [55], the main
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termination test halts the computation when the relative size of the simplex is no
larger than a tolerance tol, that is, when

1
max Ilvi roll1 <_ tol.(3.2) max(l, I1 olll) 1<,<

Unless otherwise stated, we used tol 10-3 in (3.1) and (3.2) in all our experiments.
It is interesting to note that the MDS method and our particular implementation

of the AD method do not exploit the numerical values of f: their only use of f is to
compare two function values to see which is the larger!

Our MATLAB implementations of the AD and MDS methods can be obtained
from netlib [18] by sending electronic mail to netlib(C)ornl.gov comprising the mes-
sage send dsmax from matlab/optimization.

4. Condition estimators. Condition estimation is the problem of computing
an inexpensive but "reliable" estimate of (A) --IIAIIIIA-111, for some matrix norm,
given a factorization of the nonsingular matrix A. (Other condition numbers of A
are also of interest, but we will concentrate on this standard condition number.) The
best known condition estimator is the one used in LINPACK [17]; it makes use of an
LU factorization of A and works with the 1-norm. Its development is described in
[12].3 Several years after [12] was published several counterexamples to the LINPACK
condition estimator were discovered by Cline and Rew [13]; by a counterexample we
mean a parametrized matrix for which the quotient "condition estimate divided by
true condition number" can be made arbitrarily small (or large, depending on whether
the estimator produces a lower bound or an upper bound) by varying a parameter.
Despite the existence of these counterexamples the LINPACK estimator has been
widely used and is regarded as being almost certain to produce an estimate correct
to within a factor ten in practice [27].

Another 1-norm condition estimation algorithm was developed by Higham [29],
[30], building on an algorithm of Hager [25]. This estimator is in the NAG library and
is being used throughout LAPACK [2]. The general algorithm estimates lIB Ill given
a means for forming matrix-vector products Bx and BTy. By taking B A- and
using an LU factorization of A we obtain an estimator with the same functionality
as the LINPACK estimator. Counterexamples to the general algorithm are identified
in [29].

A 2-norm condition estimator was developed by Cline, Corm, and Van Loan
[11, Algorithm 1]; see also [58]. The algorithm builds on the ideas underlying the
LINPACK estimator and estimates ffmin(R) [IR-1IIT or Crmax(R IIRII2 for a
triangular matrix R. Here, O’min and amax denote the smallest and largest singular
values, respectively. Full matrices can be treated if a factorization A QR is available
(Q orthogonal, R upper triangular), since R and A have the same singular values.
The estimator performs extremely well in numerical tests [11], [27], often producing
an estimate having some correct digits. No counterexamples to the estimator were
known until Bischof [5] obtained counterexamples as a by-product of the analysis of
a different, bvt related, method.

We have experimented with MATLAB implementations of the three condition es-
timators discussed above. RCOND is the LINPACK estimator as built into MATLAB.
SONEST implements the algorithm of [29] as applied to estimating 1 (A). SIGMAN

3 It is not widely known that a precursor to the LINPACK condition estimator is presented in
[24]. thank G. W. Stewart for pointing this out to me.
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is an implementation of the algorithm of [11] for estimating qmin(R), where R is upper
triangular.

For RCOND we define x vec(A), A E ]Rn’, and

al(A)f(x)- est(A)’
where est(A) _< al(A) is the condition estimate computed by RCOND. The same
definition is used for SONEST, which also computes a lower bound. We note that
since the algorithms underlying RCOND and SONEST contain tests and branches,
for certain A an arbitrarily small change in A can completely change the condition
estimate; hence for both algorithms f has points of discontinuity.

Since SIGMAN was designed for upper triangular matrices R ]Rnn we take in
this case x vec(R), where vec is the vec operator modified to skip over elements in
the lower triangle of its argument, and we define

est(R)f(x)-- ffmin(R)’

where est(R) >_ amin(R) is the estimate.
We applied the MDS maximizer to RCOND starting at A Ia. After 30 iterations

and 1009 function evaluations the maximizer had located the matrix

for which

0.1380 -2.52 106 0.138010.1380 1.1380 -1.34 x 107 0.1380
0.1380 0.1380 1.1380 0.1380
0.1380 0.1380 1.59 x 107 1.1380

I(A) 9.88 1014, est(A) 2 17 101 al(A)
est(A)

4.56 x 10a.

(For comparison, with the same starting matrix the AD maximizer yielded f 18.2
after six iterations and 950 function evaluations.) This matrix A is badly scaled, and
its validity as a counterexample could be questioned on the grounds that for linear
equations the condition number al(A) is not necessarily an appropriate measure of
problem sensitivity when A is badly scaled (see, for example, [22, 3.5.2]). This
objection can be overcome by maximizing f subject to a constraint that ensures A
is reasonably well scaled. A simple, but effective, constraint is al(A) <_ , where 0 is
a suitable tolerance. To incorporate this constraint we use a crude penalty function
approach in which f is redefined so that f(x) -103 whenever the constraint is
violated. Applying the MDS maximizer with starting matrix A diag(1,- 1, 1,- 1),
0 10, and tol 10-9 in (3.2), we obtained after 124 iterations and 4625 function
evaluations the well-scaled matrix

0.4559 0.1434 0.1461
1.1989 -0.8617 0.1359 0.1383
0.1375 2.2531 2.2017 0.1383
0.1404 -2.6932 0.1383 -0.8617J

for which

’I(A) 7.47 x 103, al(A)est(A) 5.37,
est(A)

1.39 103.
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We note that the parametrized counterexamples in [13] all become badly scaled when
the parameter is chosen to make the condition estimate poor. The only previously
known well-scaled counterexample to the LINPACK condition estimator is an n n
lower triangular matrix L in [13] for which gl (L)/est(L) 2n-1.

For $ONEST, the two maximizers make extremely slow progress starting with
A 14. A better starting value for both maximizers is the 4 x 4 version of the n x n
matrix with aj cos((/- 1)(j- 1)r/(n- 1)) [34]. After 11 iterations and 1001
function evaluations the AD maximizer had determined a (well-scaled) matrix A for
which

2.94 x 105 est(A)- 4.81,
sl(A)

6.11 x 104
est(A)

Applying MDS to SIGMAN, starting with R Ia, we obtained after 65 iterations
and 1511 function evaluations a matrix R such that

Crmin(R 3.25 10-1, est(R) 2.00 101, est(R)
O’min(R)

6.16 10I.

Using this matrix to start the AD maximizer led after two iterations and a further 93
function evaluations to R such that

amin() "--3.25 10-1 est()- 4.31 x 101, est(R)
O’min (R)

1.33 102.

These results are surprising. With little effort on our part in the choice of start-
ing matrix the maximizers have discovered examples where each of the condition
estimators fails to achieve its objective of producing an estimate correct to within an
order of magnitude. Such numerical examples have apparently never been observed
in practical computation, or in tests with random matrices such as those in [27]. The
value of direct search maximization in this context is clear: it can readily demon-
strate the fallibility of a condition estimatorua task that can be extremely difficult
to accomplish using theoretical analysis or tests with random matrices. Moreover, the
numerical examples obtained from direct search may provide a starting point for the
construction of parametrized theoretical ones, or for the improvement of a condition
estimation algorithm.

An area of current research in condition estimation is the derivation of algorithms
appropriate in applications such as signal processing where a matrix undergoes re-
peated low rank updates. Several algorithms have been developed [42], [50], but
counterexamples to them are not known. Direct search on the appropriate ratio f
could provide further insight into these methods.

We note that the direct search approach provides an alternative to the usual way
of assessing the quality of condition estimators, which is to examine the quality of
the estimates produced for random matrices [27]. One could instead measure the
difficulty that an optimizer has in "defeating" a condition estimatoruperhaps over a
large number of trials with random starting matrices.

As well as measuring the quality of a single algorithm, direct search can be used
to compare two competing algorithms, in order to investigate whether one algorithm
performs uniformly better than the other. We applied the MDS maximizer to the
function

estS(A)f(x)- estR(A)’
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where estS(A) and estR(A) are the condition estimates from SONEST and RCOND,
respectively. If f(x) > 1 then SONEST has produced a larger lower bound for al(A)
than RCOND. Starting with A I4, the MDS maximizer converged after 22 iterations
to a matrix A for which estS(A) al (A) and f(x) 150.1. With f defined as f(x)
estR(A)/estS(A), and starting with a random matrix B e ]4x4, the MDS maximizer
converged after 40 iterations to a matrix with f(x) 63.90. This experiment shows
that neither estimator is uniformly superior to the other. This conclusion would be
onerous to reach by theoretical analysis of the algorithms.

Finally, we use direct search to investigate an open question raised in [27]. If
AH QR is a QR factorization with column pivoting of A E lRn, then [27,
Tam. 6.2]

1 2n-1
(4.1)

irnn
<_ IIR-111,2 _<

irnn I.
Moreover, there is much experimental evidence to show that 1/Irnn is rarely more
than ten times smaller than lIR ll . The question raised in [27] is whether for R from
the QR factorization with column pivoting the estimate est(R) <_ a (R) produced by
the LINPACK estimator has the desirable property that

(4.2) est(R) >_

that is, whether the LINPACK estimator always performs at least as well as the trivial
lower bound from (4.1). We applied the MDS maximizer to f(x)
where A E lRx, x vec(A), and AH QR. Starting with A Ia, the maximizer
achieved f(x) 520.4 after 67 iterations and 2929 function evaluations. Thus (4.2)
is not satisfied--not even to within a reasonable constant factor. However, we have
not been able to generate any matrix A for which SIGMAN produces an estimate
est(R) > Irnnl (with AH QR), so it is an open question as to whether est(R)
always holds for SIGMAN.

5. Other topics. In this section we describe five further topics in matrix com-
putations in which direct search yields interesting results. The first four examples are
all concerned with the instability of an algorithm in the presence of rounding errors;
here, unlike in the applications considered so far, the objective function depends in
an essential way on rounding errors. In our MATLAB computing environment the
unit roundoff u 1.11 x 10-16.

5.1. Fast matrix inversion. First, we discuss an example for which there is no
existing error analysis, and for which direct search reveals numerical instability. In
[51] Strassen gives a method for multiplying two n n matrices in O(nlg2 ) operations
(log2 7 2.801); he also gives a method for inverting an n n matrix with the same
asymptotic cost. The inversion method is based on the following formulae, where

A= JAil A12] tn AjE][:tmmA21 A22
n 2m,

and C

PI A P2 A21P1,

P3 P1A12, Pa A21P3
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P5--P4-A22, P6--P5-I,

C: [P1- P3P6P2 P3P6]P6P2 -P

(These formulae are easily derived via a block LU factorization of A.) The matrix
multiplications are done by Strassen’s method and the inversions determining P1 and
P6 are done by recursive invocations of the method itself. The inversion method is
clearly unstable for general A, because the method breaks down if All is singular.
Indeed Strassen’s inversion method has been implemented on a Cray-2 in [3] and
tested for n _< 2048, and it is observed empirically in [3] that the method has poor
numerical stability. Here we use direct search to investigate the numerical stability.

With x vec(A) E ]PL2 define the stability measure

(5.1) f(x) min([[AC IIIoo IICA II[oo }

where C is the inverse of A computed using Strassen’s inversion method. This def-
inition of f is appropriate because, as shown in [19], for most conventional matrix
inversion methods either the left residual CA- I or the right residual AC- I is
guaranteed to have norm of order ullV[ll[A[I. To treat Strassen’s inversion method as
favourably as possible we use just one level of recursion; thus P1 and P6 are computed
using Gaussian elimination with partial pivoting, but the multiplications are done with
Strassen’s method. We applied the MDS maximizer, with tol 10-9 in (3.2), starting
with the 4 4 Vandermonde matrix whose (i,j) element is ((j- 1)/3)-1. After 34
iterations the maximizer had converged with f 0.838, which represents complete
instability. The corresponding matrix A is well conditioned, with g2(A) 82.4. For
comparison, the value of f when A is inverted using Strassen’s method with conven-
tional multiplication is f 6.90 10-2; this confirms that the instability is not due
to the use of fast multiplication techniques--it is inherent in the inversion formulae.

If A is a symmetric positive definite matrix then its leading principal submatrices
are no more ill conditioned than the matrix itself, so one might expect Strassen’s
inversion method to be stable for such matrices. To investigate this possibility we
carried out the same maximization as before except we enforced positive definiteness
as follows: when the maximizer generates a vector x vec(S), A in (5.1) is defined
as A BTB. Starting with a 4 4 random matrix A with 2(A) 6.71 107
the maximization yielded the value f 3.32 10-s after 15 iterations, and the
corresponding value of f when conventional multiplication is used is f 6.61 10-11

(the "maximizing" matrix A has condition number a2(A) 3.58 109).
The conclusion from these experiments is that Strassen’s inversion method cannot

be guaranteed to produce a small left or right residual even when A is symmetric
positive definite and conventional multiplication is used. Hence the method must be
regarded as being fundamentally unstable. (The analyses in [14, 2.3] and [19, 2.2]
can be used to obtain further insight into this instability.)

5.2. Fast Vandermonde system solvers. In 1970 Bjhrck and Pereyra [7] pub-
lished two algorithms for solving the Vandermonde systems Vx b and VTa f
in 2O(n operations, where Y ((-1) e lRn. These algorithms have been used
in various applications [1], [48], [57] and generalized in several ways [6], [28], [31],
[54], and their numerical stability has been investigated [26], [31], [59]. In [7] it was
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pointed out that the algorithms sometimes produce surprisingly accurate results, and
an explanation for this was given in [26]. However, analysis in [31] predicts that the
algorithms can be moderately unstable, and an example of instability is given in [31],
together with suggested remedies. The example of [31] appears to be rare since no
instances of instability of the BjSrck-Pereyra algorithms were reported in the first
twenty years following their publication. It is therefore interesting to see whether
instability can be located by direct search.

Consider the dual system VTa f and define the relative residual

min{e (V + Av)T" f q- Af,

IlZXVIIo _< llVIIo, IlzXfllo _< llfllo},

where x [oz,...,oz,,fx,...,fn]T IR2 and is the computed solution from the
BjSrck-Pereyra dual algorithm. The equality above says that the relative residual is
equal to the normwise backward error and is well known (see [45]). It is desirable
to constrain the points ci to be distinct and in increasing order (since this ordering
is standard and usually helps the numerical stability [31]). To do so we redefine g
so that g(x) -10300 if the ordering conditions are not satisfied. We applied direct
search to g with n 25, starting with the points ci equally spaced on [-1, 1] and with

fi 1. Using a combination of MDS and AD maximizer invocations we obtained the
value g(x) 2.57 10-3, after a total of approximately 2100 function evaluations.

Thus, given "innocuous" starting values, the maximizers find moderate instability
of size three orders of magnitude. The vector produced by the maximization does not
represent a pathological problem: the points ci are approximately equally spaced
between -0.996 and 0.588, the vector f has positive elements lying between 0.309
and 2.42, and the Vandermonde matrix V satisfies a2(V) 2.27 10. The n 25
problem specified in [31, eq. (6.2)] yields g(x) 2.03 10-2, so the value of g
located by direct search is not a global maximum, but it is sufficiently large to reveal
instability. We also tried using the problem just mentioned as a starting point for
direct search. The AD maximizer increased g to 6.79 10-2 in two iterations, but
was unable to increase g further.

5.3. Matrix inverse. Numerical analysts universally deprecate the idea of solv-
ing a linear system Ax b by forming x A- b. The reasons are that Gaussian
elimination with partial pivoting (GEPP) is generally less expensive and more numer-
ically stable than use of a computed matrix inverse. The difference in computational
expense is easily explained and demonstrated (classically, the difference is a factor of
3). The difference in numerical stability is more subtle, and is rarely discussed in the
literature, although an excellent analysis is given in [21, 4.7.2]. The instability of the
inversion approach is easily demonstrated using direct search. For the linear system
Ay b where A IR let

lib-y(x)-
IIAIIollffllo + Ilbllo’

where A- is computed via GEPP, ff is the computed version of y A- b, and
x IR+ contains the elements of A and b. We applied the MDS maximizer, with
tol 10-9 in (3.2), taking as initial data the Hilbert matrix of order 4 and the vector



OPTIMIZATION BY DIRECT SEARCH IN MATRIX COMPUTATIONS 329

of all ones. After 27 iterations and 1741 function evaluations the maximizer converged
with f(x) 2.91 10-9. In contrast, with y computed from GEPP, and using the
same starting values, the maximizer was unable to drive f above the unit roundoff
level 1.11 10-16.

For the matrix inversion method the final A and b found by the maximizer satisfy

a2(A) 1.05 x I0, {{A{{:{ly{{: 40.2, {{bl{2 2.50;

thus b is a right-hand side for which y does not reflect the ill condition of A. As
explained in [21], it is for such A and b that the instability of matrix inversion as a
means of solving Ax b is most pronounced.

5.4. Complex matrix multiplication. It is well known that two complex num-
bers can be multiplied using only three real multiplications. An analogous result
holds for matrices. Let A A1 + iA2, B BI + iB2, where Ai, Bi E IR . If
C C + iC2 AB, then

C AB1 A2B2,
C2 (A1 + A2)(B1 + B2) ASx A2B2,

and these expressions can be evaluated using three real matrix multiplications and
five real matrix additions. This yields a saving in arithmetic operations of about 25
percent compared to the usual way of forming C, which involves four real matrix
multiplications. However, this alternative method is known to be less stable than
conventional multiplication in the sense that the computed imaginary part of the
product can be relatively inaccurate [33]. Let

f(x) 1{C2 ..-
where x [vec(A1)T vec(A2)T vec(B1)T vec(B2)T]T e ]R4n2 and 2 and 2 are the
computed imaginary parts from conventional multiplication and the formula (5.2b),
respectively. A large value for f(x) implies that C2 is inaccurate, since we know from
standard error analysis that C2 will always be as accurate as can be expected. To
test how readily direct search can expose the instability of (5.2a) we applied the MDS
maximizer to f with the starting data A E + i(E, B E + i(E, where E lRxn

is the matrix of l’s. With n 4, tol 10-6 in (3.2), and ( 1, the maximizer
converged after 12 iterations with f(x) 3.40 10-16. With the same n and tol, and
( 5, the maximizer converged with f(x) 9.99 10-ll after 24 iterations. Thus,
with a little experimentation in the choice of starting value, the instability is easily
revealed.

5.5. QR factorization. If A QR e lI%x’ is a QR factorization then amin(A)
amin(R) <_ mini Iriil. If column pivoting is used in the QR factorization then this in-
equality differs from equality by at most a factor 2n-l, as shown by (4.1). But in gen-
eral the inequality can be arbitrarily weak, as is well known. This is easily confirmed
by direct search. Let f(z) mini {riil/amin(A), where x vec(A) and A QR.
We applied the MDS maximizer followed by the AD maximizer, with tol 10-3 and
starting with A Ia, and we obtained f(x) 6.58 x l0T after approximately 930
function evaluations. In fact, the maximizers make rapid progress in increasing f
for every starting value we have tried. This is perhaps not surprising, since Foster
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[20] gives bounds on the probability that f exceeds f for a class of random matrices,
and the probabilities are significant even for large/. For the QR factorization with
column pivoting, starting with A 14, the same maximization produced f(x) 2.57,
which is well short of the global maximum 2n-1 8.

6. Conclusions. Our experience in using direct search methods has convinced
us that they are a useful supplement to the traditional means of analyzing algorithms
in matrix computations, such as rounding error analysis and numerical testing with
random data. Indeed, tests with random data tend to reveal the average-case be-
haviour of an algorithm, but the worst-case is also of interest. An underlying theme
of this work is that direct search can be vastly more effective than Monte Carlo testing
at revealing worst-case behaviour (this is particularly true for the condition estimators
of 3).

As we have shown, direct search is sometimes capable of exposing failure of al-
gorithms even when given a trivial starting value such as an identity matrix. An
informed choice of starting value coming from partial understanding of the algorithm
increases the chance of a revealing optimization. Unsuccessful optimizations can also
provide useful information. As Miller and Spooner explain [38, p. 370], "Failure of
the maximizer to find large values of w (say) can be interpreted as providing evi-
dence for stability equivalent to a large amount of practical experience with low-order
matrices."

To make use of direct search one has to be able to express the question of interest
as an unconstrained optimization problem. As we have shown, this can often be done
by employing an appropriate residual or overestimation ratio. If numerical stability
is of interest and a suitable objective function cannot be defined then the approach
of Rowan [47] is attractive, since it automatically constructs stability estimates given
only the ability to execute the algorithm at two different precisions.

Direct search optimization is potentially useful in other areas of numerical anal-
ysis besides matrix computations. An experiment in which direct search is used to
reveal the fallibility of an adaptive quadrature routine is described in [47]; direct
search is used to investigate the accuracy of floating point summation in [32]; and
direct search has been used to help tune heuristic parameters in Fortran codes for the
numerical solution of ordinary differential equations [49]. We hope that in addition to
encouraging researchers in numerical analysis to experiment with direct search opti-
mization, this work will encourage optimization researchers to devote more attention
to the rather neglected area of direct search. The multidirectional search method of
Dennis and Torczon performed extremely well in our experiments, and alternating di-
rections performed much better than the textbooks might lead one to expect. Parallel
direct search methods, such as those in [15], seem particularly attractive for tackling
difficult problems such as maximizing the growth factor for Gaussian elimination with
complete pivoting [23].

Acknowledgments. I thank Des Higham and Nick Trefethen for their many
helpful comments on this work.
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Abstract. The elimination tree is central to the study of Cholesky factorization of sparse sym-
metric positive definite matrices. In this paper, the elimination tree is generalized to a structure
appropriate for the sparse LU factorization of unsymmetric matrices. A pair of directed acyclic
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1. Introduction. The elimination tree [10], [14] is central to the study of sym-
metric factorization of sparse positive definite matrices. Liu [11] surveys the use of
this tree structure in many aspects of sparse Cholesky factorization, including sparse
storage schemes, matrix reordering, symbolic and numerical factorization algorithms,
and modeling parallel elimination. In particular, the row and column structures of the
Cholesky factor of a symmetric positive definite sparse matrix can be characterized
in terms of its elimination tree.

The objective of this paper is to generalize the elimination tree to a structure that
can be used to study sparse unsymmetric LU factorization. We seek a structure that
characterizes the lower and upper triangular factors in the same way that elimination
trees characterize Cholesky factors. Moreover, for the special case when the matrix
is symmetric, the generalized structure should be the elimination tree. Our general-
ization consists of a pair of special directed acyclic graphs (dags), which we call the
elimination dags, or edags for short.

The outline of the paper is as follows. In 2, we provide the background material
to study sparse LU factorization. We formulate numerical factorization as a sequence
of sparse triangular solves, thus motivating the study of the solution of sparse tri-
angular systems. We introduce the relevant graph notions, and quote results from
the literature that relate the structure of the solution vector to the structures of the
triangular matrix and the right-hand side vector.

In 3, we define elimination dags. They are simply the smallest structures that
preserve the set of paths in the graphs of the lower and upper triangular factor ma-
trices. In graph-theoretic terms, the edags are transitive reductions [1] of the graphs
of L and U. We show that if the matrix is symmetric, elimination dags are simply
elimination trees. We prove some graph-theoretic results about the path structure of
the graph of a matrix, its triangular factors, and its elimination dags.
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Section 4 contains the main results, which characterize the structures of sparse
LU factors in terms of elimination dags. We demonstrate that elimination dags are
truly analogs of elimination trees, by showing that the symmetric structure theory of
elimination trees can be obtained as special cases of the elimination dag results.

In 5, we apply elimination dags to sparse symbolic LU factorization. We briefly
review two algorithms, FILL1 and FILL2, by Rose and Tarjan [12] that compute fill
for sparse unsymmetric matrices. We then formulate a new symbolic factorization
scheme based on the pair of elimination dags and compare its performance with that
of FILL1 and FILL2. Our experimental results show that the new algorithm performs
much better than either of these on practical sparse problems.

Section 6 contains our concluding remarks. We discuss extensions to these ideas,
including the possibility of using elimination dags in numerical sparse LU factorization
schemes with partial pivoting.

2. Background.

2.1. LU factorization in terms of triangular solutions. Suppose that A
is an unsymmetric sparse n n matrix that has a factorization A LU without
pivoting. The bordering method allows us to compute the factorization as a sequence
of triangular solves. Specifically, write

A gT s

where A’ is the (n- 1) (n- 1) leading principal submatrix, g and h are (n- 1)-
vectors, and s is a scalar. If A has been factored as LU, the LU factorization of A
is

A gT 8 0T $ 1

where u’-Tg, L’-lh, and s .T.
Note that the vectors and h can be obtained as the solutions of two lower

triangular systems, each of size n- 1:

L h, utT g.

The matrix A can be factored into LU in the same way recursively. Thus we can
view the entire factorization as a sequence of n pairs of triangular solves of sizes from
0 to n- 1. Moreover, the structure of the vector h depends on that of h and L, and
the structure of depends on that of g and U. This motivates the following study
relating the structure of the solution vector with that of the given lower triangular
matrix and right-hand side.

2.2. Sparse triangular matrices and directed acyclic graphs. Let A
(aij) be a sparse n n matrix with nonzero diagonal entries. Define G(A) to be the
directed graph of the matrix A as follows. The vertex set of G(A) is V {1, 2, n};
there is an edge from i to j (for i - j) if and only if the entry aij is nonzero. We
write the directed edge from i to j as (i, j). Note that the edges (i, j) and (j, i) are
different; the former means that aij 0 and the latter means that aji 0.

Many sparse matrix codes [6], [9] use a data structure that lists the nonzeros of a
matrix A in column major order. In graph terms, this is the "adjacency list" structure
for G(AT). Representing A by G(AT) instead of by G(A) seems to be necessary for
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6

G(L)
FIG. 1. A lower triangular matrix L and its directed graph G(L).

some efficient algorithms [9]. This is the reason that this paper sometimes states
results and algorithms in terms of the graph of the transpose of the matrix in question.

The directed graph of a triangular matrix has a special structure. Consider a lower
triangular matrix L (j) and its directed graph G(L). A nonzero off-diagonal entry
j must have i > j, so any directed edge {i, j) of G(L) must satisfy i > j. Since a
directed edge always points from a vertex with a higher subscript to one with a lower
subscript, the graph G(L) must be acyclic: it cannot have any directed cycles. An
acyclic directed graph is often called a dag for short [2]. Figure 1 is an example of a
lower triangular matrix and its corresponding directed acyclic graph.

2.3. Structural characterization of triangular solution. Consider the so-
lution of the lower triangular system Lx b, where both L and the right-hand side
vector b are sparse. Gilbert [7] provides a simple characterization of the sparse struc-
ture of the solution vector x in terms of that of L and b. We introduce the following
notation: For any row or column vector w (wl,..., wn) or w (wl,..., Wn)T,
define its vector structure as the vertex subset

Struct(w) {i e V Iw 0}.

Note that in this definition, i is a vertex in the graph G(L) and w is an entry in the
vector w.

THEOREM 2.1 (see [7]). The structure Struct(x) of the solution vector x to Lx b
is given by the set of vertices reachable from vertices of the right-hand side structure
Struct(b) by paths in the directed graph G(LT).

Strictly speaking, this result gives only an upper bound on the structure of x,
because coincidental cancellation might produce more zeros. This is the tightest
upper bound on Struct(x) that is possible given only the nonzero structures of L
and b. To avoid cluttering up theorem statements in the rest of the paper, we will
not keep mentioning the possibility of coincidental cancellation. Thus when we make
a statement of the form, "The structure of X is Y," it should be understood to
mean all of the following: "If the nonzero values of A are chosen independently at
random, then the structure of X is Y with probability one"; "If the nonzero values
of A are algebraically independent, then the structure of X is Y"; and "Regardless
of the nonzero values of A, the structure of X is a subset of Y." See Gilbert [7] for a
detailed discussion of this point.

To illustrate Theorem 2.1, consider the solution of Lx b for the matrix L of
Fig. 1. The graph G(LT) is the graph G(L) with all its edges reversed. If bl is the only
nonzero in the right-hand side vector b, then its structure vertex set is Struct(b) { 1 }.
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FIG. 2. The transitive reduction o the graph in Fig. 1.

The vertices that are reachable from vertex 1 through directed paths in G(LT) are
those in the set (1, 3, 4, 5, 6}. On the other hand, if Struct(b) (2, 4}, then the
solution structure Struct(x) is (2, 4, 5, 6}.

Theorem 2.1 is actually true (including the remarks about coincidental cancella-
tion) for any nonsingular matrix with nonzero diagonal, whether triangular or not.
However, we will only use the triangular case.

3. Elimination dags for sparse LU factorization.

3.1. Transitive reduction of a directed graph. Theorem 2.1 relates the
structure of the solution vector x to information about paths in the directed graph
G(L). One economical way to represent path information for a directed graph is by
its transitive reduction [1]. The idea is to find another directed graph with fewer edges
than the given graph G(L), but with the same path structure. In such a graph, fewer
edges would need to be traversed to generate Struct(x) for a given Struct(b).

A graph G is a transitive reduction of a given directed graph G if G satisfies
the following two conditions:

(a) G has a directed path from u to v if and only if G has a directed path from
utov.

(b) No graph with fewer edges than G satisfies condition (a).
An arbitrary graph may have many different transitive reductions, but Aho, Garey,
and Ullman [1] show that a dad has only one.

THEOREM 3.1 (see [1]). If G is a directed acyclic graph, then the transitive
reduction of G is unique, and it is a subgraph of G.

Figure 2 shows the transitive reduction of the graph in Fig. 1. Since there is
a directed path (6, 3, 1), the directed edge (6, 1) is redundant. Similarly, (5, 2) is
redundant because of the path (5, 4, 2).

Since the transitive reduction preserves paths, we can restate Theorem 2.1 in
terms of it.

COROLLARY 3.2. The structure Struct(x) of the solution vector x to Lx b is
given by the set of vertices reachable from vertices of the right-hand side structure
Struct(b) by paths in the transitive reduction G(LT) of the directed graph G(LT).

A notion related to transitive reduction is the transitive closure G* of a directed
graph G, which is the graph that has an edge (u, v) whenever G has a directed path
from u to v. The transitive closure is the least compact representation of the path
information in G; the transitive reduction G can also be defined as the smallest graph
with the same transitive closure as G. Gilbert [7] shows that the transitive closure
captures the structure of the inverse of a matrix:

THEOREM 3.3 (see [7]). Let A be a nonsingular matrix, not necessarily triangular,
with nonzero diagonal elements. Ignoring coincidental cancellation, G(A-1) G* (A).
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1 * 1 1 *
2 2 2

A= 3 3 3
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.5 .5 50. 6 **o 6 6

FIG. 3. LU factorization of a matri example.

Directed graph G(L) Directed graph G(U)

Elimination dag G (L) Elimination dag G(U)

FIG. 4. Elimination dags of the matrix in Fig. 3.

3.2. Definition of elimination dags. As before, let A be an unsymmetric n n
matrix that can be factored as A LU without pivoting. The lower triangular matrix
L has a directed acyclic graph G(L), which has a unique transitive reduction G(L)
by Theorem 3.1.

Similarly, the upper triangular matrix U has a directed acyclic graph G(U), which
in turn has a unique transitive reduction G(U). We call the two reduced directed
acyclic graphs G(L) and G(U) the lower and upper elimination directed acyclic
graphs, respectively. We also refer to them collectively as the elimination dags of the
matrix A.

As an illustration, consider the unsymmetric matrix in Fig. 3. An LU factorization
of this matrix creates three fills, one in L and two in U. The fills are represented in
the figure by "o." Figure 4 displays the two elimination dags corresponding to this
matrix example.
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3.3. The symmetric case: Elimination trees. The situation is simpler if
the matrix A is symmetric. Still assuming no pivoting, Gaussian elimination yields
a symmetric factorization A LLT. The elimination tree [10], [14] has been used
extensively to study symmetric Gaussian elimination.

Let L be the Cholesky factor of a symmetric positive definite matrix A. Formally,
the elimination tree T(A) of A has n vertices (1,..., n), and (j,k) is an edge if and
only if

k-- min(r > j lrj 0).
This structure is a tree rooted at vertex n if A is irreducible, or a forest with one tree
for each irreducible block if A is reducible. Liu’s survey paper [11] contains a compre-
hensive exposition of this important structure in the context of sparse factorization.
We quote one of its properties in our terminology.

THEOREM 3.4 (see [11]). The elimination tree T(A) is the transitive reduction of
the directed graph G(LT).

Since the transitive reduction of a dag is unique, it follows that for a symmetric
matrix the elimination dags G (LT) and G (U) are both equal to the elimination tree
T(A). In 4, we shall show that the structural characterization of Cholesky factors by
elimination trees can be generalized to unsymmetric factors using elimination dags.

3.4. Elimination dags and path structure. Elimination dags capture the
path structure of the LU factors of a sparse matrix. In this section we explore some of
the connections between edags, the path structures of L and U, and the path structure
of the original matrix A. We also answer the question, "Which pairs of directed graphs
can be the elimination dags of some matrix?" Recall that we consider only matrices A
with nonzero diagonal elements, and recall the discussion of coincidental cancellation
in 2.3.

We begin by defining notation for two directed graphs that correspond to addition
and multiplication of matrices.

DEFINITION. If B and C are two n x n matrices with nonzero diagonal elements,
then G(B) / G(C) is the union of the graphs of B and C, defined as the graph whose
vertex set is {1,..., n} and whose edge set is the union of those of G(B) and G(C).

DEFINITION. If B and C are two n n matrices with nonzero diagonal elements,
then G(B). G(C) is the product of the graphs of B and C, defined as the graph whose
vertex set is {1,..., n), with an edge (i, j) exactly in case (i, j) is an edge of G(B),
or (i, j) is an edge of G(C), or there is some k such that (i, k) is an edge of G(B) and
(k, j) is an edge of G(C).

We will write G c_ H to mean that G is a subgraph of H.
LEMMA 3.5. If B and C are matrices with nonzero diagonals, then

G(B + C) c_ G(B) + G(C),
with equality unless there is coincidental cancellation in B + C.

Proof. The proof follows immediately.
LEMMA 3.6. If B and C are matrices with nonzero diagonals, then

G(BC) c_ G(B). G(C),
with equality unless there is coincidental cancellation in BC.

Proof. If A BC, then aij 0 only if there exists k such that bik 0 and
ckj O. Conversely, if such k exists then aij is a sum of nonzeros and hence can be
zero only if there is cancellation.
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If A LU is an LU factorization, Lemma 3.6 implies that G(A) is a subgraph of
G(L). G(U), that is, that an edge in A corresponds to an edge in L followed by an
edge in U. However, G(A) is not usually equal to G(L). G(U); any fill in L and U
cancels out when they are multiplied back together.

Our first result relates paths in A to paths in L and U. It says that a path in A
always corresponds to a path in U followed by a path in L. We allow paths of length
zero.

THEOREM 3.7. If A LU and there is a path in the directed graph G(A) from
vertex i to vertex j, then there is some 1 <_ k <_ n such that the directed graph G(U)
has a path from vertex i to vertex k, and the directed graph G(L) has a path from
vertex k to vertex j.

Proof. This can be proved by induction using the "path lemma" of Rose and
Warjan [12], which characterizes G(L + U)in terms of G(A). Another proof, however,
is to interpret the equation A-1 U-1L- in terms of paths and transitive closures.
Theorem 3.3 implies that

G*(A) =G(A-)
G(U-L-)

c_ G(U-I G(L-G*(U). G* (L),

where the third step is by Lemma 3.6. In English, this equation says that every path
in A corresponds to a path in U followed by a path in L. D

Since the elimination dags of A preserve the path information in G(L) and G(U),
the same conclusion holds for them.

COROLLARY 3.8. If A LU and there is a path in the directed graph G(A) from
vertex i to vertex j, then there is some 1 <_ k <_ n such that the elimination dag G (U)
has a path from vertex i to vertex k, and the elimination dag G (L) has a path from
vertex k to vertex j. In other words,

G* (A) c_ G* (U) G* (L).

This says that, while the elimination dags have very simple (i.e., acyclic) path
structures themselves, they preserve all the path structure of A. Any path in G(A)
corresponds to an "ascending" path in G(U) followed by a "descending" path in
G(L).

We turn now to the question of characterizing the graphs that can be elimination
dags of some matrix. Again we consider G(L) and G(U) first. Any directed graph G
with vertices {1,..., n} whose edges (i, j) all satisfy i > j is G(L) for some A. We
merely choose A to be the matrix whose entries are aj 1, whenever i j or (i, j>
is an edge of G, and zeros elsewhere. Then A LU with L A and U I, and
G(L) G(A) G. Similarly any graph with edges directed from lower to higher
numbered vertices is the graph of U for some A.

However, not every pair of directed acyclic graphs corresponds to a factorization
A LU without cancellation. Rose and Tarjan [12] show that (in the absence of
coincidental cancellation) G(L + U) is always a so-called perfect elimination digraph
in perfect elimination order, which means that whenever k < min(i,j) and (i, k) and
(k, j) are edges, then (i, j> is also an edge. This condition is both necessary and
sufficient. We can restate it in terms of our definitions as follows.
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THEOREM 3.9 (see [12]). Suppose there is no cancellation in the ]actorization
A LU. Then

(1) G(L) G(U) G(L) + G(U).

Furthermore, a specified lower and upper triangular structure G(L) and G(U) corre-
spond to the LU ]actorization without cancellation of some matrix if and only if they
satisfy (1).

The situation for structures of elimination dags is similar: Any transitively re-
duced dag can be the structure of the elimination dag G (L) or G (U), but a specified
pair of reduced dags might not be G(L) and G(U) for any single matrix A LU.
We can characterize the possible pairs in a way similar to Theorem 3.9.

THEOPEM 3.10. Suppose there is no cancellation in the ]actorization A LU.
Then

(2) G*(L). G*(U) G*(L) + G*(U).

Furthermore, a reduced structure is the pair of edags of some matrix if and only if it

satisfies (2).
Remark. An equivalent way to state the theorem is: Let two transitively reduced

acyclic directed graphs Gt and Gu be given, with edges oriented from higher- to
lower-numbered vertices in Gt and vice versa in Gu. Then there exists a matrix A
that factors without cancellation as LU with G(L) G and G(U) G if and
only if G. G, G + G.

Proof. First, let A LU be given. The containment G*(L) +G*(U) c_ G* (L).
G*(U) follows from the definition of the product graph. We prove the opposite
containment. Note that G*(L) G* (L) and G*(U) G* (U).

Let (i, j> be an edge of G*(L) G*(U). Then there exists k such that there
are paths (i i,i_i,...,io k) in G(L) and (k jo,jl,...,j8 j) in G(U).
We induct on s + t, the total length of these paths. If either path has length zero,
then the concatenation of the paths is in G(L) or G(U) and <i, j) is an edge of
G* (L) + G*(U) G*(L) + G*(U). If both paths have length at least one and
il jl, then we can shorten the paths by deleting i0 j0. Otherwise, the edges
<i1, k> in G(L) and (k, jl> in G(U) make <il,jl) an edge of G(L). G(U). Theorem 3.9
then implies that (il,j) is an edge of G(L) + G(U); that is, it is either an edge of
G(L) or an edge of G(U). If i > j then (il,j) is an edge of G(L). Then the
paths (i i,i_l,...,i,j) in G(L) and (j,j2...,js i) in G(U) have smaller
total length than the original paths, so the inductive hypothesis applies. Similarly, if
i < jl then we shorten the path in G(L).

Second, let G and G be given. The "only if" part of the theorem is what
we have just proved. To prove the "if" part, we assume that G.
and proceed to show the existence of a suitable A. Now G and G satisfy (1),
so Theorem 3.9 says that there exists A LU (without cancellation) such that
G(L) G and G(U) G. But since G and G are transitively reduced and the
transitive reduction of a dag is unique, this implies G(L) G and G(U) Gu as
well.

All these results reduce to fairly simple facts about elimination trees in the sym-
metric case. In the symmetric version of Theorem 3.7, an irreducible A gives a com-
plete graph G* (A) and a complete lower triangular structure G* (L). Theorem 3.9 says
in the symmetric case that G(L).G(LT) G(L)+G(LT), which restates that G(L) is
a perfect elimination or chordal graph [13]. The symmetric case of Theorem 3.10 is an
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unusual characterization of a forest (that is, of a graph whose connected components
are trees): G*(L). G*(LT) G*(L) q- G*(LT) says that a "descending" path in
T(A) followed by an "ascending" path in T(A) can be replaced by a pure descending
or ascending path. This is indeed true of forests, and forests are the only transitively
reduced directed acyclic graphs of which it is true.

The latter observation is a roundabout proof that the elimination tree of a sym-
metric matrix really is a tree (or, rather, a forest). One important fact about an
elimination tree of an n n matrix is that it encodes all the path information about
G(L) in a structure of linear size--with n vertices and at most n- 1 edges. Thus
G (L) is likely to be much smaller than L.

An elimination dag, on the other hand, may have O(n2) edges in the worst case.
Matrix EG-3 in Fig. 10 is an example where both G(U) and G(U) have about n2/4
edges. Nevertheless, in practice we observe that the elimination dags of a matrix
are almost always much smaller than its triangular factors. This fact explains the
results of 5.3, in which an algorithm based on edags is much faster than two earlier
algorithms.

4. Structural characterization of LU factors. In this section we use the
elimination dags G (L) and G (V) to characterize the row and column structures of
the triangular factors. Throughout the section, A LU is the factorization without
pivoting of a square matrix A with nonzero diagonal. Recall the discussion in 2.3 of
our assumptions about cancellation.

4.1. Row structure of L. We first focus our attention on the row structure
of the lower triangular factor L. The definitions immediately imply the following
proposition.

PROPOSITION 4.1. If .ij O, then there exists a path from vertex i to vertex j
in the elimination dag G (L).

This condition is necessary but clearly not sufficient for an entry in L to be
nonzero. For example, the entry gal is zero in Fig. 3, but there is a path from vertex
4 to 1 via 3. We now provide a necessary and sufficient condition for gij to be nonzero
in terms of paths in the upper elimination dag G (U).

THEOREM 4.2. Let i > j. Then 0 if and only if there is some k

_
j such

that aik 0 and there is a directed path in the elimination dag G (U) from vertex k
to vertex j.

Proof. Let Ai be the i i leading principal submatrix of A, with factors Ai LiUi.
Then the ith row of L (without the diagonal entry) is given by

ai i-1

UVZ(ail, aii-1)T

Therefore, by Theorem 2.1, the vector structure of (gil,... ,gi,i-) is given by the set
of vertices reachable from the vertices in the vector structure of (ai,..., hi,i-l) in the
directed graph G(Ui-1). Thus gij 0 if and only if there exists a nonzero aik such
that vertex j is reachable from vertex k in the graph G(Ui_), in other words, if and
only if there exists k such that aik 0 and G(Ui_) contains a directed path from k
to j. Such a k must be less than or equal to j because all edges of G(U) are directed
from lower- to higher-numbered vertices.

Now G(Ui-1) is a subgraph of G(U), so a path in G(Ui_) is a path in G(U) as
well. Conversely (again because edges are directed from lower- to higher-numbered
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FIG. 5. Union of column structures.

vertices) any directed path ending at vertex j in G(U) must lie entirely within
G(Ui-1). Thus gij 0 if and only if there exists k such that aik 0 and there
is a directed path from k to j in G(U). The result now follows from the fact that the
elimination dag G (U) preserves the set of paths in G(U). D

Theorem 4.2 characterizes the structure of L by rows: the structure of the ith
row of L is given by the subset of {1,..., i} reachable in the upper elimination dag
G (U) from the vertices of the structure of the ith row in the lower triangular part
of A. The following section characterizes the structure of L by columns.

4.2. Column structure of L. Using the notation Struct(L,j) {i Ij - 0}
for the nonzero structure of a column of L, we restate a result of Rose and Tarjan [12]
that describes the structure of L by columns in terms of A and U.

THEOREM 4.3 (see [12]).

Struct(L,j)

Struct(A,j) U U(Struct(L,k) k < j, uk : O} {1,... ,j 1}.

COROLLARY 4.4. Let k < j and ukj = O. Then

Struct(L,k)- (1,... ,j- 1} c_ Struct(L,j).

In matrix terms, we can determine the column structure of L, by taking the
union of the column structure of A,j with a number of columns of L before j. These
columns are given exactly by the structure of column j of U, the upper triangular
factor. Figure 5 expresses the result of Theorem 4.3 diagrammatically.

Note that all columns L,k such that ukj = 0 are used to determine the structure
of L,j in Theorem 4.3. The following theorem shows that we need only consider a
subset of those columns, and this subset is determined by the structure of the upper
elimination dag G(U).
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THEOREM 4.5.

Struct(L,j)

Struct(A,j) U U(Struct(L,k) (k,j) is an edge of G(U)}- (1,... ,j- 1}.

Proof. The right-hand side in Theorem 4.5 is a subset of the right-hand side of
Theorem 4.3 by the definition of G (U).

To prove the converse, consider any nonzero entry ukj where (k, j) is not an
edge of G(U). Then G(U) must contain a path (k io, il,..., it, it+l j), with

ui..+ 0 for 0 <_ s <_ t. Corollary 4.4 says that

Struct(L,k)- (1,... ,il 1} c_ Struct(L,il),
Struct(L,i)- (1,... ,i2- 1 c_ Struct(/,2)

Struct(/,i_1) (1,..., it 1} C_ Struct(L,i).

Combining, we have

Struct(L,k) (1,..., j 1 c_ Struct(/,) (1,..., j 1,
where (it,j) is an edge of G(U). We have thus proved that the right-hand side in
Theorem 4.3 is a subset of that in Theorem 4.5. D

4.3. Row and column structures of U. By the same argument as in Theo-
rems 4.2 and 4.5, we can relate the nonzero structure of the upper triangular factor U
to the lower elimination dag G(L). Theorem 4.6 characterizes the column structure,
and Theorem 4.7 the row structure, of U.

THEOREM 4.6. Let i < j. Then u 0 if and only if there is some k <_ i such
that akj 0 and there is a directed path in the elimination dag G(L) from vertex i
to vertex k.

THEOREM 4.7.

Struct(Ui,)

Struct(Ai,) U U(Struct(Uk,)l(i,k) is an edge of G(L)}- (1,... ,i- 1}.

We now use the matrix example in Fig. 3 to illustrate the results of Theorems 4.2
and 4.6 on the row structure of L and the column structure of U. Consider row and
column 6 of the matrix in Fig. 3. The structure of row A6, is (1, 2, 6}. The set
of vertices reachable from this set in the upper elimination dag G(U) in Fig. 4 is
(1, 2, 3, 6}, which is precisely the structure of L6,. On the other hand, the structure
of column A,6 is {3, 6}. These two vertices in the lower elimination dag G (L) are
reachable exactly from vertices in the set (3, 4, 5, 6}. As Theorem 4.6 predicts, this is
the structure of U,6.

Using the same matrix, we illustrate the results of Theorems 4.5 and 4.7 on the
column structure of L and the row structure of U. Consider row and column 5 of the
matrix in Fig. 3. Since (4, 5) is the only edge into vertex 5 in the upper elimination
dag G(U), Theorem 4.5 says that Struct(L,5) can be obtained from Struct(A,5) and
Struct(L,a). On the other hand, of the two edges (5, 2) and (5, 4) in the graph G(L),
only (5, 4) is in the lower elimination dag G(L). Therefore, by Theorem 4.7, it is
sufficient to consider Struct(A5,) and Struct(Ua,) to determine Struct(U5,).
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4.4. Edags as unsymmetric analogs of elimination trees. In 3.3 we saw
that when the matrix A is symmetric, the elimination dag G (LT) G (V) is identical
to the elimination tree T(A). Here we show that the results from the literature
relating elimination trees to the structure of sparse Cholesky factors are special cases
of the results of 4.1-4.3. Thus elimination dags are truly an unsymmetric analog of
elimination trees.

In this subsection, we take A to be symmetric and positive definite, and L to be
its Cholesky factor. The following result characterizes the column structure of L using
the elimination tree, and forms the basis of an efficient symbolic Cholesky factorization
scheme.

THEOREM 4.8 (see [11]).

Struct(L,j)

Struct(A,j) U U(Struct(n,k) k is a child of j in T(A)} (1,... ,j

Since G (LT) T(A) in the symmetric case, this is a special case of Theorem 4.5
or Theorem 4.7.

The row structure of the Cholesky factor L can also be characterized in terms of
the elimination tree. Schreiber [14] shows that the row structure of Li, is a pruned
subtree rooted at vertex i of the elimination tree. Liu [10] gives a complete charac-
terization, which we quote here.

THEOREM 4.9 (see [10]). Let i > j. Then i 0 if and only if vertex j is an
ancestor of some vertex k in the elimination tree such that aik O.

We can restate this in terms of paths in the elimination tree as follows.
COROLLARY 4.10. Let i > j. Then 0 if and only if there is some k <_ j such

that aik 0 and there is a directed path in the elimination tree T(A) from vertex k
to vertex j.

This is a special case of Theorem 4.2 or Theorem 4.6.

5. An application: Fill computation. In this section we apply elimination
dags to computing the symbolic factorization of an unsymmetric matrix. For this
problem, we are given the nonzero structure of an unsymmetric matrix A and asked
to compute the nonzero structures of its LU factors, under the assumption that A has
an LU factorization without pivoting. Equivalently, we want to compute the result
of playing the vertex elimination game [12] on a specified directed graph. We first
review two algorithms from the literature briefly. Then we present a new algorithm,
analyze it, and give experimental results.

In this section we use the notation y(X) for the number of nonzeros in the matrix
or vector X.

5.1. Algorithms FILL1 and FILL2. Rose and Tarjan [12] present two algo-
rithms, which they call FILL1 and FILL2, to determine fill. Both algorithms compute
the structures of L and U row by row.

Algorithm FILL1 determines the row structures of Li, and Ui, by using the struc-
ture of Ai, together with the first i- 1 computed row structures of U. It basically
performs a symbolic simulation of the numerical row elimination scheme. The amount
of work required is proportional to that required for numerical factorization. This is
also proportional to the time required to multiply L and U back together again, which
we write informally as flops(LU).

On the other hand, Algorithm FILL2 computes the row structures by using the
"path lemma" for fills [12, Whm. 1], which says that (i, j) is an edge of G(L + U) if
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Algorithm EDAGS
for row i "= 1 to n do

1: Compute Struct(L,) by traversing G (U-I)
from A, (using Theorem 4.2);

2: Transitively reduce Struct(L,) using G(L_I),
thus extending the edag to G (L);

3: Compute Struct(U,) as a union of earlier rows of U
(using Theorem 4.7);

4: Transitively reduce Struct(U,) using G (U_I),
thus extending the edag to G (U)

end for

FIG. 6. Symbolic LU factorization using elimination digs.

and only if the graph G(A) contains a directed path from i to j through vertices with
numbers smaller than both i and j. The structures of L, and U, are determined
using only the structures of the first i rows of the original matrix A. Rose and Tarjan
show that the time complexity of FILL2 is bounded by O(nl(A)).

The reader is referred to the paper by Rose and Tarjan [12] for detailed descrip-
tions of these algorithms. Rose and Tarjan do not provide code; our implementations,
which we used to obtain the experimental results reported in this paper, are based on
their descriptions.

5.2. A symbolic LU algorithm using elimination digs. The structural
characterization results of Theorems 4.2, 4.5, 4.6, and 4.7 for sparse LU factors can
be used to formulate a symbolic factorization algorithm. The algorithm in Fig. 6
computes the structures of L and U row by row. We use the notation L and U to
denote the i i leading principal submatrix of L and U. Their graphs and transitive
reductions are defined in the same way as for L and U.

The algorithm uses Theorem 4.2 to determine the structure of L,, and The-
orem 4.7 to determine the structure of U,. At the end of the ith iteration, the
structures of the first i rows of L and U are known together with the structures of
the elimination digs G(L) and G(U). The data structure represents L and A by
columns, and U by rows; that is, it stores the adjacency lists of the various graphs
G(LT), G(U), G(LT), and G(U). (The adjacency lists are not actually linked lists,
but arrays of row numbers as in the standard column-oriented sparse matrix data
structure [6].)

We now analyze the time complexity of this algorithm. To get simple expressions
for the complexity, we will use the fact [9] that if there is no cancellation in solving
Lx b, then the number of nonzero arithmetic operations is the same as the number
of nonzero arithmetic operations needed to multiply L by x, and is on the order of
the time needed to traverse the part of the graph G(LT) reachable from b.

In step 1, at row i, this fact says that the traversal of G(Ui_I) takes time on the
order of the number of operations to multiply a (hypothetical) matrix whose structure
is that of G (uT_) by the vector L/T.. Added up over all rows, this is bounded by the
number of operations to multiply a matrix whose structure is that of G(UT) by LT;
we will write this number informally as flops(UTLT) or flops(LU). Similarly, the
time for step 3 is bounded by flops(LU).

Step 2 can be implemented in at least two ways. One method is to search in
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G(Li_I) from the vertices corresponding to nonzeros in L,, reducing Li, by dis-
carding element gij if vertex j is reached during the search from some ik with j < k.
The search at row i can avoid looking at any edge twice by searching in decreasing
order of k and marking vertices that have already been reached. The time for this
reduction search is on the order of the operations to solve for y in L_Tly L. If we
add vertex i to get the graph G (Li), we see that the reduction search is the same as
the search that would be done in solving LTy e (where e is the ith unit vector),
except that from vertex i the reduction search examines all the nonzeros ofL instead
of just those of L,T. Thus for row i, the search takes time on the order of operations
to multiply LT by column i of its inverse, plus y(L)- (L,T). Adding this up
over all i, and noting that since G(L) and G(L) have the same transitive closures
their inverses have the same structure, we get flops(L-L) / y(L) vi(L). The last
two terms are dominated by the first, so the total time for step 2 is on the order of
flops(L-L). Similarly, the total time for step 4 is on the order of flops(UU-) by
this method.

The second method for implementing step 2 is to search "backwards" (that is, in
G(L_)), discarding nonzero j if vertex i can be reached from some k with k < j.
Again the search can avoid looking at an edge twice by marking vertices that have
been reached. The search at row i by this method is on the order of operations to
solve Li_ly L. It seems harder to get a simple expression for the total cost over
all rows. To get an upper bound, we note that the search for row i at worst examines
all of G(L_), and thus the total time is no more than the order of - (L). The
total time for step 4 is bounded above by a similar sum for U.

One way to express this upper bound is as follows. Let F be a full n by n "skew
upper triangular" matrix, that is f 0 if i+j <_ n+l. Then - r](L) is on the order
of flops(EL), and i y(U) is on the order of flops(UF). Thus the total time for
the algorithm (using the second method for steps 2 and 4) is bounded by the order of
flops(FL +UF+LU -LU), which in turn is bounded above by flops(F(E+ET)),
where E L / U is a matrix with the structure of the two edags.

This upper bound actually applies to both methods for steps 2 and 4. In our
implementation, we used the second method, since it uses G(LT) and thus fits more
naturally with the column-oriented data structure for L.

Theoretically, none of the three algorithms FILL1, FILL2, or EDAGS dominates
any of the others; any of them could be the fastest on some matrices. The next section
describes three matrices, each of which takes O(n3) time by one algorithm and O(n2)
time by the other two.

5.3. Experimental results. We compared the performance of the symbolic LU
algorithm using elimination dags with the FILL1 and FILL2 algorithms of Rose and
Tarjan. The programs were written in Fortran, using many of the routines from
SPARSPAK [6]. We used sparse MATLAB [8] for the reorderings and to plot results.
Figures 7, 8, and 9 show silhouette plots of the structure of a small sample matrix,
its factors, and its elimination dags.

All but three of our test problems are from the Harwell-Boeing Sparse Matrix
Collection [3]; Table 1 describes these problems. These problems all have unsymmet-
ric nonzero structures, except for DWT0918, which is a symmetric problem that we
included to demonstrate that EDAGS works well in that case too. We also included
examples contrived to make each of the three algorithms perform poorly. Figure 10
shows 8 8 versions of these artificial problems; in the experiments we used 500 500
versions.
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Original Matrix
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FIG. 7. The nonzero structure of matrix A.

4o
Factorization: L + U

5-+

++++++++++++++++++
0 1 1’5 0 25 30 35 40

539

Fro. 8. The triangular factors of A LU.

Since the algorithms are all nonnumerical and we are addressing only the case
when no pivoting for numerical stability is necessary, the question of numerical error
does not arise in the comparisons between the algorithms. We did, however, compute
a numerical LU factorization for each matrix (after modifying the diagonal to make
it dominant) in order to check that the combinatorial algorithms were producing the
correct result.

Table 2 presents timing statistics for the three fill computation algorithms on the
set of test problems. The experiments were performed on a Sun Sparcstation IPC
workstation; times are reported in seconds as returned by calls to the system timer.
For the Harwell-Boeing problems, FILL2 is consistently better than FILL1, whereas
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FIG. 9. The elimination dags of A, G(L)+ G(U).

TABLE 1
List of test problems.

Problem n
SHL400 663 1712
FS7603 760 5976
MCFE 765 24382
BP1600 822 4841
YOUNG3C 841 3988
DWT918 918 7384
GREll07 1107 5664
WEST2021 2021 7353

Nonzeros Description
Permuted triangular LP basis
Unsymmetric facsimile convergence matrix
Astrophysics problem
Unsymmetric LP basis
Matrix from Young
Beam with cutouts (symmetric)
Problem from Grenoble collection
Chemical engineering: Column section

EDAGS outperforms the other two.
It is interesting to compare the performance on the three contrived examples.

The analysis in the previous section can be used to show that Algorithm FILL1 takes
O(n3) time on EG-1 and O(n2) time on EG-2 and EG-3; Algorithm FILL2 takes O(n3)
time on EG-2 and O(n2) time on EG-1 and EG-a; and Algorithm EDAGS takes O(n3)
time on EG-3 and O(n2) time on EG-1 and EG-2. This analysis is reflected in the
measured times.

Table 3 compares the sizes of the factor matrices and their elimination dags,
both determined by EDAGS. (In the table, IGI means the number of edges in the
graph G.) We see that in the worst-case example, EG-3, there is no difference, but in
all the practical problems the edags are substantially smaller than the corresponding
triangular factors. We also note that the symmetric matrix DWT0918, which is of order
918, has edags with 917 edges apiece; these are in fact both equal to its elimination
tree.

Finally, for curiosity’s sake, we present the result of one more experiment on the
Harwell-Boeing matrices. Many of these matrices are highly reducible. Reducible
linear systems are often solved by permuting to block triangular form and then fac-
toring only the irreducible diagonal blocks. For each matrix in the test set, we first
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FzG. 10. Three contrived matrix examples.

TABLE 2
Time to compute G(L + U) from A.

Problem n Nonzeros
SHL400 663 1712
FS7603 760 5976
MCFE 765 24382
BP1600 822 4841
YOUNG3C 841 3988
DWT918 918 7384
GREll07 1107 5664
WEST2021 2021 7353
EG-1 500 1498
EG-2 500 125749
EG-3 500 999

FILL1 FILL2 EDAGS
0.65 0.65 0.48

122.50 5.63 5.51
3.41 12.81 1.15
14.47 2.85 2.05
1.05 4.49 0.60

25.59 7.69 2.84
14.89 6.93 4.34
39.80 14.93 7.66
68.69 1.64 3.12
0.60 68.78 2.12
0.19 0.34 21.85

applied a row permutation to place nonzeros on the diagonal, then permuted the ma-
trix to block upper triangular form, and then extracted the largest diagonal block B.
Then we reordered that block by a symmetric minimum-degree permutation (on the
structure of B / BT). Table 4 presents the timings for the three fill algorithms on the
resulting matrices. (There is no entry for SHL400, because that matrix is actually a
permutation of a triangular matrix, so its largest irreducible diagonal block is 1 1.)
We see that EDAGS is often fastest by a large margin, but FILL1 wins in some cases.
The reason may be that these matrices, when reordered, have factors that are already
so sparse that there is little to gain from transitive reduction.

6. Concluding remarks. This paper has defined a generalization of the elim-
ination tree, which is an important structure in sparse Cholesky factorization, to an
"elimination dag" useful for sparse unsymmetric LU factorization. The elimination
dag arises by generalizing one particular property of the elimination tree, namely that
it is the unique transitive reduction of the graph of the triangular factor. We have
shown that elimination dags model the path structure of LU factors in a way that
parallels, and generalizes, the elimination tree model of the Cholesky factor. We pre-
sented a new algorithm for sparse symbolic LU factorization, using edags, and showed
experimentally that it compares favorably with existing symbolic schemes.
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Problem
SHL400
FS7603
MCFE
BP1600
YOUNG3C
DWT918
GRE1107
WEST2021
EG-1
EG-1
EG-1

TABLE 3
Structural statistics for Algorithm EDAGS in Fig. 6.

n
663
760
765
822
841
918
1107
2021
500
500
500

Nonzeros
1712
5976

24382
4841
3988
7384
5664
7353
1498

125749
999

[G(L)[ [G(L)[ [G(U)[ [G(U)[
9191 892 8181 1355

200187 778 205817 779
23779 761 55911 761
66688 1459 68078 1431
22066 845 22188 846
073a7 97 073a7 97
61087 3135 141887 442
148368 10730 231052 4430
124750 499 124750 499

499 499 124750 499
249 249 62500 62500

TABLE 4
Timings ]or largest irreducible blocks, ordered by minimum degree.

Problem
FS7603 B
MCFE B
BP1600 B
YOUNG3C B
DWT918 B
GRE1107 B
WEST2021 B

n Nonzeros FILL1 FILL2 EDAGS
740 5878 0.80 1.43 0.40
697 23186 6.20 6.77 1.12
217 1155 0.02 0.10 0.04
841 3988 0.23 1.08 0.23
918 7384 0.71 1.87 0.43
1107 5664 5.88 3.45 1.25
1500 5495 0.08 1.89 0.18

Eisenstat and Liu [5] have recently extended this work by defining a pair of
dags they call the symmetric reductions of a matrix. These dags are intermediate in
size between the edags and the triangular factors, but are easier to find than edags;
Eisenstat and Liu’s experiments show that a symbolic factorization algorithm based
on them is even faster than our Algorithm EDAGS.

In this paper, we have used elimination dags only to study sparse LU factorization
with no pivoting. When numerical pivoting is required for stability, we believe that
edags can still be useful. The sparse partial pivoting scheme of Gilbert and Peierls [9]
performs an LU factorization with pivoting in time proportional to arithmetic oper-
ations. Each column of the factors L and U is computed by a sparse triangular solve
with the already-computed columns of L, of the form

Lj 0 )
The triangular solve begins with a symbolic phase that uses the graph of the known
part of L (actually, of LT) to predict the nonzero structure of the result, in order
to limit the numerical factorization to nonzero arithmetic. The symbolic phase for
each column could be improved by using the elimination dag G(LT) instead of the
graph G(LT). We expect this to be especially important when using vector machines,
since the numerical phase can be speeded up by vectorization but the symbolic phase
cannot. Eisenstat and Liu [4] have recently reported positive results using symmetric
reductions in the symbolic phase of sparse partial pivoting on workstations.
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Abstract. In an earlier paper, an approximate SVD updating scheme has been derived as
an interlacing of a QR updating on the one hand and a Jacobi-type SVD procedure on the other
hand, possibly supplemented with a certain re-orthogonalization scheme. This paper maps this
updating algorithm onto a systolic array with O(n2) parallelism for O(n2) complexity, resulting in
an O(n) throughput. Furthermore, it is shown how a square root-free implementation is obtained
by combining modified Givens rotations with approximate SVD schemes.

Key words, singular value decomposition, parallel algorithms, recursive least squares
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1. Introduction. The problem of continuously updating matrix decompositions
as new rows are appended frequently occurs in signal processing applications. Typi-
cal examples are adaptive beamforming, direction finding, spectral analysis, pattern
recognition, etc. [13].

In [12], it has been shown how an SVD updating algorithm can be derived by
combining QR updating with a Jacobi-type SVD procedure applied to the triangular
factor. In each time step an approximate decomposition is computed from a previous
approximation at a low computational cost, namely, O(n2) operations. This algorithm
was shown to be particularly suited for subspace tracking problems. The tracking error
at each time step is then found to be bounded by the time variation in O(n) time
steps, which is sufficiently small for applications with slowly time-varying systems.
Furthermore, the updating procedure was proved to be stable when supplemented
with a certain re-orthogonalization scheme, which is elegantly combined with the
updating.

In this paper, we show how this updating algorithm can be mapped onto a systolic
array with O(n2) parallelism, resulting in an O(n) throughput (similar to the case
for mere QR updating; see [5]). Furthermore, it is shown how a square root-free
implementation is obtained by combining modified Givens rotations with approximate
SVD schemes.

In 2, the updating algorithm is briefly reviewed. A systolic implementation is
described in 3 for the easy case, where corrective re-orthogonalizations are left out.
In 4, it is shown how to incorporate these re-orthogonalizations. Finally, a square
root-free implementation is derived in 5.

2. SVD updating. The singular value decomposition (SVD) of a real matrix
A,n (m >_ n) is a factorization of A into a product of three matrices

Amxn Urnxn -nXn VnTxn
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where U has orthonormal columns, V is an orthogonal matrix, and is a diagonal
matrix, with the singular values along the diagonal.

Given that we have the SVD of a matrix A, we may need to calculate the SVD
of a matrix A that is obtained after appending a new row to A.

Kt1, X t1,"A aT V(m+l) xn --nxn
In on-line applications, a new updating is often to be performed after each sampling.
The data matrix at time step k is then defined in a recursive manner (k _> n)

a(k)T kxn "-’nxn

Factor A(k) is a weighting factor, and a(k) is the measurement vector at time instance
k. For the sake of brevity, we consider only the case where A(k) is a constant A,
although everything can easily be recast for the case where it is time varying. Finally,
in most cases the U(k) matrices (of growing size!) need not be computed explicitly,
and only V(k) and () are explicitly updated.

An adaptive algorithm can be constructed by interlacing a Jacobi-type SVD pro-
cedure (Kogbetliantz’s algorithm [9], modified for triangular matrices [8], [10]) with
repeated QR updates. See [12] for further details.

Initialization

V() =I
R() =O

Loop
for k- 1,...,cx

input new measurement vector a(k)

a(,k)T = a(k)T y(k-l)

R(k) = A. R(k-l)

QR updating

[ 1 [ ]
R() R(,k)
V(k) ,:: V(k-l)

end

SVD steps
for 1,...,n- 1

V(k) V(k).

{V(k) .= T}k) V(k)}
end
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Matrices O:) and (I)k) represent plane rotations (ith rotation in time step k)
through angles k) and k) in the (i, i+ 1)-plane. The rotation angles O!k) and k)
should be chosen such that the (i, i + 1) element in R(k) is zeroed, while/(k) remains
in upper triangular form. Each iteration thus amounts to solving a 2 2 SVD on the
main diagonal. The updating algorithm then reduces to applying sequences of n- 1
rotations, where the pivot index i repeatedly takes up all the values i 1, 2,..., n-1 (n
such sequences constitute a pipelined double sweep [14]), interlaced with QR updates.
At each time step, R(k) will be "close" to a (block) diagonal matrix, so that in some
sense V(k) is "close" to the exact matrix with right singular vectors; see [12].

Transformations Tk) correspond to approximate re-orthogonalizations of row vec-
tors of V(k). These should be included in order to avoid round-off error buildup, if
the algorithm is supposed to run for, say, thousands of time steps (see [12]). For the
sake of clarity, the re-orthogonalizations are left out for a while, and are dealt with
only in 4.

In the sequel, the time index k is often dropped for the sake of conciseness.

3. A systolic array for SVD updating. The above SVD updating algorithm.
for the time being without re-orthogonalizations---can be mapped elegantly onto a
systolic array, by combining systolic implementations for the matrix-vector product,
the QR updating, and the SVD. In particular, with n-1 SVD iterations after each QR
update,1 an efficient parallel implementation is conceivable with O(n2) parallelism for
O(n2) complexity. The SVD updating is then performed at a speed comparable to
the speed of merely QR updating.

The SVD updating array is similar to the triangular SVD array in [10], where
the SVD diagonalization and a preliminary QR factorization are performed on the
same array. As for the SVD updating algorithm, the diagonalization process and the
QR updating are interlaced, so that the array must be modified accordingly. Also,
from the algorithmic description, it follows that the V-matrix should be stored as
well. Hence, we have to provide for an additional square array, which furthermore
performs the matrix-vector products aT. Y. It is shown how the the matrix-vector
product, the QR updating, and the SVD can be pipelined perfectly at the cost of
little computational overhead. Finally, it is briefly shown how, e.g., a total least
squares solution can be generated at each time step, with only very few additional
computations.

Figure 1 gives an overview of the array. New data vectors are continuously fed
into the left-hand side of the array. The matrix-vector product is computed in the
square part, and the resulting vector is passed on to the triangular array that performs
the QR updating and the SVD diagonalization. Output vectors are flushed upwards
in the triangular array and become available at the right-hand side of the square
array. All these operations can be carried out simultaneously, as is detailed next. The
correctness of the array has also been verified by software simulation.

We first briefly review the SVD array of [10], and then modify the Gentleman-
Kung QR updating array accordingly. Next, we show how to interlace the matrix-
vector products, the QR updates, and the SVD process, and additionally generate
(total least squares) output vectors.

3.1. SVD array. Figure 2 shows the SVD array of [10]. Processors on the main
diagonal perform 2 x 2 SVDs, annihilating the available off-diagonal elements. Row

If the number of rotations after each QR update is, for instance, halved or doubled, the array
can easily be modified accordingly.
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input -- -- output

FIG. 1. Overview SVD updating array.

Figure a Figure b Figure c Figure d

Figure e Figure f Figure g etc.

FIG. 2. SVD array.

transformation parameters are passed on to the right, while column transformation
parameters are passed on upwards. Off-diagonal processors only apply and propagate
these transformations to the next blocks outward. Column transformations are also
propagated through the upper square part, containing the V-matrix (V’s first row in
the top row, etc.).

In this parallel implementation, off-diagonal elements with odd and even row
numbers are being zeroed in an alternating fashion (odd-even ordering). However,
it can easily be verified that an odd-even ordering corresponds to a cyclic-by-row
or -column ordering, apart from a different start-up phase [11], [14]. The 2 2
SVDs that are performed in parallel on the main diagonal can indeed be thought of
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Figure

i=1

Figure e

Figure b Figure c Figure d

Figure f Figure g etc.

::

FIG. 3. Modified Gentleman-Kung array.

as corresponding to different pipelined sequences of n- 1 rotations, where in each
sequence the pivot index successively takes up the values i 1,..., n- 1. A series
of n such sequences is known to correspond to a double sweep (pipelined forward
backward) in a cyclic-by-rows ordering. In Fig. 2, one such sequence is indicated with
double frames (for i 1,..., 7), starting in Fig. 2(a). In a similar fashion, the next
sequence starts off from the top left corner in Fig. 2(e). As pointed out in 2, the QR
updatings should be inserted in between two such sequences.

3.2. A modified Gentleman-Kung QR updating array. A QR updating
is performed by applying a sequence of orthogonal transformations (Givens rotations)
[6]. Gentleman and Kung have shown how pipelined sequences of Givens rotations
can be implemented on a systolic array (see [5]). This array should now be matched
to the SVD array, such that both can be combined.

Figure 3 shows a modified QR updating array. While all operations remain un-
altered, the pipelining is somewhat different, so that the data vectors are now prop-
agated through the array in a slightly different manner. The data vectors are fed
into the array in a skewed fashion, as indicated, and are propagated downwards while
being changed by successive row transformations. On the main diagonal, elementary
orthogonal row transformations are generated. Rotation parameters are propagated
to the right, while the transformed data vector components are passed on downwards.
Note that each 2 2 block combines its first row with the available data vector com-
ponents and pushes the resulting data vector components one step downwards. The
first update starts off in Fig. 3(a) (large, filled boxes), the second in Fig. 3(e) (smaller,
filled boxes), etc. Furthermore, each update is seen to correspond to a sequence of
rotations where the pivot index takes up the values i 1,..., n. Both the processor’s
configuration and the pipelining turn out to be the same as for the SVD array.

3.3. Matrix-vector product. The matrix-vector product aT. Y can be com-
bined with the SVD steps, as depicted in Figs. 4(a)-(g). The data vectors aT are
fed into the array in a skewed fashion, as indicated, and are propagated to the right,
in between two rotation fronts corresponding to the SVD diagonalization (frames).
Each processor receives a-components from its left neighbor, and intermediate results
from its lower neighbor. The intermediate results are then updated and passed on to
the upper neighbor, while the a-component is passed on to the right. The resulting
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Figure a Figure b Figure c Figure d

Figure g Figure h

Figure Figure Figure k

FIG. 4. SVD updating array.

matrix-vector product becomes available at the top end of the square array.
It should be stressed that a consistent matrix-vector product a. V can only be

formed in between two SVD rotation fronts. That is a restriction, and it is worthwhile
analyzing its implications.

--First, the propagation of the SVD rotation fronts dictates the direction in
which a matrix-vector product can be formed. The resulting vector a, thus inevitably
becomes available at the top end of the square array, while it should be fed into the
triangular array at the bottom for the subsequent QR update. The a,-components
therefore have to be reflected at the top end and propagated downwards, towards
the triangular array (Figs. 4(e)-(p)). The downward propagation of an a,-vector
is then carried out in exactly the same manner as the propagation in the modified
Gentleman-Kung array (see also Fig. 3).

--Second, the V-matrix that is used for computing aT. V is in fact some older
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Figure m Figure n Figure o Figure p

Figure q Figure r Figure Figure

(-,),-... .. :!! ".’, ,-...

Figure u Figure v Figure w Figure x

FIG. 4 (continue.

version of V, which we term V().2 For a specific input vector a(k), this V() equals
V(k-l) up to a number of column transformations, such that

V(k-) V(). ((),

where (I)() denotes the accumulated column transformations. In order to obtain a(,k),
it is necessary to apply (I)() to the computed matrix-vector product

a(.k) a(k)T V(k-) 9(k) V().().
a(.)T

These additional transformations represent a computational overhead, which is the
penalty for pipelining the matrix-vector products with the SVD steps on the same

2 One can check that it is not possible to substitute a specific time index for the "."
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array. Notice, however, that at the same time, the throughput improves greatly.
Waiting until V(k-l) is formed completely before calculating the matrix-vector prod-
uct would induce O(n) time lags and likewise result in an O(n-) throughput. With
the additional computations, the throughput is O(n).

Let us now focus on the transformations in (I)() and the way these can be pro-
cessed. One of these transformations is, e.g., (I)k-5) (see 2 for notation), which
is computed on the main diagonal in Fig. 4(a) (double frame). While propagating

downwards, the a(,)T-vector crosses the upgoing rotation (I)k-5) in Fig. 4(e). At this

point, this transformation can straightforwardly be applied to the available a(,)T-
components. Similarly, one can verify that (I)ik-a), (I)ik-3), (I)ik-2), and (I)ik-) are
applied in Figs. 4(h), 4(k), 4(n), and 4(q), respectively. The transformations in the
other columns can be traced similarly. In conclusion, each frame in the square array
now corresponds to a column transformation that is applied to a 2 2 block of the
V-matrix and to the two available components of an a(,)-vector. These components
are propagated one step downwards next. A complete description for a 2 2 block in
the V-matrix is presented in Display 1. Notation is slightly modified for conciseness,
and o and o represent memory cells that are filled by the updated elements of the
a(,)-vector.

By the end of Fig. 4(p), the first a,-vector leaves the square array in a form
directly amenable to the (modified Gentleman-Kung) triangular array.

3.4. Interlaced QR updating and SVD diagonalization. Finally, the mod-
ified Gentleman-Kung array and the triangular SVD array are easily combined (Fig.
4(q)-(x)). In each frame, column and row transformations corresponding to the SVD
diagonalization are performed first (see also Fig. 2), while in a second step, only row
transformations are performed corresponding to the modified QR updating (affecting
the a,-components and the upper part of the 2 2 -blocks (see also Fig. 3). Again,
column transformations in the first step should be applied to the a,-components as
well. Boundary cells and internal cells are described in Displays 2 and 3.

Without disturbing the array operations, it is possible to output particular sin-
gular vectors (e.g., total least squares solutions [15]) at regular time intervals. This is
easily done by performing matrix-vector multiplications V. t, where t is a vector with
all its components equal to zero, except for one component equal to 1, and which is
generated on the main diagonal. The t-vector is propagated upwards to the square
array, where the matrix-vector product V. t is performed, which singles out the ap-
propriate right singular vector. While t is propagated upwards, intermediate results
are propagated to the right, such that the resulting vector becomes available at the
right-hand side of the array. These solution vectors can be generated at the same
rate as the input data vectors are fed in, and both processes can run simultaneously
without interference.

4. Including re-orthogonalizations. In [12], it was shown how additional re-
orthogonalizations stabilize the overall round-off error propagation in the updating
scheme. In the algorithmic description of 2, Tk) is an approximate re-orthogona-
lization and normalization of rows p and q in the V-matrix. The row indices p and
q are chosen as functions of k and i, in a cyclic manner. Furthermore, the re-ortho-
gonalization scheme was shown to converge quadratically. In view of efficient parallel
implementation, we first reorganize this re-orthogonalization scheme. The modified
scheme is then easily mapped onto the systolic array. The computational overhead
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ap)in

ap/ in

in Yin

in

Input Transformation Parameters
c s - c snin

Apply Transformation

ap)out

out

Propagate aq, aq_
Or q q--i

Propagate Transformation Parameters

if q even

Input an, ap+l and Intermediate Results

a +l,

Update Intermediate Result--- X "Jr- Vp,q ap d- Vp-b l,q ap+
+- y d- Vp,q+ ap d- Vp+l,q+ ap+l

Propagate ap, ap+l and intermediate results

(ap)out, (ap+l )out, Xout, Your -- ap, ap-t-1 x, y

end

DISPLAY 1. Internal cell V-matrix.

turns out to be negligible, as the square part of the array (V-matrix) so far remained
underloaded, compared to the triangular part (see below for figures).

First of all, as the re-orthogonalization scheme cyclicly adjusts the row vectors in
the V-matrix, it is straightforward to introduce additional row permutations in the
square part of the array. The 2 x 2 blocks in the square part then correspond to
column transformations (SVD scheme) and row permutations (re-orthogonalization
scheme). Orthogonal column transformations clearly do not affect the norms and
inner products of the rows, except for local rounding errors assumed smaller than the
accumulated errors. Hence, the column transformations are assumed not to interfere
with the re-orthogonalization and thus need not be considered anymore. As for the
row permutations, subsequent positions for the elements in the first column of V are
indicated in Fig. 5, for a (fairly) arbitrary initial row numbering (as an example, the
2 x 2 block in the upper-left corner in Fig. 5(a) interchanges elements 4 and 5, etc.).

Let us now focus on one single row (row 1) and see how it can (approximately)
be normalized and orthogonalized with respect to all other rows. Later, we will use
this in an overall procedure.

1. In a first step, the norm (squared) and inner products are computed as a
matrix-vector product
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Compute Rotation Angles , 19

s4,, ca, s -- cos , sin , cos/9, sin 19

Apply Transformation

$+1
0

ri-l,i--I

0
ri, ri,i+l

ril,i

Compute otation Angle

Apply

ai -s c a
Propagate ai+l

o +-.-- ai+

ai+l

Propagate Transformation Parameters
4, sCo,t o o co,t sCo,t so,Cou 8ou C4,, 8 C

0
Cout

DISPLAY 2. Boundary cell R-factor.

def
Xl Y Vl d=ef 2

where vT is the ith row in V. On the systolic array, where vl initially resides in the
bottom row, it suffices to propagate the vl-components upwards, and accumulate the
inner products from the left to the right (Figs. 5(a)-(h), where pq is shorthand for
pq). The resulting x-vector components run out at the right-hand side.

2. In a second step, this xl-vector is back-propagated to the left (Figs 5(e)-(t)).
Due to the permutations along the way, the x1-components reach the left-hand side
of the array at the right time and in the right place, such that
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Input Transformation Parameters
C
O

8
0 c 8C+--tin
Apply Transformation

Propagate Transformation Parameters
co%,so%, so-csc sCout 8out Cout

DISPLAY 3. Internal cell R-factor.

3. in a third step, a correction vector can be computed as a matrix-vector product

def 1) 12Yl 1/2(II- In v2T

TVn

where the term 1/2(11 1) corresponds to the first-order term in the Taylor series
expansion for the normalization of Vl. The yz-vector components are accumulated
from the bottom to the top, while xz is again being propagated to the right (Fig. 5(q)-
(w)). Finally,

4. in a fourth step, Vl, which meanwhile moved on to the top row of the array, is
adjusted with Yl:

v --vl--Yl.

These operations are performed in the top row of the array (Figs. 5(t)-(w)). One can
check that if

V "V 1 + O(e),
Vl Vp 0(), p--2,...,n

for some small e << 1, then
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Figure a Figure b Figure c Figure d

-. -...I-t

Figure f Figure g Figure h

6
$

Figure e

Figure Figure Figure k Figure

:

FIG. 5. Re-orthogonalizations.

* O(e:), p 2, n.V "Vp

The above procedure for Vl should now be repeated for rows 2, 3, etc., and
furthermore, everything should be pipelined. Obviously, one could start a similar
procedure for v2 in Fig. 5(e), for v3 in Fig. 5(i), etc. The pipelining of such a scheme
would be remarkably simple, but unfortunately there is something wrong with it. A
slight modification is needed to make things work properly.

As for the processing of v2, one easily checks that the computed inner product
21 equals v2.vl Vl.V2 12, while it should equal v2. v. A similar problem occurs
with 31 and 32, etc. In general, problems occur when computing inner products with
ascending rows, which still have to be adjusted in the top row of the array before the
relevant inner product can be computed. This problem is readily solved as follows.
Instead of computing inner products with all other rows, we only take descending
rows into account. This is easily done by assigning tags to the rows, where, e.g., a
0-tag indicates an ascending row, and a 1-tag indicates a descending row. Tags are
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Figure m Figure n Figure o Figure p

Figure u Figure v

FIG. 5 (continued).

reset at the top and the bottom of the array. Computing an xi vector is then done as
follows:

def
xi Y vi

TAGlVlT il
TAG2v2T d_ef 2

TAGvT i

For the 8 x 8 example of Fig. 5, one can check that the result, of this is that Vl is
orthogonalized onto v2, v3, v4, and v5 (16 17 s 0, because rows 6, 7, and
8 are ascending rows at that time, i.e., TAG6 TAG7 TAGs 0). Similarly, v2
is orthogonalized onto v3, v4, vs, and v6 (27 28 2 0), etc. The resulting
ordering is recast as follows (pp refers to the normalization of row p, whereas pq for
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TABLE 1

[I SVD updating

Internal cell 16x
V-matrix 10+

Internal cell 28 x
R-matrix 14+

Diagonal cell
R-matrix

25x
13+
9"

Pe-orthog. I[ Total]
8 24x
8+ 18+

28x
14+
25x
13+
9:

44:

p q refers to the orthogonalization of row p onto row q)

11 12 13 14 15
22 23 24 25 26

33 34 35 36 37
44 45 46 47 48

55 56 57 58 51
66 67 68 61

77 78 71
88 81

62
72 73
82 83 84

n combi-In such a sweep, each combination appears at least once (wherewith 4
nations appear twice, e.g., 15 (51), etc.). In the general case, the rows are cyclicly

n succeeding rows. One can easily prove thatnormalized and orthogonalized onto the
if [IVYT I[[F O(e) before a particular sweep, then [IVYT I[IF 0(2) after the
sweep. In other words, the quadratic convergence rate is maintained. On the other
hand, it is seen that one single sweep takes twice the computation time for a sweep
in a "normal" cyclic by rows or odd-even ordering. This is hardly an objection, as
the re-orthogonalization is only meant to keep V reasonably close to orthogonal. The
error analysis in [12] thus still applies (with slightly adjusted constant coefficients).

Complete processor descriptions are left out for the sake of brevity. Let it suffice
to give an operation count for different kinds of processors. See Table 1, from which
it follows that the re-orthogonalizations do not increase the load of the critical cells.

Finally, as the rows of V continuously interchange, each input vector a in Fig. 1
should be permuted accordingly, before multiplication (see 2, at. V (a
(P. V), where P is a permutation matrix). One can straightforwardly design a kind
of "preprocessor" for a, which outputs the right components of a at the right time.
For the sake of brevity, we will not go into details here.

5. Square root-free algorithms. The throughput in the parallel SVD updat-
ing array is essentially determined by the computation times for the processors on
the main diagonal to calculate the rotation angles both for the QR updatings and the
SVD steps. In general, these computations require, respectively, one and three square
roots, which appears to be the main computational bottleneck. Gentleman developed
a square root-free procedure for QR updating [1], [4], [7] where use is made of a (one-
sided) factorization of the R-matrix. The SVD schemes as such, however, do not lend
themselves to square root-free implementation. Still, in [3] a few alternative SVD
schemes have been investigated based on approximate formulas for the computation
of either tan or tan . When combined with a (generalized) Gentleman procedure
with a two-sided factorization of the R-factor, these schemes eventually yield square
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root-free SVD updating algorithms. Implementation on a systolic array hardly im-
poses any changes when compared to the conventional algorithm. Furthermore, as the
approximate formulas for the rotation angles are in fact (at least) first-order approxi-
mations, the (first-order) performance analysis in [12] still applies. In other words, the
same upper bounds for the tracking error are valid, even when approximate formulas
are used.

5.1. Square root-free SVD computations. The SVD procedure is seen to
reduce to solving elementary 22 SVDs on the main diagonal (2). For an approximate
SVD computation, the relevant transformation formula becomes

, i,i+l sin O cos O ri,i ri,i+l
0 r*+1,+1 cos 0 sin O 0 r+1,+1 cos sin

where ri,i+l is only being approximately annihilated ([ri*,i+l

_
[ri,i+l[). In particular,

the following approximate schemes from [3] turn out to be very useful for our purpose.
(For details, refer to [3].)

if [ri,i[ _> [ri+l,i_[_l[

ri+l,i+lri,i+l
2 2

__
r2ri,i ri+1,iq- 1 i,iq-1

approximation 1: tan 0 a
approximation 2: tan 0 a

tan r+l,i+l tan 0 + r,i+l

ri,i

if [ri,i[ <_ [ri+l,i+l[

ri,iri,i+la .2 r2.. _[_ r2i+l,i+ z,z i,i+

approximation 1: tan a
approximation 2: tan a

tan 0 ri,i tan ri,i+l

riJl,iW

In the sequel, we consider only [r,[ _> [r+1,+1 [, as the derived formulas can straight-
forwardly be adapted for the other case. These approximate schemes still require two
square roots for the computation of cos and cos .

The above approximate formulas can, however, be combined with a (generalized)
Gentleman procedure, where use is made of a two-sided factorization of the R-matrix

R Drop. R. Dco

and where only R, Drop, and Dco are stored (in the sequel, an overbar always refers
to a factorization).
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Let us first rewrite the first approximate formula for tan :

( 2 )ri+l,i+l ri,i+ltan 0 2 2 r2ri,i ri+l,i+l - i,i+l ri+l,i+l

P

As p contains only squared values, it can be computed from the factorization of R as
well:

Obviously, a similar formula for p can be derived from the second approximate formula
for tan0 (which has better convergence properties; see [3]). Applying Gentleman’s
procedure to the row transformation then gives

[-sin0 cos O ] [ /dcos sin 0
0 ].[r-,i fi,i+l

/row 0Vt*i+l ri+l,i+l

Vm+l cos8 0
0 x/d[w cos O

1

0 rS+1,i+1 0 V

0 VUi+l i+l,i i+l,i+l

V ti+l

1

tanO-/-+1V

0 ]V ti+l

With

tan0 p.
r,i+l v/dw

/trowri+1,i+1V i+1

this leads to row transformation formulas

f.o. o -P’e 1, i,i+ +1,+1di+I
-o -o i+lri+l,i ri+l,i+l 1 P"

ri,i ri,i+l
0 +1,+1

with scale factor updating (notice the implicit row permutation)

OW row
i+1 COs2 O,

drOW* dWiT COS
2 O,

COS
2 0 -2

1 + p2 ri,+ldi
2 drow

Note that due to the l’s in the first transformation formula, a 50 percent saving in
the number of multiplications is obtained in the off-diagonal processors.
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The column transformation should then annihilate r in order to preserve thei+l,i
triangular structure. With

tan
-o /Acol
?’i+l,i+l V Ui+l

i+l,i

we can again apply Gentleman’s procedure as follows:

cos sinV i+1

COS ) 0

0 I.row* /Coi;*
V +1 ri-Fl,i+l 0 Vu,i+

which then leads to column transformation formulas

i,i+l

ri+l,iT1 iTl,i

0_{_ 1,i+
fo "] o 1
i,i+l

--0 J ,icol

ri+1,i+1 1 ri+ ,!-}- i+
o Icol

with scale factor updating

dcol
i+1 cOs2

dcol* dc.ol
i+1 " COS2 (

COS
2 ) o #./co/

1 + -02 d?Olri+l,i

5.2. Square root-free SVD updating. The above approximate SVD schemes
straightforwardly combine with the square root-free QR updating procedure into a
square root-free SVD updating procedure. At a certain time step, the data matrix is
reduced to R, which is stored in factorized form

=Dro Dco.
Furthermore, the same column scaling is applied to the V-matrix

where V is stored instead of V. The reason for this is twofold. First, the column
rotations to be applied to the V-matrix are computed as modified Givens rotations.
Explicitly applying these transformations to an unfactorized V would then necessarily
require square roots. Second, a new row vector aT to be updated immediately gets
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TABLE 2

[[ SVD updating

Internal cell 10
V-matrix 10+

Internal cell 14x
R-matrix 14+

Diagonal cell
R-matrix

35x
17+
9-"

Re-orthog. ][ Total

12 22x
8+ 18+

14x
14+
35x
17+
9:

the correct column scaling from the matrix-vector product aT. , so that the QR
updating can then be carried out as if there were no column scaling at all. The
updating can indeed be described as follows:

A Dro,z" R’Dco VT
0 1 aT.(r. "Dcol)

o O
0 1 1 aT

etc.

The factor in the midst of this expression can then be reduced to a triangular factor
by QR updating, making use of modified Givens rotations. The further reduction of
the resulting triangular factor can be carried out next, as detailed in the previous
section.

From the above explanation, it follows that on a systolic array, a square root-free
updating algorithm imposes hardly any changes. The diagonal matrices Drow and
Dco are obviously stored in the processor elements on the main diagonal, and R and

are stored instead of R and V. The matrix-vector product fiT, aT " is computed
in the square part, and the/-factor is updated with 5,T next, much like the R-factor
was updated with a,T aT. V in the original algorithm. All other operations are
carried out much the same way, albeit that modified rotations are used throughout.
When re-orthogonalizations are included, it is necessary to propagate the scale factors
to the square array, along with the column transformation, such that the norms and
inner products can be computed consistently. The rest is straightforward.

Finally, an operation count for a square root-free implementation is exhibited in
Table 2. Note that the operation count for the diagonal processors depends heavily
on the specific implementation. We refer to the literature for various (more efficient)
implementations [1], [7]. The operation count for V-processors remains unchanged
(as compared to Table 1), while the computational load for the diagonal processors is
reduced to roughly the same level, apart from the divisions. The internal R-processors
are seen to be underloaded this time, due to the reduction in the number of multipli-
cations.

6. Conclusion. An approximate SVD updating procedure was mapped onto a
systolic array with O(n2) parallelism for O(n2) complexity. By combining modified
Givens rotations with approximate schemes for the computation of rotation angles in
the SVD steps, all square roots can be avoided. In this way, a main computational
bottleneck for the array implementation canbe overcome.
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AN ALGORITHM FOR THE BANDED SYMMETRIC GENERALIZED
MATRIX EIGENVALUE PROBLEM*

LINDA KAUFMAN"

Abstract. This paper derives an algorithm for finding the eigenvalues ofthe symmetric banded generalized
eigenvalue problem Ax XBx where A and B are n n symmetric positive definite matrices of bandwidth
2k + 1. Traditionally, for the nonbanded symmetric problem the Martin-Wilkinson algorithm has been used.
This algorithm has been adapted to banded problems by Crawford and the current author has shown how to
rearrange Crawford’s algorithm to take advantage of parallel machines. Wang and Zhao have recently proposed
another algorithm for the nonbanded symmetric generalized problem which seems to be able to compute small
eigenvalues more accurately than the Martin-Wilkinson algorithm on problems with graded eigenvalues and
ill-conditioned B. Their algorithm, like the Martin-Wilkinson algorithm, has a direct reduction phase requiring
O(n3) operations followed by an iterative phase requiring O(r/2) operations. In this paper the Wang-Zhao
algorithm is reworked for banded matrices so that it requires O(nk) space and O(nEk) operations, a reduction
of O(n/k) operations over the general algorithm. On a vector machine the new algorithm requires O(nk2)
vector operations with vector lengths as long as n/k elements.

Key words, eigenvalues, banded, parallel computation

AMS(MOS) subject classification. 65F15

1. Introduction. In this paper we consider the generalized eigenvalue problem

1.1 Ax kBx,

where A and B are both symmetric and positive definite n n matrices and both are
banded with 2k + nonzero diagonals.

There are two traditional approaches to solving 1.1 for general symmetric matrices
(not banded). The first approach, suggested by Martin and Wilkinson 8 ], involves first
finding the Cholesky factorization ofB given by

(1.2) B LL,
where Ln is lower triangular, forming C LALr, reducing it to a tridiagonal matrix
Cr, and then finding the eigenvalues of Cr. Forming Cr is a direct method involving no
iteration and requiting O( n operations, while finding its eigenvalues only is an iterative
algorithm requiting O(n2) operations.

The other approach, the QZ algorithm of Moler and Stewart 9 ], disregards the
symmetry ofthe problem, and after a direct phase requiting O( n 3) operations, enters an
iterative phase requiting O(n3) operations to simultaneously reduce A and B to triangular-
quasi-triangular form. Because the Martin-Wilkinson algorithm explicitly uses the inverse
of B to form C, their algorithm is much more sensitive to the conditioning of B than
the QZ algorithm.

For banded matrices, Crawford 3 has suggested a method for modifying the Martin
and Wilkinson algorithm so that the direct phase of the algorithm requires only O(kn2)
operations and O(nk) space. For tridiagonal matrices this means that the total operation
count is O(n2) to find eigenvalues (i.e., no eigenvectors), which is much less than the
O(n 3) operations required by the QZ algorithm, which cannot take much advantage of
the band structure in the matrices. Also, Kaufman has shown how to rearrange the planar
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rotations in Crawford’s algorithm so that only O(nk2) vector operations are needed for
a banded matrix. Therefore, for narrow bandwidth problems, the method used for de-
termining the eigenvalues of the matrix Cr using, say IMTQL ofEISPACK 12 ], com-
pletely dominates the operation count.

Recently, Wang and Zhao have proposed an algorithm for solving 1.1 for general
symmetric positive definite matrices which requires about the same computational re-
sources as the Martin-Wilkinson algorithm, i.e., much less than QZ. With graded problems
with ill-conditioned B matrices, Kaufman has found that the smallest eigenvalues deter-
mined by the Wang-Zhao algorithm were much more accurate than those determined
by the Martin-Wilkinson algorithm, but the largest eigenvalues determined by the Martin-
Wilkinson algorithm were usually more accurate than those obtained by the Wang-Zhao
algorithm. Thus the two algorithms complemented each other.

In this paper, we will consider applying the Wang-Zhao algorithm to banded matrices
where their algorithm will have the greatest impact because for such matrices, using QZ
can be rather expensive. In {} 2 the Wang-Zhao algorithm is reviewed.

In {} 3 the Wang-Zhao algorithm is modified for tridiagonal matrices. The new
algorithm requires O(n2) operations. The modification is similar to Crawford’s modifi-
cation of the Martin-Wilkinson algorithm. The steps are arranged to take advantage of
vector and parallel machines in a fashion similar to Kaufman’s modification [6 of the
Crawford algorithm.

In 4 the ideas of 3 are extended to a general banded matrix of bandwidth 2n +
1. An algorithm is derived which requires O(nEk) operations and O(nk) space. Thus we
arrive at an algorithm that is rather insensitive to the ill-conditioning of B and that for
narrow bandwidths requires about the same time to solve the standard eigenvalue problem
with a symmetric tridiagonal matrix.

2. The algorithm of Wang and Zhao. Wang and Zhao 11 have recently proposed
an algorithm for solving the eigenvalue problem

(2.1) Ax ,Bx,

where both A and B are symmetric and positive definite n n matrices. Their algorithm
is based on a theorem of Stewart [13] about the singular value decomposition (SVD) of
portions ofan orthogonal matrix. Wang and Zhao suggest that one consider the Cholesky
factorizations ofA and B given by

(2.2)

and

(2.3)

and the QR decomposition

A L,L 

B LL,

(2.4/ L]
QR,

where Q is a 2n n matrix with orthonormal columns and R is upper triangular and
nonsingular, because ofthe positive definiteness ofA and B. Now they suggest partitioning
the Q of (2.4) into

(2.5) Q=
Q2’



374 LINDA KAUFMAN

where Ql and Q: each have n rows. Now from (2.4) and (2.5),

(2.6) LA
and

(2.7) L Q:R.

If ), and x satisfy (2.1), then from (2.2) and (2.3)

LALX )LLrx,
which from (2.6) and (2.7) implies

(2.8) R rQr QiRx )R rQQ2Rx.

Now they apply Stewart’s theorem 13 ], which says that if one obtains the SVDs

(2.9)

(2.10) Q2 U2SV

where Ul, U2, Vl, and V2 are all orthogonal matrices and C and S are diagonal matrices
diag (ci) and diag (si), respectively, then because of (2.5) and the orthogonality of the
columns of Q in (2.4),

V V2

and

2(2.11) c "- Si 1.

If one lets V Vl, then from (2.8), (2.9), and (2.10),

(2.12) R’VC2 VTCRx XR rVS2VrRx.

Setting y VTRx and multiplying both sides of (2.12) by VT"R -7 yields

cZy kS2y,

which, because C and S are diagonal, implies

(2.13) )k
st2..

From (2.11 ),

(2.14) )i
2

From 2.2 ), 2.3 ), (2.4), (2.9), and (2.14), Wang and Zhao devised the following
algorithm.

ALGORITHM WZ.
Find the Cholesky factorizations

LALA A, LBL B.
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(2) Let

and find orthogonal transformations Pl,/o2 Pn such that

Pn’"PzPIF=
0

where R is upper triangular and Pi is designed to annihilate the elements below the
diagonal of the ith column ofF(i) Pi-l"" PzP1F.

(3) Determine

M Pn ""P2PI( Ino)"
Let Tr= (I,,lo)m.

(4) Reduce T to bidiagonal form Q.

(5) Apply the iterative part of the SVD algorithm to Q to obtain singular values,
cl, c2, cn. The eigenvalues of (2.1) are then given by (2.14)

In [4], Golub and Pereyra encounter a problem similar to that in step (2) of Al-
gorithm WZ and show that one can determine R and take advantage of the triangular
matrices that make up F. They suggest that Pi should be a Householder transformation
in planes and n + through n + i.

Steps 1-4 of the Wang-Zhao Algorithms are all O(n 3) algorithms which can be
easily vectorized. Step (5) is O(nz) but is usually implemented in a way which is not
vectorizable (see 12 ).

For singular values of (2.9) that are very close to 1, there could be a cancellation
of significant figures when forming the eigenvalues using (2.14). In this case Wang and
Zhao suggest using (2.10) and 2.13 rather than 2.14 ).

We note that Algorithm WZ requires that A be positive definite while the Martin-
Wilkinson algorithm does not have this restriction. In an early version of their paper
10 ], Wang and Zhao suggest that this restriction can be overcome by replacing A by
A + fiB and B by fiB in step ), and multiplying the fight-hand side of (2.14) by/3, but
they did not give a completely satisfactory algorithm for determining/3.

3. Modifying the Wang-Zhao algorithm to tridiagonal matrices. In this section we
show how to modify Algorithm WZ to take advantage of the structure ofA and B when
they are tridiagonal.

When Algorithm WZ is applied to tridiagonal matrices, the matrices LA and L
each have two diagonals and step of Algorithm WZ requires only O(n) operations.
We are not as fortunate with the other steps of Algorithm WZ.

3.1. Decreasing the fill-in in F. By studying more closely the tridiagonal problem,
one can derive an algorithm for that case so that step (2) of Algorithm WZ requires
O(n) operations and step (3) requires O(n2) operations.

If one applied Algorithm WZ to a tridiagonal problem using a single Householder
transformation to annihilate elements below the subdiagonal of F in step (2), then the
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last n rows ofF(3) would look like

0 0 +
0 x

x x
(3.1) x

where "+" indicates a new nonzero element.
If one constructed F(4) using a single Householder transformation, as one would in

Algorithm WZ for general matrices, then the last n rows ofF(4) would look like

(3.2)

0 0 0 +
0 0 +

0 x
X

with fill-in in both the (n + 1, 4) and (n + 2, 4) positions. In general, on a tridiagonal
matrix, using a single Householder to eliminate elements in the ith column requires
affecting planes and n + through n + so that O(n2) operations would be required
for step (2) and O( n operations would be required for step (3).

It is more economical, however, if Pi is not a single Householder transformation
but is composed oftransformations which only affect a few rows at a time. Let us denote
by Gi a transformation in planes and + 1. Gi could be a Givens rotation or a House-
holder transformation. Let us denote by Hi a transformation in planes i, n + i, and n +

designed to eliminate elements in planes n + and n + 1. The product P3
H3G,, / 1, where Gn / is designed to annihilate f (3) and H3 is designed to annihilaten+ 1,3

the remaining elements in the third column below the diagonal, would produce the
matrix F(4) whose last n rows would look like

(3.3)

0 0 0
0 0 +

0 x
X

X

X

with fill-in only in the (n + 2, 4) position. If one continued in this mode of using a
planar rotation Gn+i :z to annihilate f (o followed by Hi to annihilate the othern + 2,i

elements below the subdiagonal to form F(i+ 1), then step (2)would require O(n) op-
erations for a tridiagonal matrix and step (3) would require O(n2) operations.

3.2. Decreasing the fill-in in M. Thus far we have considered decreasing the fill-
in in F, but we have not approached the problem that because T is a filled-in triangular
matrix in step (3), step (4) requires O(n3) operations and O(n:z) space for banded
matrices. To handle that problem, we devise an algorithm similar to that given by Crawford
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3 to modify the Martin-Wilkinson algorithm for the symmetric generalized eigenvalue
problem in order to take advantage of band matrices. As in 3.1, we will only consider
tridiagonal matrices.

In step (3) of Algorithm WZ, let

(3.4) M(i)= Pi-l"’" P2PI( I,,).0
Because our original matrices are tridiagonal, M(4) H3G,, /M(3), where Gn + is a two-
planar transformation designed to annihilate f n+

(3)
1,3. Except for the "+" element, M(4)

will look like

x +

eff

x x
d x x
e f Xo

o

(3.5)

Future transformations will fill in the lower triangular part of the first n rows of the M
matrices. The source of the problem is the (n + 1, element in Gn +1M(3), marked
with a d in (3.5). Ifthat element were 0, the first three rows of 3.5 would be bidiagonal.

However, we can make the (n + 1, element of Gn / M(3) zero by using a column
transformation in the (1, 2) plane, which will add the "+" element pictured in (3.5).
This fill-in can be eliminated by a two-plane transformation in the 1, 2) plane. At this
point applying H3 will keep the first three rows ofM(4) bidiagonal. The e elements in
(3.5) will never appear.

In fact, for tridiagonal matrices before Hi is applied, one can do column transfor-
mations involving the first columns and row transformations in the first rows
to get rid of unwanted fill without affecting later computations. By chasing unwanted
elements up the matrix using two-planar rotations it is possible to keep the first n rows
of all the M matrices bidiagonal, so step (4) of Algorithm WZ will be unnecessary.

The matrix M(i) will have the structure

(3.6)

W 0
0 In_i+
U
0 x x 0
0 + x

0

where Wis an (i (i bidiagonal matrix and U is an (i 3) (i matrix.
Applying Gn+ i-2 to M(i) will not change its structure. However, applying Hi im-

mediately will cause an unwanted element in the (i, 2) position. To prevent this,
before one applies Hi, a column transformation Gi-2 is used to annihilate the "+"
element in (3.6). Applying the column transformation to the current M matrix results
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in unwanted fill in the (i 2, position which can be chased up the diagonal. The
chasing operation is depicted in (3.7) for a small example. Only one numbered entry is
nonzero at any one time and the number gives the order in which they appear and are
eliminated:

(3.7)

x 7
x x 5
6 x x 3

4 x x 1
x2 x

Although the column transformations used in the chase in (3.7) will change the U
matrix in (3.6), the rows ofthe Umatrix never affect the rest ofthe algorithm to determine
T. Thus there is no reason to store the U portion of the M matrices or to apply the
transformations to it. Thus all the transformations on the M matrices are applied to
vectors of length 3 at most. Since eliminating the ith column involves about 2i trans-
formations for the chase, the total algorithm to compute Tinvolves O(n2) transformations
and requires O(n) operations. We will call this chasing scheme algorithm TRI.

3.3. A parallel algorithm. Each of the n chases depicted in (3.7) is a serial
operation. However, the G and H operations designed to annihilate the elements of F
and the column transformation designed to annihilate the "+" in (3.6) is not dependent
on the completion of the previous chases. All that is required is that the previous chases
have progressed far enough so that they do not interfere with the beginning of the next
chase. Thus one can have several simultaneous chases operating simultaneously, i.e., in
parallel, as in Kaufman’s modification [6] of Crawford’s scheme, as long as they do not
interfere with each other. In (3.8) assume that the x’s and a’s are nonzero:

(3.8)

x d
x x b
c x x d

a x x b
c x x d

a x x b
c x x d

a x x
c x x

Doing row Givens transformations to eliminate all the a’s will produce the b’s. Since
these row transformations access distinctly different rows, they may occur simultaneously.
Similarly, the b’s can be turned into c’s with similar column transformations. A new c
can now be introduced at the bottom because of manipulations of the F matrix. Now
simultaneous row transformations can change the c’s into d’s. The top d can be chased
out the top and the rest turned into a’s, beginning the process again.

For general n one will eventually be moving to (n )/2 elements up the super-
diagonal of the M matrix. The basic step involves simultaneously determining many
Givens transformations and then simultaneously applying these transformations to a few
vectors. The operation is a lockstep one that is appropriate to a single instruction, multiple
data (SIMD) machine. Since the data can be arranged so that operands are within a
fixed stride ofeach other, one can take advantage ofthe architecture ofa vector machine.
Rather than characterizing steps (1)-(3) of Algorithm WZ for tridiagonal matrices as
requiting O(r/2) operations, one can describe the methods as requiting O(n) vector op-
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erations as long as one can convince the compiler on one’s parallel machine or vector
machine to compute Givens transformation in parallel.

In Algorithm TRIP, which summarizes the whole parallel algorithm including the
chase, the superscripts are removed from F and M for simplicity.

ALGORITHM TRIP.
Eliminatef + , using a row transformation in planes and n + 1.
Determine H2 to eliminatef + ,2 andf + 2,2 introducingf + ,3 as in 3.1 ).
For 3, n

(a) Eliminatef + i- 2,i by a row transformation Gn + i- 2 as in 3.3 ).
(b) Eliminate mn+i-l,i-2 by a column transformation Gi-2 introducing
rni-2,i- as in (3.7).
(c) For j step -2 until

Eliminate mj_ ,j using a row transformation G_ introducing rnj.,j_ 2 as
in (3.8).

(d) Forj step -2 until 3
Eliminate mj,j_ 2 using a column transformation Gj_ 2 introducing mj_ 2,j-1

as in (3.8).
(e) Eliminatef+ i- 1,i andf + i,i using Hi as in 3.3 ).

Note that in Algorithm TRIP one does not actually have to save M and F as full
matrices. Four vectors of length n are sufficient to store F. Since there is no need to store
the U portion of the M matrices in (3.6) and the W matrix is tridiagonal, three vectors
of length n suffice to store M.

The first two columns of Table 3.1 summarize the operation count for general
matrices and Algorithm TRI. To a certain extent, because the operation count is bounded
by the SVD algorithm in step (5), there seems little reason to work further on the first
three steps for tridiagonal matrices.

In Table 3.2, we compare computation times for n 100 and n 200 on the SGI
4D/240, a fast scalar machine, and on the Cray XMP for various alternatives for solving
Ax kBx. For the SGI machine the times are accurate to within 20 percent and for the
CRAY, to within about 10 percent. We see that reducing the fill-in in T was absolutely
essential to remain competitive on the SGI. The reduction ofa matrix to bidiagonal form
is a costly operation that, thankfully, Algorithm TRI avoids. Since the iterative part of
the SVD algorithm is slightly more expensive than IMTQL1 of 12 ], Crawford’s approach
is slightly cheaper. On a vector machine like the Cray, the case for taking advantage of
band structure is not as strong from the point of view of execution time, because the
general algorithms can be easily vectorized. For Table 3.2 compiler directives were used
to insure vectorization on the Cray XMP for Algorithm TRIP.

TABLE 3.1
Operation count for Algorithms WZ and TRI.

Algorithm TRI
Algorithm WZ for banded matrices

Step for general matrices Algorithm TRI with bandwidth 2k +

O(n3) O(n) O(nk)
2 O(n3) O(n) O(nk2)
3 O(n) O(n2) O(n2k)
4 O(n3) 0 O(n2k)
5 O(n2) O(n2) O(n2)
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TABLE 3.2
Execution times on a tridiagonal matrix.

SGI SGI Cray XMP Cray XMP
Algorithm n 100 n 200 n 100 n 200

RGG [121 22 84 .39 2.1

RSG 12] 13 57 .12 .55

Crawford to tridiagonal .12 .50 .019 .078
IMTQL1 [12] .17 .62 .035 .133

Total .29 1.12 .054 .211

Alg. TRI (SGI), TRIP (Cray) .15 .63 .0057 .0176
SVD, step 5 .23 .83 .069 .268

Total .37 1.46 .075 .286

For n 200, on the Cray XMP Algorithm TRIP was about 7 times faster than
Algorithm TRI.

3.4. Numerical experiments. Our numerical experiments were not conclusive. Sev-
eral examples were run on the SGI machine using Crawford’s scheme, RSG from Eispack,
the Martin-Wilkinson code, and RGG, the QZ code, in double precision. The results
from RGG in double precision should be considered accurate. As theory suggests, the
errors in the Martin-Wilkinson-like algorithms tended to be small relative to the largest
eigenvalue of the problem. Thus, when the eigenvalues were distributed in a range that
was about the same or larger than the inverse of the machine precision, the smaller
eigenvalues computed by the Martin-Wilkinson-like scheme was often very wrong, but
the larger eigenvalues were fine. With our code, eigenvalues that were near the inverse
of machine precision were often far off, but the small eigenvalues were accurate. Thus
any comparison has to be dependent on the user’s goals and priorities.

Table 3.3 considers our first example in which the B matrix was constructed by
choosing a diagonal matrix D as Dii 10 (i-l), applying a similarity Householder matrix
to get a dense matrix and then reducing that matrix to tridiagonal form. This way we
could insure that we had an ill-conditioned tridiagonal matrix. For the matrix A, the
diagonal elements were set to and the off-diagonal elements to .01. In Table 3.3 and

TABLE 3.3
Numerical resultsfor example 1.

Relative error in Angles

Eigenvalues TRI Crawford RSG TRI Crawford RSG

1.0098E-09 8.97E-05 5.69E-06 8.42E-01 9.06E-14 5.75E-15 7.81E-10
1.0014E-08 3.90E-04 2.38E-06 1.05E-01 3.90E-12 2.39E-14 1.05E-09
9.9676E-08 1.64E-04 3.93E-06 7.60E-04 1.64E- 11 3.92E- 13 7.57E- 11
9.9600E-07 1.24E-04 2.87E-06 3.41E-05 1.24E- 10 2.86E- 12 3.40E- 11
9.9600E-06 9.95E-05 2.34E-05 1.00E-05 9.91E-10 2.33E- 10 9.98E- 11
9.9668E-05 1.75E-04 3.16E-04 8.55E-05 1.74E-08 3.14E-08 8.53E-09
9.9693E-04 9.57E-04 3.14E-03 8.71E-04 9.54E-07 3.13E-06 8.68E-07
8.5414E-03 9.91E-03 3.55E-02 9.80E-03 8.43E-05 3.02E-04 8.36E-05
6.0187E-02 8.66E-02 2.15E-01 8.65E-02 5.04E-03 1.26E-02 5.17E-03
1.8479E-01 1.12E-02 2.31E-02 1.12E-02 1.87E-03 3.87E-03 1.98E-03
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TABLE 3.4
Numerical resultsfor example 2 with n 7.

Relative errors in Angles

Eigenvalues TRI Crawford RSG TRI Crawford RSG

8.6448E-05 2.26E-04 4.3 IE-02 2.23E-02 1.96E-08 3.73E-06 1.93E-06
5.0791E-03 4.09E-06 2.38E-04 2.29E-03 2.07E-08 1.21E-06 1.16E-05
1.0175E-01 7.49E-08 2.42E-06 2.59E-04 7.22E-09 2.33E-07 2.50E-05
1.0000E+00 1.32E-06 1.68E-06 2.18E-04 6.6 IE-07 8.39E-07 1.09E-04
9.8284E+00 5.73E-06 6.70E-07 2.03E-05 1.73E-06 2.03E-07 6.13E-06
1.9688E+02 1.43E-07 7.63E-07 1.38E-06 1.02E-08 5.43E-08 9.83E-08
1.1561E+04 4.76E-03 4.68E-05 2.06E-04 4.44E-05 4.35E-07 1.91E-06

for the other numerical experiments in this paper we give not only the relative errors in
the eigenvalues but also the associated angles as described in Stewart and Sun [14 ].

Perhaps the most surprising fact about Table 3.3 is that the results for RSG and the
Crawford algorithm differed more from each other than they differed from TRI. Since
the Crawford algorithm is supposedly a banded version of RSG, this was not expected.
Closer examination of the code suggested that the difference was caused by the fact that
in RSG the Cholesky factorization was begun at the top, and that in the Crawford al-
gorithm the Cholesky factorization started at the bottom of the B matrix, as well as the
fact that the Crawford algorithm was a chasing scheme that used many Given’s rotations,
as opposed to a few Householder transformations. The results for this table suggest that
for the smaller eigenvalues, TRI somewhat matched the Crawford scheme, while the
Crawford scheme was better than RSG; but for the larger eigenvalues, TRI matched
RSG, while RSG was superior to Crawford. In other words, TRI did very well on both
ends of the spectrum, while the other two algorithms favored one end or the other.

When there was a large eigenvalue near the inverse of the machine precision the
results were not as favorable as our second example indicates. In Tables 3.4 and 3.5 we
began by creating a matrix C such that ci,j sin (( j) *r/ 2) / j) for >= j and then
setting cj, ci,j for > j. The matrix C was then reduced to tridiagonal form and this
became our matrix B. The matrix A was then set to rI B. We realize that there is an
easier way to solve this problem than setting up a generalized eigenvalue problem, but
we wished to test our algorithm on an example that had large and small eigenvalues.

Tables 3.4 and 3.5 indicate our results when n 7 and n 8, respectively. Notice
that for the smaller eigenvalues, Algorithm TRI does surprisingly well, but for the larger

TABLE 3.5
Numerical resultsfor example 2 with n 8.

Relative errors in Angles

Eigenvalues TRI Crawford RSG TRI Crawford RSG

1.6303E-05 1.85E-04 5.70E+00 2.61E-01 3.02E-09 9.29E-05 4.25E-06
1.1395E-03 1.15E-05 6.90E-03 5.82E-02 1.32E-08 7.86E-06 6.63E-05
2.9387E-02 1.02E-06 2.82E-04 7.05E-03 2.95E-08 8.16E-06 2.04E-04
3.4739E-01 1.62E-07 7.81E-07 5.45E-04 4.59E-08 2.21E-07 1.54E-04
2.8786E+00 7.95E-08 5.76E-07 1.14E-04 3.81E-08 2.76E-07 5.48E-05
3.4029E+01 2.80E-05 3.42E-06 1.70E-05 4.72E-06 5.78E-07 2.87E-06
8.7764E+02 2.73E-05 8.20E-06 1.38E-05 9.20E-07 2.77E-07 4.64E-07
6.1911E+04 3.22E-02 1.24E-03 1.03E-03 1.32E-04 4.98E-06 4.14E-06
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eigenvalues, Algorithm TRI loses. This should be expected considering (2.14). For large
singular values, squaring them to obtain the eigenvalue values will amplify any error.
Moreover, there will be a further cancellation error for a singular value close to 1. If one
knew that this was the situation, one could also compute Q2 and its SVD as in (2.10)
and then use (2.13). Doing this computation would double the work.

When the algorithm of 3.1, which does not involve chasing, was applied to the
second example with n 8, the five smallest eigenvalues were left unchanged, but the
largest three were modified. The largest eigenvalue computed had an error of 1.82
10 -2, which shows how sensitive to roundoff error Algorithm WZ is for singular values
near 1.

4. The general banded case. In this section we show how to modify Algorithm WZ
to take advantage of the structures of A and B when they are banded with bandwidth
2k+ 1.

For general banded matrices of bandwidth 2k + 1, it is sufficient to treat LA and LB
as block bidiagonal matrices having at most ([ n/kJ + row blocks, each having a block
size of k. For example, the matrix Lrwith nine rows and k 3 might be considered as

X X X

X X

X

X

X X

X X X

X X X

X X

X

X

X X

X X

X X X

X X

X

One then applies Algorithm TRI in a block manner. This means that a transformation
G will not be a planar transformation designed to zero one element, but be a transfor-
mation involving 2k rows designed to annihilate a k k block. Similarly, an H trans-
formation will work on 3k rows and be designed to annihilate a block that is 2k k.
These transformations may be generalized Givens transformations (see Bartels and
Kaufman [1 ), generalized Householder transformations (see Kaufman [7 or Bischof
and Van Loan 2]), or just a sequence of single transformations lumped together. It is
inconsequential that the resulting matrix R of(2.4) may not be upper triangular. However,
it is consequential that the resulting T matrix from step (3) will not be bidiagonal, as in
the tridiagonal case, but be block bidiagonal. By alternating block column transformations
designed to eliminate the strictly upper triangular portions of the diagonal blocks of T
with block row transformations designed to eliminate the strictly lower triangular portions
ofthe off-diagonal blocks, T can be reduced to a lower triangular banded matrix. At this
point Tsao’s algorithm 15 can be used to reduce Tr to bidiagonal form.

4.1. Preserving band structure. However, the block bidiagonal approach hides the
fact that one can preserve band structure. Specifically, the diagonal blocks ofthe top part
of the M matrices can be kept lower triangular and the subdiagonal blocks can be kept
upper triangular. Let us assume we have just completed a chasing operation leaving us
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with a lower triangular matrix with four nonzero diagonals. Before the next chase, the
structure is ruined slightly as follows:

(4.1)

x x
x x x
x x x x

x x x x
x x x x
xxxxxx + b b

x x x x x + + b
x x x x + + +

x x x x + + ]

/x x x X x
x x x x x x

The "b" elements can be eliminated using column transformations within the last filled-
in block. These transformations should be applied to the bottom part ofM also. Elimi-
nating the "+" elements begins a chasing procedure which is depicted in (4.2). All the
elements with the same number are eliminated in one group and the groups are processed
in numerical order. Column transformations are used to eliminate "odd"-numbered
elements and row transformations are used to eliminate even-numbered elements.

(4.2)

x 6 6 4
x x 6 4 4
x x x 4 4 4
x x x x 4 4 2
5 x x x x 4 2
5 5 x x x x 2
3 3 3 x x x x

3 3 3 x x x
3 3 3 x x

x

2
2 2
2 2
x 2
x x
x x
x x

x

x

x x x

Thus the band structure can be preserved during the elimination process.
Since we have (n/k) 2 block transformations for the chasing algorithm and each

block transformation could involve O(k3) operations, the operation count for step (3)
is now O(n:Zk). To store the top part of the M matrix, (k + n elements are needed.

Since the final result of applying the algorithm just described is a triangular matrix
with k + diagonals, step (4) of Algorithm WZ cannot be ignored as it was in the
tridiagonal case. Tsao [15 has given an algorithm to reduce this type of matrix to bi-
diagonal form using O(n2k) operations.

The chasing algorithm described in (4.2) is more of a block chase, which is good
for problems of large bandwidth. However, for problems with very narrow bandwidth it
may be advantageous to abandon a block idea. In (4.1) one could eliminate the elements
below the k + st subdiagonal and then use Givens transformations to chase the elements
above the diagonal one at a time up the diagonal, as in Tsao’s algorithm. The advantage
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of using Givens transformations is that one would always be concerned with two con-
secutive rows and columns, which would simplify the indexing.

The operation count for the banded case is summarized in the third column of
Table 3.1. Our experience on the SGI machine with an implementation of the ideas in
this section is given in Table 4.1. The data corroborates the theory that for all steps of
the algorithm, doubling n increases the time by a factor of 4. There is so much overhead
in the implementation of steps (1)-(3), that for small values of k, the time does not
increase. Eventually however, it is evident that the times increase linearly with k.

4.2. A parallel algorithm. In the algorithm described in 4.1 there are two instances
of a serial chasing algorithm. The chase described in (4.2) can be changed into a parallel
chasing algorithm, similar to that for the tridiagonal case, using at most n/(2k) simul-
taneous block transformations. Thus the speedup would depend on how well a particular
compiler could handle nested parallel operations. The second instance is the chasing
algorithm in Tsao’s algorithm for reducing a general triangular banded matrix to bidi-
agonal form.

4.2.1. A parallel version of Tsao’s algorithm for two superdiagonals. We now show
how to implement Tsao’s algorithm 15 for this reduction, requiting O(nEk) operations,
using O(nk2) vector operations. We begin with the case when there are two superdiagonals,
an unfortunate special case.

Tsao’s algorithm may be pictured as follows:

(4.3)

x x x h
ixxx8
9xxxf

g x x x 6
7 x x x

X x
5 x

c

d
x 4
x x b
x X

3 x x
a x

TABLE 4.1
Execution times on the SGI for the banded algorithm.

RSG Steps (1)-(3) Step (4) Step (5) Total (1)-(5)

100

200

12 .65 0.
2 12 .65 .13
4 12 .88 .27
8 12 1.6 .48
16 12 3.4 .80

57 2.7 0.0
2 57 2.7 .55
4 57 3.5 1.1
8 57 5.5 2.0
16 57 11.1 3.5

.25

.25

.25

.25

.25

.83

.83

.83

.83

.83

.9
1.1
1.4
2.3
4.5
3.5
4.1
5.4
8.3

15.4
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In (4.3) the original matrix consists of the x’s, a,/3, and 3’. The elimination of a starts
a chase up the diagonal in which unwanted elements are chased from position to
position 2 to position 3, etc. After the initial chase,/3 is eliminated filling up position a,
which when eliminated produces an element in position b, etc., through the alphabet.
After the second case, Tsao’s algorithm returns to eliminate 3’, which puts a nonzero in
position 3 again and that element is chased through the numbered positions up. Notice
that a chase hits every second element on the subdiagonal.

As in step (3) one does not have to complete a whole chase sequence before beginning
the next in Tsao’s algorithm. One can stop the first chase at position 5, eliminate
producing something at position a, and then simultaneously eliminate elements at po-
sitions 5 and a. Then one can do successively simultaneous eliminations at positions 6
and b, 7 and c, and 8 and d. If at this point one went back to eliminate "r producing a
new element at position 3, one could simultaneously eliminate elements at positions 9,
e, and 3 of (4.3). It should be apparent that eventually from the top of the matrix one
would be doing simultaneous eliminations with every third subdiagonal element. However,
because by the time the first elimination has reached the top subdiagonal, some of the
bottom subdiagonals have been completely eliminated, the maximum number of si-
multaneous eliminations is less than n 3 and simple algebra shows that it is n/4. The
following algorithm summarizes this paragraph.

ALGORITHM BIDIAGP FOR THREE DIAGONAL BANDED MATRICES.
Set l-n-2
For i=n-2 step -1 until

Eliminate ti,i + 2 with a row transformation Gi introducing
Forj= step 3 until

Eliminate t / 1,j by a column transformation Gj introducing tj._
For j= step -3 until max(l,3)

Eliminate b-%+ by a row transformation G_ 2 introducing tj_ 1,-
For j= step 3 until max(1,3)

Eliminate t_ 1,-2 by a column transformation G_ 2 introducing tj._ 4,-
Forj= step 3 until max 1,5

Eliminate t_ 4,- by a row transformation G_ 4 introducing tj_ 3,- 4.

l-max ,l-4)

Table 4.2 compares Algorithm BidiagP with Tsao’s algorithm on the Cray XMP
using the CFT77 compiler with vectorization assured by using compiler directives. The
Cray XMP was run in single processor mode. Certainly, doing simultaneous Givens
transformations affected the computation time. As one would expect with Tsao’s algo-
rithm, the running time quadrupled when n was doubled. In the parallel algorithm,
doubling n did not produce the same result. While BidiagP was aimed at rectangular
matrices with three diagonals, Tsao’s algorithm permits more diagonals, and thus one
can expect some overhead because of the generality of the code.

TABLE 4.2
Comparison ofBidiagP and Tsao’s algorithm

on the Cray XMP.

Algorithm n 100 n 200

Tsao .066 .265
BidiagP .0043 .011



386 LINDA KAUFMAN

4.2.2. More than two superdiagonals. Algorithm BidiagP is made more complicated
by the fact that in the chase in the Tsao algorithm every other element subdiagonal is
hit. When there are k superdiagonals (k > 2) and one chooses to eliminate the uppermost
diagonal at once, then every kth subdiagonal element is hit. This is illustrated in (4.4),
with k 3:

(4.4)

x x x x 6
7 x x x x D

E x x x x d
e x x x x 4

5 x x x x B
Cx xx x b

c x x x 6 2
3 x x x
Axxx

a x x x a

x x x
x

The x’s, a,/3, 3", and 6 are elements ofthe original Tmatrix. Eliminating a produces
a chase which successively creates nonzeros in positions 1, 2, 3, 4, etc. Eliminating
/3 then produces a chase which successively creates and annihilates positions in positions
a, b, c and eliminating 3" produces a chase which successively creates and annihilates
position in positions A, B, C, Finally, eliminating 6 puts something back in position
3 and the numbered positions are hit again.

As in the two-superdiagonal case, there is no need to complete the chase before
beginning the next one. After a is eliminated, we need only chase the unknown to position
3. We can then eliminate/3 putting a nonzero in position a and then simultaneously
annihilate the elements in positions 3 and a with column transformations putting elements
in 4 and b, which can be annihilated with row transformations. At this point one can
return to annihilate 3’ putting an unwanted element in position A. Now those in positions
5, c, and A can be annihilated by a column row combination and moved up to 7, e, and
C in (4.4). Finally, eliminating 6 creates a new nonzero at 3 and the nonzero at 7, e, C,
and 3 can be eliminated simultaneously. Thus for k 3, we enter the situation in which
we are simultaneously removing every other element on the subdiagonal, a much more
favorable situation then for two superdiagonals. In fact, the maximum vector length will
be n/3 for k 3, rather than n/4 for k 2.

The above chase can be summarized as follows.

ALGORITHM REDUCEKP TO ELIMINATE ONE SUPERDIAGONAL.
Set l-- n-k
For i=n-k step-1 until

Eliminate ti,; / k with row transformation Gi generating ti + l,i.

For j step -(k- until
Eliminate tj + 1,j. with a column transformation G introducing tj_ k,/.

Forj step k- until max l,k+
Eliminate t_ k,j/ with a row transformation Gj_ k introducing t k/ ,- k.

Set l-- max ,l-k)
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Algorithm ReducekP only peels off one superdiagonal. If the original matrix had k
superdiagonals, one would call the ReducekP algorithm k- 2 times, each time reducing
k, and then call BidiagP to finally get down to bidiagonal form. The reason one would
work by diagonals, rather than by columns, is that vector lengths increase for smaller k
until k 3.

Table 4.3 compares Tsao’s algorithm with ReducekP in single processor mode on
the Cray XMP using the CFT77 compiler and compiler directives to assure vectorization.
In Tsao’s algorithm the inner loop is over the number of superdiagonals k, and thus for
a given n, as k becomes somewhat large, the computation time does not appreciably
increase. For ReducekP the inner loop is over the number of simultaneous Givens trans-
formations which is inversely proportional to k. Thus as k increases, for a given n the
lengths of the inner loops decrease and the total computation time would increase far
faster than with Tsao’s algorithm, since they are actually doing the same amount of
arithmetic. Obviously there is a crossover point between the two algorithms. Also, com-
paring Tsao’s algorithm with the information for the SVD on the Cray XMP given in
Table 3.2, it seems that from a time point of view, one would never wish to use Tsao’s
algorithm without parallelizing it, as in ReducekP.

In this section we have shown how to decrease the first four steps in the banded
algorithms of 3 from O(n2k) operations to approximately (nk2) vector operations
where vector lengths are essentially O(n/k). Thus for narrow banded systems the work
involved on a vector machine for the first four steps of Algorithm WZ is essentially
negligible. The work is dominated by one’s implementation ofthe SVD algorithm which
is independent of k.

4.3. Numerical experiments. The banded algorithm and RSG from Eispack [12]
were applied to the following problem with an ill-conditioned B matrix: Set the matrix
B to

(4.5)

and the matrix A to

(4.6)

0 if li-jl > k,

bi,j n 5 ti-1) ifi j,

0.1 otherwise;

0 if li-j[ > k,

aid= 1.0 ifi=j,

0.07 otherwise.

TABLE 4.3
Time comparison between Tsao’s algorithm and ReducekP

on the Cray XMP.

n k Tsao’s algorithm ReducekP

100 3 0.088 0.009
100 6 0.111 0.026
100 12 0.123 0.064
100 24 0.130 0.155
200 3 0.357 0.025
200 6 0.446 0.064
200 12 0.496 0.151
200 24 0.528 0.374
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TABLE 4.4
Numerical resultsfor problem defined by (4.5) and (4.6)for k 2.

Relative errors in Eigenangles

Eigenvalue Banded alg. RSG Banded alg. RSG

1.6887E-09 3.45E-04 1.10E-02 5.82E- 13 1.87E- 11
8.4525E-09 8.01E-04 3.24E-02 6.77E- 12 2.74E- 10
4.2272E-08 3.46E-04 1.40E-03 1.46E- 11 5.92E- 11
2.1136E-07 2.33E-04 2.56E-03 4.93E- 11 5.40E- 10
1.0568E-06 1.15E-04 1.82E-05 1.21E- 10 1.92E- 11
5.2839E-06 3.06E-05 9.73E-06 1.62E- 10 5.14E- 11
2.6420E-05 2.39E-06 8.70E-06 6.31 E- 11 2.30E- 10
1.3210E-04 4.96E-06 6.28E-05 6.55E- 10 8.29E-09
6.6052E-04 1.66E-06 6.33E-07 1.09E-09 4.18E- 10
3.3032E-03 1.55E-06 1.27E-06 5.10E-09 4.17E-09
1.6589E-02 7.7 IE-07 2.10E-07 1.27E-08 3.45E-09
8.3426E-02 2.03E-08 4.26E-07 1.62E-09 3.40E-08

For k 2 and n 12 the results on the SGI machine are given in Table 4.4 and for
k 4 and n 12 the results on the SGI machine are given in Table 4.5. The tables
indicate that the algorithm in this section works and they corroborate our previous results
for tridiagonal matrices: Algorithm WZ does better on small eigenvalues than the Martin-
Wilkinson algorithm, but not as well on large eigenvalues. The true eigenvalues in the
tables were computed using the QZ algorithm in double precision.

5. Conclusions. The Wang-Zhao algorithm requires O(/7 3) operations and O(n2)
space to solve the symmetric generalized eigenvalue problem on n n matrices. We have
shown how to modify it so that for/7 n banded matrices of bandwidth 2k + l, only
O(nEk) operations and O(nk) space are needed. The new algorithm is a chasing algorithm,
which as initially conceived, would involve vectors of length k and would not do well
on a vector machine. We have shown that one can do O(n/k) simultaneous chases so
that vector lengths can be as large as O(/7/k). We have implemented the algorithms to
indicate their validity and we have compared them on some ill-conditioned examples

TABLE 4.5
Numerical results for problem defined by (4.5) and (4.6) with k 4.

Eigenvalues

Relative errors in Eigenangles

Banded alg. RSG Banded alg. RSG

1.6765E-09 2.02E-03 2.96E-02 3.39E- 12 4.96E- 11
8.3896E-09 1.12E-03 5.76E-02 9.36E- 12 4.83E- 10
4.1955E-08 3.06E-04 1.22E-04 1.28E- 11 5.13E- 12
2.0978E-07 8.46E-05 1.45E-02 1.78E- 11 3.04E-09
1.0489E-06 8.17E-05 1.30E-04 8.57E- 11 1.36E- 10
5.2448E-06 2.26E-05 4.18E-04 1.19E- 10 2.19E-09
2.6228E-05 4.18E-06 4.42E-06 1.10E- 10 1.16E- 10
1.3118E-04 6.53E-06 5.45E-06 8.57E- 10 7.15E- 10
6.5801E-04 4.28E-06 2.07E-06 2.81E-09 1.36E-09
3.3026E-03 4.20E-07 2.58E-09 1.39E-09 8.51E- 12
1.6589E-02 2.01E-06 9.09E-09 3.31E-08 1.50E- 10
8.3429E-02 3.17E-07 4.91E-08 2.53E-08 3.92E-09
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with the Martin-Wilkinson algorithm. The Martin-Wilkinson algorithm usually does
worse on small eigenvalues and better on large eigenvalues.
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Abstract. For three p-dimensional jointly distributed random vectors x, y, and z with respective normal
marginal distributions g’(0, Z,), 1, 2, 3, certain covariance matrices are determined that minimize the
sum ofthe L.-distances ofthe three vectors. This problem posed in a statistical context is equivalent to maximizing
submatrix traces of a positive definite matrix.

Key words multivariate distributions, covariance matrices, distance of random vectors

AMS(MOS) subject classifications. 15A45, 60E 15

1. Introduction. The problem ofmaximizing submatrix traces of a positive definite
matrix has its origins in a statistical context. Suppose that X and Y are jointly distributed
p-dimensional random vectors with normally distributed marginals with zero mean vec-
tors and known covariance matrices Xl > 0, X22 > 0, respectively. (A >= B and A > B
mean A B is nonnegative definite, positive definite.) Denote the dispersion matrix of
(X, Y) by

The L2-distance between X and Y is

1.1 E tr (X Y)’(X Y) tr (ZI + N22) 2 tr .
In a previous paper, Olkin and Pukelsheim (1982) resolved the problem of minimizing
1.1 subject to : >- 0, that is,

(1.2) Max tr .
By translating 1.2) to a dual problem, the solution

1/2 1/2 1/2 _1/2 1/2(1.3) G0 ZZ22 (Z22 ZlIX22 22

was obtained. This result was obtained independently by Dowson and Landau (1982)
using a different argument. (See also Apitzsch, Fritzsche, and Kirstein (1990).)

This problem suggests a variety of extensions, which are exhibited for the case of
three random vectors. Suppose that X, Y, and Z are jointly distributed p-dimensional
random vectors with normal marginals (0, Ell ), 0, Z22), and (0, Z33 ), respec-
tively, where Zig > 0, l, 2, 3 are known. Denote the joint dispersion matrix by

X Z22 I23/
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We use 2;a to denote known covariance matrices and xI,0 to denote unknown covariance
matrices. Two L2-distances that we consider are

Etr [(X- Y)’(X- Y) + (X- Z)’(X- Z) + (Y- Z)’(Y- Z)]
(1.4)

2 tr (211 + 222 + 233)- 2 tr (12 + 13 + _3)

or, with the mean M (X + Y + Z),

E tr [(X- M)’(X- M) + (Y- M)’(Y- M) + (Z- M)’(Z- M)]
(1.4’)

tr (2;11 + 2;22 -- 233)- tr (xIt12 + 13 + 23).

Thus both (1.4) and (1.4’) yield the same extremal problems depending on which sub-
matrices of 2; are known. This suggests three cases:

(1.5a) 2;1 2;22 223
233/ 2;33

(1.5b) 2;2 2;22 223

211 I/12 I/13
(1.5c) 2;3 2;22 XI/23/ 211 " 05 2;22 05 2;33 0.

233//

The extremal problems corresponding to each case become

1.6a) Max tr xI, 2,
2;1_0

(1.6b) Max tr (12 +
2;2_ 0

(1.6c) Max tr (12 d- XI113 -- XI/23 ).
3_0

The proofs provided by Olkin and Pukelsheim (1982) and Dowson and Landau
(1982) do not lend themselves to a direct extension for each of the present problems.
We first provide an alternative direct proof, which is adaptable to resolving (1.6a) and
1.6b) .This is done in 2. Problem 1.6c) requires a different argument and is discussed
in3.

2. A direct proof. Our concern in (1.2) is to maximize tr over the region
{ 2" 2; >= 0 }. Since 2; >- 0 if and only if 222 > 0 (by hypothesis) and 2;11 2 ’>-
0, we need only consider the latter condition. From the convexity of the set
{-2’ =< 211 } and the linearity of tr , the extremum will occur at a boundary
point

(2.1) 2;;d I/’ 211
which holds if and only if

(2.2) 2/2= 21t2G,

where G is orthogonal. (For references and a discussion, see Marshall and Olkin 1979,
p. 501).)
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1/2 1/2 1/22G2;22 ano the maximum oftr is tr G(2;22 2;1 ). ForConsequently, Z
v 1/2 X 1/2simplicity of notation, write B 22 let X(C) denote the eigenvalues of C, and

let a(C) X /2(CC,) denote the singular values. Then

tr GB Xi(GB) IXi(GB)I ai(GB)
(2.3)

/(BB’)= ((BB’)/) tr(BB’)/

(see Mahall and Olin 1979, p. 232)). Equaty in (2.3) is atoned for G B’(BB’)-/.
Consequently, the maximum of tr is achieved at

0 Z 11 GZ ZllZ22 Z22 Z1122 -I/2Z 1/2
22

which is (1.3).
We now show that the solutions of (1.6a) and (1.6b) can be accomplished with an

argument similar to that given above. In problem (1.6a) we need to maximize tr 1
subject to 0, which holds provided that

32 33

and

>=0,(2.4) 2; (XI 13)
_A_32 A33 31

where

-A-32 2-33 32 33

As before, the extremal occurs at

xItA22xIIt q- 13_A_32xIt’ + xItJ2331 -+- 13Jk3331.(2.5) 11 xI/ 13)
jk32 fi33 31

Completing the square in (2.5) yields

(2.6)
Q 11 13J3331 "- 13J32-A-2- J2331

--(I -- 13Jk32_/)j_z2(Xlt -- 13Jk32Jk-) t.

Note that

22 > 0, 33 > 0, and (22 23/ > 0,
32 33]

which implies that Jk22 (22 23-32)-1 " 0, SO that Q -> 0. Then (2.6) im-
plies that

where G is orthogonal,

(2.7)

and

(2.8)

Q’/G ( + E;,3A32A)A2/,

"g QI/2GA./2- I3A32A,

tr tr G(A/2Q 1/2) tr I3A32A- =< tr (A21/2QA/2) 1/2 tr ]]I3A32A2-,
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with equality at G (Ql/2_/k/2)(Jk/2QJk/2)-l/2. Consequently, the minimizing
ft. is

"qo QA- z A ZQA z ZAJ 2 E,3A32A,

where Q is defined by (2.6).
To resolve (1.6b) subject to

let

so that

E2 0 Ell > 0, (22E32 E23) >0,E33

22 E23 )I (I/12, I/13) A
E32 E33

(Ell XIt)E2
XI/’ A

Note that E2 0 if and only if E|| > 0 and A >-- xI,’Ei-1 . As before, the extremum
occurs at

(2.9) EI{2GA 1/2= ,
where now p 2p, and G" p 2p with GG’ Iz,. For simplicity of notation, let

(2.10) C El{2 A1/2 (ell el2) Rii’P X p,
R2! R22

and partition G (Gl, G2), Gi" p X p. Then (2.9) becomes

(Rll gl2)C(G, G2)
Rl R22

(CGRll + CGzRzI, CGIR2 + CG2R2),

and

(2.11)

where

tr (I/12 -]- XI/13 tr [Gl(Rll + R12)C + G2(R21 + R22)C]

tr (Gl, G2)S tr GS,

(2.12)
(Rll + RI2)C). 2p X p.S
(R21 + R22)C

Note that S’ E l{2(Ip, Ip)A 1/2 is of rank p. Following our previous reasoning, the
maximum of (2.11 is tr (S’S) 1/2 and is achieved at G (S’S)-I/2S’, so that

’ffffO EII2(S’S) -1/2S’A1/2,
where S is defined by 2.12 and (2.10 ).

3. The general model. Now consider extremal problem 1.6c):

(3.1) Max tr (2 + 13 + 23).
Z3 0



394 I. OLKIN AND S. T. RACHEV

The methods of 2 lead to a prohibitive amount ofalgebra that is not promising. Instead,
we approach this problem afresh.

The triple (x, y, z) of jointly distributed p-dimensional random vectors with re-
spective marginals ff (0, Zl ), V(0, 22), (0, 33 is called optimal if 3.1 attains
its maximum.

Suppose that there exist lower semicontinuous functions J], fi,J such that

(3.2) x e OJ(z), y e 0J] (x), z 0ff(y), a.s.,

where Of(x) denotes the subdifferential of f in x. Then (x, y, z) is optimal. In fact, for
any other triple (2, y, ) with the same marginal distributions as (x, y, z), let

z) (x, y) + (x, z) + (y,

where (., ) is an inner product in Rp. Then

E/x(, y, ) _-< E{f() +f(p) +fi(p) +f() +Z() +f()}

E{J](x) +f(y) +f2(y) +f(z) +f3(z) +f(x)}

EA(x, y, z),

where fj* (y) supx { (x, y) -( x)} is the conjugate ofJ. Consequently,

j(x) + f (y) >_- (x, y)

for all x, y e RP, and

J(x) + f (y) (x, y)

if and only if y e 0j (x).
For the special univariate case p l, and for Fj ff(0, fly ), j l, 2, 3,

{ x Fi-l (u), y F (u), z F (u) }, u uniform on 0, ], is an optimal triple.
(See Lorentz (1953)and Tchen (1980).) To see this, takej(x) f Ffl+o F(u)du,
j l, 2, 3 (with F4 -= F ); then (3.2) holds.

Remark. For other examples, see also Riischendorf and Rachev (1990). Although
the case when p yields an optimal triple and (3.2) holds, this condition does not
seem to be necessary for optimality. This is in contrast to some of the special cases
considered in Rtischendorf and Rachev (1990).

Remark. Suppose the probabilities #j, j l, 2, 3 on Nv are of the form

(3.3) 2 1 T-, 123-- 2 T,
#l /,t3 T,

where T are symmetric and positive semidefinite, and

(3.4) T3TTI I.

By (3.2), ifx is #l-distributed, y Tx, and z T.y, then (x, y, z) is optimal.
In the particular example where the marginals are normal,

/2t /2 x,l/9- /2/2TI T(, 2)--;2- Z9_ , )- 2

T2 T(22, 33),

T3 T(33, 11).
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Assuming that (3.4) holds, then the triple (x, Tx, T2TlX) is optimal, and the maximum
of (3.1) is

E{ (x, TlX) 39 (y, T2x) .Jr_ (z, T3x)}
1(2 1(2) 1/2 1/2 1/2 1/2 1/2 1/2tr(Z1 Z22ZI + tr(Z22 Z33Z22 )1/2

_
tr(Z33 ZllZ33

Remark. The condition (3.4) may appear unusual. However, it is satisfied if Nil,
22, 33 commute. In this case 2;jj, j l, 2, 3 can be simultaneously diagonalized by
the same ohogonal matrix, that is,

zz rDr’,
where Dj is a diagonal matrix and F is ohogonal. Then

T1 FD/2D[I/2F ’,

T2 FD/EDI/2F’,

T3 FDI/2DI/2F ’,

so that T3T2T I. Ofcourse, the simplest example in which Zl, Z22, and Z33 commute
is the case where Zll Z22 Z33. Then T T2 T3 I. They also commute in other
circumstances, such as when the elements of x, of y, of z are exchangeable random
variables.

4. Historical connections with linear programming. An extension of the well-known
transpoation problem in linear programming to an infinite set of origins (destinations)
was considered vew early on by Monge 1781 ). The formulation for infinite-dimensional
transpoation problems was initiated by Kantorovich (1942), 1948 ). In paicular, the
dual form of (1.2) is

(4.1) Mffx{ff dN1 + f gdN2},
wheref Np R, g: Np R, i (0, Zii), 1, 2;

a { g: g bounded, Ilfll < , [Igll < ,
(4.2)

where

f(x) + g(y) <- x y 112 for all x, y

I[f(x) -f(Y)
IIf I[, sup

x IIx-yll2

The explicit solution for the unidimensional case (p was obtained by Gini
(1914), Hoeffding (1940), and Fr6chet (1957). An explicit solution in a more general
context:

(4.3) Lr(#, u)= Min {E[IX- Y , x u, Y u},
253p r) .where X IIr 7; xil /r, r and U, v are arbitrary laws on NP, p > is a well-

known open problem. See, for example, the discussion in Dobrushin (1970) about the
relationship between (4.3), with r 1, and the problem ofuniqueness ofthe Gibbs field.
The solution of (4.3) with r 2 for , v normal was obtained in Olkin and Pukelsheim
(1982). Dowson and Landau (1982) gave an alternative proof. (This proof has a gap;
cf. Givens and Shortt (1984) and Gelbrich (1988).) Alternative solutions and some
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extensions are given in Knott and Smith (1984); Smith and Knott (1987), (1990);
Rachev and Riischendorf 1991 ); Riischendorf and Rachev (1990).

The problem of finding explicit solutions of 1.4) or 1.6c) for p dates from the
classical paper of Lorentz 1953 ); see also Tchen (1980). Dual representations for 1.2)
and (4.3) are given in Kellerer (1984) and Rachev (1984). Note that L2 in (4.3) has
nice topological properties; it metrizes the weak convergence plus the convergence ofthe
second moments f IIx (dx). (See Mallows (1972), Bickel and Freedman 1981 ), de
Acosta (1982), and Rachev (1983).) Analogously, if

(4.4) L2(#,, #2, #3)--- Min {E(IIX- Y[l + IIX- Zll + IIY- Zll)},
where X 1, Y 2, and Z 3, the convergence

(4.5) L2(In) (n) (n)
2, /-t3 )-’ 0

(n) (n) (n)is equivalent to a "merging" of sequences ,/.t2 and t3 in Lz-metric. That is, (4.5)
is equivalent to

4.6 L2(U n)
U: 0, L2(Un) (n),3 ,0, L2(2 ,3 ,0.

The notion of merging of two sequences of probabilities was studied in Diaconis
and Freedman (1984), D’Aristotile, Diaconis, and Freedman (1988), and Dudley 1989,

11.7 ). Using the equivalence of (4.5) and (4.6) permits an extension of their results to
the merging of a family of sequences of probabilities.
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SIGN CONTROLLABILITY OF A NONNEGATIVE MATRIX
AND A POSITIVE VECTOR*

CHARLES R. JOHNSONf, VOLKER MEHRMANN, AND D. DALE OLESKY

Abstract. An n-by-n matrix A and a vector b are controllable if and only if the matrix b, Ab, A 2b
A lb has rank n. An array with each entry equal to +, -, or 0 is a sign pattern. If A and B are sign patterns
of orders n-by-n and n-by- 1, respectively, then the pair (A, B) is called sign controllable if (A, b) is controllable
for all A e A and for all b e B. Sign controllability of a nonnegative sign pattern A and a positive sign pattern
B are characterized, and sufficient conditions for other cases of the sign controllability problem are given.

Key words, controllability, sign controllability, nonnegative matrix

AMS(MOS) subject classifications. 15A99, 93B05

1. Introduction. Let A (aij) be an n-by-n real matrix and let b (bi) denote a
vector with n real entries. The pair (A, b) is said to be controllable if and only if the n-
by-n matrix C(A, b) b,Ab,A2b An- b] has rank n. Many equivalent conditions
for controllability are known (see [7]); for example, (A, b) is controllable if and only if
the n-by-(n + matrix D(A, b, ) [A I, b] has rank n for all complex scalars ,.

Let A denote an n-by-n sign pattern, that is, an n-by-n array with each entry equal
to +, -, or 0. For example,

A- +
0 +

We write A e ifA is an n-by-n matrix with sgn (a0) equal to the (i, j) entry of A. The
n-by-1 sign pattern is denoted by B.

We consider the following qualitative problem: Determine the set ofall sign patterns
A and B such that ifA e A and b e B, then (A, b) is controllable. Such sign patterns
and B are said to require the propey of controllability, and we say that (, B) is sign
controllable. See 3 for a definition and discussion of"require" problems ofcombinatorial
matrix analysis.

If all matrices with a fixed sign attern are nonsingular, then each such matrix is
said to be sign nonsingular; see, for example, [1] and [4]. If C(A, b) is sign nonsingular
for all A A and b B, then clearly (, B) is sign controllable. However, as the following
example shows, the converse is not true.

Example 1. Let

0 + 0 +
= 0 + + and B= +

0 0 0 +
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IfA A and b B, then

det C(A, b) -a9_a23b(a29_b: + a23b3) < 0,

implying that (A, B) is sign controllable. However, for all A A and b B, the sign
pattern of C(A, b) is

+ +
+ + +
+ 0 0

which is not a possible sign pattern of a sign nonsingular matrix.
The problem of characterizing sign controllability has important application in the

design of control problems. Typically the parameters that determine relationships in a
linear system Ax + bu describing a control system are subject to measurement or
modelling errors. So, when designing such a control system, it is of interest to know
whether or not such a system is controllable regardless of these errors; see, for example
[2 or 6 ]. A natural question in this context is whether or not controllability depends
solely on the signs of the entries of A and b. In general, this problem seems difficult.
Here, we consider the special case in which the entries of A are nonnegative and the
entries of b are positive, which, for example, is a reasonable assumption in economic
and biological models. In 2 and 3 of this paper, A denotes an n-by-n nonnegative sign
pattern and B denotes the n-by-1 positive sign pattern. If A e A and b B, we write
A >- 0 and b > 0.

Section 2 contains some notation, definitions, and lemmas that are used in 3 to
prove our main result, a characterization of sign controllability of a nonnegative matrix
and a positive vector. More general cases of sign controllability are considered in 4.

2. Preliminary results. Throughout this paper we let uk denote the vector of k
entries, each of which is equal to 1, and let Ik denote the k-by-k identity matrix. For
completeness, we state the following definitions. A square matrix A is irreducible if and
only if there does not exist a permutation matrix P such that

PAPr=[ A’O A22A’]’
whereA and A22 are square, nonempty submatrices. For every n-by-n matrix A, there
exists a permutation matrix P such that

A A2
PAP7" A22 i’" A?k

0
A’.I

where -< k =< n and each submatrix Aii, <= <= k, is either 1-by-1 or irreducible. This
is called the Frobenius normalform ofA. Finally, an n-by-n matrix A >= 0 is row stochastic
ifAu, un. Note that ifA is row stochastic, so is A for all k >= 1.

We now state two lemmas, which are used to prove Theorem in 3.
LEMMA 1. Let b > 0 be a vector with m entries and let R >= 0 be an upper triangular

matrix of order m with exactly one positive diagonal entry, say rk <= k <= m). Then
there exists a nonsingular matrix L >= 0 such that L-1RL is upper triangular with exactly
one nonzero diagonal entry, which is in the 1, position and is equal to rk. Moreover,
thefirst entry ofL-b is positive.



400 JOHNSON, MEHRMANN, AND OLESKY

Proof. Without loss of generality, we may assume that m >= 2 and k m, since
otherwise we can restrict consideration to the leading principal submatrix ofR of order
k and can take L in the form

Llt 0 ]0 Im-k

where LI is of order k. Also, without loss of generality, we may assume that no row of
R is all zeros, since otherwise we can find a permutation matrix Q such that

Q.RQ=[Rll R12]0 0

where RI is k-by-k upper triangular with no rows that are all zero, and, in this case, we
can determine LI such that LRIL has the required form, and let

L Q[ L110 Im-k
0 ].

We specify a set of rn similarity transformations that moves rmm to the 1,
position, each transformation moving the entry up one diagonal position. Since rm- l,m

is necessarily nonzero (as rm- l.m- 0), we can define

z 0

Lm- 1

Cm

where Cm rmm/rm 1,m. Then

Rm L,1RLm
0 r12

0
r13
r23

rl,m 2 rl,m - Cmrl rl
r2,m- 2 r2,m- -Jl- Cmr2m r2m

rm-3,m-2
0 rm-2,m-1 + Cmrm-2,m rm-2,m
0 rmm rm- l,m

0 0 0

The above step can be repeated for j m 1, m 2, 2 by defining

L01 0 Ilm_d
where cj is equal to rmm divided by the (j 1,j) entry ofRj+ 1. (Note that the assumption
that no row of R is all zeros ensures that the (j 1, j) entry of R./ is nonzero since
this entry is equal to

rj_ l,j I- Z cirj- l,i

i=j+
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where all ci > 0 and at least one entry rj_ l,i )" 0,) Letting L LmZm-l"" L2, then
L-IRL is as required. Furthermore, for 2 -< j =< m, the first j entries of Lj-1...

Ll_lLLlb are equal to (bl, b2, bs.- l) T, so that the first entry ofL-lb Ll...

L;l_ LLib is equal to bl and thus is positive.
LEMMA 2. Let A denote an n-by-n nonnegative sign pattern, let B denote the n-by-

positive sign pattern, let A A and b B. Ifthere exists a permutation matrix P such
that

JAil A12]PAP
0 A22

where All is either a nonzero scalar or is an irreducible submatrix oforder >= 2, and A22
is upper triangular with exactly one nonzero diagonal element, then A, B) is not sign
controllable.

Proof. We determine a specific (numeric) matrix A and vector b such that (A, b)
is not controllable. Let kl denote the order ofAll and let b (b, b2)r, where bl has k
entries. Let the nonzero diagonal entry ofA22 equal 1. For any choice ofthe other entries
ofA22, by Lemma there exists a nonsingular matrix L >_- 0 such that L-1A22L is upper
triangular with exactly one nonzero diagonal entry, namely its 1, entry which is equal
to 1. Also, the first entry of L-b2 is positive. Let

z=
0 L-1 0 A22 0 L 0 L-IN22L

and

b
0 L-1 b2 L-b2

and partition these, respectively, as

where All is of order kl + and bl has kl + entries. Let k2 n kl denote the
order ofA22 and the size of b2. Then

[All al]All
0

where All is as before and al is equal to the first column ofAlzL (and is nonnegative
for any choice of the entries of A I2). Also, A22 is strictly upper triangular, bl > 0, and
b2 consists of the last k2 entries of L-lb2. Consider the controllability matrix C(A, b),
which is equal to

[bllllb A1262... Imllbl+Gb2  k21g I’t]Agb=   -1622 2 0

where F and G are matrices of order (kl + )-by-k2 and are a sum of products ofAl,, and Jz2, and g b + Gb. As All is either a nonzero scalar or is ieducible of
order 2, and as the entries of a are nonnegative linear combinations of the entries of
Aa, the entries ofA can be chosen so that it is row stochastic and nonsingular. (For
example, choose the positive entries ofA to be arbitrarily small, and choose all of the
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positive entries of AI to be arbitrarily small except for those on one transversal of
A ll, which can then be chosen to make 11 row stochastic.) By choosing b2 sufficiently
small, 2 and thus Gb2 can be made arbitrarily close to the 0 vector. Define 1
(Ak211)-l(ukl+ Gb2)’, this vector can be made arbitrarily close to Uk,+ and thus made
positive. With this choice of bl, we obtain g Uk+ 1. Hence C(d, ) has kl 4- >= 2
identical columns of the form (Uk + 1, O) T, since dll is row stochastic. Thus (d, b) is not
controllable. Because (A, b) is controllable if and only if (d, b) is controllable (see, for
example, [5]), (A, B) is not sign controllable. [

3. The main result. The following theorem characterizes sign controllability of a
nonnegative matrix and a positive vector.

THEOREM 1. Let n >= 2, let A denote an n-by-n nonnegative sign pattern and let B
denote the n-by-1 positive sign pattern. Then A, B) is sign controllable ifand only if

(i) rank d n for all A, andfor each A, there exists a permutation
matrix P such that A PdPr has thefollowing properties"

(ii) anj 0 for <= j <= n; and
(iii) A is upper triangular with at most one positive diagonal entry.
Proofofsufficiency. Let d e A and b e B. Because (d, b) is controllable if and only

if(PdP, Pb) is controllable see 5 ), without loss ofgenerality, suppose that A PdPT

is upper triangular with at most one positive diagonal entry, say akk 19 >= O, where =<
k _-< n 1. Thus both (ii) and (iii) are satisfied by A, and D(A, Pb, k) [A M, Pb]
has the form

where denotes a nonnegative entry.
If , 0, then this matrix has rank n since A has rank n (by (i)) and Pb is

linearly independent of the column vectors ofA (as it has a "+" in the nth position).
If h 0 and k @ p, then A M is upper triangular with a nonzero diagonal, and

so has rank n.
If }, p (and p > 0), then D(A, Pb, ) has the form

+
+

+
+

*
-k +

A12 A1310 A23
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where each is a nonnegative entry. This matrix has rank n since All is nonsingular and
A23 is sign nonsingular (see, for example, [1]).

Thus D(A, Pb, ) has rank n for all , e C, proving sufficiency.
Note. IfA has either no positive diagonal entry or ifthe 1, entry ofA is positive,

then A has the form

where at least one ofa and a: is positive and each (without restriction) may be 0 or
+. In this case, C(A, Pb) has the form

+ +
+ +

+ +
+ +
+

+ +
+

which is clearly of rank n, implying that (A, Pb) is controllable.
Proofofnecessity. Assume that (A, B) is sign controllable.
If A does not have a row consisting entirely of zeros, then we can choose e A to

be row stochastic and can let b un. Then C(, b) is singular. Thus A must have a row
consisting entirely of zeros, and (ii) holds.

Since D(A, b, ) has rank n for all A A and for all , C, the case 0 implies
that rankA >_- n 1. AsJ must have a row consisting entirely ofzeros (by (ii)), condition
(i) holds.

To prove (iii), assume without loss of generality that each A e A is in Frobenius
normal form

All AI2 Aim]A22 A2mA=
0 "..

Arnrn..]
where each submatrix Aii is of order or is irreducible and of order >- 2. Partition b
(bl, b:, bm)T conformally with A. Our proof is by induction on the order of A
(or A). We now assume that for all nonnegative sign patterns A of order r -< n and
the positive sign pattern B of size r, if (A, B) is sign controllable and if A, then there
exists a permutation matrix P such that A ppT satisfies (iii).

Assume that (A, B) is sign controllable, where A is n-by-n. The following cases
exhaust all possible forms for an n-by-n matrix A A.

Case a. If m 1, then A All is of order n >= 2 and A does not satisfy (iii).
However, All may be chosen to be row stochastic. For b Un, C(A, b) is singular and
thus (A, b) is not controllable.
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If m >= 2 (Cases b and c below), then partition A and b, respectively, as

.Z22 ] and

Since (A, b)controllable implies that (J2_, b2) is controllable, it follows from the inductive
hypothesis that z22 satisfies (iii). Let k_ denote the order of J_2.

Case b. If z22 is strictly upper triangular and A is irreducible and of order k >_-
2, then the entries ofA may be chosen so that it is nonsingular and row stochastic. In
this case,

11 bl q-G92 Allg Akg
C(A, b)= b2 A=b2 A"k2-122 b2 0 0

k2-where (7 is a sum of products ofA, z12 and /22 and g A + G2. The positive
entries of 2 and z22 may be chosen arbitrarily, but choose b2 sufficiently small so thatAk2-tbl II )-(Uk, Gb_) is sufficiently close to Uk, and thus is positive. Then, since
g Ukl, the last k >- 2 columns of C(A, b) are equal to (Uk, O)T, contradicting the
controllability of(A, b). Thus k cannot be >=2, so All is of order and (iii) is satisfied.

Case c. IfA2 is upper triangular with exactly one positive diagonal entry andA
is a nonzero scalar or is an irreducible submatrix of order >_-2, then A does not satisfy
(iii) and by Lemma 2, (A, b) is not controllable.

Thus, if A is an n-by-n nonnegative sign pattern and (A, B) is sign controllable,
then (iii) is satisfied, completing the proof by induction. [3

The only n-by-n nonnegative sign patterns A which satisfy the conditions ofTheorem
(up to permutation similarity) are the following, where each (without restriction)

may be 0 or +:
(i)

0

+ ,
0 + "-

0 *
0 ". +

0

All A12]0 A22

where

--A has order n >_- 2;
--A must be present;
-A22 has order n 2 >_- 0 (and is void if n 2);
--the unspecified entries denoted by [3 must be such that

that is, this submatrix must be either

0 0 0 0 0 0
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(ii)

0 + ".

0
0 ". +

0

0 +

0

where
A has order n >= 3;
--All has order >= (and must be present);
--A22 must be present;
mA33 has order n 3 >= 0 and may be void;
the unspecified entries denoted by must be such that

[/ D]rank 2,
+ [3

that is, this submatrix must be either

+ 0 + +

A12 A13]A22 A23
0 A33]

It is straightforward to test whether or not an n-by-n nonnegative sign pattern satisfies
the conditions of Theorem 1. A pattern A satisfies the conditions if and only if it has
precisely one zero row, which may be permuted (by permutation similarity) to row n.
Then, consider the leading principal submatrix of order k n of this permuted
pattern; A satisfies the conditions of the theorem if and only if either

(a) this principal submatrix has precisely one zero row; or
(b) this principal submatrix has precisely one row (say row i) with a + in the

diagonal position. Furthermore, if k > 1, all other entries of row in this principal
submatrix must be 0, there must be precisely one other row (say, row j) in this k k
principal submatrix which is identical to row i, and either one of the (i, k + and (j,
k + entries of the permuted pattern A must be + and the other one must be 0.

If (a) is true, then permute (by permutation similarity) the zero row to row n 1.
Otherwise, permute the row identified in (b) to row n 1, by permutation similarity.

Now, similarly, continue consideration, in turn, ofthe leading principal submatrices
of orders k n 2, n 3 of the permuted pattern. Whenever possible, a zero
row is permuted to row k of the array. If a + is ever permuted to the (k, k) entry of the
array, then in the consideration of all remaining principal submatrices, a zero row must
be able to be permuted to the last row of the principal submatrix (otherwise the pattern
A does not satisfy the conditions of Theorem ).

The above procedure for testing whether or not an arbitrary nonnegative sign pattern
satisfies the conditions of the theorem is deterministic, and the permutation matrix P in
the theorem is uniquely determined.
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4. Other cases and open problems. In this paper we have considered only a special
case of the sign controllability problem. Obvious extensions are the cases when B has
zero entries (and A is nonnegative); when both A and B are sign patterns with entries
in ( +, -, 0 ) and when B is an n-by-m sign pattern.

For the case when A and B are nonnegative and the vector pattern B has precisely
one positive entry, we have the following sufficient condition for sign controllability.

THEOREM 2. Let n >- 2, let A denote an n-by-n nonnegative sign pattern and let B
denote an n-by- nonnegative sign pattern with precisely one positive entry. Ifthere exists
a permutation matrix P such that PAP & an unreduced upper Hessenberg pattern, i.e.,

pApr

* * , *
+ ,

0 Oo * *
+

(where each (without restriction) may be + or 0), and ifPB [+, O, O] T, then
(A, B) is sign controllable.

Proof. If A A and b 6 B, then the controllability matrix C(PAPr, Pb) has the
form

+ * *1+ o
0 +

which clearly has full rank. E]

The converse ofthis result, however, is not true, as the following example illustrates.
Example 2. Let

A + 0 and B
+ 0

IfA A and b B, then C(A, b) has the form

0 +
0 +

which has negative determinant, implying that (A, B) is sign controllable. However, A
is not permutation similar to an upper Hessenberg matrix (with a permutation that leaves
B invariant).

Another obvious generalization ofthe sign controllability problem is to multi-input
systems, i.e., systems in which the vector b is replaced by an n-by-m matrix B. Matrices
.4 and B of orders n-by-n and n-by-m, respectively, are controllable if and only if the n-
by-ran matrix B, AB,..., An- B has rank n. Sign controllability is defined analogously
to the case when B is a vector. The following is a direct consequence of Theorem 1.

THEOREM 3. For rn >= 2 and n >- 2, let A denote an n-by-n nonnegative sign pattern
and let B denote an n-by-m nonnegative sign pattern. IfA satisfies conditions (i)-(iii)
of Theorem and B has at least one nonzero entry in each of its rows, then A, B) is
sign controllable.
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Proof. LetA A and B B. Since b Bum > 0, by Theorem 1, C(A, b) is controllable
and thus has rank n. However, since

C(A, b) C(A, B)

U 0 0
0 Hm
0 0 0

C(A, B) also has rank n. Thus (A, B) is sign controllable.
The converse of Theorem 3 is also not true, as the following example illustrates.
Example 3. Let

A=
0 0

and B=
+ +

For all A A and B B, the matrix C(A, B) has the form

0 0 + +]+ + 0 0

which has rank 2.
Characterization of sign controllability, apart from the cases considered in Theorems

1, 2, and 3, remains an open problem.

Note added in proof. After this paper was accepted for publication, we discovered
that the term "sign controllable" has been defined differently by Faibusovich (Algebraic
Riccati equation and symplectic algebra, Internat. J. Control, 43 (1986), pp. 781-792).
See also Scherer (The solution set of the algebraic Riccati equation and the algebraic
Riccati inequality, Linear Algebra Appl., 153 1991 ), pp. 99-122 ).
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A NEW CRITERION TO GUARANTEE THE FEASIBILITY OF THE
INTERVAL GAUSSIAN ALGORITHM*

A. FROMMERf AND G. MAYER

Abstract. The main subject of this paper is the interval Gaussian algorithm, which produces an interval
vector Ix] analogously to its well-known counterpart in classical numerical analysis. Criteria are derived to
guarantee the existence of[x] a ifthe n n interval matrix [,4 is degenerate to a point matrix or ifits comparison
matrix ([A ]) is irreducible and diagonally dominant. While in the first case all classical criteria of feasibility
apply, the second case yields to a criterion which seems to be new. A way to construct matrices such that [x]
does not exist, although it does for each matrix e [A ], is also indicated.

Key words, linear interval equations, Gaussian algorithm, interval Gaussian algorithm, linear systems of
equations, criteria of feasibility

AMS(MOS) subject classifications. 65F05, 65G10

1. Introduction. In many algorithms in interval analysis the interval Gaussian al-
gorithm plays an important role (cf. [2]-[8], [15]-[17], [23]-[25]). Starting with an
n n interval matrix [A and a corresponding interval vector b ], it produces an interval
vector [x] G IGA([A ], b]) which contains the solution set

The formulae to describe [x] G are given analogously to those ofthe well-known Gaussian
elimination process in noninterval analysis, combined with a forward and backward
substitution (cf. 3 ). Unfortunately, as for real matrices A e R" ", the interval Gaussian
algorithm is not always feasible. If zero is contained in the first diagonal entry, e.g., the
algorithm will necessarily break down. Pivoting, i.e., permuting rows and columns, may
help, but, in contrast to nonsingular matrices A e R"", Ix] need not exist, even if
pivoting is allowed and even if the Gaussian elimination process is feasible for each
element A e [A without pivoting (cf. [28 and [33]). While nonsingular real matrices
e R"" allow (theoretically) the elimination process without permutations if and only

if all leading principal minors differ from zero (cf., e.g., 4 or 34, Thm. 2.5, p. 120 ]),
a similar criterion is still missing in interval analysis. Thus we look for classes of interval
matrices that guarantee the existence of Ix] (of. [1], [7], [9], [20], [30], [32], and
[33]). An overview of such criteria can be found in [26].

In this paper we contribute further criteria for the feasibility ofthe interval Gaussian
algorithm. We have two aspects in mind: First, we collect criteria for point matrices [A ],
i.e., for degenerate interval matrices which consist of one element matrix only. Second,
we choose some sort of limit case: It is known that [x] exists for so-called H-matrices
(cf. [1] or 4). The set H of all such matrices is open in the Hausdorff-metric described
in [7] (use Lemma 2.1 below for a proof). The boundary OH ofH contains degenerate
matrices [A] ([rio., do] for which (o) is irreducible and fulfills

(1.1) [ii[ laol, 1,..., n.
j=l
j4=i

Received by the editors March 4, 1991; accepted for publication (in revised form) August 30, 1991.
Institut for Angewandte Mathematik, Universi’t Karlsruhe, Kaiserstral3e 12, D-7500 Karlsruhe, Germany

(ae09@dkauni2.bitnet).
Fachbereich Mathematik, Bergische Universitit, GH Wuppertal, Gaul3stral3e 20, D-5600 Wuppertal,

Germany (frommer@math.uni-wuppertal.de).

4O8



THE FEASIBILITY OF THE INTERVAL GAUSSIAN ALGORITHM 409

As is seen by the example

[x] a may no longer exist. We will discuss this case in greater detail, starting with necessary
and sufficient conditions for the feasibility of the Gaussian algorithm. We extend the
class of degenerate matrices which satisfy 1.1 onto a larger one contained in 0H. For
this class, we will derive a sufficient condition for the existence of [x] a. Again, we must
answer negatively the question of whether the interval Gaussian algorithm is feasible for
[A if its noninterval counterpart yields a vector ya for all elements 6 [A ]. To this end
we construct a counterexample giving some insight into the reasons that make the al-
gorithm break down. The idea used for it can easily be generalized to obtain classes of
matrices where [x] a does not exist.

We have arranged our paper as follows: Starting with some notation and basic facts
of interval analysis in 2, we continue by a short section presenting two possibilities for
defining [x] a. In 4 we consider [x] a for degenerate matrices [A]; in 5 we turn to the
nondegenerate case using some generalization of condition 1.1 ). We illustrate our results
by an example and discuss the counterexample mentioned above.

2. Preliminaries. By Rn, RnXn, IR, IRn, and IRnX n we denote the set ofreal vectors
with n components, the set of real n n matrices, the set of intervals, the set of interval
vectors with n components, and the set of n n interval matrices, respectively. By
"interval" we always mean a real compact interval. We write interval quantities in brackets
with the exception of point quantities (i.e., degenerate interval quantities) which we
identify with the element they contain. Examples are the null matrix 0 and the identity
matrix I. We use the notation [A [A__,A ([ a]ij) ([a/j, 0"]) IRnn simultaneously
without further reference, and we proceed similarly for the elements of Rn, Rnn, IR
and IRn.

By A >= 0 we denote a nonnegative n n matrix, i.e., aij >= 0 for i, j n.
We call x Rn positive, writing x > 0 ifx > O, n.

We also mention the standard notation from interval analysis [7], [30]

a+K
i’= mid a )’=

2
(midpoint),

I[a][ max {111 [a]} max {lal, I1} (absolute value),

min {lal, lal} if0 g [a]
([ a])’= min { 116 a }

0 otherwise
(minimal absolute value)

for intervals a ]. For [A IRn we obtain A, [A
entrywise, and we define the comparison matrix ([A]) (cij) IRnn by setting

-I[alijl if/
Cij

([aii]) if j.

Since real quantities can be viewed as degenerate interval ones, and (-) can also be
used for them. We call a IR symmetric (with respect to zero) if a a ], i.e., if
a [- I[ a ]1, I[ a]l]. Note that d 0 if and only if a] is symmetric.

By Z" we denote the set of real n n matrices with nonpositive off-diagonal
entries; by det (A) we mean the determinant of a matrix A R X n.
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As in [35, pp. 19, 20], we introduce the concept of a directed graph G(A) := (XA,
EA) associated with a matrix A e Rn n. This graph consists of the set XA := li 1,

n } of nodes and of the set EA := { i, j) lao 4:0 ) of edges i, j), which are ordered
pairs of nodes. A sequence of edges is termed a path of length r if it has the form { (it,
it + } 5- . We will write io -- -- -- ir- -’ ir for this path. If there is a path =:
io - -- -- ir := j we say that is connected to j. The matrix A is said to be
irreducible ifand only if any two nodes i, j e XA are connected. Note that A is irreducible
if and only if (A) has this property.

In 4 we will consider several classes of matrices A Rn n, for which we are going
to recall the definitions (cf. 11 ], 19 ], and 35 ):

A is an M-matrix ifA is nonsingular, A- >__ 0, and A Z n ,.
A is an H-matrix if (A) is an M-matrix.
A is diagonally dominant if for n,

(2.1) lail > , laol,
j=l
j4=i

i.e., (A)e>=O, where here and in the sequel the vector e is defined by e:=
(1,..., 1)TrR.

A is strictly diagonally dominant if (2.1) holds with strict inequality for all i.
A is irreducibly diagonally dominant if it is irreducible and diagonally dominant

with strict inequality in (2.1) for at least one index i.
A is totally nonnegative if each minor ofA is nonnegative.
An interval matrix [A IR x is termed an M-matrix if each element [A is

an M-matrix. In the same way all other classes mentioned above can be extended to
IInn. There are several equivalent definitions for these classes of interval matrices.
Thus it is easy to verify that

[A is an M-matrix if and only if A_A_ is an M-matrix and i, -< 0 for 4: j.
[A is an H-matrix if and only if ( [A ) is an M-matrix.
To prove these two statements we can refer to a very useful criterion for M-matrices

due to Fan [13].
LEMMA 2.1. Let A Zx n. Then A is an M-matrix if and only if there exists a

positive vector x R such that Ax > O.
We equip IR, IRn, and IRn, with the usual real interval arithmetic as described

in 7 ], 10 ], 27 ], and 30 ], for example. We also take the "dos and don’ts" of this
arithmetic for granted. We only mention the formulae (of. [28])

(2.2)

([A] + [B]) => ([A]) liB]l,

[A]
([a])

I[A]I if0 g [a] IR,

I[A] +-[nil =< I[a]l + liB]l,

for interval matrices [A], [B]. These formulae also hold, of course, for n 1, i.e., for
intervals. In this case they can be sharpened according to the following lemma, where
here and in the sequel sign (a) is defined by

if a>0,

sign(a)’= 0 if a=0,

-1 ifa < 0

for a R.
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LEMMA 2.2. Let [a], [b], [c], [d] e IR with 0 [d], and define [a]’ e IR by

[a]’:= [a]
[a] .[c]

[d]

Then thefollowing assertions hold.
a The equation

(2.3) I[a]’l--I[a]l /

is valid ifand only if
(2.4)

I[b]l. I[c]l

sign (d) sign (b) sign () 4: sign (d).

In this case

(2.5) sign (d’) sign d), provided 4 O.

b Ifwe have

(2.6) ([a]) >=

then

I[b]l" I[c]l

(2.7) ([a]’) ([a])

is true ifand only if

(2.8)

I[b]l" I[c]l

sign (a) sign (b) sign (d) 4 -sign (d).

In this case

(2.9) sign (d’) sign (d), provided a ]’ 4 O.

Proof. (a) 0 e d, b, } implies (2.3) and (2.4). Therefore, let 0 { d,/, }. Then
(2.3) is equivalent to

sign(d)=-sign (mid ( [b]’[c]

hence, by elementary rules of interval arithmetic,

sign (d)
sign (b) sign

sign (d)

This is, in turn, equivalent to (2.4). Equation (2.5) follows immediately from (2.3).
(b) 0 {b, } implies 6 d’ and (2.7)-(2.9). Therefore, let 0 {b, }. Then

[b] 4: 0, [c] 4: 0, and (2.6) guarantees ([a]) > 0 which, in particular, means d 4: 0.
Hence (2.7) is equivalent to

and this, in turn, is equivalent to (2.8). Equation (2.9) follows from (2.7) since [a]’
0 implies that d’ 4:0 by (2.6) and (2.7).
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Note that sign (d) determines whether a a or 1[ a d.

3. The algorithm. As in the noninterval case the interval vector [x] G resulting from
the interval Gaussian algorithm (which we will also denote by IGA([A], [b])) can be
described using the following matrices [A ](k) e IR x and vectors [b](k) e IRn, k 1,
...,n:

[h] (l) := [A], In] (1) := [b];

fork= 1,...,n- 1,

[a](k+ l)

(k+ 1)[b]i :=

(3.1)

(k)
laiD

(k):= [alo

0
(k)[b]i

(k)(). [a][alilc

(k)a ik (kk(k) b]
[al

1,...,k; j= 1, n,

i=k+ 1,...,n; j=k+ 1,...,n,

i=k+l n.

Then

(n) (n)[x] [a]ii n(-[X]/G’= [b]i Z [a]ij
j=i+l

where }’= n +1 is defined as zero. We emphasize that in the whole paper, [x] G is
always defined according to the expressions above, i.e., without permuting rows or col-
umns. Pivoting can be found in 22 ], but satisfactory results are still missing. The con-
struction of [A] (n), [b] tn), and [x] G corresponds to the triangular decomposition, the
forward substitution, and the backward substitution, respectively, in the noninterval
case. The way of constructing the matrices [A ]t) can also be described using the Schur
complement. Since our proof in 5 is based on the Schur complement we review it
shortly in the following definition.

DEFINITION 3.1. (Cf. 28 ].) Let

alll [el r) IRnxn[A]
[d] [A]

with c], d] 6 IRn and A ]’ IR(n (n ).
(a) The (n (n interval matrix

(3.2) ZtA := [A]’ [d][c] r
[a]

n> 1,

is termed Schur complement (of the 1, entry), provided that 0 [a]ll. Z[A] is not
defined if 0 a]l.

(b) [A has the triangular decomposition ([L ], U]) if either n and L 1,
[U]= [A]0, orifn> land

t 0 t ([a]ll[c]T)[L] := UI
[a],l [dl ILl’ 0 [U]’

where 0 [a]ll and ([L]’, [U]’) is the triangular decomposition of ZtAl"
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Note that, as opposed to the noninterval case, L U] [A is not always true. It
is obvious that the following assertions are equivalent.

(a) The vector IGA [A ], b exists for all b IR n.
(b) The matrices [A] (k) k n exist with 0 nn.

(c) The triangular decomposition L], U]) of [A exists.
(d) 0 [altk), k 1,..., n.
It is also important to note that the feasibility of the interval Gaussian algorithm

(3.1) (but not the result) only depends on the matrix [A and not on the vector [b ].
Hereafter, we will sometimes use the matrix

[a]21

(3.3) L[A] [a]ll IR" n,

[a]nl
0

[alll

which is defined if 0 t [a ]11. Obviously,
(2) [A])ij[a]o (LtA i,j=2,...,n.

To shorten some proofs in the sections to follow we state two lemmata of purely
auxiliary character.

LEMMA 3.2. Let [A] e IR" n, n >- 2, 0 q [a]ll, 0 < X e R’. Then the following
assertions hold"

(a)

(b)

(c)

(Z[AI> >- <[AI> ( z(n-1)(n-1), ifn >= 3).

([A] (2)) >= ([A]) (2).

([AI)x{!}0 implies ([Al(Z))x>_-([Al)(2)x{!}0.
Proof. (a) Using (3.2) we obtain by (2.2)

(2;tal) [A]’ [allll [d][c] -> ([A]’) ([a],l)
I[d]l I[c]l

([A]) (cf. also [28, Prop. 6i]).

Assertion (b) follows directly from (a) and

([A](:))
0

-I[a]21

(c) Since ([A]) (2) L([A])’([A]) with L(tal) defined for ([A]) analogously to
(3.3), we obtain, together with (b),

([A](2))x >_- L(tAI)(([A])x) >- I.([A])x,
thus establishing (c). Vq
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LEMMA 3.3. Let [A] e IRnn satisfy thefollowing properties:

(3.4) ( [A is irreducible,

(3.5) (tA])e >= 0.

Then we get
(a) ([alii) > O, n.
(b) Z(tal) is irreducible, provided n >= 3.
Proof. (a) Ifn the assertion follows by the definition ofthe irreducibility. There-

fore, let n > 1. By (3.4), for any { 1,..., n } there exists an index j j(i) 4: such
that [a];j 4: 0. Hence (3.5) implies that

0 <= ([a]ii) I[a]ijl < ([a]ii).
(b) Choose any two indices i, j e { 2 n }, assuming 4: j. (Note n >_- 3 by

assumption!) Then

(3.6) (([A])(2))0 -I[a]/l
I[a]l I[a]l

([a],,)
and thus

(3.7) (([A])(2))ij < 0 [a]i 4:0 or ([a]il 4:0 and [a]l. 4 0).

Choose a shortest path in the directed graph G(( [A )) which connects the node to the
node j, say,

(3.8) i=: il -- i2-- -- is-i -- is :=j.

Case 1. it 4:1 for all l e { 1,..., s }. Then by (3.7)
s 1, hence (3.8) is a path in G(( [A l) (2)) which connects the node to the node j.

Case 2. it for some index ( 1,..., s ). Since the path of (3.8) is of minimal
length, l is the only index for which it 1. Then l { 1, s} and [a];t_, 4: 0, [a]0+ 4: 0,
hence

(([A])(2))il_l,il+l < 0

by (3.7). Therefore, the path

i-- i2 -- it-- it+l -- is j

connects the node to the node j in G(([A])(2)).
Thus we have shown that for any nodes i, j e { 2,..., n }, 4: j, there is a path in

G(( [A )(2)) connecting toj without containing the node 1. By concatenating the paths
from to any node e { 2,..., n } \ { } and from to i, this assertion holds also for the
case j. Hence, any two nodes are connected in G((IA])) and thus Z(tAI) is irre-
ducible.

4. The degenerate case. In this section we consider the feasibility of the interval
Gaussian algorithm if [A is a degenerate interval matrix. As we have already pointed
out, this feasibility does not depend on [b]. Therefore, it is clear that we can adopt all
criteria that are known in the literature for the Gaussian elimination process in the
noninterval case. We start with the following well-known necessary and sufficient con-
ditions which can be found in [34].

THEOREM 4.1. Let A Rn n. Then IGA (A, b existsfor any vector b e IRn if
and only ifdet (Ak) 4: O, k 1,..., n, where Ak is the leading principal submatrix ofA
oforder k.
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Based on Theorem 4.1, we can immediately find classes of matrices for which [x] a
exists. We list some of them in our next theorem.

THEOREM 4.2. Let A e Rn n, b IRn. Then IGA (A, b ]) exists in each ofthe
following cases:

a A is symmetric and positive definite.
b A is an H-matrix.
c A is nonsingular and diagonally dominant.
d A is nonsingular and totally nonnegative.
We omit the proof, referring the reader to 21 for (a), to 18 or 14 for (b) and

(c), and to [12] for (d).
In view of 5 we consider irreducible matrices A which are diagonally dominant.

For such matrices we recall a necessary and sufficient criterion for A to be singular, so
that Theorem 4.2 (c) can be applied in all other cases.

THEOREM 4.3. Let A R n, [b] IRn, A being irreducible and diagonally dom-
inant. Then

(4.1) aii 4: 0, n.

Furthermore, A is singular ifand only if(A )e 0 and

(4.2) A D,DA(A)D,,
where D R n, D I, and DA diag (sign (a), sign (ann)). Therefore,
IGA (A, [b]) exists ifand only ifA is not representable in theform (4.2).

A generalization of this theorem can be found in 31 ], as was pointed out to us by
one of the referees; use "A R in the proof of Satz V in [31 to show D R"".

5. The general case. In this section we drop the restriction of[A being degenerate.
As mentioned in 1, [x] does not necessarily exist if the Gaussian algorithm is feasible
for each element matrix A [A ]. We might conjecture that at least Theorem 4.2 is
generalizable to nondegenerate interval matrices. Reichmann’s example in [33 shows
that this is not the case for symmetric positive definite matrices [A ]. (These are defined
by [A [A Tand by . being positive definite if [A is symmetric.) This is astonishing,
since Wilkinson showed in 36 that Zi is again symmetric positive definite, provided. has this property. Garloff gives in [20 a counterexample which shows that Theorem
4.2 (d) does not generally hold for nondegenerate interval matrices. We will illustrate by
Example 5.5 below that Theorem 4.2(c) can also fail when A_A_ 4: A. For H-matrices,
Alefeld showed in the existence of [x] . We recall this important phenomenon as
Theorem 5.1.

THEOREM 5.1. Let [A] IRnn be an H-matrix and let [b] e IRn. Then [x]
exists.

Using 14, Satz B.2.5 we can easily show that the matrices in the following corollary
are special H-matrices.

COROLLARY 5.2. Let [A] IR"n and [b] e IRn. In each of the following cases,
A is an H-matrix and thus x] exists:

a A is an M-matrix.
b ( A is strictly diagonally dominant.
c ( A is irreducibly diagonally dominant.
d ( A is nonsingular and diagonally dominant.
As motivated in we now consider the following weakening of Corollary 5.2 (c)

and, with restrictions, of Corollary 5.2 (d).
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(.)

and

(5.)

if

THEOREM 5.3. Let [A] IRn n, n >- 2, and [b] IRn. Assume that

( A is irreducible

([Al)e >_- 0.

sign(dkk) ifiq:j,
(5.3) sign (d/).sign (dik)’sign (dk)

--sign (dkk) ifi j

for at least one triple i, j, k { n satisfying k < i, j, then ’tAl exists. Moreover,
’tAl is an H-matrix or it fulfills again the conditions (5.1)-(5.3). In particular, these
properties imply the existence of[x]

Before proving Theorem 5.3 we give a simple example illustrating its contents.
Example 5.4. Define [A ] by

-1
[AI’= [oz, II 2 whereae (-1, 1].

[-1, 1] -1

[A 1 is not an H-matrix since ( [A 1) is singular (( [A ])e 0). The sign-matrix

StA := (sign (dig)) - R33is given by

-1)SIAl --1
0 --1

The product ofthe entries Sl3 $21 and $23 is equal to the entry SI1. Thus (5.3) is fulfilled
for (i,j, k) (2, 3, ), and by Theorem 5.3, IGA ([A], [b]) exists for any [b] e IRn.
Note that a 4: -1 is necessary to guarantee the feasibility of the interval Gaussian al-
gorithm, as will be shown by Example 5.5 below.

Proofof Theorem 5.3. We may assume that the only degenerate entries of [A] are
zeros. (Otherwise, we can slightly blow up the nonzero degenerate entries to obtain a
matrix [C] satisfying

[A]
_

[C], ([AI) ([CI), sign(dij) sign(d0.), i,j n.

In this way the assumptions of Theorem 5.3 hold also for C], and we prove Theorem
5.3 for [C] instead of [A]. Clearly, the interval Gaussian algorithm is feasible for [A if
it is for C] .) So, from now on we always assume that [A has only zero or nondegenerate
entries. Thus for < i, j we have

(2)[a] o O.,. [a]o=0 and ([a]iz=0or[a]zj.=0)

and
(2)[alij q: 0 =:, [a] 4: 0.

In particular, (2;tAl) is irreducible, if (IA]) has this property. In addition, the only
degenerate entries of 2;tA are again zeros.

If(([A])e)i > 0 for at least one index { n}, then [x] a exists by Corollary
5.2(c), and [A] is an H-matrix. Thus we assume, without loss of generality, that
(tA ])e 0 holds.
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Let n 2. Then in (5.3) k 1, j 2 necessarily holds. By Lemma 3.3(a),

Z[A]-- ( [a]22-[a]21[-a-]12)i]l
exists, and 0 [a ]22. Together with (5.3) this implies

sign (dll)

Hence, by Lemma 2.2 (b),

(2)([a]22) > ([a]a2)-
I[a], [a],_l

([a]l,)
the right-hand side being equal to zero by Lemma 3.2(c) (with x e). Thus EtA
IR is an H-matrix and [x] exists.

Now let n >= 3. By Lemma 3.3(a), EtA exists, and by Lemma 3.2(a) and (c) we
get

(,[A])e’ >= E(tAI)e’ 0,

where e’ (1, 1)r R,-. Since Z(tal) is irreducible by Lemma 3.3(b), so
is (

Case 1. There is an index io { 1, n } such that

(5.4) (([n])e’)i > 0.

Then (XtAl) is ieducibly diagonally dominant, thus XtAl is an H-matrix.
Case 2.

(5.5) ( tA)e’ O.

By Lemma 3.2 (a), (c) we get

0 (tA])e’ Z(tA])e’ 0,

hence

(5.6)

Assumption (5.3) and Lemma 3.3( a imply

(5.7) 0

andmma 2.2 and equations (5.3) and (5.6) yield k > 1. Frommma 2.2 and equations
(5.6) and (5.7) we also get

(2)sign (6i) sign (fij),
z(2)sign (di) sign (ui ),

sign (di) sign })),
sign (d) sign

Hence (5.3) holds for Etal; (5.1) was stated for this matrix already and (5.2) follows
from (5.5) for it.

So far we have shown that Eta exists and is an H-matrix or satisfies the assumptions
of Theorem 5.3 in the place of[A]. In the first case, [x] 6 exists by Theorem 5.1. In the
second case, we can again apply the argumentation above. Since we have already seen
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the theorem to be true for n 2, this concludes our proof by an induction of at most
n- steps.

The conditions 5.1 and (5.2) of Theorem 5.3 cause [A either to be an H-matrix
or to satisfy ([A])e 0. In this latter case the existence of [x] implies that [A does
not contain any matrix A which fulfills

where Dr, D,i are defined as in (4.2) (cf. Theorem 4.3). However, this is not sufficient
to guarantee the existence of [x], as can be seen by the following example.

Example 5.5. Consider the matrix [A ]-1 from Example 5.4, i.e.,

[A]’= [A]-i [--1, 1] 2 --1
[-1, 1] -1 2

([A ) is irreducible, ([A])e 0, but condition (5.3) is not fumle. Since

-1
det a 2 =6-c+/>-44:0 (t, /3 e [-1,1]),

t3 -1

each element matrix of [A is nonsingular, hence none of them can be represented by
(4.2). Theorem 4.2 (c) guarantees the existence of IGA
Nevertheless, IGA ([A], [b]) does not exist since [A] and

2 [-1 l]
[B]’= [-1, 1] 2

[--1, 11 --1

produce the same Schur complement ZtA ZtBI. This is due to the equality

[a]E[a]2 [-1, 1]. [-1, 1].[-1, l] [b]2[b]2.

The products occur when computing [A ]t2) and [Bit2), respectively. Since ([B]) [B]
and ( B )e 0, the matrix B contains a singular matrix, hence IGA B], b ), and
therefore IGA [A ], b ), cannot exist.

The idea of a type of backward analysis used to construct a matrix [B] with

ZtBl ZtAl can certainly be generalized, and can be used to construct classes of interval
matrices for which IGA ([A ], [b]) does not exist. We do not pursue this aspect fur-
ther here.

Acknowledgment. The authors are very grateful to the referees for their valuable
suggestions.
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EFFICIENT COMPUTATION OF THE SOLUTIONS
TO MODIFIED LYAPUNOV EQUATIONS*

STEPHEN RICHTERI’, LARRY D. DAVISI’, AND EMMANUEL G. COLLINS, JR.i"

Abstract. This paper develops a solution method for modified Lyapunov equations in which the modification
term (Q) is a linear function of the solution Q. Equations of this form arise in robustness analysis and in
homotopy algorithms developed for solving the nonstandard Riccati and Lyapunov equations that arise in
robust reduced-order design. The method relies on decomposing (Q) as (Q) ((b(Q)), where b(Q) is
an m-dimensional vector. It is shown that ifm is small, the new solution procedure is much more efficient than
are solution procedures based on a straightforward transformation of the modified Lyapunov equation to a
linear vector equation in n(n + )/2 unknowns. The results are extended to develop an efficient procedure for
computing the solutions to an arbitrary number of coupled Lyapunov equations in which the coupling terms
are linear operators.

Key words. Lyapunov equations, linear systems of equations

AMS(MOS) subject classifications. 15A06, 15A24, 65F05

Nomenclature. The following summarizes the nomenclature used in this paper.

nn
X5
Sij or Si,j
lm
Om
e
E(i,J)mn

co (s)
vec (.)

vec (.)

(R)

A .,-- B
Xi(A)

p(A)

the space of symmetric matrices in R n n.
n X X 5n (r cross products).

the i, j) element of the matrix S.
the m rn identity matrix.
the m n zero matrix.
the mth-order vector whose jth element equals one and whose additional

elements are zero.
the m n matrix whose (i, j) element equals one and whose additional

elements are zero.
the jth column of the matrix S.
the invertible linear operator defined such that vec (S) __a [s(sf...sru] T,

S e RP q, where sj & cob (S).
the invertible linear operator (called the "reduced vec operator" [14]) de-

fined such that ve-6 (s) & [s; s2, s22; sp, s2, Spp] 7r, s
.pXp.

the Kronecker product 3 ], 9 ].
"d is replaced by B."
the ith eigenvalue of the square matrix .4 (the eigenvalue ordering can be

arbitrary).
the spectral radius of the square matrix A.

1. Introduction. Lyapunov equations play a fundamental role in linear systems
theory. As a result, extensive research has been devoted to developing solution techniques
for this class of equations (e.g., ], 8 ], 10 ], 15 ]). In this paper we consider the
problem of finding solutions Q e 5 to the modified Lyapunov equation

O=AQ+QAr+(Q)+ V, A’’, V6$"’,
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where k (A) + hj.( A # 0 for i, j 1,..., n } and " 5"
_

5n is a linear operator.
It will be subsequently shown that although it may not be convenient to do so, for some
positive integer p it is always possible to express "(Q)

p

(1.2) ..(Q) ., (BiQCf + CiQBf ).
i=1

Linear equations of the form 1.1 have appeared in robustness analysis theory [2] and
have also appeared in key substeps ofalgorithms developed to enable the design ofrobust,
fixed-order control laws 4 ], 5 ], 11 ]-[ 13 ].

One technique for solving 1.1 when (Q) is given by 1.2 is to express it as the
linear vector equation 3 ], 9

(1.3)

where

S vec (Q) -vec (V),

p

(1.4) SA(R)I,+I,,(R)A+ , (B(R)C+C(R)B).
i=1

A solution Q is then found by solving the linear vector equation (1.3) in n 2 unknowns.
The solution is unique if and only if S n2 n2 is nonsingular, in which case Q is found
by inverting S or by using an alternative solution methodology, such as Gaussian elim-
ination. Obviously, for large n this task can be computationally prohibitive.

Some relief can be found by exploiting the fact that it is known a priori that a
solution Q that solves 1.1 is symmetric. In this case, if 3"(Q) is defined by 1.2), it is
possible to reduce 1.1 to a linear vector equation in n(n + )/2 unknowns. Unfortu-
nately, the size of the matrix to be inverted is still very large for large n.

However, suppose that "(Q) is in some sense of low rank (to be made precise
later). For example, consider the extreme case in which

(1.5) ..(Q) = EQE,
where E "" is given by

OI(n_ 1) ](16) E ’x

O(n-l)l O(n-l)x(n-l)

Then, since 1.1 is just a "slight" perturbation from a standard Lyapunov equation, it
seems plausible that we can find a computational scheme that requires only slightly more
computations than those required for a standard Lyapunov equation.

In what follows, we develop a solution technique for 1.1 that relies on decomposing
(Q) as "(Q) (((Q)), where O(Q) is an m-dimensional vector. This solution

methodology does not require directly converting the matrix equation to a linear vector
equation, although it does require the solution of a certain linear vector equation of
dimension m. Once the solution x ofthis linear equation is computed, the desired solution
Q is found by solving a standard Lyapunov equation. Hence if m is small, the new
method for finding Q will have very significant computational advantages over methods
based on a straightforward transformation ofthe modified Lyapunov equation to a linear
vector equation.

The paper is organized as follows. In 2 we lay the theoretical foundation for the
solution technique. Section 3 builds on this theoretical foundation and develops a com-
putationally efficient solution procedure. Section 4 illustrates the results by considering
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two modified Lyapunov equations that occur in engineering practice. The results are
extended in 5 to develop a solution procedure for an arbitrary number of coupled
modified Lyapunov equations in which the coupling terms are linear operators. Final
remarks are presented in 6.

2. On the solution ofthe modified Lyapunov equation. Define the Lyapunov operator
t ’" 5"" - 5 such that &t’(A, V) is the solution of the Lyapunov equation

(2.1) 0 A-qP’(A, V) + (A, V)A r + V.

Since it is assumed that Xi (A) + Xj(A) 4 0 for i, j 6 { 1, n }, it is well known (see,
e.g., [1]) that dt(A, is invertible. Note that (A, is also a linear operator.

Lemma 2.1 reveals that the modification term o" (Q) can always be written in a
"nice" form.

LEMMA 2.1. Let 5"" - $"" be a linear operator. Then, for some integer p,
o(Q) can be expressed as

p

(2.2) ’(Q) Z (BiQC + CQB),
i=1

where each B and Ci is a member of " ".
Proof. The proof is by construction. We begin by decomposing o(Q) as follows:

(Q) iZ1 (qiiln)’(E(ni’ix)n) + ,(E(n’)n)(qiiln)

(2.3)

-4r- Z Z [(qijln)"" (i j)t,) + (E4)(q,)].
i=l j=i+l

Now

(2.4) qjI,, ,(k i) )K,(j,k)

k=l

By substituting (2.4) into (2.3) and recognizing that qi qo, we obtain

(Q) Z nxnnxno(E’) + (E’)(k’)

i=lk=l
(2.5) __

K’(k,i) tqK’(j,k) r(n n) -[- li’(j’i)
nla-’n %(,x-’n n]

i=lj=i+l k=l

Since E(J) -’nXnlg(i’j)T, the proof is immediate from (2.5). []

Although Lemma 2.1 guarantees that it is always possible to express (Q) by a
summation of the form (2.2), it may not be computationally efficient to compute the
ni and Ci in (2.2).

For the solution methodology of this paper it is more important to decompose
’(Q) as

(2.6) o’(Q) f(b(Q)),

where " 5" x,
_

Nm and f" Nm ._ $n X n. AS an illustration, if"(Q) is given by 1.5
and (1.6), then b(.) and f(.) can be chosen such that b(Q) __a ql and

ql Ox(n- ) ](ff(qll)
Lo(,_) o(,_ )(._1)
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From (2.6) it follows that any solution Q of 1.1 can be expressed as

(2.7) Q (A, fa(x)+ V),

where

(2.8) x b(Q).

Thus if x is somehow known, we can find the corresponding Q by simply solving a
Lyapunov equation with forcing function fa(x) + V. With this in mind we now state a
key theorem.

THEOREM 2.2. Let M mm be defined such that

(2.9) My = ck(.W(A, fa(y))), y e Nm,

and let

(2.10) d 4)(q(A, V)).

Then there exists a solution Q to 1.1 ifand only ifthere exists a solution x to

(2.11 x Mx + d.

In addition, the set ofsolutions Q to 1.1 is given by

(2.12) Q= {Q: Q= (A, fa(x) + V), xsatisfies (2.11)}.

Proof. Q is a solution of 1.1 if and only if

Q q(A, fa(4)(Q)) + V),(2.13)

which implies

4)(Q) 4)((A, fa(4)(Q))+ V)
(2.14)

4)(q(A, fa(4)(Q)))) + b(o(A, V)).

It follows from (2.9) and (2.10) that (2.14) is equivalent to

(2.15) b(Q) M4(Q) + d.

Thus if 1.1 has a solution Q, there exists a solution x of (2.11 ).
Next, assume that x is a solution of (2.11 or, equivalently,

(2.16) x $(q(A, fa(x) + V)),

and let

(2.17) Q .(A, fa(x) + V).

It follows from substituting (2.17 into the fight-hand side of (2.13 and using (2.16
and (2.17 consecutively that

&C’(A, fa(4)(Q))+ v)= .q(A, fa(b((A, fa(x)+ V)))+ V)

a(A, (x) + V)

=Q.

Hence Q given by 2.17 with x given by (2.16 satisfies (2.13 ). V1

An obvious corollary of Theorem 2.2 is as follows.
COROLLARY 2.3. The modified Lyapunov equation 1.1 has a unique solution if

and only if(Ira M) is invertible, in which case the solution Q is given by

(2.18) Q ’(A, (a((Im m)-ld) + V).
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Theorem 2.2 and Corollary 2.3 show that all solutions to (1.1) can be found by
solving the linear vector equation (2.11 in m unknowns and then solving a standard
n n Lyapunov equation (as described by (2.7)). If m is sufficiently small, it would
then appear that this solution technique would be more computationally efficient than
would solving a linear vector equation in n(n + )/2 unknowns. However, this is only
true if the cost of computing the matrix M and vector d, defined respectively by (2.9)
and (2.10), is not too large. Section 3 shows that the primary computational burden of
constructing M and d is the solution of m + Lyapunov equations, each having A as
the coefficient matrix. If 1.1 is first transformed to a basis in which A is nearly diagonal,
the cost of computing M and d is not large.

3. An efficient solution methodology. For j { 0, 1, m ) define Q(J) to be the
solution of the Lyapunov equation

(3.1) 0 AQ(j) + Q(J)A T + v(j)

where

3.2) V(j) I V, j O,

c--a(e)), j 1,..., m.

PROPOSITION 3.1. Let M Rmxm and d Rm be defined respectively by (2.9) and
(2.10). Then,

(3.3) col (M) & (Q()), j 1, 2 m,

and

(3.4) d 4)(Q(O)).

Proof. First, note that

(3.5) Q(O) &t’(A, V),

3.6 Q(J) ,ct (A, (e))), j= 1,2,...,m.

It follows from (2.9) that

(3.7) col (M) b(t’(A, fa(e(mJ)))).
Equation (3.3) is then immediate from (3.7) and (3.6), and (3.4) follows immediately
from (2.10) and (3.5).

Proposition 3.1 reveals thatMand dcan be constructed by solving m + Lyapunov
equations and operating on each solution with the linear operator 4(’). The m +
Lyapunov equations can be computed with relatively few computations ifA is in a "nice"
form, such as nearly diagonal or nearly triangular. Hence transformation into an appro-
priate basis is the first step in the solution procedure detailed below. The real Schur form
7 (a nearly triangular form) has been shown to be numerically stable and can be chosen

as this basis. However, the tridiagonal basis discussed in 6 and 15 is also numerically
stable, and when it is used with the alternating-direction implicit algorithm 15 for
solving Lyapunov equation it can provide substantial savings in computation time. In
particular, it follows from the analysis presented in 15 that ifthe Schur form were used,
the algorithm would require approximately 1n3 + (m + )n 3 flops. Here we are ignoring
operations involving the transformation ofthe operator #"(.) that are problem dependent.
The first term in the operation count(tn3) represents the operations involved with the
transformation of the system, whereas the second term ((m + )n 3) represents the op-
erations involved with solving the Lyapunov equations in the Schur basis. The approx-
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imate algorithm requirements for the tridiagonal basis are n -I- (m + 12Jn 2 flops,
where J represents the number ofiterations ofthe alternating-direction implicit algorithm.
The results of 15 indicate that typical values of J are in the interval [4, 8 ], so for large
n transformation to tridiagonal basis can be much cheaper than transformation to
Schur form.

Before summarizing the solution methodology we note that it may be possible to
solve for x directly (and perhaps more efficiently) without explicitly calculating M. For
example, if p(M) < 1, then x may be computed [7] by the series

x d + Md + M2d + M3d +
or, equivalently,

x do + d + d2 + d3 + "’’,

where, as per (2.9), do, d, can be found by using

di+, ck((A, C(di))), do d.

This is a subject for future research.

SOLUTION METHODOLOGY
Step 1. Compute a transformation matrix T such that T-AT is in real Schur form

or tridiagonal form.
Step 2. Transform 1.1 to the new basis by making the replacements

(3.8) A -- T-AT,(3.9) V -- T-VT-T,
(3.10) (’) -- T-(-(’))T-T,
where - $"" - $"" is defined such that

(3.11) ’(Q)

Note that the transformations (3.8)-(3.10) imply

(3.12) Q -- T-QT-7;.

Step 3. Define $"" -- m and :m .. $, such that

(3.13) (’) f(4(’)).

(The objective here is to define 4if" and f6 (-) such that m is as small as possible.)
Step 4. Construct M and d by using the following loop.

FORj 0, m
Compute V() by using (3.2).
Compute the solution Q() of (3.1).
If (j 0), compute d by using (3.4).
If (j >_- ), compute col (M) by using (3.3).

END FOR

Step 5. Find a solution x of

(3.14) x Mx + d.

If a solution does not exist, then no solution exists to 1.1 ); so stop.
Step 6. Compute a solution Q to

(3.15) 0 AQ + QA T + C(x) + V.
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Step 7. Transform Q back to the original basis, i.e.,

(3.16) Q -- TQTT.
Step 8. Stop.

4. Two illustrations from engineering applications. This section considers two
modified Lyapunov equations of the form 1.1 that occur in engineering applications
and shows how to construct the b(. and f(.) in (2.2) to be used in the solution scheme
of the previous section.

Example 4.1. This example considers the modified Lyapunov equation

(4.1) 0 AQ + QA T + HISz,QSRHa + HRSR,.T,qCTHTz, + V,

where H. Rnms, SL Rmsn, SR nns, HA nsn with ms < n and ns < n. This
equation occurs in an algorithm for reduced-order-controller design 4], [5], 11 ]. Notice
that the structure of (4.1) does not change when it is transformed such that A - T-1AT
for some nonsingular T. Thus without loss of generality we can assume that A is in real
Schur form or tridiagonal form.

Equation (4.1) is equivalent to 1.1 with

(4.2) (Q) HLSLQSaHa + T T T THaSRQS.Hz.

We can express (4.2) as

(4.3) ’(Q) (((Q)),

where (. ) and ((.) are the linear operators defined such that

(4.4) (Q) & vec SLQSR ), Q n

((x) H vec-1 (X)HR + Hr[vec-1 (x)]TH[, x msns.(4.5)

Thus for

(4.6) m msns
(. maps 5n into m and ((.) maps Rm into 5 n.

Recall that we have assumed that both ms < n and ns < n. Hence

(4.7) ms (( n or ns (( n m (( n(n + 1)/2,

and the solution procedure ofthe previous section will be more efficient than procedures
that directly convert (4.1) to a linear vector equation. In the algorithm of[4 ], 5 ], and
11] for reduced-order-controller design, ms (( n if the order of the desired controller is
much less than the order of the design plant and ns (( n if the number of sensors (or
actuators) is much less than the order of the design plant.

Example 4.2. This example considers the modified Lyapunov equation

(4.8) O AQ + QAT + S AiRQRTA f ST+ V,

where S, T .x., p < n, and for some integer vector g of dimension p the Ai are
defined such that

(4.9) Ai =block-diag 0,...,0,
-1 0

’0 ,0
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where the (gi, gi element of Ai corresponds to the 1, element of

Equation (4.8) occurs in an algorithm for robust-controller design for flexible structures
[4 ], [5 ]. As in the previous example, the structure of (4.8) does not change when it is
transformed such thatA - T-1ATfor some nonsingular T. Thus without loss ofgenerality
we can assume that A is in a modal basis.

Equation (4.7) is equivalent to 1.1 with

(4.10) ,(Q) S , AiRQRrA Sr.
i=1

Define j." 5 x n ._ 52 2 such that

(4.11) j(W) [ wj

wj,+

and define R3p ._ 5 n such that

Wj,j+ ] WE nn
wj.+ 1,j+l

(4.12 (x) block-diag
x3(i 1)+ X3(i 1)+ 2

X3(i-1)+2 X3(i-1)+3 i=

Then (4.10) can be given by

(4.13) ’(Q) f(b(Q)),

where (. and ((.) are the linear operators defined such that

(4.14)

(Q) vec[V-C6(eI(A1TQTrAI)), vec(e,(ApTQTrAr))], QEnxn,
(4.15) f(x) S(x)ST, x E 3p.

Thus for

(4.16) m 3p,

(. maps 5n, into and ((.) maps m into 5 .
In the algorithm of[4 and 5 for robust-controller design for flexible structures,

p represents the number of uncertain modes and hence p < n. Thus

(4.17) n )) 3 =:, m (( n(n + 1)/2.

The condition n >) 3 is equivalent to the order of the design plant being much greater
than 3.

5. Extensions to systems of coupled modified Lyapunov equations. In this section
we consider the problem of finding a solution (QI, Qr) to the coupled modified
Lyapunov equations

0 AIQI + QA + ,(QI,..., Qr) h- VI,

(5.1) 0. A2Q2

0 ArQr
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where, for k e { r}, Ak nn and Vk 5nn. It is also assumed that, for k e { 1,
r}, k Srl nXn nn is a linear operator and Xi(Ak) + Xj(Ak) =/= 0 for i, j

{ 1,..., n }. Systems ofequations ofthe form (5.1) must be solved in algorithms developed
to enable the design of robust, reduced-order controllers 4 ], 11 ], 12 ].

The results ofthis section parallel those of 2 and 3. Hence the solution methodology
is based on decomposing the k(’) as

(5.2) Ok(’) (k(b(’)), k 1, 2,..., m,

where 4 5,x, _, Nm and each Ck Nm .. 5,xn is a linear operator.
Lemma 5.1 below generalizes Lemma 2.1 and reveals that each ofthe modification

terms Ok(" can be written in a "nice" form.
LEMMA 5.1. Let k X 5 x ..., 5 x be a linear operator. Then, for some set of

integers { Pi }ri=l, .-k( Ql Qr) can be expressed as

Pl

k(al, Or) (n,iafT,i q- C,iani)
i=1

(.3)
Pr

+ + (Bp,iarCpT,i+ TCp,iQBp,i),
i=1

where each Bk,i and Ck,i is a member of " ".
Proof. The proof is essentially identical to the proof of Lemma 2.1 and is thus

omitted. [3

THEOREM 5.2. Let M mm be defined such that

(5.4) My = d(q’(A, l(Y)), ,(Ar, C-r(y))), y m,
and let d " be defined by

(5.5) d cb(M’(A, V),..., q(Ar, Vr)).

Then (5.1) has a solution QI, Or) ifand only ifthere exists a solution x to

(5.6) x Mx + d.

In addition, the set ofsolutions Q to (5.1) is given by

Qr= {(al, Qr): ak .(Ak, C-k(X) + Vk)
5.7 )

for k r; x satisfies (5.6) }.

Proof. (Qr,..., Q) is a solution of (5.1) if and only if

(5.8) Qk ’(Ak, (k(4(Q, Qr)) + Vk), k 1,..., r,

which implies that

4( Q Qr 4(q a fg 4(Q Qr + V
(5.9)

..(ar, qJr(q(Q,,..., Qr))+ Vr))

or, equivalently,

(5.0)

4(Q,..., Qr)= c((A,, f(d(Q, Qr))),..., q’(ar, c(c(Q,, Qr))))

q-k((a, V), (ar, Vr)).
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It follows from (5.4) and (5.5) that (5.10) is equivalent to

(5.11) qb( a, Qr) Mc(a, Qr) w d.

Thus if (5.1) has a solution, there exists a solution x of (5.6).
Next, assume that x is a solution of (5.6) or, equivalently,

(5.12) x 4)(q(al, l(Xl) -[- Vl), ’(ar, r(Xr) At. Vr)) k 1,..., F,

and that (Q,..., Qr) is given by

(5.13) Qk Zt(Ak, fk(x) + V), k r.

It follows by substituting (5.1 3 into the fight-hand side of (5.8) and using (5.12) and
(5.1 3 consecutively that

qk(Ak, Ck(49(Q,..., Qr)) + Vk)

.k(Ak, (k(dP(.q(A, C(X) -b V),..., q(Ar, r(X) "[- Vr)) Af. Vk))

(A, (x)+ V)

Q1,.

COROLLARY 5.3. The system of coupled Lyapunov equations (5.1) has a unique
solution ifand only if(Im M) is invertible, in which case the solution Q, Qr) is
given by

(5.14) Qk ’k(Ak, f((I- M)-d) + V), k 1,..., r.
(J)Now, for j {0, 1, m} define the matrices Q to be the solutions of the

Lyapunov equations
(J) (j)(5.15) 0 AiQj) + Qi A + V

where

(5.16)

1,...,r,

(j) { Vi, j 0
V

ci(e(mJ)) j 1, mi.

PROPOSITION 5.4. Let M Rmm and d Rm be defined respectively by (5.4) and
(5.5). Then

(J)(5.17) colj (M) b(0, 0, Qi 0,..., O)
i=1

and

(5.18) d ’ (0, 0, o!) 0, 0)
i=l

where QJ) and Q0) in, respectively, (5.17) and (5.18) correspond to the ith argument
of the function (-).

Proof. First, note that for { 1, r}

(5.19) Q}O) .(Ai,

(J) .(Ai, ci(e(mJ))) j m(5.20) Qi
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It follows from (5.4) that

(5.21) col/(M) b(e(A,, fa,(e))),..., ’(Ar, Cr(e()))).

Equation (5.17 is then immediate from 5.21 and (5.20), and (5.18) follows immediately
from (5.5) and (5.19).

Proposition 5.4 reveals that M and d, defined respectively by (5.4) and 5.5 ), can
be constructed by solving (m + )r Lyapunov equations or, specifically, m + Lyapunov
equations with coefficient matrix Ai for 1,..., r. These Lyapunov equations can be
computed with relatively few computations ifthe Ai are in real Schur form or tridiagonal
form. Hence transformation into an appropriate basis is the first step in the solution
procedure detailed below.

Step 1. For 1, r compute a transformation matrix Ti such that T, AiTi
is in real Schur form or tridiagonal form.

Step 2. Transform the equation (5.1) by making the following replacements.
For 1,..., rlet

(5.22) Ai T:, 1AiTi,

(5.23) V - T- ViTT,

(5.24) #’i( ", ") -- T-1 (--l(") -r(’))T-r,
where ,. 5"" -- 5"" is defined such that

(5.25) -i( Q)

Note that the transformations (5.22)-( 5.25 imply

(5.26) Qi -- TT1 Qi T7, 7,.

Step 3. For 1, r define 4)i ’" - mi and fai mi .. .nn such that

(5.27) i(’) fai((;(.)).

(The objective here is to define 4)i(’) and fai(" such that mi is as small as possible.)
Step 4. Construct M and d by using the following loops.
Initialize d 0.
Initialize d//j 0 forj 1, m.

FOR/= 1, r,
FORj 0, m

(J)Compute V by using (5.16).
(J)Compute the solution Q of (5.15).

If (j 0), compute d by using 5.18 ).
If (j >_- ), compute d by using (5.17 ).

END FOR
END FOR

Step 5. Find a solution x of

(5.28) x Mx + d.

If a solution does not exist, then no solution exists to (5.1); so stop.
Step 6. For k r compute the solution Q of

(5.29) AkQk + QkA T + fa(X) + V.
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Step 7. For k r transform the Qk back to the original basis, i.e.,

(5.30) Qk -- TkQkT.

Step 8. Stop.

6. Final remarks. This paper has presented a procedure for solving a class of mod-
ified Lyapunov equations that relies on decomposing the additional term "(Q) in the
Lyapunov equation as (Q) ( 4(Q)), where 4(Q) m. If m is small, the solution
procedure will not require much more computation than that required for a standard
Lyapunov equation and can thus be much more efficient than a solution procedure based
on converting the modified Lyapunov equation to a linear vector equation. The results
for the solutions of a single modified Lyapunov equation have also been extended to
develop a solution methodology for an arbitrary number ofcoupled Lyapunov equations
in which the coupling terms are linear operators.

Acknowledgments. The authors thank Dr. Dennis Bernstein for several helpful sug-
gestions and comments. They also thank an anonymous reviewer for suggesting the direct
solution for x described in 3.
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INCREMENTAL UNKNOWNS IN FINITE DIFFERENCES:
CONDITION NUMBER OF THE MATRIX*

MIN CHENf AND ROGER TEMAM

Abstract. The utilization of incremental unknowns (IU) with multilevel finite differences was proposed
in [R. Temam, SlAM J. Math. Anal., 21 1991 ), pp. 154-178] for the integration of elliptic partial differential
equations, instead ofthe usual nodal unknowns. Although turbulence and nonlinear problems were the primary
motivations, it appears that the IU method is also interesting for linear problems. For such problems it was
shown in [M. Chen and R. Temam, Numer. Math., 59 1991 ), pp. 255-271] that the incremental unknown
method which is very easy to program is also very efficient, in fact, it is comparable to the classical V-cycle
multigrid method.

In this article the condition number ofthe five-points discretization matrix in space dimension two for the
Dirichlet problem is analyzed; more general second-order elliptic boundary value problems are also considered.
It is shown that the condition number is O((log h)2) where h is the mesh size instead of O( 1/h2) with the
usual nodal unknowns. This gives a theoretical justification of the efficiency of the method since the number
of operations needed to solve the linear system by the conjugate gradient methods is O(/r), where K is the
condition number of the matrix.

Key words, finite differences, incremental unknowns, multigrid methods, linear algebra
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1. Introduction. After spatial discretization by finite differences, the solution of an
elliptic boundary value problem reduces to the solution of a linear system

(1.1) AU=b,

where U, b RN and A is a regular matrix of order N. The dimension N is the number
of nodal points and U is the vector corresponding to the nodal values of the unknown
function. When N is very large, e.g., when nonlinear phenomena and turbulence are
involved, we have advocated in [T2] the utilization of the incremental unknowns (IUs)
whose definition is recalled below. Let 7 RN be the vector corresponding to the IUs
and let S be the transfer matrix

(1.2) U SU.

Then 1.1 becomes

ASU b

or

(1.3) AU b

with A tSAS, b tSb.
IUs can be defined when multilevel discretizations are used. For instance, if two

levels of discretizations are used, we have a coarse grid of mesh 2h and a fine grid of
mesh h; then the incremental unknowns are:
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the nodal values of the unknown function at the coarse grid points, and
the increment to the averaged value ofthe function at the closest coarse grid points,

for the fine grid points (see Fig. 1.1 and the more precise definition below).
In that case, the matrix S is very simple but A tSAS is complicated, essentially a

full matrix [CT 1]. However for the solution of (1.3) we can use a conjugate gradient
method, in which case we never need the explicit form ofA since we must only perform
the product of with a vector of RN; this can be done easily and necessitates a small
number of algebraic operations.

For example, in space dimension one, let be the interval (0, ), and let h
/ 2N, N be the fine mesh, and 2h be the coarse mesh. If u# - u(jh) is the approximate

value of the unknown function u at the mesh point jh, then the incremental unknowns
are:

Y2i u2i at the coarse grid points 2ih, 0,..., N;
z2i/l u2i/l 1/2(u2i + u2i/2) at the fine grid points (2i + 1)h, 0

N-1.
Similarly, in space dimension two, let ft be the square (0, )2, and let h /2N, N e ,
and 2h be the fine mesh and the coarse mesh. If ui# - u(ih, jh) is the approximate value
of the unknown function u at the mesh point (ih, jh), we then define the incremental
unknowns as follows:

Y2i,2j U2i,2j at the coarse grid points (2ih, 2jh), i, j O, N;
Z2i,2j + U2i,2j + 1/2( l12i,2j -]-" U2i,2j + 2) at the fine grid point (2ih, (2j + h)

between two vertical coarse grid points, 0, N, j 0 N- 1;
Z2i + 1,2j U2i + 1,2j 1/2( bl2i,2j dr- lg2i + 2,2j) at a fine grid point ((2i + h, 2jh) between

horizontal grids points, 0, N- 1, j 0 N;
Z2i + 1,2j + bl2i + 1,2j + ( bl2i,2j -" bl2i + 2,2j + bl2i,2j + 2 -I- ll2i + 2,2j + 2 at a fine grid

point ((2i + )h, (2j + )h) in the center of a coarse grid square, i, j 0, N- 1.
We can also use several levels of discretizations with meshes h 1/(N. 2 J), j 0
d, Ne . In this case the definition is the same as above at each level ofmesh refinement,
starting from the finest grid. The reader is referred to CT for the notations and the
matrix structure of the problem in this case, while the functional aspect of the problem
is studied below.

Although it has its own originality, the IU method can be compared to other existing
methods. First, in the language oflinear algebra, it amounts to a linear change ofvariables
and therefore to a preconditioner (see, e.g., [AB] or [S]). In the very simple case of
space dimension one, it is equivalent to the cyclic reduction method of Golub and Van
Loan [GV], Golub and Meurant [GM], and Birkhoff, Varga, and Young [BVY]. Like
the multigrid method, the IU method is based on the utilization of several nested grids
in finite differences. However, the resolution of the linear system seems different: the
unknowns remain the nodal values when the multigrid method is used, and we make
use here of the conjugate gradient method, which is not usually the case with multigrid
methods.

The IU method presented here can also be compared to the multilevel methods
associated with the utilization of hierarchical basis multigrid preconditioners in finite

x 0 x
x 0 x
0 0 0
x 0 x

(a) (b)

FIG. 1.1. Coarse grid points x andfine grid points ((C)) in space dimensions a and 2 b ).
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elements (see, e.g., Yserentant [Y1], [Y2]; Dryja and Widlund [DW]; Xu [X1], [X2],
[X3]; and Atanga and Silvester [AS]). In fact, the incremental unknowns are the same
as the components of the function in the Q-hierarchical basis and subsequently we use
results from Y ]. However the IU method is developed strictly in the context of finite
differences. It is simple to implement and it does not carry the drawbacks (or advantages)
of finite element methods. Also, we will present in a subsequent paper several different
definitions of incremental unknowns which are not associated with finite elements (see
CT2 ]). Finally let us recall that the primary motivation and originality ofthe IU method

lies in its utilization for nonlinear problems (see [T2] and articles to appear), but we
believe it is also worth exploring its validity in the context of linear problems.

Our aim in this article is to study the condition number of the transformed matrix
A for second-order elliptic boundary value problems when incremental unknowns are
used. In particular, we want to show that the condition number is of order d-2 when d
levels of discretization are used and the finest mesh is of order h(=hd) ho/2 d. Hence
the condition number is O((log h)2), contrarily to the condition number ofA, which is
O(h-2). This result is obtained by deriving appropriate bounds on the smallest and
largest eigenvalues ofA through the associated bilinear form. The considerable decrease
in the condition number occurring in finite differences with the utilization of the IUs
can be compared to that occurring in finite element methods when multilevel discret-
izations and hierarchical bases are used (see [Y 1]).

This article is organized as follows. In 2 we describe the mathematical setting and
formulate the main results, namely, the appropriate bounds on the eigenvalues. These
results are proved in 3 and 4. Then in 5 we apply these results to some specific
boundary value problems.

2. Mathematical setting. The main results. We consider in 2 two discretization
meshes

h0 (hi,0, h2,o), hd (h,d, h2,d), hi,d , d> 0;

h0 is the coarse mesh and hd the fine mesh and different meshes are allowed in both
directions Xl, x2. To these meshes we associate the grids

;0 ;ho made of points (jhl,o, j2h,o),

;d ha made of points (jlh,d, j2h,a),

where j, j2 e 7/. For j (j, j) e 7/2 we denote also by K,ha, or more simply Kj,d, the
rectangle

K,d (jlh,d, (j + 1)h,d) (j2h2,d, (j2 + 1)h2,a).

We define in a similar manner a rectangle Kj.,0 or ,h0 by replacing ha by ho.
For simplicity we shall emphasize the case where ft is a rectangle (0, a (0, a2)

and hi,o ai IN, 1, 2. More general open sets ft and more general meshes will be
considered below. Although we are interested infinite differences, a space of finite element
functions on ft will be used. More precisely, we denote by Vha, or more simply by Vd,
the space of continuous real functions on 2 that are QI on each rectangle K,d cft, and
by //d the set of nodal points

//d d f3 2,

That is, the function is affine with respect to x and .2 separately.
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and we recall that the functions of Vd are uniquely defined by their nodal values, i.e.,
their values on //d. We define in a similar manner the spaces Vl Vhl), 0 <= 1 <= d and
observe that

(2.1) V0 V V.
In addition, Vd and the subspaces Vl are included in the Sobolev space H(f), and we
can endow Vd with the scalar products and norms induced by L(f) and H’( f):

(u, v) fe u(x)v(x) dx, lul=) (u, u) /2,

((u, v)) (u, v) / Ilull ((u, u)) 1/2

i= OXi OXi

2.1. Space decompositions. Since Va- Va, it is useful to define a supplement
Wa- of Va-, into Va so that

(2.2) Va Va- 9 Wa.
For that purpose we define Wa as the subspace of Va consisting of the functions z Va
that vanish at the coarse grid points, i.e.,

(2.3) z(M) 0 VM qld- .
It is clear that Va- fq Wa- is reduced to { 0 }. Furthermore, since the functions of Va
are uniquely defined by their values at the nodal points on a//a, every function u Va
can be uniquely written as the sum

(2.4) u y + z,

so that

(2.5)

yE Vd-1, Z- Wd,

y(M) u(M) VM ffld_ 1,

z(P) u(P) y(P) VP d\d_ 1.

The rectangles K e -d are obtained by dividing the rectangles ofd- into four equal
rectangles. Consider a rectangle K a- and the corresponding rectangles ofa denoted
by KI, K2, K3, K4 as in Fig. 2.1. Since y is linear along the edges of K, we see with (2.5)
that

z(P) u(P)- 1/2(u(M) + u(M2)),

(2.6) z(P2) u(P2)- 1/2(u(M)+ u(M3)),

z(P3) u(P3)- 1/4(u(MI)+ u(M2)+ u(M3)-!- u(M4)).

Hence the nodal values of z at the points Pi lla\Olla are the incremental values of
u as defined in 1.

Of course, we can reiterate the decomposition (2.2),

Vd-1 Vd- 2 ) Wd- 2,

and finally,

(2.7) Va Vo WI W2 We.
2.2. Interlolation. The linear interpolation operator re rha associates to any con-

tinuous function on f, u e cg (ft), the function rau Va defined by its nodal values

(2.8) rdU(M) u(M) VM e lld.
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M

K3

K1

FIG. 2.1. A rectangle K of"-a- divided intofour rectangles of’d.

Similar interpolation operators rl rhl, O,..., d 1, can be defined and if u Vd,
rdU U, and the obvious formula

d

(2.9) u rdU ro u + rlu rl U
l=1

yields the decomposition of u corresponding to (2.7) as rou Vo and rlu r_ U W.
2.3. Other norms. If u Vd, Z rdU rd- U vanishes at the nodes M //d_ and

takes the incremental values as in (2.6) at the nodes P lla\lla_ l; similar relations
hold at the other levels of discretization. Hence the (rtu rt-lu)(x), x llt\tlt_ 1,

1, d, are the incremental values of u at the different levels. We then endow Vd
with a semi-norm and a norm corresponding to the incremental values. If u Vd, we set

d

(2.10) [u],a- [u],- Z I(rtu- rz_u)(x)l 2,
xlll\lll

(2.11) lu]a u] [u] + Z Irou(x)l 2.
o’

To a function u of Va, we associate the step function such that

(x) u(jlhl,a, j2h2,a) Vx K,a,

j (jl, jz), 0 =< ji <= N’2 a. We then define the discrete H scalar product and norm

((u, v))a ((u, v))h

fn t(x)(x)dx+ i=1

Ilull {((u, u))} /= Vu, v v.
Here Vl,ha, V2,ha are finite difference operators

v,,h(x) {(x, + h,, x)- (x, x)),

v,(x) {(x,, x + h,)- (x,, x)}.
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The comparison of the norm I1" lid to the norm I]" ]], uniform with respect to hd, is the
purpose of Lemmas 4.1 and 4.2.

At this point we can state the following equivalence norms theorem, which will be
proved in 3 and 4.

THEOREM 2.1. (i) There exist two constants c and c2 that depend only on 0 h,o/
h2,o such that, for every u e Vd,

(2.12)

C1

(d+ 1)
{ IX7roul)+ [u]} ’/ =<

-< c { IVr0ul .,_,:,,,) + [u])/

where V is the gradient operator.
(ii) There exist two constants c3 and c4 that depend only on 0 hi,o h2,0, such that

for every u Va

(2.13)

C3

(d+ 1) IVroul2c + I1-’ Iroulc + [u]} /2

<= c.{IVroulc + I1-’ Ir0ulc + [u]) ’/2,

where I1 denotes the area of.
Remark 2.1. Other inequalities can be obviously obtained for u Va f) H(2) by

combining (2.12 or 2.13 with the Poincar6 inequality.

3. Comparisons of norms. We start with an inequality concerning the L norm on
Va. Inequalities of this sort are due to [Th], [W], and [Y 1], and in the case of spectral
spaces, to [FMT] and [FMT2].

LEMMA 3.1. There exist three positive constants c’, c’2, and c’3, depending only on
0 h,o/h2,o, such that

(3.1) lulLc) -< c’ log
hl,ah2,al IVul,c) Vu Va N H(2),

andfor every u Va,

(3.2) u- fillets)< c(log I1 )1/2hl,dh2,d
Tu L2Ca)’

I1 /(3.3) ulLoo(a) -< c log
hl,dhz,d]

where ff is the average ofu on 2 and Ul is the area off.
Proof. For (3.1) we start from the inequality

(3.4) lUlL"(.) ----< cpl/21ftI/PlVUILC) Vu 6H(2),

which is valid for every p, 2 =< p < , with a constant c depending only on 0; Il is the
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volume (area) of ft. This inequality follows from [GTr], where according to [GTr, Lemma
7.14 and GTr, Lemma 7.12, eq. (7.34) ],

lu(x)l --< Ig(x)l a.e., g(x) ,, Ix- ---- d,For u in H() we have the inequality

(3.5) [u ffl.(.)
which follows similarly from GTr, Lemmas 7.16 and 7.12, eq. (7.34) ]; in (3.4) c is an
absolute constant, while in (3.5) c’ depends on 0. We also have, for eveff u in H(fl),

c’p/21ll/plVul={,)
Now by the inverse-type inequalities for finite elements C], Th ], there exists a constant
c" depending only on 0 such that

(3.7) lul<.) c"(hz,ah2,a)-/Plu]z,,) Vu Va;

this inequality is obtained by mapping the element on which u achieves its maximum
onto a reference element, e.g., fl itself.

Finally, we combine (3.4), (3.5), or (3.6) with (3.7) and choose p log 1/
h,ah2,a; 3.1 ), (3.2), and (3.3) follow promptly.

We then prove some technical lemmas.
LEMMA 3.2. There exist two constants c and c depending only on O, such that,

for every u Va and every 0 l d,

(3.8) Irzul=<.) c(d-

(3.9) Irzulzc.) < c(d- l)/2{hzh2zlul L()

Proof. We first observe that Lemma 3.1 is valid if we replace
t. In this case I1 is replaced by h,th2,t and

I1 h,th2, 4d-l
h,ahz,a h,ahz,a

Hence (3.2) becomes

(3.10) [u- ffl(m c(d-

where ff is the average of u on K.
On the other hand, we have the inequality

(3.11 Vrzu () c’l ru ()1c(m, K

which is valid with a constant c’ depending only on 0 since (3.11 is invafiant by homo-
thety. In fact, in (3.11 ), we can replace the average of ru on K by any real number

(3.12) Irul() c’ Inf Irtu- lz(), K t.

We then choose a ff and observe that rtu agrees with u at the veices ofK. Therefore,

(3.13) Iru- ffl(m lu-
and comparing (3.10), 3.12 ), and 3.13 we find

VKe t;IVrul < c"(d-LZ(K)

3.8 follows by summation for K l.
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The proof of (3.9) is similar. First replacing f by K -t, 3.3 becomes

(3.14) lul) < c(d- l)/2{IVul) +(h,lh2,l)-/ZlUlLZ(K)}.
Then we write

Irtul 2

-< (with (3.14))
< c’(d- l){h L2(K)

Adding these relations for K l, we obtain (3.9).
LEMMA 3.3. There exist two constants c and c depending only on h,o/h,o

such that
d

(3.5) c[u] v(ru- r_u)l() c[u] Vu v.
k=l

Proof. For a fixed k, k d, there exist two constants c and c’ depending only
on and k such that, for eve v W,

(3.16) c Iv(x)[ 2 < [Vv[ < c’

Indeed, let K be a rectane of, as in Fig. 2.1 (with d- replaced by k). Then there
exist c and c’ such that

(3.7) c E I(Pi)I 2 < IVl 2 < c’ 2

i=1 i=1

for eve continuous function wch is Q on K, K4 and vanishes aM M4.
Indeed, V r(m is a norm on the set of such functions , as is the expression

{ E = ](Pi )]2 } /2. Furthermore, since (3.17 is invafiant by homothety, we observe
by mapping K onto a reference rectangle that c and c’ are independent of hk and depend
only on 0 h,k/h2,k.

We then write (3.17 with v and add these relations for K 6 . Since each
node Pi belongs to at most two different rectangles K 6, we obtain (3.16 ). Finally,
we write (3.16) with v ru rk_u W, and by summation of these relations for
k 1, d, we find (3.15).

We can now prove the first inequality in (2.12 ).
LEMMA 3.4. Thefirst inequalities in (2.12 and (2.13 are valid.
Proof. Due to 3.15 ),

IVroul=(.) + [u]} < c IVroul 2

k=l

k=l

d

(3.18) k=O

(with (3.8))
d

k=O

<= c’d(d + 1)lVul2z,=(u).
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For the first inequality (2.13 ), we infer from (3.9), written with 0,

(3.19) fl- Irou, = < d{hl }
Since h,oh2,0 =< f I, we obtain the first inequality in (2.13) by adding (3.18) and (3.19).

4. Proof of Theorem 2.1. The proof of the second inequality in (2.12) and (2.13
follows from Lemmas 4.4 and 4.5. The first three lemmas provide a comparison of finite
element and finite difference norms; more precisely, Lemmas 4.1 and 4.2 provide a
comparison of the norms in L2(Q)ofXTuk and Vhtk, t2g defined in 2. Lemma 4.3 gives
a comparison of the L2 norms of uh and th. Then Lemma 4.5 provides an enhanced
Cauchy-Schwarz inequality.

LEMMA 4.1. For every u Vd,

(4.1) 1/21v,71z=) --< IVulz(),

Proof. To prove (4.1), it suffices to show that

(4.2) IVhatl 2 dx _-< IVul = dx,

where K is any of the rectangles of --d.
Assume for simplicity that Kis the rectangle (0, a) (0, 0/2) (0/1 h,d, 0/2 h2,d),

with vertices A, A2, A3, and A4, as shown in Fig. 4.1.
We then immediately see that Vht7 is a constant on K and

1
{ u(A2) u(A) }

Ol.

{ u(A4) u(AI)}
0/2

(4.3) yc ivhz712 dx 0/10/2’ 0/’- (u(A).)- u(A))2 + (u(A4)0/2 t/(A1))2

On the other hand, a lengthy but straightforward calculation shows that, on K,

(4.4) Vu
(
(

X) L0/1 (U(ZI2)- U(ZI,))--
0/2

x-2 L0/1
0/1X"-’1 ) LO/2 (u(A4) u(A)) + 0/lXl 10/). (u(A3) u(A2))

A4 A3

FIG. 4.1. A rectangle K of--d.
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and

(4.5)

where

(4.6)

fK IVul2 dx 0- -- 0"2
2 -- (0"1(7"1 0"1) -- 0"2(7"2 0"2))

O/10/2

-t- ((7"1- 61) 2 -- (7"2- 0"2)2),

0"1 (U(12) U(/1)), 0"2 (u(A4) u(AI)),
0/1 0/2

7"1 (U(13) U(14)), 7"2 (/’/(13)
0/1 0/2

Hence with Cauchy-Schwarz inequality,

IVul 2 dx >- " {(0-12 -- 0-22) - (7"I 0-1) 2 - (7"2 0"2)2},
0/10/2

and (4.2) follows. Vq

For a more precise inequality and in order to establish the inverse inequality of
(4.1), we must introduce the extended norms

For this purpose we observe that even if u (and ) are defined on 2 (0, al X (0, a2),
the finite difference quotient Vl,h is defined on the extended rectangle (0, a)
(0, az + h2), and X72,hz7 is defined on the extended rectangle (0, a + h) (0, az). For
the sake of simplicity, we agree to write

[V,h[L2(a)=(fa(a+hlel)

1/2

dx

1/2

dx

IvZ71,. { iV,hzTi 2 e 2 1/2
L2()

el (1, 0), 82 (0, 1).

Then we can state the following lemma.
LEMMA 4.2. For every u Va,

(4.7)

Proof. As in Lemma 4.1, let Kbe a rectangle ofa. Then (4.3) and (4.5) are valid.
Using the Cauchy-Schwarz inequality, we can bound the fight-hand side of (4.5) as
follows:

(lIul 2 dx
12

4( + ) + 2( + ),

+ h2,de2

+ 2 f [V2,ha[ 2 dx.
+ h,de
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By adding inequalities (4.8) for all K’s in -d, we find

t3 ft + h2,de2) t.J ft + h,de)
X72,haZ712 dx,

and this is precisely the second inequality (4.7).
For the first inequality (4.7), we must treat the derivatives Diu Ou/OX separately.

As for (4.5) we see that

D,ul 2 dx- o-2 -4-(a,(,- a,))+ (,- a,)2
O/lO/2

-z :, + o2 +

D,ul 2 dx - IV,,hazTI 2 dx + +h=,e

Similarly, in the direction x2,

D2ul 2 dx > g IV2,h,al 2 dX "JI- g +hl,del

By adding all these inequalities for K e ’d, we obtain

IVul - dx - O ft + h2,de2)
IV,hazTI z dx + c

v,hzTI 2 dx.

VZ,hal 2 tiN.

V2,haz 12
ft + h,de)

In particular, the following simplifications arise. The left inequality of (4.7) is not needed
(and is replaced by (4.1)), and for the second inequality in (4.7), we can replace V,at
by Vha. E]

We now prove the following result concerning the L norms.
LEMMA 4.3. For every u Vd, there exist two constants c’s and #9 depending only

on h,o/ h,o, such that

Il 2 dx lUlL(a) cb Il 2 dx(4.9) c ; ;,
where fha is an extension offl; 2"ha (0, a + h,a) (0, a2 + h2,d).

Proof. Let K be a rectangle of ’d as in Fig. 4.1; ulL=K) and { h,ah2,d
Z= [u(Ai)l 2 } /z are two equivalent norms on the four-dimensional space consisting
of the Q functions on K. There exist two constants c and c’ depending only on 0 and
d, such that

(4.10) c h,ah2,a , lu(A)l z <= lulLK) C’ h,,dh2,d , lu(Ai)l 2

i=1 i=1

1/2

i= 1,2,

and this is the first inequality (4.7).
Remark 4.1. Let us observe that for functions vanishing on 02, as is the case for a

Dirichlet problem, the extended domains are not needed and
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Furthermore, since formula (4.10) is invariant under homothety, we observe by mapping
K onto a reference rectangle that c, c’ are independent of hd and depend only on 0
hl,o/h_,o. Since

4

1712 dx hdh2d , lu(Ai)l z,
i=l

and each node Ai belongs to at most four different Kh*, summation for all K e -d gives

LEMMA 4.4. There exists a positive constant C’o depending only on 0 hi,o h2,o
such that for every u Vd

(4.11) lul-.<=C’o{Iroul=.+ Il[u]} ’/2

Proof. For every u in Va, we write, as in (2.9),

d

rau rou + ., { ru r u },U
l=1

where rlu rl ,u WI c VI. Therefore,

d

(4.12) lul=.--< Iroul,=. + 2] Iru- r-ul=..
l=1

Now if v

.) Iv(x)l dx Iv(x)l 2 dx.
K’!

By using (4.10) with l replacing d and v replacing u,

4 (C,)2 4

Ivl = < c,ZL=(/)= )hl,lh2,1 Iv(ai)12<= 22 hi,oh2,0 ] Iv(A,)l 2

i=1 i=1

(Ct)2 4

(4.13) =< 22 hl,oh2,o Iv(Ai)l 2

i=1

(c’) 2 ]"21’ Ifl Iv(A,)l :.
i=1

We add inequalities (4.13) for K e -. Since each vertex Ai belongs to at most four
rectangles K, we find

4(C’) 2

Ivl 2 < lal Z Iv(x)l vvevz&m 221 x all

If v belongs to WI, then v(x) 0 for all x 1- and the previous inequality yields

(4.14) Ivl 2 < 4(C’)2
L=<m= 22’ Ifll /2 ] IV(X)I 2 VveV-I.

lgt\lgt-
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We now replace v by rlu rl_ u and use this bound in (4.12)"

](rtu--rl-lU)(X) 2} 1/2 }
]roul=<> + c"ll /2 4 -t

l= l= olg \lll
I(rzu rz_ u)(x)12}/

Ir0ul=t> + c"l2l/2[Uld.

Hence (4.11 holds. []

We now prove an enhanced Cauchy-Schwarz inequality for Q finite element spaces;
similar inequalities appear in B ], MT ], or Y ].

LEMMA 4.5. There exist two positive constants c’ and c’2 depending only on O,
C’l < 1, such thatfor every u in Vk and v in

(4.15) Vv dx <= min (c’, C’22-11-kl/2)IVUIL:(a)IVVILz(a).

Proof. Without loss of generality, we can assume that k 0, >- 1. The inequality
(4.15 with c’ < follows readily from [MT, Lemma 3.2 ], by simply observing that if
u Vk, then u e Vt_ 1.

In order to prove the second inequality in (4.15 ), we first start with the case where
ft is replaced by K, K being a rectangle of -o divided into 22t rectangles of ’1. For
simplicity we assume that K is the rectangle (0, h) (0, h2). The value of Vu on K and
the value of the integral

L2(K)

are given in (4.4) and (4.5) with a, 0/2 replaced by h,o and h2,o.
The function v is continuous and is Q on the -l subrectangles of K. Let v0 be the

function of the same type that agrees with v at the nodes of q/t in the interior of K; then
v v Vo vanishes on all these nodes and agrees with v on the nodes of q/ belonging
to the boundary of K. Since u is Q on K, it is a harmonic function and therefore, by
integration by parts, since v0 v on OK,

fe 7u7vo dx 0;

thus

(4.16) VuVv dx VuVv dx.

Now v and Vv vanish except in the layer o of size 2-th,o or 2-th2,o contiguous to OK.
Hence

VuVv dx VuVv dx < [VUIL2() Vv IL<).
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By mapping the -t rectangles of onto a reference rectangle we see easily that there
exists a constant c’ depending only on 0 such that

c’ Iv(x)l 2

x(Zlkqlt_ ) tq OK

c’ Z Iv(x)l =.
x(tkq/_ )fq K

Thanks to 3.16 ), the last quantity is majorized, with an appropriate constant c" c"(0),
by

c"lVvl 2
L2(K).

The integral of Iul 2 on o is computed by straightforward computations; using (4.4),
(4.5), and (4.6),

IVul 2 cr2 + r2 + 2o1
x2 (r- a)+ 2o’2 X__}. (7"2- 0"2)
0/2 O/1

x2 2 x2,
0/22 (TI- 0-1) - og21 (T2- 0-2) 2,

+ r(r- r)2 + r(r2- 0"2)2},

with ol area of g 4h,0h2,02-t( 2 -t) and

r
5 9"2 -/+ 8-2 -2- 4"2 TM 3

12( 2 -/) 2

Hence

IVul2=() 4-2-t6,
IVul 2

L2(K)

where di is the following ratio of positive definite quadratic forms (see (4.5))"

O-12 -- 0-2
2 - O’l(-/" 0-1)-- 0"2(7-2 0"2)-]-((7" O-l) 2 -(7"2 0-2) 2)

0"21 -- 0"22 -i’-(O’I(T 0"1)"- ff2(T2- 0"2) --3((T1- 0",) 2 q-(T2 ff2)2)

Since is clearly bounded from above by an absolute constant c’", we find

iVul2 < 4 c,,,2-t 2
L2(K)-

Finally,

(4.17) VUVV dx <= 2(C"C’")/22-1/21VUILZ(K [VVILRK).

We then obtain (4.15 with t12 2(c’c’")1/2 by adding all these inequalities for K
and by using the Cauchy-Schwarz inequality for the sum in Kin the right-hand side.
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We are now in position to complete the proof of Theorem 2.1.
LEMMA 4.6. The second inequalities in (2.12) and (2.13 are valid.
Proof. For u e Vd we infer from (2.9) that

d

u=rau= , v
j=0

with v0 rou, vt rtu rl-u, and =< l =< d. Thus by Lemma 4.5,

IVul 2
L2(a)

j=O

d

_-< (vv.,vv)
j,k= 0

d

< C12 E 2-1J-kl/21VVjIL2(a) IVVkILZ(a).
j,k= 0

The fight-hand side of the last inequality can be written as c’2 , j,k=a o ajkrUtk with ak
2 -I-kl/2, rb VVjIL2(a). Hence this is bounded by

d d
2Ctl 2 k E ?’lj Ctl 2 K E

j=0 j=0

where k is the largest eigenvalue ofthe matrix { ak }. It is well known that k is majorized
by the largest row sum of the matrix { a;k } and this row sum is majorized by

+2 2 -j/2=
’’+

j=l r--
Using 3.15 ), we then find

IVul 2 < c’

Hence (2.12) holds. The second inequality (2.13) is an immediate consequence of the
second inequality (2.12) and Lemma 4.4.

5. IUs for boundary value problems. We now apply the previous results to the
numerical solution of second-order boundary value problems by finite differences. We
start with the simple case of the Dirichlet problem in the rectangle.

5.1. Dirichlet problem. We first consider the rectangle ft (0, a) (0, a2) as
before. The Dirichlet problem reads

Au f in
(5.)

u 0 on

Let h (h, h2) be the discretization mesh. Then the discretization of 5.1 by the usual
five-points finite difference scheme leads to the classical linear system

(5.2) AhUh bh.
Here Ah is the well-known symmetric positive definite matrix, Uh is the set ofapproximate
nodal values of u, u(ih, jh2) properly ordered, and bh is the set of values of fat points
ih, jh2, ordered in the same way.
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Now assume that a multilevel discretization is used with meshes h0, hd as

before, ht (h,t, h2,t), hi,t hi,o/2 t, 1, 2, 0,..., d. We then have several systems

(5.2),

(5.3) AhtUht bht, 0 <= <= d,

but we are in fact interested in that corresponding to the finest mesh, d:

(5.4) Aha Uha bha.
As we did before, and in order to make the notations simple, instead of 5.3 ), (5.4), we
will write

(5.5) AlUl- bl, 0 <= <= d.

At each level l, the set of incremental unknowns U consists of the following"

Ul- zl,
Zl-

y Y0 the set, properly ordered, of the approximate nodal values of u at the

coarse grid;
Z. the set, properly ordered, of the incremental unknowns at the level j.

Hence, using the notations of 2, if uh Va is the approximate function, then
yl Yo consists of the values of uh(x), x //0, while Z consists of the values of

rjuh(x) O-u,(x) for x //\//- 1.

Each system (5.5) plays the same role as I. and we can pass from Ut to Ut by
using a transfer matrix St. Hence we find, as in (1.2), (1.3),

ui=siui,

AlSl Ul bt,

(5.6) AlUt bt, 0 <-_ <- d,

with Al tStAtSt, bt tSbt.
As we said above, we are interested in solving (5.6) when d and we are interested

in estimating the condition number of A-d and comparing it to the condition number of

Aa. Since A-a is symmetric positive definite, its condition number is the ratio of its largest
eigenvalue ,(A-a) to its smallest eigenvalue __X Ad)"

(5.7) (Aa) X(Aa)/X_(Ad).

As is well known, we can estimate _X and , through some bounds of the associated
quadratic form (aO, ), where (,) denotes the usual Euclidean scalar product

_X(A-a) Inf (aU, U)
(5.8) o (u, u),(A-d) Sup (dU, U)

:o ( v, v)
The bilinear form (Aa U, U*) arises naturally in the variational formulation of finite

differences. More precisely (see Ce and T ),

V ~*(5.9) (Aa Ua, U, ) Vhauh, haU h, dx,
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where ud and z/d are the step functions associated with Ud and Uff (see 2 and above).
Therefore, if

then
u &c, u &c

(5.10) (alQa, I]ff ) (AaUa, Uff ),
so that the fight-hand side of (5.9) also provides the bilinear form associated with Aa.

We readily infer from (2.12) (Theorem 2.1 ), Lemmas 4.1 and 4.2, and Remark
4.1 that

( d,, G,. G) f. va dx

(5.11)
>__If. [Vua 12 dx

C21
6(d + 1) 2 { IVrouh I=)+

,,) + [u,,],
6(d + )2 IVho(YOUhd 12

We observe that

IXTno(roun)l=(u) (AoYo, Yo) >= X__(Ao)(Yo, Yo),

u,] (z’, z),
and we conclude that

--6(d+ 1) 2 k-(A)(Y’ Yo) + (Z d, Z d)

c
(5.2) X__(Aa) >--

24(d+ )2 min {_k(Ao), 4 }.

Similarly,

(5.13)

Thus

(5.14)

_-< (by 4.1))

<= 4 [VUhe dx
d

=< (with (2.12))

<= 4c2 { IVrouheI + Uha]} }
< 4c22{21Vho( OUha)[ z

z,2n) + [uhdl}

<= 4c{2X(Ao)(Yo, Yo) + (Z a, Za)}.

(A-a) =< 8c22 max { Y(Ao), 1/2 }
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and

(5.15) K(A-a) 192c (d + 1) 2 max{ (Ao), 1/2}
c min {_X(A0), 4 }

We expect _X(A0) to be small less than 4 and X(A0) to be large (larger than 1/2 ), although
the ratio

K(Ao) (Ao)/_(Ao)

should not be too large. Hence

(5.16) (A-d) < const (d + )2t((A0)
and when d increases, the condition number ofA-d varies like d2, in contrast with the
condition number ofAa that is exponential with respect to d. Numerical evidences are
also enclosed with f (0, )2 (see Fig. 6.1). It shows that there is a sharp difference
between the condition numbers ofAa and Aa. With d 5, we have 64 64 modes on
the finest grid; the difference between 20.84 (condition number ofda) and 1659 (condition
number ofAa) is already large.

The drawback with IUs is that Aa is a rather full matrix and direct or relaxation
methods for solving (5.5) are not feasible. However, as indicated in the introduction,
system (5.5) can be solved by conjugate gradient methods, in which case we only need
the product ofAd with certain vectors, AdU tSdAdSd U, and this is easy since Sd is an
extremely simple matrix. We recall [AB that k steps of the conjugate gradient method
reduce the energy norm of the error (d, ) (AdU, U), at least by the factor

2

and one needs at most

k_-> log

steps to reduce the norm of the error by the factor e. For example, with 64 64 modes
on fl (0, )2, we have r(d) , 20.84 (see Fig. 6.1 ). Therefore, we need only at most
three steps of the conjugate gradient method to reduce the energy norm of the error by
10- Numerical evidence of the efficiency of the IU method appears in [CT 1].

5.2. More general operators. More general differential operators and more general
domains 2 can be handled in the same way. For instance, consider the Dirichlet problem

(5.17) i,=l
a(x) (x) =f(x) in a,

u 0 on 0,

where the functions a, a2 a2, and a22 are given in L(fl) and satisfy

2 2 2

(5.18) i= i,j= i=

Y=(,2) e2 withO<&&.
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The quadratic form associated with Ad is now

< i.o.. o,> <A.U.,

ao(x),(x),(xldx.
i,j=l

Due to 5.18 ),

<A-ad, Oa> <: fe IVhaha : dx.

Hence, now, instead of 5.12 ), 5.14 ), and (5.16) we have

c_
k__(Ad) >=

24(d+ )2
min {__k(Ao), 4 },

X( A-d) <= 8cZY max { X(Ao,, }
(A-d) eonst (d + )2

_
(Ao).

The conclusions are the same.

5.3. More general domains. A more general domain ft c R2 can be handled in the
same way. Starting as in 2 from meshes h0, h,, and grids o h0, ,
h, we define

-d { Ki,d f, K,d + hiei 2, l, 2 }.
Then, as before, //d d f3 . NOW the functions of V, are only defined on

Qd--hd-- U K(d2),
K .d

and are continuous and Q1 on the K of,.
Theorem 2.1 and the results of 3 and 4 are still valid, and ifwe solve the Dirichlet

problem in ft (in the form (5.1) or (5.17 )) with incremental unknowns, we obtain the
same bound on K(A,).

5.4. Neumann problem. Again let fl (0, a (0, a2). We consider the Neumann
problem

(5.19) -Au + u f in

OU
0 on 0f,

0

where u is the outward unit normal on 0f.
If we use the five-point approximation of the Laplace operator and the natural

approximation of the boundary condition, we obtain a system like (5.2) for which the
associated bilinear form reads [Ce ], T

fa ve v ~* fa ~*(5.20) (AaUa, U,) haUha haUha dx + hau,a dx,
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where ft ha is an extension of ft; ft *ha (0, a + h,d) X (0, a2 + h2,d). If we implement
the IUs, we obtain a system like (5.6). With the same reasoning as before, we obtain a
bound similar to (5.16) for the condition number of Ad: it grows quadratically with
respect to d. For the proof we use (2.13) instead of (2.12), (3.9), and Lemmas 4.2
and 4.3.

6. Numerical results. We present here the numerical tests done with three examples.
The condition numbers r(Ad) and r(Ad) are compared in Figs. 6.1-6.3. They demonstrate
that the condition number K(Ad) is much smaller than K(Ad) for these operators and
r(Ad) grows quadratically with respect to d while r(Ad) grows exponentially with respect
to d.

Considering the Dirichlet problem on (0, )2 with meshes h /2d/ , d J, we
introduce incremental unknowns successively in d levels, as described in l, and leave
the coarsest grid with only one unknown in the center of the square.

The first example is for the Laplace operator (see Fig. 6.1 ); r(Ad), r(Ad), r(Ad)/
(4"4d), and r(Ad)/(d + 1) 2 against d are plotted, respectively, on Figs. 6.1(a)-(d).

:C)

8.00(+03

7.201:-+03

6.40C03

.80C.03

40C-I.03

3.201:03

2.40(403

O. I. 2. 3. 4. 5. 6.

4.00C-

3.601:.4.01

3.20C01

2.8oC-0t

2.40C+0!

OE+OI

4.E+

O.E+
1. 2. 3. 4. S. . d

(a) (b)

(A)1(4 4

1.60C+00

I0C+00

1.00C+00

8.00C-01

.00C-O

.ooC-O

2.00C-0!

O.OOCOO

3.00C,00

2.40(00

2.1oc+00

t.50(.tOO

1.20C.00

g.OO(-OI

.00(-01

3.00C-OI

d O.OOC+O0 d
1. 2. 3. 4. 5. G. O. I. 2. 3. 4. .

(c) (d)

FIG. 6.1. Comparison between the condition numbers K(Ad) and K(.d). Ad is the matrix in the five-point
finite difference equation associated with the Laplace operator.
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Figures 6.1 (a) and (b) show that the difference between K(Ad) and K(Ad) is very large.
We can see quantitatively that when d 6, r(Ad) 6400 while r(Ad) 28. Figure
6.1 (c) shows that K(Ad)/(4"4 d) is almost a horizontal line and is bounded above by 1.
This confirms that r(Ad) increases with the speed of 4 d, that is, increases exponentially
with respect to d. In this very special case, it is well known that the eigenvalues of r(Ad)
are 4/ h 2 sin 2 / sin 2

_
], k, m 1, 2,..., N 1, where N / h. Therefore, the

condition number K(Ad) is + 1/sin - (rh/2)), which satisfies

4
7r

2 (4"4 a) =< K(Aa) <= 4"4 a.

Compared with Fig. 6.1 (c), Fig. 6.1 (d) shows that r(A-a)/(d + )2 is bounded above by
2. This coincides with the results in Theorem 2.1.

The second and third examples are for the anisotropic operators. We take a 10,
a2 a2 0, a22 in (5.17) for the second example and a 10 / Y- 1, a2 a2
0, a22 in (5.17 for the third example. The conclusions are the same as for the first
example and the numerical results are shown in Figs. 6.2 and 6.3, respectively. It is also

1. 2. 3. 4. 5.

(a) (b)

(c) (d)

F]G. 6.2. Comparison between the condition numbers K(Aa) and K(a). Aa is the matrix in the five-point
finite difference equation associated with the operator-lO02u/O2x- O2u/3Zy f.
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interesting to note that K(Ad) in the second example has exactly the same value as in the
first example, but the values of K(Ad) are different.

It is shown numerically in CT that for Laplace operator, the efficiency of the IU
method is comparable with the standard F-cycle multigrid method. For the anisotropic
operators (e.g., Examples 2 and 3 ), the efficiency of the standard multigrid method with
uniform meshes is reduced. It is usually necessary to take different relaxation processes
and/or different coarsing in each case to ensure the efficiency of the method Mc ]. But
for our incremental unknown method, the only efficiency factor is the condition number
(A-a). Since (A-a) =< const d + 2 for all ofthe three operators above and the constants
are quite small (see Figs. 6.1 (d), 6.2 (d), and 6.3 (d)), we can expect good efficiency
results by using the IU method.

Note added in proofs. It was incorrectly stated in a review of CT (Math. Reviews,
92e: 65133, 1992, p. 2794), that the incremental unknowns method is identical to the
multilevel splitting method in the context of hierarchical bases in finite elements. Some
further comments seem necessary to avoid misinterpretation of our results. The rela-

1.00C.04

8.00C+03

.ooC+03

4.00C403

3.00C+03

I.OOC.03

O. 1. Z 3. 4. 5. .

8.00C+

6.40[+0!

5.EOC01. C
4.C01

2.40C401

O.C
O. 1. 2. 3. 4. $. .

(a) (b)

,,(,,)/(,+ + i)

3.00C+00

2.70C+00

2.,IOC+O0

2.10C-tCX)
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1.20C400

g.OOC-OI

6.00C-01

3.00C-01

O.OOC+O0
O.

d
I. 2. 3. 4. 5. I.

(c) (d)

FIG. 6.3. Comparison between the condition numbers K(Aa) and K(Aa). Aa is the matrix in the five-point
finite difference equation associated with the operator -O(a(x, y)Ou)/02x a2u/aZy f, a(x, y) 10 (x v-l).
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tionship of IUs to other methods in linear algebra is explained in the Introduction ofthis
article. Concerning the more specific case of hierarchical bases finite elements, it is not
possible to identify the IU method with this method. The analogy exists: the IUs studied
in this article (second-order IUs) are the same as the components of the function in the
Q 1-hierarchical basis; this was mentioned before and we indeed rely on the corresponding
results available in the literature. However, the differences are numerous. The matrices
of the linear system are not the same in general for finite differences and finite elements.
There is also the difference in implementation with, in this regard, the advantages and
drawbacks of both methods. IUs are a much more flexible and general concept and in
CT2 we actually introduce and study IUs that are not related to finite elements and

are, in fact, in some cases related to wavelets.
Finally, we recall that the ultimate goal with IUs is the study of nonlinear problems

when turbulent phenomena occur. Theoretically and computationally new interesting
phenomena occur in this direction, which seems to be a promising new chapter in the
numerical analysis of dissipative evolution equations.

Indeed the new technologies and the increased power of the new computers offer
new challenging problems to the numerical analysts, namely, the approximation of non-
linear evolution equations on large intervals oftime when complex physical phenomena
appear. New numerical methods adapted to such problems need to be developed; in
particular, multilevel methods are needed in order to treat appropriately the different
scales appearing in a complex problem and to resolve at reasonable cost the smaller
scales. The approximation of time evolution equations in the presence of chaotic phe-
nomena is the source of many new challenging problems in numerical analysis, which
have been barely touched on (see, e.g., [ChT], [CT3], [ES ], [FJKT], [Sh], [T3 ]).
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ON ACCURATE COMPUTATIONS OF THE PERRON ROOT*
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Abstract. This paper establishes a new componentwise perturbation result for the Perron root of a non-
negative and irreducible matrix. The error bound is independent of the angle between left and right Perron
eigenvectors. It is shown that a known inverse iteration algorithm with new stopping criteria will have a small
componentwise backward error, which is consistent with the perturbation result. Numerical experiments dem-
onstrate that the accuracy of the Perron root computed by the proposed algorithm is, indeed, independent of
the angle.

Key words, nonnegative matrices, Perron root, sparse systems, backward error, componentwise pertur-
bations, stable algorithms
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1. Introduction. In this paper we consider the problem ofhow to accurately compute
the Perron root of a nonnegative and irreducible matrix .4. It is well known (see Berman
and Plemmons [3 ]) that the Perron root, which equals the spectral radius of.4, is a
simple eigenvalue to which there corresponds a positive eigenvector.

For general matrices, the sensitivity ofa simple eigenvalue to perturbations depends
on the angle between normalized left and fight eigenvectors corresponding to the eigen-
value. The following result appears in Wilkinson’s book [10]: Ilk is a simple eigenvalue
ofa square matrix.4 andy andx are corresponding normalized left and right eigenvectors,
then for sufficiently small the matrix A + 6E, with ElI2 1, has a simple eigenvalue

that satisfies the inequality

I- 1 < + o().yrx]

Using a formula for the componentwise condition number for general continuous
maps given in Gohberg and Koltracht [6 ], we shall obtain in 2 the componentwise
condition number of a simple eigenvalue of an n n matrix A and compare it with the
usual normwise condition number. In the special case when A is an n n nonnegative
and irreducible matrix and the eigenvalue in question is the Perron root, then for relatively
small componentwise perturbations in A, i.e.,

(1.1) IEi,jl <=eAi,j, i,j 1,...,n,
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we shall show that

(1.2) I- Xl =< e + o(e).

Hence the componentwise condition number of the Perron root is 1. In fact, we show
in Theorem of 2 that a better result than (1.2) is possible. It is that

(1.3) IX Xl __< e.

In view of 1.3 a natural question to ask is whether one can find an algorithm for
computing the Perron root that is numerically stable in the sense of 1.1 ). To be precise,
we are looking for an algorithm for computing the Perron root ofA for which the computed
root is the exact Perron root of a perturbation A + E ofA satisfying

(1.4) Ei,jl <= f n uAi,j, i, j n,

where u is the unit round-off error and f(n) is a slowly growing function. Then the
computed root will satisfy

(1.5) I Xl <=f(n)u.

Since any algorithm for computing X is iterative, we must find an algorithm such
that, subject to certain stopping criteria, the approximate root produced by the algorithm
will be an exact root ofA + E, where E is small and satisfies (1.4).

One such algorithm is presented in 3. It is based on a variant ofthe inverse iteration
due to Noda 7 ], which was shown by Eisner 4 to be quadratically convergent to the
Perron root and which involves, at each stage of the iteration, the solution of a linear
system whose coefficient matrix is an M-matrix. Using a theorem of Skeel 9 ], we show
that ifat each stage ofthe algorithm the M-matrix system is solved by Gaussian elimination
followed by an iterative refinement of the solution and if certain stopping criteria are
satisfied, then this results in an algorithm such that the approximation to the Perron root
ofA is an exact Perron root ofA + E with E satisfying (1.4). This result is given in 3.

In 4 we present some numerical experiments that illustrate the stability of the
proposed algorithm. In particular, we give an example of an M-matrix for which the
standard QR algorithm breaks down, whereas the algorithm of 3 computes the Perron
root with high accuracy, as expected. These results also show that the power-squaring
algorithm (see Friedland 5

(1.6) X o(A) lim A 2k lg2k,
k--

where o(" denotes the spectral radius, which is seemingly natural from the point ofview
of round-off error analysis, is inferior in its convergence speed. (However, it should be
remarked that on a vector or parallel computer, the power-squaring method may become
competitive because its rate of convergence could be compensated for by fast matrix-
matrix multiplications.) Our numerical experiments also show that the computed Perron
vectors are highly accurate, although we do not yet have a full perturbation analysis for
explaining this evidence.

Friedland 5 also notes that the power-squaring algorithm could be used to compute the subdominant
eigenvalue of a nonnegative and irreducible matrix.



458 L. ELSNER, I. KOLTRACHT, M. NEUMANN, AND D. XIAO

2. Perturbation results. Suppose that the matrix A e Rn’n has a simple eigenvalue
k k(A). It is well known that the map FE e -- )t(A + eE) is analytic in a neighborhood
of 0; see, for example, Wilkinson [10, pp. 66-67 ]. Therefore, the map F" J -- k() has
continuous partial derivatives with respect to each entry at A and (see 10, Chap. 2

OF F(A + tEi,)- F(A) yx
Oi,

(A) tolim yrx i, j 1,..., n.

Hence, as a map from Rn -- R, F is differentiable at A and

[OF OF OF OF]F’(A -1,i 01, 02,1 On,,

According to a formula of Gohberg and Koltracht [6], the sensitivity of F(A) to
componentwise perturbations in A as in 1.1 ), for ), =/= 0, is characterized by the com-
ponentwise condition number ofF at A given by

F’(A )DA F’(A )DA I1o
c(F’A)= [IF(A)I[- IXl

where

DA diag (a,,..., a,n, a2,, an,n).

This means that

c(F,A)
I[(ya,x, yla,,,x,,, y2a2,Xl,

where the infinity norm of the map F’(A)DA is, in fact, the 1-norm of the row vector
that represents it. Thus

E in,j=l yiai,jxjl [yl 1 All xl(2.1) c(F,A) IX llyxl IX llyxl
where an absolute value of a matrix is the corresponding matrix of the absolute values
of its entries. Thus if E is a perturbation ofA which satisfies 1.1 ), the , ),(A + E)
satisfies

(2.2) I- 3,1 _< c(F,A)e + o(e),

where o(e) means that lim_ 0/e 0.
It is interesting to compare (2.1) with the usual condition number taken with respect

to normwise perturbations in A. For example, let us consider perturbations in A with
respect to the Frobenius norm, in which case

k(F,A)
IIF’(A)IIIIAIIF

where the 2-norm of F’(A) is its norm as a map from R"2 to R and therefore coincides
with its usual 2-norm. Since x[[2 Y 112 1, it is clear that

_, (xiY.i)2F’(A)112 yrxl ,,= yrxl
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and so

(2.3) k(F,A)
IXl lyxl

It is clear that c(F, A) =< k(F, A). Moreover, it is possible that k(F, A) is large, while
c(F, A) is much smaller. Indeed, this may be the case if the smallness of yrx and/or
is offset by a small YII All x l.

Suppose now that A is a nonnegative and irreducible matrix and X is its Perron
root. Then, because x and y are positive vectors, YTI AI xl yAx Xyx, and we
see at once that c(F, A) 1. According to (2.2),

I, Xl __< + o().

We can, in fact, improve on this result.
THEOREM 1. Suppose that A is an n n nonnegative and irreducible matrix, and

suppose that E is an n n real matrix such that

IEI _-<ea,
where <= 1. Let X and he denote, respectively, the Perron roots ofA and A + E. Then

(2.4) IXe- 3,1 _< e.

Proof. The inequality 1.1 can be written as

O <=A eA <=A + E <=A + eA.

Since p(.) is monotone on the nonnegative matrices (see, for example, [3]), it follows
that

p(A eA) <= p(A + E) <= p(A + cA).

Since p(A ++_ eA) + e)p(A), we get that

(- )x__< x__< ( +)x.

Because X > 0, the last inequality is equivalent to (2.4).

3. A stable algorithm for computing the Perron root. Let A be an irreducible non-
negative matrix, p be the Perron vector of A whose infinity norm is 1, and p(A) be
the Perron root of A. The basis for our algorithm is a certain inverse iteration due to
Noda [7], which has been generalized and shown to be quadratically convergent by
Eisner 4 ].

and

INVERSE ITERATION ALGORITHM. For a given Yo > 0 define iteratively

x, (ttsI A )-I y,,

Ys+l
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Then, for any s, p(A) =< tts + =< tts and

Iris+ p(A) <= Cl(ld p(A)) 2

and

where CI and C2 are some constants depending on Y0 and A only, and where, for any
two n-vectors u (u Un) T and v (Vl,..., Vn) r, v > O, by definition

max max
I) <=i_n Vi _i<n

and

osc ()= max ()- min ().
(For more background material concerning properties and applications of vector oscil-
lation, see Seneta [8, Chap. 3.4 ].) Since #s > o(A) so long as Y0 is not a scalar multiple
ofp, it follows that the matrix (tsI- A) is an M-matrix. A certain version ofthe Gaussian
elimination algorithm due to Ahac, Buoni, and Olesky [2 can be used to compute the
solution of the equation (tzsI- A)xs y. According to 2 ], the pivots will always be
found among the diagonal elements, and this saves some execution time. It is also shown
in 2 that the computed solution is exact for a perturbed system whose relative distance
from the original system is O(n)u, where u is the machine precision. This distance,
however, is measured normwise, whereas the bound of Theorem requires compo-
nentwise perturbations. In order to get a small componentwise backward error, we add
a one-step iterative refinement, as recommended by the following theorem of Skeel [9
concerning solution ofAx b by Gaussian elimination.

THEOREM 2 (Skeel [9 ]). Let u be the machine precision, and let the arithmetic
be such that the floating-point result fl a, b) of the operation a, b, where { +, -,
X, / }, satisfies fl (a,b) (a,b)( + e) with lel <- u. There is a function f(A, b),
typically behaving as O(n), such that when the product of k(A) AI A-I[I and
a(A, x) max (IAI Ixl)/min (IAI Ixl) is less than (f(A, b)u) -1 and there is no

overflow or underflow, then thefollowing one-step refinement:
Solve Ax b using Gaussian elimination, obtaining solution :f, and saving the LU

factors;
Compute the residual r A b (using single-precision u
Solve Ad rfor d using the saved LUfactors ofA;
Update :f d;

gives a vector :f that is the exact solution ofthe equation

where

and

(A + AA).f b + Ab,

IAAi,jl <= (n + 1)ulAi,jl, i,j= 1,...,n,

Ab.l =< (n + 1)ulbjI, j 1,..., n.

We formulate the following algorithm for computing approximations to the Perron
root t9(A and the Perron vector p of a nonnegative irreducible matrix A.
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ALGORITHM. Let u be the machine precision. Start with Y0 > 0 and 0
max(Ayo/Yo). For s 0,

1. Compute the LU factorization

(#sI- A) LsUs,

and solve for x
Ls Usx Ys

by the Ahac, Buoni, and Olesky algorithm; save the LU factors;
2. Compute r Axs- Ys;
3. Solve Ad r using the saved LU factors Ls and Us;
4. Update Ys Xs- d;
5. Compute

and

6. Proceed until

Ays+ )Us + max
Ys+

)s -IX b/l/2 and osc (Yy--f)---< t 1/2

The following theorems characterize the numerical behavior of the algorithm and
explain the stopping criteria in step 6 above. Variables computed by the algorithm are
denoted by hats. The norm below always means the infinity norm. It is assumed for
simplicity that the matrix A is of the size (n (n ).

THEOREM 3. Suppose that the algorithm terminates when

I[)s[[ -1 e and osc()
and that

(3.1) 4r/(1 + rt) <
nu

1+nu

where rt max (e, ez). Supposefurther that

max (]t- Als)
< (fu)-’,(3.2) II(sI-A)-llsI-Alll

min (ls- Als)
wheref= f(sl- A, fi) is as in Theorem 2. Then 13s el and :9s + are the exact Perron
root and Perron vector, respectively, ofthe matrix A, where

and

with

Ai,j Ai,j(1 + ei,j)(1 + i), i,j n 1, 4 j,

Ai,i Ai,i( + ei,i), 1,...,n- 1,

e,l nu, [ei,i[ <= 2nu,

and
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Proof. It follows from the definition of s in the algorithm and from Theorem 2
applied to the equation (tsI- A).s s that

(sI- A E)s fis + Ay,

where

(3.3)
and

Ei,j <= nu[ (sI A) i,i

[Ay,[ _-<

Therefore, dividing by the norm of xs and using the definition of el we can write

(3.4) (t2I A E)s+ el(/+ D),

where Dc is a diagonal matrix such that If[ =< nu with De i, i) f. Note that the infinity
norm of+ and s equals 1, and that they are both positive vectors. Thus

min( fi )N Nmax(
From the equality

it follows that

Therefore,

max ( 33s
33s+ ) osc () + man ()

33s )< "-e2max ;s +
and min(+J3s ) e2.

(1 --e2)fi+, 33s (1 ’- 82);s+1,

and hence we can write j3s (I + De2)33+ 1, where D2 is a diagonal matrix such that
[hi[ =< e2 with D:(i, i) hi. Substituting into (3.4), we get

(3.5) (zsI-A E)3+ e,(1 + D)(1 + D2)33+ 1.

This, in turn, can be rewritten as

(3.6) _, (Aid+Ei,)fis+,(j)=((s-Ai,i)-Ei,i-e(1 +f)(1 +hi))+l(i).
j=l,j4i

Let us now define eid Eid/Aid for 4 j (where 0/0 0). Let ei,i 0 ifAi,i < /2,
and let ei,i Ei,i/Ai,i ifA;,i >-/2/2. For the case Ai,i < /2, let 6i be such that

(3.7) , (Ai, + Ei,j)fis+,(j)6i (-Ei,i e(f + hi + fhi))+(i).
j= l,j4:

In this case it follows from (3.6) and (3.3) that

-Ei,i el(fi -1- hi q-fhi)
I6il (s hi,i) Ei,i el( + f)( + hi)

e(nu "if- 8,2 @ flUe2)<= IEiil +/s(1 nu)/2 -/(1 nu)/4 s(1 nu)/2- t2s(1 nu)/4

4nu e (nu + ’2 + hUe2)<-- +
nu) ( nu)/4
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IfAi, /s/2, then let i be such that

(3.8) (Ai,j + Ei,j)s+l(j)ri -el(f+ hi W fihi)s+l(i).
j=l

Again, it follows from (3.6) and (3.3) that

--el(f + hi + fhi) el(nu -’[- ’2 -[" nue2)
I1 -<

Zs el(1 + f)(1 +hi) s /s(1 -nu)/4

Using the definition of 6i and ei,j and the equality (3.5), we finally obtain

(3.9) (Ai,jWEi,j)(1 -l-i)s+l(j)-I-Ai,i(1 +ei,i)s+(i)=(s-el)s+l(i).
j=l,j4=i

The theorem is proved.
It follows from Theorem that if r u 1/2 and if the conditions 3.1 and (3.2) are

satisfied, then el is the exact Perron root of such that IA 1 =< (u 1/2 + O(u))A.
Indeed, it is easy to see from (3.1) that I1 --< u /2 / O(u). Thus, by Theorem 1,
Is- e p(A)I =< (u/ + O(u))p(A), and hence Is- p(A)I =< (1 + p(A))u
O(u). Since the sequence { ts } converges quadratically to o(A), it follows that

/s+

where CI is a constant defined in the inverse iteration algorithm.
We comment that condition 3.1 is not restrictive since A can be replaced, e.g., by

I + A. Let us argue that the condition (3.2) is not restrictive either. This condition is
necessary to assure that the product of k(uI- A) and o(sI- A, Xs) is not too large
relative to the machine precision for Skeel’s theorem to apply. However, as was pointed
out by Wilkinson 10, 9.47 ], it is typical for the inverse iteration that the solution of
(#sI- A)xs y is computed with high relative accuracy, while the coefficient matrix
may be very ill conditioned. Further justification of this point will be given in Theorem
4 below. The second factor, o(tsI- A, Xs), is necessary in Skeel’s theorem to account
for possible zeros of the solution vector and the fight-hand side, as is discussed in detail
in Arioli, Demmel, and Duff[1 ]. Since in our case both Xs and y are positive vectors,
one can expect Skeel’s result to hold even if the factor o(t,ZsI- A, Xs) is large. These
arguments are supported by numerical evidence in 4. The experiments also suggest
that if only the Perron root, but not the Perron vector, needs to be calculated, then the
stopping criterion ofthe algorithm should be changed to Xs II-1 < u l/Z, since the second
criterion, which assures accuracy of the Perron vector, may slow down the algorithm to
some degree. In this case, as can be seen from the proof of the theorem, condition 3.1
can be replaced by the condition

nu
4el (1 +

l+nu

It is now clear that e2 does not need to be very small for this condition to be satisfied.
In the next theorem we show when the condition (3.2) will always be satisfied.
THEOREM 4. Let / and t3s denote the quantities computed in the algorithm for

some value ofs. Let p be the Perron vector ofA, and define
max (p) max 3/

Sp
min (p)

Sy
min (3s / 1)

and

m min Ai,j.
_i_n i4=j
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Then

(3.10)

(3.11)

II(,sI- A)-ll(sI- A)l ll(,s p(A)) <- 2Sts,

Proof. Observe that

max (I/I A 33+ l)
min (lsI AI .gs+ ) m <= 2Syzs.

I(I- A)I A 2DA + ,sI,

where Da diag (A1.1 An,n). Let y [tsI- A 13s+ 1. Then clearly

y <- a,:gs+ + A:s+
and

y >-- (tsI- OA)s+l -.I- tm min
It follows from the inequality/s >= s / and the definition ofs/ that

max (y) <
, + ,+ 2s

min (y) mini (/, Ai,i + m Sy <. Sy.

Thus (3.11 is proved. To show (3.10), observe that for any # > p(A),

(ttI- A)-lp (It- p(A))-p.

Let Dp diag (p( p(n)) and e ,1 )r. Then

Dl(t.tI A)-l Dpe (It o(A))-e,

which implies that

Therefore,

and

D- (I A)-IDp ( p(A))-l.

(I.tI A )-’ <= (It p(A )-’ S

II(M-A)-II(M-A)III <= I](M-A)-II(M+A)III

(ttI- A)-I [(2ttI (M- A))[

2#(uI A )-1 I]1 =< 2# (#I A )-’11.

Thus, clearly,

II(M- A)-l I(I- A)I 2/J,( p(A))-lSp.

The theorem is now proved.
Theorem 4 shows that if 4SpS,2u <= f-ltm(t p(A)), where u is the computer

precision, then the condition (3.2) of Theorem 3 will be satisfied for s, for which the
algorithm terminates. We remark that as long as (sI- A):s 3s, then we have that
ts p(A) -, I1 II-’. Therefore, with ts o(A) , u1/2ts, one can expect that the condition
(3.10) will be satisfied when IIs uI/2 (see also 10, 9.47 ).

4. Numerical experiments. Test matrices whose Perron vectors have various oscil-
latory properties can be generated, for example, as follows. Take any matrix with positive
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entries, and divide each row by the sum of the elements of this row. This is the matrix
B. Choose any n positive numbers dl, d2,..., dn, and let

D diag (d, d2,..., dn).

Then

(4.1) A DBD-1

is positive (and hence irreducible), the Perron root of A is equal to 1, and the Perron
vector ofA is (dl, d2, dn)T. One possible choice of B is with all its entries equal to
/n and dj. d j 1, j 1, n, with d < 1. In this case a fight Perron vector is p
1, d, dn- 1)T and the left Perron vector is q (dn- i, d, ). It is clear that

the usual condition number of the Perron root k(F, A given by (2.3) can be arbitrarily
large in this case, since / q Tp n- d ,.

We have extensively tested two algorithms on such matrices, the algorithm of 3
and the power-squaring method given by 1.6). The reason for testing the latter algorithm
is its obvious numerical stability: there are no subtractions of numbers with the same
sign and, with appropriate scaling, no overflows in the course ofthis method. The power-
squaring method requires n multiplication operations for each iteration step, while the
algorithm we suggested in the previous section requires about ] n operations of multi-
plication and division per step because of the elimination involved. The experiments
were performed with a computer precision u 2 -52 10 -16 using MATLAB on the
SUN 3 / 50 workstation.

We observed that the algorithm of 3 always converged quadratically to the exact
Perron root, and with IlXsll > 10 u -1/2 the error in the computed tts+l was of
O(u) O( 10 -16). The power-squaring method always converged more slowly, sometimes
significantly so, than the first algorithm, which is not surprising because it has only a
geometric rate of convergence. The comparison of the two methods on a parallel or
vector machine could change their relative performances but we have not yet carried out
such experiments.

In the following tables we give some typical numerical examples. The iteration is
stopped when Ilxs >-- mx. In the tables, el denotes 1/llxsll and 2 denotes osc (Ys/Ys+ 1).
In Table we present a reproducible result, where A is the 20 20 matrix

0 0 0
0 0 0

666 .:.
e 0 0 0

TABLE
0.5 102.

#s+l P

1.2 10 4.1 10-S 5.1 10-2 4.1 10-S 1.4 10-9 1.0 10-s

1.2 10 1.0 10-s 1.3 10-7 1.0 X 10-s 6.8 X 10-16 7.7 X 10-16

1.2 101 7.7 X 10-16 8.4 10-15 7.7 10-16

1.2 1012 7.7 X 10-16 8.4 10-15 7.7 10-16 0 0
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TABLE 2
1.2 10-16.

1.2 104 1.4 10-4 5.8 10-3 1.4 10-4 1.3 10-7 4.3 X 10-7

1.2 10 3.6 10-12 1.4 10-l 3.6 10-12 1.38 10-8 2.7 10-16

1.2 108 3.6 10-12 1.4 10-l 3.6 10-2 1.38 10-18 2.7 10-7

1.2 1012 2.7 10-17 6.6 10-6 2.7 10-17 6.9 10-18 2.7 10-17

with e (0.5) 2o 9.5367 10 -7. The initial vector for our algorithm was chosen to be
Y0 (1, 1,. 1)T It is easy to see that p(A) e 1/2,p=(1,el/n ,e(n- l)/n)r,q
(e(n- )/n e /n, ), and q:rp ne(,,- 1)/,, . 10-5. It takes 11 steps to get the results
on the first line of Table 1, 12 steps on the second line, and 13 steps on the third and
fourth lines.

In Table 2 we give results for the same A above, but with e (0.16)2 1.2
10 -16 It takes 21 steps to get the results on the first line of Table 2, 23 steps on the
second and third lines, and 24 steps on the fourth line.

We see that for s 23, when mx u-1/2, the computed value #s+ approximates
p(A) within the computer precision. The relatively large value of q:rp has no effect on
the accuracy ofthe algorithm. We continued experiments with this matrix for decreasing
e 10 -14 10 -15 10-6 and 10 -17 The computed Perron root was accurate, and the
results were similar, e.g., the Perron root was computed exactly after the condition

-1 1/2m < u was satisfied. We also tested the standard QR algorithm of MATLAB (the
function eig (A)) for these values ore. For e 10 -14 the QR algorithm lost two significant
figures, for e 10 -5 it lost three, and for e 10 -16 it lost four. For e 10 -17 the QR
algorithm computed no significant figures at all, namely, it gave 20 complex eigenvalues
),,.. h2o such that 0.06 > IRe ()i)l > 0.04 and 0.06 > Im (Xi)l > 0.028, while the
value of the Perron root in this case was 10 -17/2 0.141

In Table 3 we present a typical example of experiments with 20 20 matrices of
the form (4.1) in which B was generated randomly. The results are very similar to those
of Table 1.

These examples, which are representative of a large number of other experiments
that we performed, demonstrate that the separation angle between the fight and left
eigenvectors has no effect on the accuracy of the computed Perron root. They also show
that the stopping criterion [1Xs - < u1/2 gives the maximum possible accuracy and that
there is no need to use a threshold smaller than u/2.

TABLE 3

1.2 104 1.5 10-5 1.0 10-2 1.5 10-5 2.2 10-7 4.2 10-
1.2 10 1.3 X 10-9 8.5 10-5 1.3 10-9 5.3 10-4 2.2 10-6

1.2 lO10 3.3 10-ll 8.4 lO-ll 3.3 10-ll 5.4 10-17 2.2 X 10-16

1.2 lO12 1.3 10-15 1.8 lO-13 2.0 10-15 2.2 10-16 4.4 10-16
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THE USE OF PIVOTING TO IMPROVE THE NUMERICAL
PERFORMANCE OF ALGORITHMS FOR TOEPLITZ MATRICES*

DOUGLAS SWEET"

Abstract. Classical O(n2) Toeplitz solvers break down if any leading principal submatrices are singular,
and as might be expected, the occurrence of nearly singular leading submatrices can cause a serious loss of
accuracy in these solvers. In this paper, a pivoting scheme has been incorporated into the Toeplitz solver of
Bareiss which allows near-singularities to be treated without significant loss of accuracy. As special cases, the
pivoted Toeplitz solver also handles exact singularities and numerical singularities--the latter appear as near-
singularities when finite-precision floating-point arithmetic is used. The Bareiss algorithm can also be used to
compute the LU factors of a Toeplitz matrix, and it is shown that a restricted version of the pivoted Toeplitz
solver produces an LU factorization of a row- and column-permuted version of the original Toeplitz matrix.
Finally, it is shown how the inverter of Trench and Zohar can be derived from the multipliers produced by the
Bareiss algorithm, and this connection is used to derive a pivoted version of the Trench-Zohar algorithm from
the pivoted Bareiss algorithm.

Key words. Toeplitz matrices, pivoting, error analysis

AMS(MOS) subject classification. 65F30

1. Introduction. A Toeplitz matrix is one whose entries are constant along each
diagonal, i.e., if T is Toeplitz, tij ti-1,j-1 for 2 _-< i, j _-< n, the order of T. Positive-
definite Toeplitz matrices have many applications in signal processing, statistics, and
other fields 3 ], ]. For example, the autocorrelation matrix of a stationary stochastic
process is Toeplitz, as is the cross-correlation matrix of a linear, equally spaced array in
a noise field with distant, uncorrelated sources. There are several "classical" algorithms
that solve Toeplitz systems in O(n-) operations. These include the algorithms ofLevinson
[9 ], Trench [14 ], and Bareiss [2 ], to name a few of the more well known methods. It
has been shown 3 ], 4 ], that these classical algorithms are stable in the symmetric
positive-definite case.

Recently, attention has been turned to arbitrary Toeplitz matrices, where the as-
sumption of positive-definiteness has been dropped. The computation of Pad6 approx-
imants can require the solution ofa general Toeplitz system. The design ofeigenfilters,
investigated by Makhoul l0 ], Kung 8 ], and others, may require the solution of an
indefinite Toeplitz system. The classical methods still apply to indefinite systems, provided
that all the leading principal submatrices are nonsingular. If this property is not satisfied,
these methods fail. However, recently Delsarte, Genin, and Kamp [5], Heinig [6], and
others have proposed methods to generalize the Levinson algorithm to solve systems
with singular leading submatrices.

It would be expected that if the normal Levinson algorithm breaks down when a
leading submatrix is singular, a serious loss ofaccuracy could occur using finite precision
arithmetic when a leading submatrix is nearly singular. This has been shown by Bunch
[3] for the Trench algorithm and for classical O(nz) Toeplitz solvers related to the
Trench algorithm. In 2, we analyze one of these solvers, the Bareiss algorithm 2 ], in
more detail; we show that nearly singular leading submatrices (NSLSs) cause small "pivot"
values that result in large multipliers, which in turn propagate large increases in relative
error. We then see that there is some freedom in the Bareiss algorithm to select alternative
pivots, and such a pivoting technique is proposed in 3 to handle cases ofNSLSs without

Received by the editors November 15, 1989; accepted for publication May 22, 1991.

f Electronics Research Laboratory, Defence Science and Technology Organisation, Salisbury SA 5108,
Australia (dougs@ewd.dsto.gov.au). This work was completed while the author was with the Department of
Computer Science, James Cook University of North Queensland, Townsville, Qld. 4811, Australia.
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significant loss of accuracy. In his original paper, Bareiss proposed a pivoting scheme to
handle exactly singular leading submatrices; however, the present method, which applies
to singular or nearly singular leading submatrices, is different from that of Bareiss, and
of more general application.

The Bareiss algorithm can also be used to compute the LU factors of a Toeplitz
matrix, and it is shown in 4 how a restricted version of the pivoted Bareiss algorithm
(PBA) can be used to compute an LU factorization of a row- and column-permuted
version ofthe original Toeplitz matrix. In 5, it is shown how Trench’s Toeplitz inverter
can be derived from the multipliers produced by the Bareiss algorithm, and hence a
pivoted Trench algorithm is derived from PBA. Numerical examples are given demon-
strating the improved performance of all the pivoted algorithms. Finally, some conclusions
are drawn, and pointers to further work indicated.

A preliminary version of this paper was presented at the SPIE 1986 Conference on
Advanced Algorithms and Architectures for Signal Processing [12 ]. The material has
been greatly expanded and modified in this paper, with the inclusion of full descriptions
of the pivoting algorithms with diagrams, proofs and major results, a new and faster
algorithm for "Backtrack Procedure C" (see 3.6), and a more general method for
extracting the upper triangle for back-substitution. In certain cases, the algorithm of 12
does not terminate normally, and an augmentation procedure is described in 3.9 to
handle these cases.

Remarks on notation. The symbol ":=" in an algorithm denotes assignment. For
any vector, a, aR, and an denote the reversal of a and a , respectively, and ai:j denotes
[a,..., a] r. For any matrix A, ai. and a. denote row and column j, respectively, of
A’, ai,j:k denotes [ai ai];A denotes the leading j j submatrix of A; and Ak:t.
denotes rows k to ! to A.

2. Error analysis of the Bareiss algorithm. Here we present the Bareiss algorithm
and demonstrate with a numerical example the loss of accuracy that can occur when a
leading submatrix is nearly singular. We show by means of a backward error analysis
how this loss of accuracy occurs.

2.1. The Bareiss algorithm. The Bareiss algorithm solves the general Toeplitz system

(2.1) Tx b

by transforming (2.1) successively into the systems T(-)x b(-), T(/)x b(+)

T(-l)x b(-1) T(+l)x b(+l) T(l-n)x b(l-n) T(n-l)x b(n-l) where T(-j)

has zeros along the j subdiagonals, and T(j) has zeros along the j superdiagonals. Define
the shift matrices Z_+j by

(2.2) (Z+-j)kl k+_j,l,

where i is the discrete &function. Premultiplication by Z_+ has the effect of moving a
matrix up (down) byj rows and zeroing the bottom (top)j rows ofthe result. The Bareiss
algorithm is as follows.

(2.3)

(2.4)

T(-) Tt) T; b(-) := b() b.

Forj to n- do"
(1- j),., I.--1)m_j := tj+ 1,1/l

(2.5)

(2.6)

T(-j) T(l j) m_Z_T(j- l)

t(j 1) / (--j)
mj n j,n t nn

b (-J) :-- h j) m_jZ_jb (j- l),

(2.7) T() := T(j l) mZ.T(-), b (:) b (:- 1) m:Z./b (-).
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It is easily shown that after step j, T(-J) and T(J) have the form shown in Fig. 2.1. Since
the nonnull areas of Z_jT(J- ) and Zj T(-J) are Toeplitz, there are only O(n) multipli-
cations per Bareiss step, and the complete reduction requires O(n2) multiplications.

We now introduce an alternative notation which will be useful in the sequel. Let
t(A-J) and t(A/J) denote the elements in the first Toeplitz nonzero diagonal above the zero-

(--J)band (ZB) (ofj diagonals) of T-j and T+J respectively (see Fig. 2.1 and let t
and t(+j denote the elements in the first Toeplitz nonzero diagonal below the ZB of T
and T+j), respectively. We see from Fig. 2.1 that

(2.8a) t(A-j) t(n-j) I(B-j) j+ 2,1,

(2.8b) tj= tJ2j_, and tJ= t.
Let T( J) v(+J) -(+J)

-, --,Vk, and l,Lk denote, respectively, the Toeplitz part, the Toeplitz part
excluding thefirst k rows, and the Toeplitz part excluding the last k rows of T(+J)" and

(+--J) (+-j) (+-j)
let , O,Fk, and b,Lk denote, respectively, the corresponding elements of b(-+J).
From Fig. 2.1 it can be seen that for the Bareiss algorithm, T(,-J) j+ l:n- and
T T(j)

,:,_j.. Using this notation and (2.8), (2.4)-(2.7) can be written as

1)(2.9) m_j’= t( J)/t-
(2.10) T(,-J) (-J) b b,r m_jbT.F1 m_j T(.JL-I (,-j) (1 j) (j-I)

,LI

(-j)
(2.11) rn t(j )/tA
(2.12) , := T, -tnj b "=b,L -mjb

2.2. Loss of accuracy in the Bareiss algorithm. The system Tx b, with

(2.13a) tl. [4, 8, l, 6, 2, 3],

(2.13b) t. [4, 6, (71/15) + a, 5, 3, 1] T,
(2.13c) b-- T[1 1] r,
where a 5 10 -8, was solved in double precision (56-bit mantissa) using the Bareiss
algorithm. The error vector , x had infinity norm 6.9 10 -2. Now T3, the 3 3
leading submatrix of T, would be exactly singular if a 0. The near-singularity of T3
caused a serious loss of accuracy, even though T was well conditioned. This result is in
line with Bunch’s general analysis of the stability of O( n 2) Toeplitz algorithms. We next
examine error propagation in the Bareiss algorithm in more detail, and conclude that as
for unpivoted Gaussian elimination, the loss of accuracy is due to the occurrence of
small pivots which produce large multipliers m_+ in (2.9) and (2.11 ).

2.3. Bareiss pivots. Consider the form of the iterates (Fig. 2.1 produced by the
Bareiss recursion (2.9)-(2.12). We can see that in step (-j), the diagonal containing

rows

T (-J): o

L*--
zeros

(-i)
T (J):

rows

FIG. 2.1. Form ofT(-j) and T(j). Areas bounded by
generalform, and remaining areas are null.

have Toeplitzform, areas bounded by- have
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tJ- ) is used to eliminate the diagonal containing tl j). Thus t- ) is the pivot element
for step (-j). Similarly, tA-) is the pivot element for step j. It can be shown by straight-
forward algebraic manipulation (see Appendix A) that for the case

(2.14a)

the following applies:

T/, II( + (Tj))2

(2.14b) It-J)
(T+ ) fl(T)

where II" is any matrix norm fl Tj. + ill/II Tj II, and (Ti) is the condition number of
Ti, defined by IITill IIT- II. Note that because of(2.14a), the denominator in (2.14b)is
positive. Equation (2.14b) shows that when Tj. is well conditioned but Tj. +l is not, the
pivot tA-J) will be small, and hence, by (2.11 ), will produce a large multiplier. As we see
below, large multipliers can cause large relative errors in the Bareiss algorithm.

2.4. Backward error analysis of the Bareiss algorithm. Recall that the aim of the
Bareiss algorithm is to reduce the system (2.1) to the upper and lower triangular systems

(2.15a) T(l-n)x b (l-n),

(2.15b) T(, l)x b(n- l).

Let bars denote computed quantities, and let Xu and xt be the solutions, respectively, of

(2.16a) (1-n)xu (l-n),

(2.16b) (n-1)Xl_ (n- 1).

Then it can be shown after considerable manipulation (see Appendix B) that Xu and xt
are, to a first-order approximation, the solutions, respectively, of the perturbed systems

(2.17) T + LF]xu b + Ld,

(2.18) [T+ Ur2R/tll]xt b + UT2g/tll.

Here L is the unit lower-triangular factor of T, U is the upper-triangular factor, T2
denotes transpose about the secondary diagonal, and the elements of the perturbation
matrices and vectors are bounded by

(2.19a, b) IJ/I, Irkll <- 4(n 1)#a-,

(2.20a, b) dkl, gk <---- 4 n Uafl,

where is the machine precision, z maxk,/ ttl,/3 maxk bkl, and
n-1

(2.21) a= II (1 + Imtl).
l=l-n

Equations (2.17)-(2.21 show that ifthere are any large multipliers, such as would occur
from small pivots resulting from NSLSs, the error in the computed solution can be large.

3. The pivoted Bareiss algorithm. Here we first outline the basic pivoting procedure
(BPP). It will be shown that BPP can be used to handle cases of isolated NSLSs. Then
it will be indicated how to combine several steps of BPP with backtracking to produce
a composite pivoting procedure (CPP) that handles several cases of contiguous NSLSs.

In all of what follows, only the operations on the iterates T(+j) will be described. It
is understood that corresponding operations will also be performed on the fight-hand
sides b(+J).
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3.1. The basic pivoting procedure. We noted above that in step -j of the Bareiss
algorithm, tj- 1) is used as pivot to eliminate I(Bl-j). We could instead use t- 1) to
eliminate I(A1- J). Thus there is a two-way choice of pivot at step (-j).

At step j in the normal Bareiss algorithm (in which T(j) is computed), ttA-) is used
as pivot to eliminate t- 1). We could instead use t-j) to eliminate t-1). Thus there is
also a choice at step j. As well as having a two-way choice at each step, we also have the
choice of whether to perform step -j or step j first. These choices motivate the BPP.

3.2. Use of BPP to handle isolated NSLS. Equation (2.14b) shows that if T / is
nearly singular, tA-) is small (zero if Tj. +1 is singular). Hence the normal Bareiss algorithm
can suffer a large loss ofaccuracy at stepj in this case. However, if T / 2 is well conditioned,
t-J) will not be small, as is indicated by the following lemma.

LEMMA 3.1. Let (A-j) and (B-j) be as defined above. Then

(3.1) It-S)l / It-)l >--IIT/211/(T/2).
The proof of this lemma is given in Appendix C. Because of (3.1), we can use BPP as
follows to handle the case where Tj. /1, but not T / 2, is ill conditioned.

ALGORITHM 3.1.
1. Run the normal Bareiss algorithm to step (-j). Then tA-), but not t-j), will

be small.
2. With t-) as pivot, eliminate t- ) in step j:

mj.’: - 1)/t-), T)’: TL-2l)
mj T,F

3. With t) as pivot, eliminate tA-) in step (--j )"
(-J) / (J) (-j- ’T’(--J) T)m_j_ tA i A T, ,L m_j_

4. With tA-J- l) as pivot, eliminate tj in step j + 1"
T(j) --j-

mj+l := tJ)/t-- ’) T+ 1):= ,F1 m+, T,z,

It can be verified that at this juncture T(-j ) and T(j / 1) have the forms shown
in Fig. 3.1. By appropriately permuting the rows between T(-- l) and Tu + ),
these can be restored to "Bareiss form" (Fig. 2.1 ), apart from the nonzero elements
"a" and "b," which after permutation, appear in Tu + 1). The reduction can then
be completed as follows:

5. Continue with the Bareiss algorithm, repeating steps 2-4 if necessary. At the end
of the reduction, T(1-’) (but not T(’- )) will be upper triangular. Solve the
upper-triangular system by back-substitution.

T(-J-I)

rows

R--’ --a

T(J+I)

0 XX> -X

j+l rows

FIG. 3.1. Form ofT(-j- 1) and Tu 1) using BPP.
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The pivot threshold. We have not yet addressed the question of how "small" t(A
should be before pivoting is required. The following heuristic should handle all cases of
isolated NSLSs without causing unnecessary pivoting"

(i) find m-a the element in the Toeplitz part of Tt-j) with largest modulus;
(ii) carry out the above pivoting procedure if It(A-) <0.0011ttm-)l and

It-l < It- I.
A higher threshold, say tA- < 0.11 t(m-l, should handle even cases of mildly ill

conditioned isolated leading submatrices, though at the expense of extra pivoting. The
latter strategy is analogous to that used in sparse mixing pivoting, where a similar threshold
is used with a view to pivoting only when necessary to avoid a serious loss of accuracy,
so that "fill-in" is minimized.

Numerical results. The above procedure was run on the system Tx b specified
by (2.13). A value of 1.1 10 -15 was obtained for I[ x[l, compared to 6.9 10 -2

in the unpivoted case (see 2.2).

3.3. Composite pivoting procedure. In the following, we let t-+J) and (_) denote
the Toeplitz diagonals k places, respectively, above and below the ZBs of T(e). Note
that tl+-J)= t(A+) and t(_J)= t+j).

There are some cases in which both t(A-) and t(-j), as well as other Toeplitz diagonals
adjoining these, are small, and the above procedure will not produce satisfactory results.
This implies that Tj and one or more adjacent higher-order leading submatrices of T are
near-singular, for by a straightforward generalization of the proof of Lemma 3.1, it can
be shown that

E It-l >= IITs+r+slll"(T+,.+).
kq=O

Thus, if tk-J) I, k -s,..., l, 1,..., r are all small, then ( T + ), ( T +r+s)
are all large.

If ttA-) and t-J) are both unsatisfactory as pivots, it would be desirable to use some
other, larger diagonal J) or }-) as pivot. This cannot be done immediately, as several
ofthe zero diagonals in Tt 1) will be destroyed. However, ifby some means the Toeplitz
ZB can be "moved" up or down so that a satisfactory pivot is made available (the
selection ofa suitable pivot is discussed later), the small diagonals, which reappear below
the ZB if the latter was moved up (and above the ZB if the latter was moved down),
can be eliminated by a sequence of ordinary Bareiss cycles.

Figure 3.2 (a) shows the ZB in its normal position as given by the Bareiss algorithm,
and Fig. 3.2 (b) shows the ZB moved up so that it adjoins the desired pivot.

Figure 3.3 (a) shows the situation when the desired pivot is below the ZB. Note that
p is negative here. Figures 3.3(b) and 3.3(c) show the ZB moved down Pl and
pl places, respectively. Observe that in Fig. 3.3 (c), the desired pivot has appeared above
the ZB. This is because whenever the ZB is moved, the diagonals displaced by the shift
appear on the other side of the ZB.

In the procedures to be outlined, we always move the ZB so that the desired pivot
appears just above the ZB (rather than just below). This enables us to continue the
reduction using normal Bareiss steps, starting with the new pivot -).

We now describe three alternative methods to move the ZB. All involve backtracking
one or more Bareiss cycles, i.e., recovering iterates T+-tJ- Ipl), Pl >-- 1, then carrying out
p cycles of BPP in such a manner as to move the ZB in the desired direction, so that it
adjoins a large pivot; thus these methods are called "backtrack procedures." Which pro-
cedure to select in a given situation is discussed below.
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small diag,,. (J), (desired pivot p zeros t(j)

n-j I (C) Psttin) all/rows (-j)

sm O>pdiags a. o

zeros
(a) (b)

FIG. 3.2. T(,-j)" (a) normal Bareiss form, (b) with ZB moved up p places to adjoin ,’(-J)p+ 1. indicates the
position ofthe desired pivot.

One might ask whether "moving" the ZB changes the desired pivot significantly,
so that it is no longer sufficiently large. The next lemma shows that if, say, t-J)

(=tt-J)), tt2-j),..., tp(-) are all small, but is,+ is not, then moving the ZB up p places
by any procedure to make tp +l available for pivoting will not greatly change the latter.
A similar remark can be made when the ZB is moved down.

LEMMA 3.2. Let Tj.,s, be the jth Toeplitz submatrix ofT displaced p places right of
(below) the main diagonalfor p positive (negative), and assume that T;p is nonsingular.
For the Toeplitz part ofT-), let t.-k) be as defined above, and let (-j) be the result of
any pivoting procedure that moves the ZB to displacement p. Let k’ be such that (k7 J)
(-J) as defined previously Thenmax

(3.2) k-s, + ek

where

k=j+ 1-n ,u- 1,

k 0 p sgnp,

v+ 1,...,n-j,

u min (0, p); v max (0, p),

=< Ifl,,,,(T;)ll0, tl- t- II, p > 0,
(3.3)

flp(Tj;,)llt-J),..., t-iJ), 0TII, p < O,

and ,, TII/II C.; II.

i<_i
IPI+

desired, \ "M \ ",,_

pivot pos’n
I1 Ipl+l

(a) (b) (c)

FIG. 3.3. Tt,-J): (a) normal Bareiss Form, (b) with ZB moved down ]p 11 places so that the desired
pivot is just below the ZB, (c) with ZB moved down pl places so that the desired pivot is just above the ZB.
indicates the position ofthe desired pivot t(-J).
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T(-1)

>(-- x

P (-1)

T(1).

O._.__y (1)

p+l

o

FIG. 3.4. Form of Tt-) and T() after one cycle ofBPA.

The proof ofthis lemma is straightforward but tedious. Details are given in Appendix
D. Equations (3.2) and (3.3) clearly show that if p+ is not small, but the diagonals
between it and the ZB are, then there will not be a great relative change in the former.

We now describe each backtrack procedure in detail.

3.4. Backtrack procedure A (BPA). This procedure is only preferable ifj < pl,
where p is the desired ZB displacement, as we must recover T() and repeat cycles to
j; here we eliminate, for each T(-i) and T<i), the diagonals, respectively, below and above
t, +,(for p > 0) instead of t. For this case (ZB upshift) we proceed as follows.

(+0) (0)With ,1 + p as pivot, eliminate the diagonal containing 2 + p (step ):
.(-o) (+o) T(,-) (-o) T(+O)

m-1 t2,1+p/tl,l+p, :-- T,F1 m-lZ,L1.

2. With the diagonal containing t(-)
n-p,n as pivot, eliminate the diagonal containing

t(+o) step )"n-p- l,n

m, t(.) (-’)- T(,’) T(,],-p-l,n/tn-p,., mT(,-)

After this step, T(-) and T() have the form shown in Fig. 3.4.
3. For 2 to j, proceed as in the Bareiss algorithm, using t(g- ) to eliminate

(-i) t(A-t( ) (step -i), then A to eliminate (step i). The matrix operations are as in
(2.9)-(2.12), with the new t(a+;) and t(+.

It is easy to see that after this procedure, T(-j) and T(j) have their ZBs displaced up
p places, as illustrated in Fig. 3.5. The procedure for p < 0 is similar.

3.5. Backtrack procedure B (BPB). In this case, we go back to step (-j + [P I)
and use the basic pivoting procedure p times to move the ZB p places in the desired
direction. At steps -i and i, we move the ZB up one place as follows.

U-cycle. (i) With t(Ai- ) as pivot, eliminate t(a ;) (step -i):

m-i ttA’- i)/t(Ai- l), T(,-i) T = i),F1 m T(,tL-I 1).
(-i)(ii) With tA as pivot, eliminate t ) (step i)"

(-i)
mi := t(Ai- )/tA T(,i) T(,iF- m, T(,-i).

p

T(-I) TQ)

p_j p-j+1

FIG. 3.5. Form ofT(,-j) and T(,) afierj cycles ofBPA.
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Figure 3.6 shows a typical U-cycle. In T,- i) and T,i-), the ZB is "displaced" r
places up from its "normal" Bareiss position, that is, its zero-band displacement (ZBD)
is r. In T,-i) and T,i), ZBD is clearly r + 1. Similarly, we move the ZB down one place
at steps and -i as follows.

D-cycle. (i) With ( i) as pivot, eliminate (B (step i)"

m (Bi -1)/ T(,i) := T(,//I m T(,I71 i).
.(i)(ii) With tB as pivot, eliminate t i) (step -i)"

(i)
m-i t-i>/tB T,-‘) T(,] i) m-iT(,‘).

Figure 3.7 shows a typical D-cycle. ZBD is clearly -r in T(, -i) and T(,i-), and
-r- in Z(,-i) and T{,. Note that in a D-cycle, step is performed before step -i.

Note. In 11 ], U- and D-cycles are called A- and C-cycles, respectively, but the U,
D notation is more descriptive for its effect on the ZB. BPB is more efficient than BPA
iflp[ -<j.

3.6. Backtrack procedure C (BPC). This is an alternative method to BPB for mov-
ing the ZB up or down. It is slower than BPB, but allows the pivots to be monitored
continuously while the shifting is being carded out so that the shifting can continue until
a satisfactory pivot is obtained. In each major step of this procedure we start with
T,j-2) and T,J- 1) and the corresponding multiplier matrices m(,j- 2) and M(,j-), where
M(j- 2) and Mo -1) are defined by

(3.4) M(+k)T -= T(+k) for k 0,

and compute 7u--), 2Q(J-z), 7(- ), and ]r(-), where for any k, 7(+), ]r(+e)

are T(+k), M(+), respectively, with the ZB shifted one place. The following properties of
the T’s and M’s are easily shown.

A. TheM(+k) may be computed by replacing the T’s and M’s in the Bareiss recursion,
with the initial values M(-+) I. Thus, for each Bareiss step, we have

3.5 M,-) := M,5 ) m_jM,J{ ),

(3.6) M,) M(,J{I mM,-).

(,-i) subtract r+l 1)
A/ 11 -i)

(a,T (1-., T Ox
-i-.(i-1

N.

(b)

t(-i) t(i-1)
A subtract r+ A

t,(-i) tJi’1

(c) T.(-i) r+

r+l

FIG. 3.6 (a) T,1-i) and T,-’) with ZBD r. (b) After step -i ofa U-cycle. (c) After step ofa U-cycle.
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(a)

(b)

subtract

T(l_i). < i-1)

t(1-i) r+l tll-’)
B

subtract

T!’-" .,0r..__ T*(‘,
"1 x-i x x----:::-

(i)t(-,) r+l tB

(c) r+2
 oO\

X- -X X-

FIG. 3.7. (a) T,-i) and T,-’) with ZBD -r. (b) After step of a D-cycle. (c) After step -i of a D-
cycle.

B. The M(+k) have k non-Toeplitz and n k Toeplitz rows, corresponding to the
non-Toeplitz and Toeplitz rows, respectively, of the T(+g). M,-k) and M,) both have
the form shown in Fig. 3.8.

C. Let m,+k) denote the upper nonzero diagonals of the M,+g) (see Fig. 3.8). We
then have, for an upward shift in ZB,

(3.7) rh ,_ m ,k k j 2, j 1.

Thus T,) is a scaled version of 7,-), and the scaling factors are the upper Toeplitz
diagonals of M,) and 2Q ,).

The essence of BPC is that these properties and the Bareiss recursion allow us to
perform a sideways upshift (SU) of the ZB (an SU-cycle) as follows.

Compute 7 ,2 j), 7 , j), and the corresponding _r’s using 3.7 ). (See Algorithm
3.2, steps 1-6. Here, scale factors rh , J) and rh ,2 j) have been set to equal m ,J- 1) and
m ,J- 2), respectively.)

k+l

n-k

n

FIG. 3.8. Form ofM,-k) and M,).
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Compute 7 (,JL-I2) from 7(,2-j) and (,1-j)by rearranging the Bareiss step (2.10);
compute (,J2) by rearranging the multiplier update step (3.5). (See Algorithm 3.2,
steps 7 and 8. The derivation of these steps is detailed in Appendix E.)

Compute the bottom-left element of 7(,j-2) using the identity (,J-2)T
7(,j-2); the rest of the bottom row of (,J-2) follows from the Toeplitz property (see
Algorithm 3.2, step 10).

Compute 7(,j- ) and (,J- ) by a normal Bareiss step and a multiplier matrix
update step (3.6) (see Algorithm 3.2, steps 11 and 12).

The detailed steps of an SU-cycle are as follows.

ALGORITHM 3.2.
1. (,2-j).= T(,j-2),

2. sl)l ,2 M(,j- 2 ),

4. (1 j) :__ T(j

5. ,- j) := M,j- ),
6. r,-) := m,j-),

9. j-2) j-2)
,,_j + 2 Z,n-j+ -1,

10. i u-2) u-2)
,,_j+2 [ t. i,n-j+2 1 ,n-j+l,l:n-I

j-:)/]-j)11 k ) := ,) _, k’ J), where j _,
2. J-’):= kJ,:)- mj_lk’-j),

where ,i denotes row ofA, for any A.

The main operations in an SU-cycle are illustrated in Fig. 3.9.
The above procedure requires 4n -j operations for each ZB upshift, compared to

4(n -j) for a Bareiss step. The extra 3j operations are required for steps 8, 10, and 12
of Algorithm 3.2. The procedure for a ZB downshift is similar.

3.7. Elimination of smll diagonals. Suppose that p diagonals above the ZB and q
diagonals below were rejected as pivots because they were "small" by some criterion (to

-) in which case the ZB wasbe discussed later). Suppose that the desired pivot was
moved up by p places. Then p + q diagonals below the ZB will generally be small. To
see this, obsee that (3.2) can be written using normal matrix notation as follows:

tcJ) tcJ) +tm tm im
(3.8) ;t_j) -,_) lin-j, lmn,

t ,im ,im + im
(-j) .(-j)where t,i,, tma, and eim and ei’m’ are bounded as in (3.3). Equation (3.8) shows (i)

the q diagonals below the original ZB remain small, and (ii) the p new diagonals above
these (originally zero) are also small because their values relative to /, will be

(-j)
tml(t,’’ + e,m,).

These p + q small diagonals can be eliminated by using p + q nodal Bareiss cycles,
hencefoh called B-cycles.

Suppose now that the desired pivot was tJ), so that the ZB was moved dawn
q + places, in which case the desired pivot appeared above the ZB (cf. Fig. 3.3). In
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T,(2"J) T,(J-2) .,(2.j) Compute B from ,(j-2)
A & C by rearranging

r+l r+2
.j...... ],.... Bareiss

+i step (1"‘,

ute with identity
T

] Computo D
from B & G by

FIG. 3.9. Main steps in computing :,(j-2) and :,-)from T(j-2) and T0-) in a sideways upshift.
Corresponding multiplier matrices are computed similarly.

this case, p + q small diagonals appear above the ZB in T(J). To see this, recall property
C above: T(J) for ZBD -q is a scaled version of T-J) with ZBD -q. The p +
q diagonals above the ZB of this T-) are in the same position as either zero or small
diagonals of the original Tt-) (with ZBD 0), so by (3.8) they are small compared
to the largest diagonal, hence the p + q diagonals above the ZB of T J) (with ZBD
q + are small. These can also be eliminated using p + q B-cycles.

3.8. Restoration of Bareiss form. After a backtrack procedure has been performed
and small diagonals eliminated, the ZB should be moved back to its normal position.
Recall Fig. 3.2, which shows the normal Bareiss form of T(-J) and the form of Tt-) with
ZBD p. To restore the Bareiss form, we carry out p U-cycles if the ZB was displaced
down p places, or p D-cycles if the ZB was displaced up p places.

3.9. Nontermination of restoration of Bareiss form: Augmentation of T. Occasionally
13 when the pivoting is carried out very late in the reduction, and the ZB displacement,

say d, is relatively large in modulus, restoration of Bareiss form (RBF) is not complete
at cycle n 1, and the final ZBD, say df, is not zero. This occurs if k + dl > n 1,
where k is the cycle number before RBF begins; then dfl k + dl (n ). Figure
3.10 shows the final reduced rows for ZBDs of 0 and 3, respectively. To complete the
reduction, a non-Toeplitz matrix of order ]dfl must be triangularized. In most cases,
dfl will be small compared to n, and the cost of this reduction will not be significant.

In the occasional case where dfl/n is not small, a different technique must be used:
if T is augmented by r k + dl (n Toeplitz rows and columns, then RBF can
finish, giving the solution of an (n + r) (n + r) system. The fight-hand side must also

T (l"n)
(Toeplitz Part) T (n-l) (Toeplitz Part)

(a) o,, ox xo, o

(b) xxxo o xxxxo o

FIG. 3.10. Toeplitz part ofT(-") and T("- 1) (a) with d:= 0, (b) with d:= 3.
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be augmented by an r-vector c. It can be seen that if c is chosen so that x2 0 in the
system

(3.9) Tn+r
x2

where Tn+ is the augmented matrix, then xl x. The problem is to compute c in O(n2)
operations. Here, one method is used when RBF is carried out using SU-cycles or sideways
downshift (SD) cycles, and another when RBF is performed with U- or D-cycles. In the
first case, it can be shown that the last r cycles of the reduction of Tn / are B-cycles, and
that

b(,-n-r) b(nl+].n-i) (’-n-i)[bT cilT,n+i m,l,l:n+i 1, r.

For any given c, it can be shown that X2 can be computed by solving the upper-triangular
system

(l-n-i) b(nl+-in-i)t,l,n+ l:n+rX2 1, r,

so if is selected such that b+-n-i) 0, 1, r, then x2 0. This can be ensured
by selecting each c; such that

(1 i) T T Tm,l.l:n+i[b 1:i] 0, 1,..., r,

which requires O(nr) operations.
In the case where RBF is performed using U- or D-cycles, the computation of c in

O(nr) operations is more involved. Details are given in [13].

3.10. Extraction of upper triangle for the solution of (2.1). By considering the zero-
patterns in the Toeplitz parts ofthe T-) (e.g., see Figs. 3.2 and 3.3 ), a column-permuted
upper-triangular system can be extracted by selecting appropriate rows from the T-)

and b-). Observe that if SU- or SD-cycles are carried out at iteration j, there will be
several values of T-), one for each ZBD. We therefore denote T-’a) as the value of
T-) at ZBD d in the following. We will show that the following algorithm produces a
column-permuted upper triangle U’.

ALGORITHM 3.3.
1. u,. := t ,7 ,0); h h := 0; n ( i" index of next row of U’}
2. For each iteration from the last back to the first, do
2.1. case cycle-type of

U’h’=h-1,
D,SD’h’=h+ 1;

2.2. h max (h, h);
2.3. a’= +h-h;
2.4. if t(,-aj’d). has nonzero entry t (-j’d),am for which Um 0, < < n then

lit (-j,d)
i" t,a.
i.=i-1.

The following lemma shows that (i) t ,-,d) always exists and (ii) U’ is a column-
permuted upper triangle.

LEMMA 3.3. For each cycle ofthe PBA, let a and u. be as in Algorithm 3.3. Then
A. <= a <= n -ifor each iteration j and ZBD d.
B. u has at exactly one nonzero entry U for which Um O, < < n.
C. The last computed row of U’ is u’., and U’ is an n n column-permuted upper

triangle.
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Proof. The first inequality in property A follows immediately from step 2.2. The
second follows from the fact that there cannot be more than n -j U-cycles after
cycle j, and hence h cannot exceed h by more than n -j 1. For property B, it can be
easily verified from the zero-patterns in the T,-j’d that t .-j.,d has at most one nonzero
entry t(-J’d),am for which Um 0, < < n, hence, by step 2.4, u’i. has exactly one nonzero
entry Um for which Um O, < l <= n. For property C, observe that the last computed

(,-0,d)row u is By applying property B successively to u’ 1.,...,ui. and noting that
.-0.,d has no zeros, we obtain property C.

Remark. The test in step 2.4 can be carried out efficiently by maintaining an array
of flags, the mth entry of which is set when a new nonzero entry t t-j’d is found. The,am

updated array is then used in the test in the next iteration of the loop.

3.11. Summary of the composite pivoting procedure. We execute the Bareiss al-
gorithm (B-cycles) until tA-J is less than some threshold (discussed below), move the
ZB by a backtrack procedure until an acceptable pivot is found, eliminate any small
diagonals using B-cycles, then restore to Bareiss form. This procedure is repeated when
necessary. Processing continues to cycle n 1. The permuted upper triangle is extracted
using Algorithm 3.3.

3.12. Pivot selection strategy. We have not yet given a criterion for selecting a pivot
that is "large enough." The following heuristic strategy has been used to handle cases
where groups ofbadly conditioned leading submatrices are bracketed by well-conditioned
leading submatrices.

Case 1. Use of BPA or BPB to handle contiguous NSLSs. We execute the Bareiss
m-algorithm until t- I/I _.1 < 0.001, and then provisionally select the nearest pivot

tp- to the ZB satisfying It / tm-a >- 0.001. However, by Lemma 3.2 the execution
of BPA or BPB to move the ZB could change te- significantly unless t- is consid-
erably larger in modulus than elements between it and the ZB. Hence we also impose

(-j)the condition that It- > KIItze I1, where K is a moderately large number, say 10,
and ,’zt-e is the vector containing the entries between the ZB and te-j. If there is no
t- that satisfies the latter condition, we select t- such that It-l/lit-ze I1 is maxi-
mized.

Case 2. Use of BPC to handle contiguous NSLSs. As for Case 1, we pivot if
ItA-l/Itt,?l < 0.001. We then move the ZB up or down until ItA-l or It-l,
respectively, is greater than 0.001 ttm- I. This strategy is simpler than for Case because
the pivots can be monitored at each cycle in BPC. However, BPC is slower than BPA
or BPB.

General remarks. A higher threshold, say ItA-J) I/It(m-ax) < 0.1, could be used to
handle cases of mildly ill conditioned leading submatrices. This should improve the
overall performance ofthe Bareiss algorithm, though at the expense ofextra backtracking
and pivoting. Further work is required on testing the algorithm using various thresholds
on a large variety of Toeplitz matrices to determine the improvement achievable and to
measure typical pivoting overheads.

3.13. Remark on error propagation in the pivoted Bareiss algorithm. The error
analysis of 2.4 was generalized to the pivoted case in 13 ], and the result is analogous
to that of(2.21 ). Hence, ifpivots are to be selected to be as large as possible, the multipliers
will be kept small, minimizing the rounding error propagation.

3.14. Numerical results. The Bareiss algorithm was run on the system Tx b with

(3.10a) tl. 5, 1, 6, 2, 5.697, 5.850, 3, -5, -2, -7, 1, 10, 15 ],

(3.10b) t.l [5, 1,-3, 12.755,-19.656, 28.361,-7,-1, 2, 1,-6, 1,-0.5] r,
(3.10c) b= T[1 ,1] r.
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In this matrix, a change of only 1.5 10 -3 in four elements is required to make T4, Ts,
Tr, and T7 singular. The maximum relative error in x using 56 bits of precision was 13
percent. When the pivoted algorithm was run on the same matrix, the maximum relative
error was 7 10-14.

4. The pivoted Bareiss factorizer. It can easily be shown for the Bareiss algorithm
that the multiplier matrices M-+j) (3.4) are triangular with bandwidth j + 1, and hence,
using the persymmetry of T, that the upper and lower triangular factors of T are given,
respectively by,

(4.1) U T(l-n),

(4.2) L Tn- l)T2/t11.

An upper- and lower-triangular matrix, whose product is a permuted version of T,
may be extracted from a restricted pivoted Bareiss algorithm which contains only B-,
U-, and D-cycles. The algorithm is as follows:

ALGORITHM 4.1.
1. Form the permutation vectors s and v as follows:
1.1.

(4.3a, b) sl := nv + 1; vl nz + { nv, n9" no of U- and D-cycles respectively },
1.2. for j:= lton- ldo

if cycle j is a U-cycle then
1.2A.

(4.4a, b) sg+ min {s,..., s} 1,

elseif cycle j is a B-cycle then

vj+l := max {vl,..., v} + 1,

(4.5a, b) s+l := max {sl, s} + 1,

else { cycle j is a D-cycle }
v+ max {v v} + 1,

(4.6a, b) s / max { sl sj } + 1,

2. Form the permutation matrices

V+l min {vl, vj.} 1;

(4.7a, b) P" {po=6s,j} and Q" {qo=6,,,,.i};

3. Set

(4.8a, b) g := nv, h no;

(4.9a-d) 1’. Pt_ 1’., /l’ u. tl +nu. Q,
(+_o) (+_o)

mUT := mLT := 1,

m (+-j)where mvff (=-m.-+J) see 3.6) and LT are the value of the upper and lower
Toeplitz diagonals, respectively, ofM -+j).

5. forj’= ton- ldo
if cycle j is a U-cycle then

5A.
(--j) (l--j) (Lr,j) (j-(4.10a, b) mvT mvr m --m_mLT
(j). 1) (--j) (j) _mm-:/)(4.10c, d) mvT rn mjmw mi,
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p. (-j)RT(4.10e, f) 1’.+ tb(g). l.j.+ 1’.+ /l+ ,+ ,
(-) r/rn/), decrement g(4.10g) u+ . ta(h). Q

{ here a(i) and b(i) are the rows with nonzero elements to the left and fight of the ZB,
respectively },

elseif cycle j is a B-cycle then
5B.

(-)’ (-) rJ’) m-1)(4.11a, b) mr mr rn := -m_
(j) (--J) (j) (--j)(4 lc, d) mvr -m:mvr mzr m- mmLT

(4.1 le-g) 1’.: Pt(J)gv ,(-:) v/ <-:)
+ (g)., l.j+ l’.j+ /l+,j+, uj+ 1. ta(h). Q mvv

else { cycle j is a D-cycle }
5C.

(J)
mLT mLT(4.12a, b) m VT --mjm)2 j) (J) (J-

(4.12c, d) (--j) (j)rn vr m_m m(rJ) mlr- j) (J)
m_jmLT

(4.12e, f 1’. Pt()r+ b(g)- l.j+l :: l.j+ 1/l/+ l,j+ 1,

(J) T/ (J)(4.12g) uj.+ 1- ta (h). Q mur, decrement h.

We then have the following theorem.
THEOREM 4.1. Let T(+-) be computed by a pivoting sequence consisting only of

B-, U-, and D-cycles; let P and Q be the permutation matrices; and let L and U be the
matrices as computedfrom T(ej) by Algorithm 4.1. Then L is unit lower triangular
and U is upper triangular, and (ii) LU PT.Q.r..

Outline ofproof. The recursions for rnb) and m()J) are easily verified using the
multiplier matrix recursions (3.5) and (3.6). By considering the zero-patterns in the
Toeplitz parts of T(-J) and T() from which the tal, and t(bgJ.RT are selected, it can be
verified that these rows and columns, after being permuted by Q and pr, respectively.,

()form upper and lower triangles. It can also be shown for B- and U-cycles that (i) tah).
(-j)is a linear combination of { ti } s+, and (ii) after normalization by m vr (B-cycles)

or m(rj (U-cycles) u+ . Q is a normalized linear combination (NLC) of { ti. } s/
(coefficient of t.+ is unity). Hence, from the definition of P, Uj+l.Q is a
NLC of { (PT)i. }

/
because premultiplication by P maps rows s, s2, to rows

2,.... Thus u + . is a NLC of ( (PTQ r)i. } / l, i.e., uj + . is row j + of the unique U-
factor of PTQ 7.. The proof for D-cycles is similar. We can similarly show that l.i+ is
column j + of the unique L-factor ofPTQ T. Full details are given in Appendix F.

Numerical results. The system Tx b specified by (3.11 was factored using the
Bareiss algorithm and (4.1) and (4.2). The largest element in the error matrix LU- T
had a modulus of 2.14. When T was factored using PBA together with Algorithm 4.1,
the largest element in the error matrix Pf_,lQT- T had modulus 9 10 -13.

5. The pivoted Trench algorithm. We first show how the Trench algorithm may be
derived from the multiplier matrices produced from a variant of the Bareiss algorithm,
and in the same way, indicate how to derive a pivoted Trench algorithm from PBA.

5.1. Derivation of the Trench algorithm from multiplier matrices. Bareiss also pro-
posed a "symmetric" version of his algorithm, viz.,

for j:= Iton- Ido

=t(l-) I-1)(5.1) T(-) T(-) m_jZ_jT(-) where m_ +,/t

(5.2) ("-- 1)/ (l--j)T(j) T(-1) mZjT(l ), where mj tt#2 j.,it,,
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The recursions for b (-+j) are omitted here. The recursion for T(-j) is the same as in
(2.4) and (2.5), but the recursion for Tj, unlike that in (2.6) and (2.7), has the same
form as the recursion for Tt-j, apart from the signs ofthe iteration numbers. Hence the
term "symmetric." The multiplier matrix recursion is

(5.3a) M(-j) := M j) m_jZ_jM(j- ),

(5.3b) M(j) M(j- 1) mjZjM(1 j).

Now M(-j) is (j + )-diagonal lower triangular, and it is easily seen that rows j +
to n are Toeplitz. Similarly, M) is (j + )-diagonal upper triangular, with rows to

n j being Toeplitz. Define
(-J) (-J) m l,j+ ].m (v-j) =-- mj + , rnj + ,j+ and m () m) (J)

Note that the fight-hand sides are the first rows of the Toeplitz parts ofM(-j) and M(j),
respectively. Then from (5.3) we have

(5.4) m-j)=t0,m(r’-j)]-m_j[m-’) 0]" m)= [m7-1)
0]-mjt0, m-l)]

The recursion (5.4) would be self-contained if we have expressions or recursions
for the numerators and denominators of the m+_j. in (5.1) and (5.2). By the symmetric
Bareiss recursion and the definition of the multiplier matrices, we have

,(l- j) [/21 lj+l,l] T(5.5a) ,j + 1,1 m j)

-2) (2-j)(5.5b) tl{ 1) l mj-ltjl

t(1 J)" I-- 1) t(B j) (j- 1)(5.5c, d) m_j j+ 1,I /t /t,

t(-.) -(5.6a) .,_j,, m. )[tn-j,n, ln-l,n] T,

(5.6b) tn-) ttn]-)- ml_jt(J-2)n-j+ l,n,

(5.6c, d) mj J- / J (Aj-l)n-J,n! /ttA-)
n-l) in n cycles. However,The recursion (5.4)-(5.6) yields m n) and m r

m-n)T [0,..., 0, t(nln-’)];
therefore,

(5.7) m(Tl-n)lt(l-n) T-I .R]T, nn T- n. by persymmetry,

and similarly,

(n-l)/ (n-) T_(5.8) mr t )1".

Thus the recursion (5.4)-(5.6) produces the first row and column of T-l; by a suitable
change in notation, this recursion can be shown to be equivalent to Phase I ofthe Trench
algorithm 14 ].

5.2. Derivation of pivoted Trench algorithm from PBA. A pivoted Trench algorithm
may be derived from any PBA variant in the same way that the Trench algorithm was
derived from the multiplier matrices of the Bareiss algorithm.

The general methodology is as follows.
1. Write the multiplier matrix recursion, analogous to (5.3). Each cycle of this

recursion is the same as in PBA, with M(+j) replacing T(+j). Recursions for the various
types of pivoting cycles are given in (2.9)-(2.12) (B-cycles) and 3.2, 3.5, and 3.6
(U-, D-, and SU- and SD-cycles). They all have the form

(5.9) M(,+-j) ,uM(j- mej2vM(j- s),
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TABLE 5.1
Numerators and denominators ofmultipliersfor various pivoting operations.

n_j

Bareiss
symmetric
algorithm Algorithm 3.1 U-cycles B-cycles D-cycles

where s 0 or 1, and for any k, k is a rectangular matrix that selects all but the first k
rows (for k positive) or the last k rows (for k negative) of the matrix it premultiplies, u
and v depend on the cycle type and the sign of +__j. For example, in a U-cycle, u
and v -1 for steps (-j), and u and v 0 for steps (+j). The initialization step
of the recursion is M-) := M+) := I.

2. Write the recursion corresponding to (5.4) for rn +J), the nonzero elements of
the first rows of the Toeplitz parts ofM+j). The recursions for the mT+) can be shown
from (5.9) to have the form

m+-) [0u+, m(- ’), 0u-] mx[0v+, mr(j-s), 0v- 1,

where u, v, and s are as in (5.9), u + max (0, u), u- max (0, -u), v -+ are defined
similarly, and 0u and 0v are zero vectors of length u-+ and v +-, respectively.

3. Write, in analogy to (5.5d) and (5.6d), expressions for m_+ in the form

m+ n+fl d+j,
where n+j, the numerator term, and d+, the denominator term, are one of tj-s) or
t-s), s 0 or 1. Table 5.1 shows the n+j. and d+j. for the various types ofpivoting steps,
as detailed in 3.

Depending on the type of pivoting step, these may be computed either from previous
iterates using the Bareiss recursion, or by application of the identities

+---(J-- t/(J- S)(5.10) m. s)t.
-s) M_sIn the latter case, m. is a row of and has the form [0p, rn9-), 0q] where

p and q are positive integers (see Fig. 3.8). Details for the different types of pivoting are
given in Table 5.2.

TABLE 5.2
Calculation ofttA+/-j) and tJ) for various pivoting operations.

t

t
t

Bareiss
symmetric
algorithm Algorithm 3.1 U-cycles B-cycles D-cycles

t] -)- m_t]- ’) t -) m_t- ’)
use (5.10) use (5.10) t] -)

use(5.10) t] -) m-t-) t] -) m-t-)
use (5.10) use (5.10)

’) tj ’ mjt-use (5.10) t- use (5.10) use (5.10)
(1 -j) (j- 1) l- 1)t-)

mjtn use (5.10) tn use (5.10)
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4. The first row and column of T- are given by (5.7) and (5.8). The remainder
of T- is computed using Phase II of the Trench algorithm.

5.3. Numerical results. The Trench algorithm was run on a Toeplitz matrix with
first row and column

t. (8, 4, 1, 6, 2, 3), t.1 (8, 4, -34 + 5 10 -13, 5, 3,

T would be singular if t31 -34. For the Trench algorithm, TT- III was 0.52. A
pivoted Trench algorithm derived from Algorithm 3.1 was then run on T, and the value
of TT- III was 6.4 10 -5 in this case.

6. Conclusions. The Bareiss algorithm and related O(n2) algorithms can suffer a
large loss in accuracy if some leading submatrices are ill conditioned. Some pivoting
schemes have been proposed for the Bareiss algorithm to handle these cases. These schemes
can also handle cases of exact singularity, because exactly singular leading submatrices
cause extra zero diagonals in T(-j), rather than small diagonals. Numerical singularities
(exact singularities perturbed by rounding errors) cause very small diagonals in T(-j).
The heuristic pivoting strategy used would be expected to handle cases where groups of
ill-conditioned leading submatrices are bracketed by well-conditioned submatrices. This
case is similar to a Pad6 approximation where "blocks" of identical entries are en-
countered in computing a row of a nonnormal Pad6 table. These blocks correspond to
groups of singular contiguous Toeplitz submatrices. Groups of near-singular contiguous
Toeplitz submatrices would be expected to yield "pseudo-blocks" of very similar, rather
than identical, entries in the Pad6 table. In either the singular or the near-singular case,
the proposed algorithm yields paths which detour around the blocks.

The present algorithm would be expected to perform better than the original Bareiss
algorithm in most cases. It is an open question whether there is a pivoting strategy that
optimizes numerical performance by selecting a suitable path through the Pad6 table,
and that does not incur excessive pivoting overheads.

Appendix A. Proof of (2.14b). The proof is as in 11, pp. 58-59 ]. Partition
and T)-+ as follows:

Tj+l r+llu tl gr h

From the identity T+ T)-+ I, we have f / h Tf v, so

(A.1)

where

f/ h _-< T)- v T T/ (T),

Similarly,

A.2 g/h --< tT(Tj).
The Schur complement of h is T)- E fg T/h, whence

Tf+ Or +h [g h, 1].

Therefore, using (A. and (A.2) we get

(A.3) Tf+ T + h( + (T)).
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It is easily shown that after step k of the Bareiss algorithm,

(A.4) h (tnJ)) -1 (tA-J)) -1, using (2.8a).

In the case T)-+ > T)-1 II, we get from (A.3) and (A.4)

< (1 +3K(Tj))2

and the result follows.

Appendix B. Backward error analysis of the Bareiss algorithm: Proof of (2.17)-
(2.21). The development follows that of 11, pp. 71-78 ]. Define 1?(-7), 7), I (-J), and
I (7) to be the result of applying the Bareiss recursions (2.3)-(2.7) without rounding
error, but with the mei replaced by their computed values rh+_;. Assume that T is nonsin-
gular, and define the multiplier matrices M(+-i) and 2Q(---i) by

(B.la) M(+-T T(+-0

for 0,....
(B.lb) ]I +-i)z 7 ++-i)

Putting (B. a) into the Bareiss recursion, we get

(B.2) M(-j) := M j)
m_jZ_jM(- ),

(B.3) Mu) := M(- ) mZM(-).

It is easily seen that M(- is unit lower triangular and M(;) is upper triangular. Clearly
A/(-;) and A() are unit lower triangular and upper triangular, respectively.

Let 7( ), Xu, ( ), 7(- ), x, and (- ) be as in (2.16). Define

F-- 7(-") 7(-") d (-")- I (1-")

R (n-1) -,(n-1) and g (- ) I (n- )

It is clear from the definition of I (+-;) that

(B.4) Ar(-+i)b I (-+i).

Using the definitions of F and d in (2.17), premultiplying by (Ar(- n)) -, and using
(B.lb) and (B.4), we get

(B.5) (T + (3?/(-n>)-’F),, b +
Let T LU, where L is unit lower triangular and U is upper triangular. Clearly L
(M(- "))- since M(- ") is unit lower triangular. Thus (B.5) can be written

(B.6) T + (L + 6L)F)u b + (L + 6L)d,

where

diL (:r(-n))-! (M(l-n))-l.
In a similar manner, and using the persymmetry of T and the fact that M("- 1) is upper
triangular, we can show that

(B.7) T + U + 6U)T2R/tI)t b + U + 6U)T2g/t,

where

6U- t[(Ar(,- ))- (M(n-1))-l],
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and T2 denotes transpose about the secondary diagonal. Equations (B.6) and (B.7) are
equations (2.17 and (2.18 ), the first two of the equations to be proved. We now derive
bounds on Eli, lid II, RII, and Ilgll, First we need the following lemma.

n-1

(B.8a) F Z (N(p1-n)E(p) + Nk-n)E(-P)),
p=l

n-1

(B.8b) d ] (Up(1-")h (p) +
p=l

n-I

(B.9a) R , (N(p ’)E (p) + Nk%- )E(-P)),
p=l

n-1

(B.9b) g Z (N"-)h (p) + N%-)h(-P)),
p=l

where E p) and h(p), the local errors incurred in calculating T(P) and ff(P), are given
by

(B.10a) T(-p) (1-p)_ _pg_p(p-1 + E(-p),

(B. 10b) T(P) T(P- ) pZp T(-P) + E),

(B.1 la) (-p): (l-p)_ _pZ_p (p-l)@ h(-p),

(B. 11 b) (p) (p- pZp (-’) + h (P),

and the N ) are given by thefollowing recursions"

(B.lZa) N-p) O,

(B.lZb) Np) I,

(. 13a) U- U’ i) -iZ-iU-,
i=p+ ,n- 1,

(i) Ni-_ ZiN-i)(B.13b) .p

(B. 14a) N(p) I,

(B. 14b) N( -pZp,

(B. 15a) Nk Nk-i) _Z_gNk- ),
i=p+ 1,...,n- 1.

(B. 15b) U Uk-) iZiUL),

Outline ofproof. It can be shown by a straightfoard induction [11] on k, using
the definitions of () and Ng), that

k

-)- -)= (N-)E(p) + Nk)E(-P)), k 1,..., n- 1,
p=l

k

)- ) (Ng)E(p) + Nk)E(-P)), k 1,..., n 1.
p=l

Setting k n yields (B.8a) and (B.9a). The proof of (B.8b) and (B.9b) is analogous,
with references to E(p) being replaced by references to h(p).

LEMMA B.I.
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We now evaluate a bound for If0l. Consider the term Np(1 -n)E(P)in (B.8a). From
(B.10b),

(B. 16) e0 / / +p,j).

Assume that the following holds:

(B.17) fl(x.y) (1 + 6)(x.y), lal u,

where is any ofaddition, subtraction, multiplication, or division,f/is the floating-point
(/7)result of this operation, and/ is machine precision. In (B. 16), the left-hand side e ij is

due to the floating-point rounding errors arising in the term in parentheses on the fight-
hand side. Using (B. 17 and neglecting second-order quantities, we can derive the fol-
lowing expression for these rounding errors:

(p) (p-- -(-p) 6t(B. 18) eij ij -(3 + ’)rtpti+p,j, lal --< ’.

By considering the Bareiss recursion (2.5), (2.7), it may be shown by a straightforward
induction on p that, neglecting second-order quantities, we get

p-1
-(p- 1)(B.19) [t ij l=< r l-’[ (1 + [m/I),

l=l-p

p-1
-(-/7)(B.20) It ij <r HI (1+ Im/I),

l=-p

where m0 0 and z maxi,j It01. Substituting (B. 19) and (B.20) into (B. 18), we get
the bound

p
(/7)(B.21) le0 I=<2z H (1+ Iml).

l=-/7

Postmultiplying the recursion (B. 13 by E(/7) we may show, by a straightforward induction
on k, that

k

(N(p-)E(P))gj =< max -(/7)e0 H
i,j l=p+

Setting k n and using (B.21 we get

+ mi)(1 + m-l).

n-1

(B.22) (N(pl-n)E(P))o -< 2,u,’r H (1 + Iml).
l=l-n

n-1

Similarly, we can bound

(B.23) (N(_p-n)E(-/7))ij_-< 2#’r H (1 + Imll).
l=l-n

Putting (B.22) and (B.23) into (B.8a) yields the bound (2.19a) for IAzl. The bounds
(2.19b and (2.20) follow similarly.

Appendix C. Proof of Lemma 3.1. It is shown by Bareiss 2 that

J
t (--J)(C. 1) -i. ti. + akti-k., j + 1, n

k=l
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for some { a aj }. Then, from the first j + 2 columns of (C. for j / 2, we
have

(-j) (B-J) t(A-J)(C.2) tj + 2,1:j + 2 ,0, 0, tj + 2,1:j + 2 -- Z oktj + 2 k,l:j + 2.
k=l

Define ek [0, 0, 1] r for any k. It is clear from (C.2) that

(C.3) r+2 T+2 ej+2[t(s-), 0 0, t(A-)1
is singular. But Kahan 7 has shown that

min [IEll
Z;+12 K( Tj +2 Tj+2 + E singular

=< Ilej.+2[t-i), 0 ,0, tA-J)lll using (C.3)

__< t-J)l + ]t-j) ]. [-]

Appendix D. Proof of Lemma 3.2. This proof is adapted from that of 11, pp. 126-
128 ]. We prove the lemma only for the case when p > 0. The proof for p < 0 is similar.
From (C.1), and noting that t} t,7.j), 1,..., n -j,

J
(D. 1) t,J tj+i. + , aktj+i-k., n --j,

k=l

and it can be shown, in a manner analogous to Bareiss’s proof of (C.1), that for any
sequence of "normal" Bareiss cycles (2.9)-(2.12) and "pivot" cycles (in which BPP is
used to move the ZB up or down; see 3.5)"

J
(D.2) i,TJ) &0tj+ i. + &ktj+ i- k., n j, &0, &j not all zero.

k=l

From (D. and (D.2), we have, respectively,

J
-) t+ + ] at(D.3) t,l,l +p:+p , +p:+p +1 k,l +p:j+p,

k=l

(D.4) {,-i,J+p:j+p &otj+,,,+p:)+p + , &ktj+,-k,,+p:j+p.
k=l

But if the ZB is at displacement p, then

(D.5) i -) 0 ,,1,1 +p:j+p

and since (by assumption Tj.w is nonsingular, the summation on the fight-hand side of
(D.4) is not zero, so &0 :/: 0. Substituting (D.5) into (D.4) and dividing by &o, we get

J
(D.6) 0 T=tJ+,+p:j+p+ atj+-k,+p:j+p,

k=l

where a &k/&O, k 1,... ,j. Subtracting (D.6) from (D.3), we get

{D.7) t,), +: +p a a, a_ a_ , a a ;.
Subtracting (D.1) from &f X (D.2) and using (D.7), we get for column m,

"-(J) (j) -t ti:i+j ,m, 1, n -j.0 ,tin ,tm ,1,1 + p:j + p
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Using the "diagonal" notation ( 3.3 for T(,-j) and 7(.-j), and noting that (-j),lm 0,
-< m =< j, we can write this as

,...,tFa ,_p (O r, tl-J) --1Zj;pti:i 1,m

m-i-j+ m>=i+p+j,
k=

m i, m < + p,

where

Therefore,

(D.8)

where

k=j+l-n,...,-1,

k=0,...,p- 1.

p+ 1,...,n-j,

Ol - k p -I- ’k

ek --(0 T, tl -j) tp(-j)) Tf.,;ti:i+j-1,m.

Taking norms, we bound [ek] by

(D.9) Ikl =< p(T;p)II0r,
where

The result follows from (D.8) and (D.9).

Appendix E. Derivation of steps 7 and 8 of Algorithm 3.2. Define

(E.la) ,,,+_(-i) /-,(j-i)/m(J-i)

(E. b) ,+(j i) Jl(J- i)/m(- ),
i= 1,2.

Then, for the Bareiss algorithm, it can be verified from (2.9) and (2.10) that

(E.2) -,,( j) ’-/%t(2 j) 2- j)

, ,F1 " 2)
,LI

Substituting (E. a) and E. b) into (E.2) and rearranging yields

(E.3) O/e,’(J -2) ’(2-j)_*L’ *F1 //(,1 j) ’ (,1-- j)

where

Similarly,
j)

./ (,1 j)(E.4) aAr,(j- 2) r (,2e_ j) rh (2

L1 1-j

(j 2 +(j 2) [2) T. This isWe can scale :) and M, arbitrarily, provided that ,
satisfied if we set

(j- 2) ,(j- 2)(E.5) ,L a,,z and 2) ,,(- 2)
JVI ,L1



492 DOUGLAS SWEET

/e,t(j- 2) jt(j- 2)Tsince by definition I,L ,L1 Steps 7 and 8 of Algorithm 3.2 then follow from
(E.3), (E.4), and (E.5). El

Appendix F. Proof of Theorem 4.1. The proof is adapted from that of 11, pp. 157-
159 ]. We first note that the recursions for m (vff) and m(j) are easily verified using the
multiplier matrix recursions (( 3.5 ), (3.6) for B-cycles; (5.9) for general form).

We now show that L is unit lower triangular and U is upper triangular. Let gj and
hj be the values of g and h, respectively, after cycle j of Algorithm 4.1, step 5, and let
nv(j) and no(j) be the number of U- and D-cycles, respectively, after cycle j of PBA. It
is easily seen from loops 1.2 and 5 that

(F. g nu nv(j) and Smi (j + min { si } + nu + nu(j),

(F.2) hj. no no(j) and l)min(j + min v; } +1
n/ + nz(j).

It is also clear from loop 1.2 that

sj = [s, sj] T P(J[smin(j), Smin(j) -I- j IT,
where pU) is an order-j permutation matrix. With (F. ), this becomes

sj P()[gj-1 + 1,..., gj-1 +j]r.(F.3)

Now, by definition,

are all zero, so

{ (+--j) n-gj-l-j+
b(gj- l),i } i= n- gj-

(+j)RT{ (tb(gj_l). )i} gj-l+j
i=gj-l+

are all zero. By (4.7a), premultiplication by P moves rows sl sn to rows 1,..., n.
Hence, by (F.3), rows g_ + to gj._ + j are moved to positions to j, so

(-+j) j{ (Ptb(gj_,).)i} i:

are all zero, which implies from (4.10e), (4.11 e), and (4.12e) that L is lower triangular.
This fact, together with (4.1 Of), (4.11 f) and (4.12f), implies that L is unit lower triangular.
The proof that U is upper triangular is similar to the proof that L is lower triangular.

We now show that LU PTQ T. Let dj be the displacement of the ZB from its
Bareiss position at step j. We use the convention that 6. is positive for an upward dis-
placement and negative for a downward one. Recall from Fig. 3.7 (a) that the Toeplitz
parts of T(-j) and Tj) have the forms (for d < 0) shown in Fig. F. 1.

Recall from the definition and form ofM+-) (see (3.4) and Fig. 3.8 that
j+l j+l

(F.4) t(,;j)= X m(,TJ)t+i-1 t(,J X m(,Jz)t+i-,.,
1=1 l=1

(_+j) (--_j)where m,l m, ,l. This fact, together with the shapes of the T(,-J) and T(,J) implies
that

j+l j+l
(-J) (,7J) and t ()(F.5) ta(hj_,)-= m thj_l-dj+l a(hj_l) .= m(,J))thj_l-dj+l-1

1=1 /=1

T,(’l)"
idjl+,(oo o

Idj I+ Idj

FIG F. Forms of T,-j) and Tu)
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Since dj increments with U-cycles and decrements with D-cycles, we must have

dj do + nu(j)- no(j)= no- nt + nt(j)- nz(j).

Therefore, if cycle j was a U- or B-cycle, it can be shown from (F. and (F.2) that
hj_ dj -p Smin(j + ), SO (F.5) can be written

(-J) (-j) + -+- m (-zJ)t a (hj_ 1)" m, tSmin(j + )" *J + tSmax(j + )"
(F.6)

(--J) ts+-) ts, + m,-j2)-ts2 +’" + rn,sj+_m,sl-

by rearrangement, where r Smin(j + 1. Now for a B-cycle, s +1 Smin(j + +
(--j) (--J) (--j) (Lj)j, so rn ,sj+-)

,- rn , + rnr Similarly, for a U-cycle, rn sj - rn So, for both
B- and U-cycles, by (F.6), (4.10g), and (4.11g), we have

uj +1 Q m -J) ,-/2 s) r T/ -)
,s,-,, m m ][t., ts.+, msr

(-j)where ms/) mT for a B-cycle and ms) m) for a U-cycle. By the definition of
P, this becomes

(-j)u+l.Q m ,s, m ,-s/2 m s-rJ) PT ,: + /m s-T)
Since u + 1. Q is a normalized linear combination of the first j + rows of PT, u + 1. is
row j of the unique U-factor of PTQ r. The proof when cycle j is a D-cycle is similar. It
is also clear from (4.9c) and (4.3a) that u 1.Q is row sl of T, i.e., row of PT, so u 1. is
row of the U-factor of PTQ r.

We can similarly show for any j that lq+l is column j of the unique L-factor of
pTQ r.
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UPDATING A RANK-REVEALING ULV DECOMPOSITION*

G. W. STEWARTt

Abstract. A ULV decomposition of a matrix A of order n is a decomposition of the form
A ULVH, where U and V are orthogonal matrices and L is a lower triangular matrix. When A is
approximately of rank k, the decomposition is rank revealing if the last n k rows of L are small.
This paper presents algorithms for updating a rank-revealing ULV decomposition. The algorithms
run in O(n2) time, and can be implemented on a linear array of processors to run in O(n) time.

Key words. ULV decomposition, URV decomposition, rank revealing, updating

AMS(MOS) subject classifications. 65F25, 65F25, 65F35

1. Introduction. Let A be an m n matrix. A rank-revealing URV decompo-
sition of A is a reduction of A by unitary transformations to a triangular matrix of
the form

(1.1) UHAV 0 E
0 0

The decomposition is rank revealing in the sense that the matrices H and E are
smaller than some prespecified tolerance, and the smallest singular value of R is
greater than that tolerance. Such decompositionsuthey are not unique--are useful
in solving rank-deficient systems. Moreover, if V (V1 V2) is partitioned conformally,
then in the spectral norm

(1.2) [[flV2 [l E

so that the columns of V2 form an orthonormal basis for an approximate null space
of A, something required in signal processing applications like direction of arrival
estimation.

The advantage of the URV decomposition over the more familiar singular value
decomposition is that it can be updated when a row is added to A (in many applica-
tions, A is first multiplied by a constant less than one to damp out old data, a process
known as exponential windowing). The updating procedure, which is described in [7],
requires O(n2) operations and preserves the rank-revealing character of the decom-
position. Moreover, it can be implemented on a linear array of n processors to run in
O(n) time.

Although the URV decomposition is fully satisfactory for applications like recur-
sive least-squares, it is less satisfactory for applications in which an approximate null
space is needed. The reason is the presence of H in (1.2). To see that it should not
be there, let (U1 U2) be a partition of U conformal with (1.1). Then it is easily seen
that IIU2HAII IIEII. Consequently the last n- k singular values of A are less than or
equal to IIEII, and the corresponding left singular vectors form an approximate null

Received by the editors April 17, 1991; accepted for publication (in revised form) August 23,
1991.
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0 0 0
w (v 0 0
w w -- (v 0
w w ---+ w 1

FIG. 2.1. Reduction of W.

space whose residual has norm less than or equal to IIEII. Thus V2 is not the best
available approximate null space.

In [7] this problem was circumvented by including a refinement step that reduces
the size of H. The properties of this refinement have been analyzed in [8]. In exper-
iments with the MUSIC algorithm for direction of arrival estimation, the refinement
was found to improve the results [1]. However, it adds extra work, and aestheti-
cally it has the appearance of a stopgap. The purpose of this paper is to present an
alternative.

Specifically, we will describe how to update a lower triangular decomposition of
the form

(1.3) UHAV (L0)H E
0 0

where U and V are orthogonal, L is well conditioned, and H and E are small. We
will call such a decomposition a rank-revealing ULV decomposition. The updating
algorithm consists of two parts: an algorithm to bring a lower triangular matrix into
rank-revealing ULV form and the updating algorithm proper. We will present the
former in the next section and the latter in 3. The paper concludes with some
general observations on the algorithms.

2. Deflation. Although adding a row to a matrix cannot decrease its rank, in
many applications the matrix is first multiplied by a constant less than one to damp
out old information. Under such circumstances, it is possible for the matrix L in
(1.3) to become effectively rank deficient. Here we present an algorithm to calculate
a rank-revealing ULV decomposition of a lower triangular matrix L.

The first step is to determine a vector w of norm one such that w IlwnLII
approximates the smallest singular value of L. This can be done by using any of
a number of reliable condition estimators [4]. If w is greater than a prescribed
tolerance, then there is nothing to be done. Otherwise, we must modify L by unitary
transformations so that its last row becomes small. We will use plane rotations to
accomplish this reduction. The reader is assumed to be familiar with plane rotations,
which are discussed in most texts on numerical linear algebra (e.g., see [3], [6], and

We begin by reducing w the nth unit vector e,. The reduction is illustrated in
Fig. 2.1. The two arrows represent the plane of the rotation, and it annihilates the
component of w with a check over it. Denote the product of rotations by

P= P1P2 Pn_I.

It is worth noting that these estimators succeed, where QR with pivoting fails, in revealing the
rank of a widely cited matrix of Kahan [5].
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0 0 0 0 0 0 0 0
0 0 0 0 0 0

0 :==" 0 ==’--* 0 ==

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0=: 0 == [== 0

--* h h h e

FIG. 2.2. Reduction of PL.

Next we apply the rotations Pi to L from the left, as is shown in Fig. 2.2. The
application of Pi produces a nonzero element in the (i, i+1)-element of L. This element
is removed by postmultiplying by a plane rotation Qi. Let Q Q1Q2"’" Qn-I be the
product of these rotations.

The appearance of h’s and e in the last matrix of Fig. 2.2 is meant to indicate
that the last row of PLQ is small. To see that this is true, write

T
’ -IIwHLII IIwHpHpLQII -I1% (PLQ)II.

Thus the last row of PLQ has norm w.
If the (n- 1) (n- 1) leading principle submatrix of L is sufficiently well con-

ditioned, we have our rank-revealing ULV decomposition. If not, we can repeat the
deflation procedure until a sufficiently well conditioned matrix is found in the upper
right-hand corner.

3. Updating. We now turn to the updating step. Specifically, we suppose that
we are given an additional row zH and wish to determine a rank-revealing ULV de-
composition of

A

We begin by forming zHv to bring the row into the coordinate system of the current
decomposition. Thus the problem of updating reduces to the problem of updating

(L 0)H E
XH yH

where we have partitioned zHv (XH yH).
We now reduce yn to IlyllelT, as is shown in Fig. 3.1, where only the parts cor-
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e 0 0 0 e 0 0 0 e 0 0 0
e e 0 0 e e 0 0 e e 0 0
e e e 0 e e e e e e 0
e e e e e e e e e e e e
y y y y y y 0 y y 0

e 0 0 0 e 0 0 0 e 0 0 e 0 0 0
---, e e 0 e e 0 0 --, e e 0 0 e e 0 0
---, e e e 0 :=:=, e e e 0 =: e e e 0 ==: e e e 0

e e e e e e e e e e e e e e e e
y y 0 0 y 0 0 y 0 0 0 y 0 0 0

FIG. 3.1. Reducing y.

0 0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 ---* 0 0
h h h e 0 x x x y 0
h h h e e h h h e e
x x x I 0 x x Yc 0 0

0 0 0 0 ---* 0 0 0 0 0 0 0 0
--* 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0
x x x y 0 x x x y 0 x x x y 0
h h h e e h h h e e h h h e e

--+ x 5 0 0 0 -- 5 0 0 0 0 0 0 0 0 0

FIG. 3.2. Triangularization step.

responding to yH and E are shown. At the end of the reduction the matrix has the
form

0 0 0 0
0 0 0

0 0
h h h e 0
h h h e e
x x x y 0

One way to finish the update is to continue as in Fig. 3.2 to incorporate x and what
is left of y into the decomposition. This process moves the presumably large elements
of xn into the first row of H. If there has been no increase in rank, this destroys the
rank-revealing character of the matrix. However, in that case the deflation procedure
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 y 0 0 0 0 0 0 0 0 0

y 0 y 0 f/ 0 0 0
h h h e 0 :==*" h h h e 0 ==*" h h h e 0 =:= h h h e 0
h h h e e h h h e e h h h e e h h h e e
0 0 0 y 0 y 0 0 y 0 y y 0 y 0 y y y y 0

FIG. 3.3. Eliminating the tower of y’s.

will restore the small elements.
If y is small enough, then the rank cannot increase. In that case there is another

way of proceeding. Perform the reduction of Fig. 3.2 but skip the first step. This
will give a matrix having the form of the first matrix in Fig. 3.3 with a tower of
contributions from the scalar y at the bottom. Rotations are used as shown in the
figure to reduce the tower. This fills up the bottom row again, but now the elements
are of the same size as y. Since y is small, the algorithm of Fig. 3.2 can be used to
complete the decomposition without destroying the rank-revealing structure.

It is worth noting that if the y’s in the tower are small compared with the diagonal
elements of L, the y’s along the last row will actually be of order Ilyll 2. If only an
approximate decomposition is required, it may be possible to neglect them.

4. Comments. We mentioned in the introduction that a ULV decomposition
can be expected to give a higher quality approximate null space than a URV decom-
position. However, there are trade-offs. It costs more to deflate the URV decomposi-
tion if we insist on refinement steps. On the other hand the updating algorithm for
the URV decomposition is much simpler. In fact, when there is no change of rank,
it amounts to the usual LINPACK updating algorithm SCHUD [2]. Only experience
with real-life problems will tell us under what circumstances one decomposition is to
be preferred to the other.

Both sets of algorithms are stable and reliable. They are stable because they use
orthogonal transformations straightforwardly with no additional implicit relations.
They are as reliable as their underlying condition estimators.

In [7] we showed that the algorithms for the URV decomposition could, in princi-
ple, be parallelized on a linear array of processors. The same is true of the algorithms
for updating a ULV decomposition. Since the techniques to show that the algorithms
have parallel implementations are the same for both decompositions, we do not give
the details here.
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ON A MATRIX ALGEBRA RELATED TO THE
DISCRETE HARTLEY TRANSFORM*

DARIO BINI AND PAOLA FAVATI

Abstract. A new matrix algebra 7, including the set of real symmetric circulant matrices,
is introduced. It is proved that all the matrices of 7 can be simultaneously diagonalized by the
similarity transformation associated to the discrete Hartley transform. An application of this result
to the solution of Toeplitz systems by means of the preconditioned conjugate gradient method is

presented.

Key words. Hartley transform, Toeplitz matrix, circulant matrix, preconditioned conjugate
gradient method
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1. Introduction. The discrete Fourier and sine transforms with the fast al-
gorithms for their computation have an important role in many applications. The
Fourier matrix and the sine matrix, associated with the analogous discrete trans-
forms, are closely related to two specific matrix algebras: the circulant class [16] and
the T class [4], respectively. In this paper we consider the discrete Hartley transform,
introduce the associated matrix, and define a new matrix algebra related to this trans-
form. Then we show an application of this new class to solving Toeplitz systems by
means of the preconditioned conjugate gradient method. More precisely, let

S=(sin2j),
n + 1

sin
r(i + 1)(j + 1)

n+l J
i,j 0,...,n- 1

be n x n matrices, the complex unit such that i2 -1, and A Circ(a0,..., an-l)
the circulant matrix whose first row is (a0,... ,a,-l), i.e., a matrix where the (i,j)-
entry is given by ak(i,j), k(i, j) j i mod n. The structure of a circulant matrix is
displayed below:

ao a an-

A an- ao
". ". al

a an-1 ao
We denote by Cn the set of all the n x n circulant matrices having entries in the

complex field C. The set Cn is an n-dimensional linear space, closed under the row by
column multiplication. That is, Cn is a matrix algebra.
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It is well known (see, for instance, [16]) that the Fourier matrix F 1/v(C +
iS), associated with the discrete Fourier transform (DFT) x - Fx, x E Cn, is
a unitary matrix that diagonalizes, by a similarity transformation, all the circulant
matrices. In fact, the following relations hold:

FHF FFH I,
(1.1) FHAF diag(u0,...,Un_l), u (ui) v/-FHAel, el (1,0,...,0)T,

Ae.

Similar properties hold for the matrix associated to the sine transform x - x,
and for the algebra T of matrices that can be expressed as a polynomial in Z (zi,j),
zi,j 1 if li Jl 1, zi,j 0, otherwise [4]:

(1.2)

T 2 I,

B diag(v0,..., Vn--1),

/
0i / sin

Vn+l
Be.

r(i + 1)
n+l

wi
v, o--(,

Due to the computational efficiency of the well-known fast algorithms for the
discrete Fourier transform and the sine transform computation [21], (1.1) and (1.2) can
be used for solving circulant and T systems with a low computational cost (typically
O(n log n) arithmetic operations). This fact has been used for devising fast algorithms
for several matrix computations. For instance, in [17] circulant matrices are used in the
solution of Woeplitz banded systems, and in [4] and [2], matrices in the class T are used
for the numerical computation of the eigenvalues of banded Toeplitz matrices. More
recently (see [22], [12]-[15], [19]) circulant matrices have been used as preconditioners
in the solution of Toeplitz systems by means of the conjugate gradient method. The
result of [22], [15], and [12] have been extended to the class T improving the rate
of convergence and reducing the cost per iteration [6]. The key fact on which these
results are based is that, given a Toeplitz matrix T, the condition number of the matrix
S-1T can be substantially reduced by choosing a suitable matrix S in the class of real
symmetric circulant matrices [22], [15], [12] or in the class T [6]. A more systematic
analysis of Toeplitz preconditioners is performed in [20]. Other applications of the
classes C and Tn to the evaluation of the complexity of bilinear forms and to devising
inversion formulae for Woeplitz matrices are shown in [5], [7], [1], and [3].

In this paper, we introduce the Hartley matrix H 1/v/-(C + S) associated
to the discrete Hartley transform (DHT) x Hx (see [8] and [9]), and define the
algebra ?-/n of all the n n real matrices that are simultaneously diagonalized by
the similarity transformation associated to the matrix H (we will prove that H is
orthogonal). We analyze the structure of ?-/n, and we prove that this class includes
the set of all the real symmetric circulant matrices. This fact allows us to determine
new effective preconditioners of Toeplitz systems, which, having a higher number
of free parameters, may further reduce the condition number of the preconditioned
matrix obtained by using circulant matrices. Some numerical experiments reported
at the end of 3 confirm this property. Actually, we extend to the class ?’/n the results
of [15], [22], and [12], by proving that the eigenvalues of the preconditioned matrix
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are clustered around 1, and obtain algorithms having a better convergence, keeping
the same computational cost per step. In fact, as it is easily verifiable (compare
also, [11] and [23]), the discrete Hartley transform of real vector having n components
can be computed with a cost of -32n log n additions and n log n multiplications (where
we assume that n is an integer power of 2, the cost bound is given up to additive
constants, and all the logarithms are to the base 2). The above cost bound is the
same cost bound of performing a discrete Fourier transform (DFT) of a real vector.

2. The algebra 7-/n. Let us start by analyzing some properties of the matrices
C, S, and H defined in 1.

LEMMA 1. The following relations hold:

C2 + S2 nI,
CS SC 0,
HHT H2 I,
JS SJ -S,
JC CJ C,
HJ JH,

where J is the permutation matrix

1 0 0 0
0 ." ." 1

0 1 0 0

Proof. From the relations FHF FFH I and F2 J we have C2 + S2 nI,
1 (C2 + S2 SC) I. From the propertiesCS SC O. Therefore HTH

of trigonometric functions, we obtain SJ JS -S, JC CJ C, whence
HJ JH.

Let An and Bn denote the sets of real symmetric and skewsymmetric circulant
n n matrices, respectively; i.e.,

{Circ(c0, Cl,...,On-I), Ci E l, i--O,...,n--1, ci cn-i, i--1,..., n/2J},
(Circ(O, cl,...,Cn-1), ci R, i--1,...,n-1, ci--Cn-i, i--1,..., [n/2J},

where R is the real field, and define the following class of n n matrices

7"ln=(E=A+JB: AA, BB}.

Any matrix E 7-/n can be expressed as the sum of two independent matrices,
the first being a symmetric circulant, the second a special Hankel matrix (a Hankel
matrix has entries depending only on the sum of their subscripts), for instance, for
n--5,

ao al a2 a2 al 0 b b2 -b2 -b
a ao al a2 a2 bl b2 -b2 -b 0
a2 a ao al a2 -}- b2 -b2 -b 0 b
a2 a2 a ao a -b2 -b 0 b b2
al a2 a2 a ao -bl 0 b b2 -b2
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Now we can prove the following results.
THEOREM 1. For any matrix E E 7-ln the following relations hold:

HEH diag(do,..., dn-1), (di)- /HEel.

Proof. Let A be any circulant matrix having real entries so that, by (1.1), FHAF
DA where DA is a diagonal matrix; moreover,

FHAF 1
(SAS / CAC) / (CAS SAC),

n n

whence

Re(DA) _1 (SAS / CAC)
n

and
1
(CAS- SAC)Im(DA)----

On the other hand,

HAH
1
(C + S)A(C / S)

1
(CAC -}- SAS / CAS / SAC)

n n

and applying Lemma 1 yields CAS + SAC J(CAS- SAC), whence

HAH Re(DA)+ JIm(DA).

For a general matrix E 7-ln, E A / JB, A An, B Bn, since F is a unitary
matrix and A and B are real symmetric and real skewsymmetric matrices, respectively,
we have that the diagonal matrices DA FHAF and DB FHBF have real and
imaginary entries, respectively, i.e., Im(DA) 0, Re(DB) 0. This fact, together
with Lemma 1, implies that

HEH HAH -t- HJBH HAH + JHBH Re(DA) + Im(DB) D.

The equation (d) x/HEe is obtained by applying both members of the equation
HEH-diag(do,...,dn_) to the vector e- (1, 1,..., 1)T since He-- V/-de. D

Observe that, since 7-ln An @ JBn (where denotes the direct sum of subspace
and JBn is the subspace made up by the matrices JB, B Bn), we have that
dim 7-/n dim Jtn / dim Bn n. In other words, the n-dimensional algebra T/n is
isomorphic to the algebra of n n diagonal matrices over the real field.

The above theorem allows us to devise methods to solve any system Ex b, E
7n, in O(nlogn) operations. This is due to the fact that for real vectors, the DHT
can be computed with the same number of arithmetic operations in the real field, used
in the computation of the DFT by means of fast Fourier transform (FFT) algorithms.
In fact, either the DFT or the DHT of a real vector of n components can be computed
in at most n log2 n additions and n log2 n multiplications of real numbers, where n
is an integer power of 2 [11], [23].

3. An application to preconditioning Toeplitz systems. Consider a linear
system Tnx b, where Tn (ti,j) is a real symmetric n n Toeplitz matrix, that
is, ti,j tli_jl i, j 0,..., n- 1. Toeplitz matrices arise in many applications (see
[10]) and concretely fast algorithms for the solution of these systems are extremely
important.
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The conjugate gradient method [18] is particularly suitable for Toeplitz systems.
In fact, the most expensive stages at each step of this algorithm consists in the com-
putation of a matrix-by-vector product, where the matrix is Toeplitz. Due to this
structure, such a product can be computed in O(n log n) operations. However, the
algorithm takes n steps to arrive to completion so that the overall cost would be too
high. A preconditioning strategy can be used for obtaining a good approximation to
the solution in a constant number of steps. That is, a real symmetric positive-definite
matrix Sn (the preconditioner) should be determined so that

(a) Sn is easily invertible (possibly in O(n log n) arithmetic operations);
(b) The matrix Sn is close to Tn, that is, the eigenvalues of SITn are clustered

around 1.
In this case, the preconditioned conjugate gradient method computes an approxi-

mation to the solution in a number of steps that depends on the number of eigenvalues
of SITn clustered around 1. The cost of each step is increased by the cost of solving
a linear system with the matrix Sn.

Condition (a) is easily satisfied if we choose Sn in a matrix algebra made up
by matrices which are simultaneously diagonalizable by a similarity transformation
associated to a fast transform, for instance DFT, sine transform, or DHT. Condition
(b) has been proved for Sn belonging to the classes C and T [15], [12], [6]. In this
section we prove that condition (b) is satisfied by the matrix that solves the following
minimum problem:

(3.1) min IISn TnllF

where IIXIIF /Ei,j Ixi,Jl 2 denotes the Frobenius norm. In [12] and [6] problem

(3.1) has been treated in the cases where ,n Cn and Sn Tn, respectively. In this
section we deal with problem (3.1) in the case where ,n T/n. Moreover, since real
symmetric circulant matrices are a subalgebra of T/n, choosing Sn in the class T/n
allows us to obtain a better approximation in the sense of (3.1).

THEOREM 2. The matrix Sn An + JBn E 7-ln defined by

ao to,
(n i)t + itn-

ai bi---, i-1,...,n-1
n n

minimizes IISn TnllF in the class 7-ln, where Tn (ti,j), ti,i
Proof. The result is obtained by setting to zero the partial derivatives of ISn

TnlIF with respect to a0, ai, bi, i 1,..., n- 1.
Note that the values bi, 1,..., n- 1, can be seen as correction terms to the

preconditioner of [12] when the matrix Tn is not circulant.
In the following, under the same assumptions on the matrix Tn of [12] and [6],

we study the spectral properties of the matrix ST. More precisely, we suppose
that the matrices T, n 1, 2,..., are finite sections of a single, infinite, symmetric
matrix T, generated by the real valued function f(z) -]=-o tjz defined on
the unit circle in the complex plane and that f belongs to the Wiener class, that is,
-j=_ Itjl < +cx. The following result is an extension to the class T/n of analogous
results holding for Cn and Tn.

THEOREM 3. Let Tn be a real symmetric Toeplitz matrix defined, as a finite
section, from the function f(z) -j=_ tjzJ belonging to the Wiener class. Then
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(i) for any e > 0 there exists an integer no such that for any n > no the spectrum
of Sn lies in the interval [fmin -e, fmax -{-el, where fmin and fmax are the extremal
values of f on the unit circle;

(ii) the spectrum of SITn is clustered around 1, that is, for any e > 0 there
exist integers k and no such that .for any n > no the number of eigenvalues Ai of
SITn such that IAi- 11 > e is less than k.

Proof. Concerning (i), we observe that if Aj(Sn) denotes the jth eigenvalue of Sn,
then

Aj(Sn) to + tk (n k) cos sin
n

k=l
n n

Re tke tkk cos
k=-n+l

n
k=l

n

n-1
2rk(j- 1)2 Z tk sin

k=l

Property (i) follows since the sequences

n- 2rk(j- 1) 2 2rk(j- 1)2
tkk cos and tk sin

n
k--1

n n
k--1

n

tend to zero. Concerning (ii), it is sufficient to show that the eigenvalues of S (Tn-
Sn) are clustered around zero, in fact, SglTn Sg (Tn- Sn)+ I. Let e > 0 be fixed.
Since f belongs to the Wiener class, we can choose N such that Y=N+I Itl < e. The
matrix Tn Sn Tn An JBn, can be split as

where the first two matrices agree with the (n- N) (n- N) leading principal
submatrices of Tn An and JBn, respectively. We observe that"

rank(E(ng)) _< 2N,
n-N--1

2
N n

n n
k=l k=l k=N+l

IInllllN)ll 2 Ln-1/2J
2
n-1

k=l

where IIXII maxj -]i Ixi,jl denotes the 1-norm. Now, let no > N be such that
N 1 -no-1 itk < e. Then, for any n > no we have--no ’]= kltl < e and oo z_=l

Hence, by Cauchy interlace theorem [24], the eigenvalues of Tn Sn are clustered
around zero, except at most k 2N of them. Applying the Courant-Fischer minimax
characterization [24] to the matrix S (Tn Sn), we have

<
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1.

’7

1/(1+x)

1

1/(1+x)*’2

-.I
1.35

2**(-x)

cos(x)/(x+l)

binomial banded

binomial

FIG. 1.

for n sufficiently large, hence, even the spectrum of S1 (Tn Sn) is clustered around
zero, that is, for any e > 0 there exist integers k and no such that for any n > no the
number of eigenvalues i of SITn which verify IIi- 11 > e is less than k.

The results of some numerical experiments for different Toeplitz matrices confirm
the theoretical results. In Fig. 1 we report the eigenvalues location of the precondi-
tioned matrices obtained by applying the circulant preconditioner C of [12] (denoted
by 1) and the Hartley preconditioner H (denoted by 2) to the matrices whose (i,j)-
entry is ti,j f(IJ il). We consider the same size n 15 and the same functions of
[12]: f(x) (1/1 + x), f(x) (1/(1 + x)2), f(x) 2-=, f(x) (cosx/1 -I-- x). We also
applied the preconditioner to the very ill conditioned matrix defined by the function

f(x) / (k2=) if x _< k,

0 ifx > k,

in the cases where k 2 and k 16, denoted as banded binomial and binomial
functions. In all the experiments the spectrum of H-T completely lies within that
of C-T, and hence the condition number of H-T is smaller.
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ROBUST STABILITY AND DIAGONAL LIAPUNOV FUNCTIONS*

EUGENIUS KASZKUREWICZ AND AMIT BHAYA
Abstract. This paper shows that diagonal Liapunov functions play an essential role in the

robust stability problem of linear autonomous continuous and discrete-time systems in state-space
form subjected to a broad class of perturbations. The results obtained generalize a well-known result
of Persidskii and are related to a variety of similar results in the literature. Techniques are suggested
for applying the results to the problem of evaluating robust stability bounds in different contexts.
Several examples are given.

Key words, nonlinear systems, stability criteria, robustness, Liapunov methods, diagonal sta-
bility
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1. Introduction. There is an extensive literature concerning the study of robust
stability of dynamical systems. Many different approaches have been used; see, for
example, [4], [8], and [36], and the references therein. The present paper is concerned
with conditions under which the asymptotically stable linear systems in state-space
form

(1) 2(t) Ax(t), t >_ O,
(2) x(k + 1)- Ax(k), k 0, 1,2,...,

with x(t),x(k) E IR and A IRnn, remain globally asymptotically stable when
subjected to some classes of nonlinear and time-varying perturbations, namely, state-
dependent and parametric perturbations.

Liapunov’s direct method is used to show that for the classes of perturbations un-
der consideration, diagonal Liapunov functions play an essential role in the robustness
problem. In other words, if the nominal system matrices A (aj) or IAI- (lajl)
are diagonally stable or, equivalently, if the Liapunov equation admits a positive di-
agonal solution, then the robustness of the corresponding linear systems (1) and (2)
is ensured by these diagonal Liapunov functions.

Since the results presented in this paper for different classes of systems are all
based on the existence of a diagonal solution to Liapunov’s equation, they can be
viewed as extensions of the result on absolute stability given by Persidskii [33].

Our robustness results are easy to state since they are based on the diagonal
stability of certain test matrices derived from the nominal systems (1) and (2). In
some cases the test matrices are nonnegative or are M-matrices, and in these cases
diagonal stability is equivalent to Schur or Hurwitz stability, so that we can use some
of the known criteria for linear systems in our nonlinear robust stability problem (see
3). This is useful, especially in the problem of the evaluation of robustness bounds.

2. Stability conditions for the perturbed systems. In this section we (on-
sider the nominal linear systems in state-space form &(t) Ax(t) and x(k + 1)
Ax(k), subject to two types of nonlinear and time-varying perturbations: state-
dependent perturbations [12] and parameter variations in matrices A (aj). The
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29, 1991.
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effect of these two types of perturbations is described by nonlinear models, as discussed
below, and the robust stability conditions are given for each class of perturbations.

2.1. State-dependent perturbations. Let the nominal systems (1) and (2) be
subjected to state-dependent perturbations. We assume that the perturbed systems
are described (respectively) by the equations below.

(3)

(4)

turbations on the state variables xi(t) and xi(k), respectively.
analysis we assume that the classes of functions are such that

E (t) Eafj(xj(t)), i 1,..., n,
j=l

Ed xi(k + 1) E aijCj(xj(k)), i= 1,..., n.
j--1

he continuous functions J’(.) IR ---, IR and (-) IR -- IR describe the per-
In addition, in our

(5) f(.) e5 S :-- {f(’)lf llt IR; f(). > O; f(O) 0},

with the additional condition

xi

(7) w, .f,(.,-) oo I ,1 oo

and pertinent smoothness conditions on the functions f(.) to assure the existence
and uniqueness of a solution for (3). The class of perturbed systems described by (3)
(respectively, (4)) for f(.) e So, for all i (respectively, i(-) e Sd, for all i) is denoted
by Ec (respectively, Ed).

Note that the state-dependent perturbations on the continuous-time model are
of the infinite-sector type (one sided and unlimited). In the discrete-time case it is
natural to consider the (normalized) [-1, 1] sector (class Sd). Note also that x(t) O,
for all t (respectively, x(k) 0, for all k) are solutions of (3) (respectively (4)), and
throughout this paper we will be concerned with the (asymptotic) stability of this
zero solution, also called an equilibrium.

In order to state the results, we define two classes of constant square n x n
matrices:

:De {A (aj) 3 diagonal P > 0 s.t. PA + ATp -Q < 0 for some Q > 0}.
:Dd :’-- {A (aij) 3 diagonal P > 0 s.t. ATPA P -Q < 0 for some Q > 0}.

In other words, T)c and :)d define the classes of matrices that satisfy Liapunov’s
equations with a positive diagonal matrix P; these matrices are called diagonally
stable [3].

We will also refer to the sets of matrices that satisfy Liapunov’s equations with
some positive definite matrices P and Q (with P not necessarily diagonal) by and
S, i.e., the sets of Hurwitz and Schur matrices (i.e., stable matrices).

For the class E of perturbed systems (3), obtained by nonlinear state-dependent
perturbations (belonging to class S) of the nominal system, Persidskii [33] proved,
roughly speaking, that a diagonally stable nominal system is robustly stable when
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subject to a class of nonlinear perturbations in the state vector. More precisely, we
have the following theorem.

THEOREM 2.1. The equilibrium x 0 of all systems in the class c is globally
asymptotically stable if the nominal system matrix A (aj) belongs to the class
i.e., if the nominal system is diagonally stable.

Proof. Since A E T), there exists a positive diagonal matrix D such that ATD
DA is negative definite. Let D diag(pl/2,... ,pn/2), and let

(8) V(x) Zpi fi(T)dT
i--1

be the diagonal Liapunov function candidate. Computing along the trajectories of
(3) gives

(Z(x(t)) f(x(t))T(nA + ATD)f(x(t)),
where f(x)T (f(x),...,f,(x)). Since A E T)c, it follows that (x(t)) < 0 (is
negative definite), tq

Remark 2.1. A limitation of the nonlinearity-dependent Liapunov function (8)
introduced by Persidskii is that it works only for the diagonal state-dependent non-
linearity f(.), so that if we admit only this type of Liapunov function, then we are
restricted to considering models that do not permit independent (time-varying non-

linear) perturbations of components of the state vector and of the elements of the
nominal system matrix A, unless rather restrictive conditions are imposed on the
class of admissible perturbations. In 2.2 we introduce a more general class of pertur-
bations that can accommodate these types of perturbations. It turns out, in fact, that
it is enough to consider independent perturbations of the components of the state vec-
tor because this allows us to model perturbations in the entries of the nominal matrix
as well.

Remark 2.2. The above result is also valid for the model given by the equations

This can be shown by using the change of variables y(t) Ax(t); then (9) can be
rewritten as i(t) jn=l aijfj(yj(t)), which is of the form (3). Note that the
condition det A 0, required to define y as a change of variables, is implied by the
assumption that the nominal system 2 Ax is stable.

For the discrete-time case, the result equivalent to Theorem 2.1 was stated in [20]
and is generalized below for time-varying nonlinearities satisfying

In other words, the system considered is given by the equations

(10) d(k) xi(k + 1) Z aiyj(xj(k), k), i- 1,..., n.
j--1

Hereafter, we will also denote the classes of functions fi(., .) and i(., .) by So(t) and
S(k):

S(t) := {f(., ")If:
Sd(k) := {(., ")1: IR x I
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Remark 2.3. Note that a function (, k) E Sd(k) can be zero for several values
of and k (indeed, (, k) _= 0, for all , for all k is in Sd(k)), in sharp contrast to an

f E
Notation. Let the mapping (I) denote (1,..., Cn)T, where i e Sd(k), for all i.

Thus we can write the class of perturbed systems d(k) in (10) as

(11) x(k T 1) A((x(k),k), e Sd(k)n.

Also, in Lemma 2.2 below, we will use the slight generalization of the class Sd(k)
defined below:

(12)
S(k) {(’,’)1 IR I - IR; ](x, k)l <_ Ix];Vi, Vx e IR; (0, k)

(3)

LEMMA 2.2. Let S(k)n and P lRn’, P diagonal. Then

Vx e IR, (x(k), k)Tp(x(k), k) <_ xTPx.

diagonal, V(I) E S(k)n,
n

(x(k), k)Tp(x(k), k) pii(x(k), k)2
i--1
n

i----1
n

_
pix

i--1

X
TPx. D

COROLLARY 2.3. For all A IRnn, (Ax(k),k)Tp(Ax(k),k) <_ xTATpAx.
Proof. Replace x by Ax in Lemma 2.2.
We can now state a discrete-time version of Theorem 2.1.
THEOREM 2.4. The equilibrium x 0 of all systems in the class d(k) is globally

asymptotically stable if the nominal matrix A (aij) belongs to class 7)4.
Proof. Since A Td, there exists a positive diagonal matrix P such that ATpA

P is negative definite. Define the candidate Liapunov function V(x) xTpx, and
let AY(x(k), k) "= V(x(k / 1))- Y(x(k)). Then

AV(x(k), k) T(x(k), k)ATPA(x(k), k) xT(k)Px(k).

There are two cases to consider.
Case 1. x(k) 0 and k such that (x(k),k) O. Then AY(x(k),k)

-xT(k)Px(k) < O.
Case 2. x(k) and k such that (x(k), k) O. In this case, we have

AV(x(k), k) T(x(k), k)ATPA(x(k), k) xT(k)Px(k)_
(T(x(k), k)ATPA(x(k), k) (T(x(k), k)P(x(k), k)
(T (x(k), k)(ATPA P)(x(k), k)

< 0,
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where the first inequality follows from Lemma 2.2 and the second inequality from the
fact that A E )d. [’]

Remark 2.4. Notice that Theorem 2.4 could have been stated for the class of
nondiagonal nonlinearities S(k)n defined in (12) without any change in the proof.
Furthermore, notice that the Liapunov function V(x) defined in Theorem 2.4 is time
invariant and works for the entire class d(k). This is discussed further in Remark
2.7 and at the end of this section.

Remark 2.5. By Corollary 2.3, Theorem 2.4 also applies to the model

(14) xi(k / l) i ( aijxj(k), k) i l, n.

This result also appears in [28] (also see 4, Example 3, below).
2.2. Parameter and state-dependent perturbations. As was pointed out

in Remark 2.1, using the classical Persidskii model (3) and the associated Liapunov
function (8) makes it difficult to accommodate general classes of parameter perturba-
tions and time-varying nonlinearities that act simultaneously on the nominal linear
model. We now consider more general models that can accommodate these types of
perturbations; they are given by

(15) c(t) &i(t) E aijfj(xj(t), t), i 1,..., n,
j--1

n

+ i=
j--1

where the functions fj(., .) and ij(., .) belong to the classes S(t) and Sd(k), respec-
tively. The classes of perturbed systems described by (15) and (16) for perturbations
in the classes So(t) and Sd(k) are denoted by Zc(t) and Fd(k), respectively.

Remark 2.6. Notice that parameter- and time-dependent perturbations on the
elements of matrix A of the type (aj / ia (t)) (additive) and (a x 6ai (t)) (mul-
tiplicative), first considered in the linear case in [31], [37], are special cases of models
(15) and (16), since

However, as will be seen below, the main thrust of the theorems that follow is
to provide simple conditions on test matrices derived in a straightforward manner
from the nominal system matrices to ensure robust stability to the wide classes of
nonlinear time-varying perturbations Sc(t) and Sd(k). Of course, perturbations that
are less structured than these can also be expressed by models (15) and (16), so that
Theorems 2.5 and 2.6 below are quite general. In order to state and prove these
theorems we define matrices A and IAI as

(17)
/ ai, i j,

A (gi), gJ
lal, i j,
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THEOREM 2.5. If (i) the nominal system matrix A is such that (ai < 0), i
1,..., n and A belongs to class T)c, and (ii) there exist continuous functions fi(’) E
Sc that satisfy (7) and such that the following elementwise diagonal-dominance-type
conditions hold .for all j,

(18) IJ’(,t)l _< IJ’(()l-< IJ’z((,t)l, Vi and Vt >_ O,

then the equilibrium x 0 of all systems in the class c(t) is globally asymptotically
stable.

Proof. Using

(19) V(x) pi fi(T)dr, Pi > O, i= 1,...,n
i=1

and computing along the trajectories of (15) gives

From condition (18)

(20)

n n

"(x, t) piaijfi(x,)fij(xj, t).
i:1 j=l

Let x (Xl,... ,x,)T, and let the vectorial norm I’] be defined as

(21) IIx]]T := (IXll,..., I:,1).

Then inequality (20) can be rewritten in the form

l)(x, t) < f(x)]w (TD + D-)f(x)],

and since e 7)c (with D diag(pi/2)), :(x, t) < O. l

Remark 2.7. Note that in (18) it is required only that the functions f(.,-)
belong to class Sc(t). Furthermore, although the Liapunov function in (19) looks
very similar to the one in (8), there is a fundamental difference between the two.
Equation (19) defines a single time-invariant Liapunov function (defined in terms
of the fixed fi So(t)) that simultaneously proves stability of the entire class of
nonlinear time-varying perturbed systems E(t). Equation (8), on the other hand,
actually defines an entire class of Liapunov functions, each one tailored to prove the
stability of a particular perturbation of the nominal system (namely, the one defined
by the fi that appear in the perturbed model). In other words, (19) defines a time-
invariant and perturbation-invariant Liapunov function (and this is why it works to
prove the stability of the time-varying perturbed systems), whereas (8) defines a
Liapunov function that, although time invariant, is not perturbation invariant (i.e.,
not simultaneous) and hence would not work without additional hypotheses for time-
varying perturbations. From this discussion, we see that the Liapunov function of
Theorem 2.4 is also perturbation invariant and hence works for the time-varying case
(see Remark 2.4).

Remark 2.8. In Theorem 2.5, given our hypothesis that A 7), we must assume
that the aii, i 1,..., n are negative, since this is a necessary condition for A T).

n n

(x,t) <_ -p,a,l:5(x,)l.lY(x)l.
i:1 j:l
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For the class of discrete-time systems d(k) the corresponding result is the fol-
lowing theorem.

THEOREM 2.6. The equilibrium x 0 of all systems in the class d(k) is globally
asymptotically stable if the matrix IAI belongs to class 1)d.

Proof. If we use the diagonal Liapunov function V(x) Yi=l pix for the system
(16), AY(x(k),k) has the form

n

a) +
i--1

and, since id (’,’) E Sd(k), one has

2(k+l) < (- laidid(xd(k) k)l)xi
j--1

< I , ll j(k)l

Using the vectorial norm .] defined in (21), we obtain

AV(x(k), k) <_ x(k)]T (IATI P. IAI P)x(k).

Since IAI e T)d with P diag(pi), AV(x(k), k) < O. 0
Remark 2.9. In Theorems 2.1-2.6, note that the corresponding Liapunov functions

V(x) satisfy V(x) cx) with Ilxll - oo; this fact guarantees, as was stated in the
theorems, global asymptotic stability in all cases. Further.more, for Theorems 2.4-2.6,
stated in the time-varying case, it is easy to see that V, -V, and -AV are all positive
and bounded away from zero, which is a requirement for asymptotic stability in the
time-varying case.

Remark 2.10. Notice that, once again, the Liapunov function of the above theorem
is simultaneous in the sense of Remark 2.7.

Remark 2.11. Theorem 2.6 also holds for the model

n

(22) xi(k + 1) id(aidxd(k), k), i 1,..., n.
j--1

Remark 2.12. An interesting and related result holds for the following modification
of model (12), in which different time-varying delays (k- did(k)) are present between
the state variables:

n

(23) xi(k + 1) aidxd(k- did(k)),
d’-I

where 0 _< did(k) <_ d. Once again, diagonal stability of matrix IAI with P diag(pi)
assures the asymptotic stability of (23). In other words, given IAI T)d, the linear sys-
tem (2) has robust properties even in the presence of delays between the different state
variables. This is a special case of a result due to Kaszkurewicz, Bhaya, and iljak
[18], which uses a diagonal Liapunov function of the form V(x)

Remark 2.13. Compare Theorem 2.1 with Theorem 2.5 and Theorem 2.4 with
Theorem 2.6, and note that, since (A e/)c) implies (A :De) and, similarly, (IAI )d)
implies (A E/)d): under the hypotheses of Theorems 2.5 and 2.6, asymptotic stability
in the presence of state-dependent perturbations is also guaranteed.
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An interesting feature that emerges from the above analysis is that in Theorems
2.4, 2.5, and 2.6 one Liapunov function suffices to prove the asymptotic stability
of an entire class of perturbed systems. However, Theorem 2.1 is different in that,
although the condition A E :De guarantees asymptotic stability under state-dependent
perturbations through the existence of a Liapunov function, the Liapunov function is
constructed from these perturbations. This means that for a given nominal diagonally
stable system, a Liapunov function that testifies to the stability for a given state-
dependent perturbation does not do so for a different perturbation in the same sector.
Thus by following [5] (see also [36]), we may label the time-invariant and perturbation-
invariant Liapunov functions of Theorems 2.4, 2.5, and 2.6 as simultaneous Liapunov
functions.

3. Discussion of the results. From Theorems 2.1 and 2.4-2.6 it becomes clear
that diagonal stability of the matrices A, , and IAI plays a crucial role in the (simul-
taneous) robust stability of the nominal systems (t) Ax(t) and x(k + 1) Ax(k)
subjected to perturbations in the classes defined above.

For an arbitrary matrix A, no simple characterization is known to check whether
or not A is diagonally stable. Some numerical methods, however, are available [10],
[16], [23], as are some characterizations for certain classes of matrices [2], [3], [6], [21],

To apply Theorems 2.5 and 2.6, we can use several conditions equivalent to A
and IAI :Dd, in particular, the following basic equivalences:

(24) (A e :D) = (-A is an M-matrix) (A e 7),
(IAI e 7)a) , (I- IAI is an M-matrix)

Suitable references for definitions and for more equivalences are [1], [18], and [35].
Notice that Theorems 2.5 and 2.6 are closely related to similar results obtained

in the large-scale systems literature, which use properties of M-matrices. Because
of the special structure of the models considered above and the particular choice
of individual Liapunov functions for each coordinate i, the corresponding aggregate
matrices ( and IAI) are constructed directly from the nominal systems (1) and (2).

In the general context of large-scale systems, the robust characteristics provided
by M-matrices are known [35], and since the stability of M-matrices is equivalent to
diagonal stability by (24) and (25), one can use this equivalence for the evaluation of
robustness bounds by means of an interval matrix result for M-matrices [9], referenced
in [25].

Robustness bounds can be derived on the basis of characterizations of diagonal
stability of the matrices A, A, and IAI. We give some instances of this general idea
below.

In the case of Theorem 2.1, for example, the robustness bounds for the pertur-
bations are given directly by the infinite sectors. This is equivalent to saying that if
(A E :De), then (AK I)) for any positive diagonal matrix g diag(ki), i.e., A is
D-stable.

In the case of Theorem 2.4, robustness bounds on parameter and state-dependent
perturbations are obtained by evaluating the set of positive diagonal matrices K
diag(ki) for which (AK 7)4). This gives a region of admissible sectors for the
nonlinearities (x(k), k) and for time-varying parameter perturbations as well.

In the case of Theorems 2.5 and 2.6, the robustness bounds are evaluated as
in Theorem 2.4 and the evaluation of the region for the sectors to which the state-
dependent perturbations and parametric time-dependent perturbations must belong is
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based on the diagonal stability of the matrices (A o K) and (IAI o K), where K (k)
is a matrix with positive entries and "o" denotes the elementwise (or Hadamard)
product of matrices (A and K) and (IAI and g), respectively.

If the nominal system matrix is not diagonally stable, we can, by means of state
feedback, determine a new nominal system matrix (A/BF) such that (A/BF)
(or :Dd) by using the procedure developed in [12] (see also [31]). This procedure is
form of robustification of the nominal system. Another possibility is to use a similarity
transformation to look for a new representation of the system in which the transformed
matrix At :D, as in the approach of [37].

Notice that we have concentrated on the determination of robust stability condi-
tions without any additional requirements on the dynamics, such as optimality with
respect to some index. These requirements can, however, be incorporated into the
present analysis on the basis of, for example, [11], [321, and [34].

4. Illustrative examples. In this section we present some examples that appear
in the literature and are described by the models treated in the previous sections.
Robustness features of these systems are discussed from the perspective of our results.

Example 1" Mathematical ecology. Consider the generalized Lotka-Volterra model
[35] given by the equations

n

(26) i(t) cixi(t) + E ajxi(t)xj(t), i 1,..., n.
j--1

By assuming x(t) 0, 1,..., n, we can write

n

{ic(t)/x(t)} c +E ajx(t), i 1,..., n,

(27) d(ln x(t))/dt c +E aexp(lnx(t)), i 1,..., n.
j--1

By defining y(t):= ln x(t), we can rewrite (27) as

9i(t) ci + E aijf(y(t)), i 1,..., n,

and by assuming the existence of a positive equilibrium y* > O, i.e., a positive vector
ny. (y,... ,y)T satisfying ci + E= aif(y) O, one can write the incremental

model

n

(28) 2i(t) E aijg(z(t)), i 1,..., n,

where, for all i, zi (t) :- Yi (t) y, zT (t) (z (t),..., zn (t)), and where
exp( + lnx) x. Therefore, gi(0) 0 and gi()" > 0 for 0. Consequently,
(21) is a particular case of Persidskii’s model (3) with the associated diagonal Liapunov
function being given by

(29)
i--1
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which corresponds to the "Volterra function" used in [13] and [14].
Computing (z) along the trajectories of (28), one has

J(z(t)) g(z(t))T(ATD + DA)g(z(t)),

where g(z)T -[gl(zl),... ,g(zn)] and D 1/2diag(pl,... ,pn) and, provided A e 7)c,
(x) is negative definite and the asymptotic stability of the equilibrium follows. !

From the discussion in 2, it is clear that diagonal stability of matrix A (aij)
implies the asymptotic stability of model (26). This condition, however, does not
guarantee asymptotic stability with more general, nonlinear, and time-varying per-
turbations acting on this ecological system. To guarantee robustness under these
circumstances, a more restrictive condition on the community matrix A (namely,
A E :De; Theorem 2.5) is required, and this is the price that must be paid for robust-
ness. This is also a way of interpreting iljak’s result [35, Chap. 5], which gives the
condition E :Dc to assure exponential stability of the equilibrium of (21).

Example 2" Power systems, power-frequency control. In power-system stabil-
ity analysis and, more specifically, in power-frequency control, in which a multiple-
machine system is considered, the Liapunov direct method has been used by several
authors (see [30] and the references therein). In these analyses of power systems (con-
sidered without regulators), the "energy-type" Liapunov functions, which are widely
used, are of the form

1
n m f(30) V(w, 5)--- Miw + Jo (r)dr,
i=1 k=l

where (T ((1,..., (n) is the vector of incremental power angle differences between
machines and wT (Wl,..., wn) is the vector of incremental angular velocities; the
function cT (i) (1(5),..., Cn(hm)) is composed of sinusoidal functions that (lo-
cally) satisfy the condition i(.) Sc.

Clearly, (30) is a diagonal Liapunov function, and it is shown in [15] that in this
case the incremental model for the multiple-machine power system can be expressed
in the form

(31)

where A (aij) is a constant matrix. Consequently, (31) is a special case of (3)
(for details and the definition of the (n + m) x (n / m) matrix A in (31), see [15]).
Therefore, the asymptotic stability of the power system can be determined on the
basis of the condition A ida, and robust controllers for this system can be designed
on the basis of the same condition [15].

Example 3: Digital filters with signal quantization. The absence of limit cycles in
zero-input digital filters with signal quantization is a problem that has been studied
for several years (see [27] and the references therein). The special characteristics of
signal quantization in state-space filters can be represented in terms of particular
cases of the models considered in 2. The nonlinearities associated with quantization
(truncation and rounding) and overflow operations are sector functions (class Sd(k)),
and mathematical models associated with these types of digital filters are described
by the equations

(32) x(k / l) dp ( aix(k)) i l,...,n,
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n

(33) x(k,+ 1)-- j(aijxj(k)), i- 1,..., n,
j--1

where for all i, j, i(.) ij(.) (-) is the scalar function associated with the
particular type of quantization. Clearly, the above models are particular cases of
(14) and (22), and (32) and (33) represent, respectively, the quantization operations
performed after and before addition of the state variables in the digital filter.

Therefore, in studying the problem of robust stability (seeking conditions for the
absence of self-sustained oscillations), Theorems 2.4 and 2.6 can be readily used, and
the conditions A E :Dd and IAI e )d guarantee (respectively) this stability. These
conditions have been derived in the literature: for model (32) the condition A Td
was derived in [28], and for model (33) the condition IAI T)d was derived in [19] (see
also [22]) by using diagonal Liapunov functions.

To the illustrative examples presented above we can add many other examples
in various fields in which diagonal stability is associated with robustness, e.g., the
qualitatively stable (sign-stable) matrices that appear in mathematical economics
and ecology [17], [26], which are also known to belong to class/)c. Compartmental
systems also belong to the class of systems that have a stable M-matrix structure.
These systems have robust stability properties [24], and, again by the equivalence
(24), these systems are also diagonally stable. In the field of chaotic asynchronous
iterative computations, convergence of these (chaotic) computations is also ensured
by the condition IAI e )d, where A is an iteration matrix [7].

5. Concluding remarks. We have shown that diagonal Liapunov functions
play an essential role in the robust stability problem of the linear autonomous con-
tinuous- and discrete-time systems &(t) Ax(t) and x(k / 1) Ax(k) subjected
to some general classes of perturbations, and the many examples given support this
conclusion.

Inspection of the proofs of the results above shows that for nondiagonal Liapunov
functions it would be difficult or even impossible to perform the kind of majorizations
necessary for the evaluation of bounds for V(.) and AV(.). This suggests that diagonal
Liapunov functions are necessary if we restrict ourselves to the class of quadratic and
integral-of-nonlinearity types of Liapunov functions, in the sense that one cannot
do much better with nondiagonal Liapunov functions when the class of admissible
perturbations is rich (i.e., when it includes time-varying sector-type nonlinearities
and time-varying delays) and affects the nominal linear systems as modeled above
(c(t) and d(k)).

Acknowledgment. We would like to thank a semianonymous reviewer for com-
ments and questions that helped to clarify the presentation of the results in the paper.

REFERENCES

[1] M. ARAKI AND B. KONDO, Stability and transient behavior of composite nonlinear systems,
IEEE Trans. Automat. Control, 17 (1972), pp. 537-541.

[2] G. P. BARKER, A. BERMAN, AND R. PLEMMONS, Positive diagonal solutions to the Lyapunov
equations, Linear and Multilinear Algebra, 5 (1978), pp. 249-256.

[3] A. BERMAN AND D. HERSHKOWITZ, Matrix diagonal stability and its implications, SIAM J.
Algebraic Discrete Meth., 4 (1983), pp. 377-382.

[4] S. P. BHATTACHARYYA, Robust Stabilization Against Structured Perturbations, Springer-
Verlag, Berlin, 1987.

[5] S. BOYD AND Q. YANG, Structured and simultaneous Lyapunov functions for system stability
problems, Internat. J. Control, 49 (1989), pp. 2215-2240.



ROBUST STABILITY AND DIAGONAL LIAPUNOV FUNCTIONS 519

[6] D. CARLSON, B. N. DATTA, AND C. R. JOHNSON, A semi-definite Lyapunov theorem and
the characterization of tridiagonal D-stable matrices, SIAM J. Algebraic Discrete Meth.,
3 (1982), pp. 293-304.

[7] D. CHAZAN AND W. L. MIRANKER, haotic rela.T.atio, Linear Algebra Appl., 2 (1969),
pp. 190-222.

[8] P. DORATO, ED., Robust Control, IEEE Press, Washington, DC, 1987.
[9] M. FIEDLER AND V. PT.K, On matrices with non-positive off-diagonal elements and positive

principal minors, Czech. Math. J., 12 (1962), pp. 382-400.
[10] J. C. (EROMEL, On the determination of a diagonal solution of the Liapunov equation, IEEE

Trans. Automat. Control, AC-30 (1985), pp. 404-406.
[11] J. C. (EROMEL AND J. J. DA CRUZ, On the robustness of optimal regulators for nonlinear

discrete-time systems, IEEE Trans. Automat. Control, AC-32 (1987), pp. 703-710.
[12] J. C. (EROMEL AND A. 0. E. SANTO, On the robustness of linear continuous time dynamic

systems, IEEE Trans. Automat. Control, AC-31 (1986), pp. 1136-1138.
[13] B. S. GOH, Nonvulnerability of ecosystems in unpredictable environments, Theoret. Population

Biol., 10 (1976), pp. 83-95.
[14] , Global stability in many-species systems, Amer. Naturalist, 111 (1977), pp. 135-143.
[15] L. Hsu, L. A. SALGADO, AND E. KASZKUREWICZ, Structural properties in the stability problem

of interconnected systems, in Proc. 2nd International Federation of Automatic Control
Symposium on Large Scale Systems, Toulouse, France, 1980, pp. 67-77.

[16] H. Hu, An algorithm for scaling a matrix positive definite, Linear Algebra Appl., 96 (1987),
pp. 131-147.

[17] C. JEFFRIES, V. KLEE, AND P. V. D. DRIESSCHE, When is a matrix sign stable?, Canad. J.
Math., 29 (1977), pp. 315-326.

[18] E. KASZKUREWICZ, A. BHAYA, AND D. D. ILJAK, On the convergence of parallel asyn-
chronous block-iterative computations, Linear Algebra Appl., 131 (1990), pp. 139-160.

[19] E. KASZKUREWICZ, A. HERMETO, AND L. Hsu, A result on stability of nonlinear discrete
time systems and its application to recursive digital filters, in Proc. 23rd IEEE Conference
on Decision and Control, Las Vegas, NV, Institute of Electrical and Electronics Engineers,
New York, 1984, pp. 100-102.

[20] E. KASZKUREWICZ AND L. Hsu, A note on the absolute stability of nonlinear discrete-time
systems, Internat. J. Control, 40 (1984), pp. 867-869.

[21] , On two classes of matrices with positive diagonal solutions to the Lyapunov equation,
Linear Algebra Appl., 59 (1984), pp. 19-27.

[22] , Stability conditions for recursive digital filters with signal quantization, Tech. Rep. EE-
3, Dept. of Electrical Engineering, COPPE/UFRJ, Rio de Janeiro, Brazil, 1988.

[23] H. K. KHALIL, On the existence of positive diagonal P such that PA - AP < O, IEEE Trans.
Automat. Control, AC-27 (1982), pp. 181-184.

[24] G. S. LADDE, Cellular systems II. Stability of compartmental systems, Math. Biosci., 30 (1976),
pp. 1-21.

[25] M. MANSOUR, Comment on stability of interval matrices, Internat. J. Control, 46 (1987),
p. 1845.

[26] J. S. MAYBEE AND J. e. QUIRK, Qualitative problems in matrix theory, SIAM Rev., 11 (1969),
pp. 30-51.

[27] A. N. MICHEL AND R. K. MILLER, Stability analysis of discrete-time interconnected systems
via computer generated Lyapunov functions with applications to digital filters, IEEE Trans.
Circuits and Systems, CAS-32 (1985), pp. 737-753.

[28] W. L. MILLS, C. T. MULLIS, AND R. ROBERTS, Digital filter realizations without overflow
oscillations, IEEE Trans. Acoust. Speech Signal Process., ASSP-26 (1978), pp. 334-338.

[29] P. J. MOYLAN, Matrices with positive principal minors, Linear Algebra Appl., 17 (1977),
pp. 53-58.

[30] M. A. Phi, Power System Stability, Elsevier North-Holland, Amsterdam, the Netherlands,
1981.

[31] R. V. PATEL AND M. TODA, Quantitative measures of robustness for linear multivariable
systems, in Proc. Joint Automatic Control Conference, San Francisco, paper TP8, 1981.

[32] R. V. PATEL, M. TODA, AND S. SRIDHAR, Robustness of linear quadratic state feedback designs
in the presence of uncertainty, IEEE Trans. Automat. Control, AC-22 (1977), pp. 945-949.

[33] S. K. PERSlDSKII, Problem of absolute stability, Automat. Remote Control, 12 (1969), pp. 1889-
1895.

[34] M. E. SEZER AND D. D. ILJAK, Robust stability of discrete systems, Internat. J. Control, 48
(1988), pp. 2055-2063.



520 E. KASZKUREWICZ AND A. BHAYA

[35] D. D. ILJAK, Large Scale Dynamic Systems: Stability and Structure, Elsevier North-Holland,
Amsterdam, the Netherlands, 1978.

[36] , Parameter space methods for robust control design: a guided tour, IEEE Trans. Au-
tomat. Control, 34 (1989), pp. 674-688.

[37] R. K. YEDAVALLI, Perturbation bounds for robust stability in linear state space models, Inter-
nat. J. Control, 42 (1985), pp. 1507-1517.



SIAM J. MATRIX ANAL. APPL.
Vol. 14, No. 2, pp. 521-544, April 1993

1993 Society for Industrial and Applied Mathematics
015

SPECTRAL PROPERTIES OF PRECONDITIONED RATIONAL
TOEPLITZ MATRICES: THE NONSYMMETRIC CASE*

TA-KANG KUi AND C.-C. JAY KUOi

Abstract. Various preconditioners for symmetric positive-definite (SPD) Toeplitz matrices in
circulant matrix form have recently been proposed. The spectral properties of the preconditioned
SPD Toeplitz matrices have also been studied. In this research, Strang’s preconditioner SN and
our preconditioner KN are applied to an N N nonsymmetric (or nonhermitian) Toeplitz system
TNX b. For a large class of Toeplitz matrices, it is proved that the singular values of SITN and

KvlTN are clustered around unity except for a fixed number independent of N. If TN is additionally
generated by a rational function, the eigenvalues of SITN and KITN can be characterized directly.
Let the eigenvalues of SITN and KITN be classified into the outliers and the clustered eigenvalues
depending on whether they converge to I asymptotically. Then, the number of outliers depends on the
order of the rational generating function, and the clustering radius is proportional to the magnitude
of the last elements in the generating sequence used to construct the preconditioner. Numerical
experiments are provided to illustrate our theoretical study.

Key words. Toeplitz matrix, preconditioned iterative method, rational generating function,
nonsymmetric matrices

AMS(MOS) subject classifications. 65F10, 65F15

1. Introduction. Research on preconditioning symmetric positive-definite
(SPD) Woeplitz matrices with circulant matrices has been active recently [1], [61,
[8], [9], [17]. In this research, we generalize Strang’s preconditioner SN [17] and our
preconditioner KN [9] to nonsymmetric (or nonhermitian) Toeplitz matrices. Let TN
be an N N nonsymmetric Toeplitz matrix with elements ti,j t_j. The general-
ized Strang’s preconditioner SN is obtained by preserving N consecutive diagonals in
TN, i.e., diagonals with elements tn, 1 M <_ n <_ N- M, and using them to form
a circulant matrix. One simple rule to determine M is to choose its value such that
[tN--MI ’ [tl--MI. Note that half of the elements in TN are not used in constructing
SN. The generalized preconditioner KN is obtained from a 2N 2N circulant matrix
in such a way that all elements in TN are used, and is a circulant matrix itself (see 2).
Since SN and KN are circulant, the matrix-vector products Slv and Klv can be
conveniently computed via fast Fourier transform (FFT) with O(N log N) operations.
The system of equations associated with the preconditioned Toeplitz matrix is then
solved by iterative methods such as CGN (the conjugate gradient iteration applied to
the normal equations) [7], GMRES (the generalized minimal residual) [15], and CGS
(the conjugate gradient squared) [16].

The convergence rate of preconditioned iterative methods depends on the singu-
lar value or eigenvalue distribution of the preconditioned matrices [].3]. The spectral
properties of preconditioned SPD Toeplitz matrices have been widely studied. Chan
and Strang [1], [5] proved that, for a symmetric Toeplitz with a positive generat-
ing function in the Wiener class, the preconditioned matrix has eigenvalues clustered
around unity except a fixed number independent of N. If the Toeplitz is additionally
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generated by a rational function, even stronger results were proved by Trefethen [19]
and the authors [12]. In contrast, relatively few results for preconditioned nonsymmet-
ric Woeplitz have been obtained so far [4], [11], [14], [21]. One such preconditioner was
studied by R. Chan and Yeung [4], where they generalized T. Chan’s preconditioner
CN to nonsymmetric Toeplitz matrices.

In this research, we examine the spectral properties of SITN and KITN for
nonsymmetric TN in general, and nonsymmetric rational TN in particular. The main
results of our study are stated as follows. For a large class of general Toeplitz matrices,
we prove that the singular values of STN and KTN, or equivalently, the eigenval-
ues of (svlTN)H(SITN) and (KITN)H(KTN), are clustered around unity except
for a fixed number independent of N. If TN is additionally generated by a rational
function of order (c,/, , ), we are able to characterize the eigenvalues of STN and

KITN directly. We classify the eigenvalues of STN and KTN into two classes,
i.e. the outliers and the clustered eigenvalues, depending on whether they converge
to 1 asymptotically. Then, (i) the number of outliers is at most 2 min(r, s) where
r max(a,) and s max(% 5); and (ii) the clustered eigenvalues are confined in
a disk centered at 1 with radius e, where the clustering radius e is proportional to
the magnitude of the last elements in the generating sequence used to construct the
preconditioner.

With these spectral regularities, we can find appropriate preconditioned iterative
methods to solve a nonsymmetric Toeplitz system efficiently. In particular, an N N
rational Toeplitz system TNx b can be solved with O(Nlog N) operations since
the number of iterations required for convergence is independent of the problem size
N. To compare the performance of SN and KN, the SITN and KITN have the
same number of outliers so that they converge in the same number of iterations
asymptotically. However, the performances of SN and KN for finite N are determined
by the clustering radii of the clustered eigenvalues as well. The magnitudes of the last
elements used to construct SN and gN are O(ItN_MI + Itl_MI) and O(Itgl T It-gl),
respectively. Since O(ItNI + It_NI) <_ O(ItN_M + It_MI) for large N, iterative
methods with preconditioner KN converges faster than with preconditioner SN for
solving rational Toeplitz systems. This is confirmed by numerical experiments. Bythe
parallelism provided by FFT, the iterative methods with preconditioners in circulant
matrix form is highly parallelizable, and the time complexity of the method can be
reduced to O(log N) if O(N) processors are used.

When TN is a symmetric rational Toeplitz, we have r s and tN t-g. Conse-
quently, the number of outliers of KTN is y 2r 2 max(s, ) and the clustering
radius is O(ItNI ). They reduce to the case given in [12]. Although the results derived
in this paper can be viewed as a generalization of the results in [12], we want to
point out that the approach adopted in this research is very different from that in

[12] and the proof techniques are much more involved. For example, in characterizing
the clustering radius of clustered eigenvalues of KITN (or SITN) for symmetric
TN, the intertwining theorem of eigenvalues was exploited in [12]. However, such a
theorem does not exist for nonsymmetric matrices so that we use perturbation theory
for eigenvalues instead.

It is worthwhile to mention that there exists a preconditioner based on the
minimum-phase LU factorization (MPLU) technique [11] which has a faster or compa-
rable convergence rate than preconditioners SN and gg. However, Toeplitz precondi-
tioners in circulant matrix form have two advantages over the MPLU preconditioner.
First, the circulant preconditioning technique can be easily generalized to multidi-
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mensional Toeplitz systems See [2], [3], and [10] for the two-dimensional case (block
Toeplitz matrices). Second, the resulting preconditioned iterative method with pre-
conditioners in circulant form is highly parallelizable while the MPLU preconditioner
has to be implemented sequentially.

This paper is organized as follows. The construction of preconditioners SN and
KN for nonsymmetric Toeplitz TN is discussed in 2. We describe the singular value
distribution of KITN and SITN for general Toeplitz in 3, and characterize the
eigenvalue distribution of KITN and STN for rational Toeplitz in 4 and 5,
respectively. Numerical experiments are given in 6 to illustrate the theoretical study.

2. Constructions of Toeplitz preconditioners. Let T, be a sequence of m
m nonsymmetric Toeplitz matrices with generating sequence tn. Then,

t0 t--1 t--(N--2) t--(N--l)
tl t0 t-i t-(N-2)

TN tl tO
iN-2 t-1
iN-1 tN-2 tl tO

Following the idea proposed by Strang [17], we construct the preconditioner SN by
preserving N consecutive diagonals in TN and bringing them around to form a circu-
lant matrix,

tO t-1 t2-M tl-M tN-M t2
tl tO t-1 t2-M tl-M tN-M t2

tl tO t--I t2-M tl-M tN-M
tN--M tl to t-1 t2-M 7l-M
tl-M tN-M tl tO t-1 t2-M

t-2 tl-M tN-M tl tO t-1
t-1 t-2 tl-M tN-M tl to

A simple rule of thumb to decide the value of M is to require [tN-MI [tl-M[.
Generalizing the idea in [9], the preconditioner KN is constructed based on a

2N x 2N circulant matrix R2N,

T /TN]R2N /TN TN

where/TN is determined by the elements of TN to make R2N circulant, i.e.,

0 iN-1 t2
t_(N_l) 0 tN-1 t2

t_(N_l) 0
t-2 iN-1
t--1 t--2 t--(N-l) 0

This construction is motivated by the observation that the augmented circulant sys-
tem,

TN
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is equivalent to (TN/ATN)x b so that (TN/ATN)-1b can be computed efficiently
via FFT and

(2.1) KN TN + ATN
can be used as a preconditioner for T. Note, however, that KN itself is also circulant
and can be inverted directly via N-point FFT rather than 2N-point FFT.

3. Spectral properties of preconditioned Toeplitz. We assume that the
generating sequence tn satisfies the following two conditions:

(3.1)

(3.2) IT()l ne--inO

According to the construction of preconditioners KN and S, the function T(ei)
describes the asymptotic eigenvalue distribution of preconditioners KN and SN but
not necessarily the asymptotic eigenvalue distribution of Toeplitz matrix TN (see Test

1Problem 5 in 6). Thus, the matrix-vector product K v (or S v) can be completed
successfully via FFT since magnitudes of eigenvalues ofK (or S are bounded due
to (3.2). With conditions (3.1) and (3.2), the condition numbers of preconditioners
KN and SN are bounded independent of N due to the following theorem.

THEOREM 1. Let TN be an N x N Toeplitz matrix with the corresponding gener-
ating sequence satisfying (3.1) and (3.2). The [l(ggg)-ll[2 and I[(SNSNH)-I[] 2 are
bounded for suciently large N.

Proof Since gg is circulant, we have

KN FDNFN and KwH FHNDFN,
where FN is the N N unitary Fourier matrix with N-1/2e-i2r(m-1)(n-1)/N as the
(m, n) element and DN a diagonal matrix formed by the eigenvalues of KN. Thus,
K, KNH, and KNKNH share the same eigenvectors, and the eigenvalues of KNK are

A(KNK) A(KN)A*(KN)= IA(KN)I u.
Any eigenvalue of KN belongs to the set of eigenvalues of R2N, which are

N-1

Pn An(R2N) 2 kei2rkn/2N, 1 <__ n <_ 2N.
k----(N--1)

It is clear that Pn is a partial sum of the infinite series -]-o tke-iko with 0 -nr/N.
With (3.2), [Pnl >- #T Iz, where # can be made arbitrarily small by choosing suffi-
ciently large N so that

1

Similar arguments can be used to prove the boundness of [](SNNH)-II2, and the
proof is completed. D
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The next theorem describes the clustering property of the singular values of
KITN and srlTN.

THEOREM 2. Let TN be an N x N Toeplitz matrix with the generating sequence
satisfying (3.1) and (3.2). For sufficiently large N, the singular values of the precon-
ditioned matrices KTN and STN are clustered around unity except .for a fixed
number independent of N.

Proof. Note that the singular value of KTN is equal to the square root of
the corresponding eigenvalue of (KTN)H(KITN). Since (KITN)H(KTN) and
(KNK)-(TNT) are similar, the eigenvalues of (KNK)-(TNT)are examined
to understand the singular values of KTN. With the relation gg TN A-/XTN,
we have

A[(KNKHN)-I(TNT)] 1 A[(KNK)-(KNATHN + ATNK ATNAT)].
Let us define

Wg KNATHN / ATNK ATNAT.
For an arbitrary positive integer q, we denote the corresponding central (N- 2q) x
(N- 2q) diagonal block of (KNKHN)- and WN by/C_2q and Wg-2q, respectively.
By the separation theorem (or intertwining theorem) of generalized eigenvalues [18],
[20], there are at least N-4q eigenvalues of (KNKg)-WN bounded by the minimum
and the maximum eigenvalues of 1Cv_2qVN_2q.

Since/CI_2q is a submatrix of the symmetric circulant matrix (KNKg)-1,

[[K:l_2q[ [2 <_

According to the definition of WN-2q,

WN-2q ATH + ATH ATATH,
where and AT are (N- 2q) x N matrices formed by the central (N- 2q) rows of
KN and ATN, respectively. It is ey to verify that, for p 1, ,

Illp 2 [tn[ 2 [tnl 2ST < ,
n=-(N--1) n=--

and

n:q+l n--q+l

Since IIAll2 (llAlllllAIl)/2 for n arbitrary matrix A, the above bounds also hold
for p 2. Similarly, we can argue that [[/cH]I2 _< 2ST < cx3 and [IATH[12 _< a(q).
Thus,

<_ 4BTa(q) + a2(q).

By using Theorem 1 and the fact that a(q) is smaller as q becomes larger due to (3.1),
we conclude that for given e there exist q and N such that for all N _> N,
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Hence, the eigenvalues of (KNK)-I(TNTHN) are confined in the interval (1-e, 1
except at most 4q outlying eigenvalues. Similar arguments can be used to prove the
spectral clustering property of the singular values of SITN.

The solution of a Toeplitz system Tgx b can be determined by applying the
CGN method to the preconditioned system KITNx Kib (or SiTNx Slb).
With the clustering property on singular values of KITN (or SiTN), the CGN
method converges superlinearly. A more detailed discussion about the convergence
rate of the CGN method for solving Toeplitz systems were studied by Chan and
Yeung [4]. When the generating function is additionally rational, we characterize the
eigenvalues of the preconditioned matrices KITN and SITN directly. It will be
detailed in the following sections.

4. Spectral properties of preconditioned rational Toeplitz KTN. The
generating function of a sequence of Toeplitz matrices Tm is defined as

T(z)-- tnz-n.

Let the generating function of TN be of the form

A(z-1) C(z)(4.1) T(z)- B(z_) D(z)’

where

A(z-) ao + az- +... + a,z- C(z) co + cxz +... + c..fz
l + bz-l + + bzz-a l + dlz + + dazB(z-) D(z)

Note that a,bc.d =/: 0 and polynomials A(z-) and B(z-) (or C(z) and D(z))
have no common factor. We call T(z) a rational function of order (a, , V, 5) and TN
a rational Toeplitz matrix. To simplify the notation, we define r max(a, ) and
s max(V, ).

The spectral properties of K]TN can be determined from that of T/kTN via

[A(KITN)] -1 A(TI(TN q-/kTN)) 1 + A(TATN).

The eigenvalues of KITN clustered around 1 correspond to those of T1ATN clus-
tered around 0. We summarize the procedures in examining the spectral properties
of T ATN as follows:

Step 1. Show that the ATN is asymptotically equivalent to a low-rank Toeplitz
matrix AFN (Lemma 2).

Step 2. Study the rank of AFN by transforming it to a matrix QF which has at
most d r + s nonzero columns (Lemma 3).

Step 3. Show that the QF is asymptotically equivalent to a matrix QF which has
at most 2 min(r, s) nonzero eigenvalues (Lemma 4).

Step 4. Use perturbation theory to determine the radius of the clustered eigen-
values of T/1/kTN and KciTN (Lemmas 5 and 6 and Theorem 3).

The number of outliers of KciTN, i.e., 2 min(r, s), is determined from Steps 1-3,
and the clustering radius is determined from Step 4.
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4.1. The number of outliers of K;1TN Note that the sequence tn can be
recursively calculated for large Inl. This is stated as follows.

LEMMA 1. The sequence tn generated by (4.1) follows the recursions,

(4.3) tn+l -(bltn + b2tn-1 -}-... + b[tn-/+l), n >_ r max(,/),
tn-1 :-(dltn +d2tn+l +’"+dstn+-l), n <_ -s:- max(7, ).

Proof. The proof is similar to the proof of Lemma 1 in [12]. D
Since elements tn satisfy the recursion given in Lemma 1, we construct a low-rank

Toeplitz matrix AFN as

(4.4)

where

AFN F1,N - F2,N,

tN tN-1 t2

tN+l tN
t2N-2 tN-1
t2N-1 t2N-2 tN+l

t-N t-(N+l) t-(2N-2) t_(2N_l)
t-(N--l) t-N t_(N+l) t-(2N-2)

F2,N t-(N-l) t-N
t--2 t_(g+l
t-1 t-2 t-(N-l)

and where t, n _> r or n <_ -s, are recursively defined by (4.3). Due to the recursion
given by (4.3), the ranks of Fl,N and F2,N are bounded by r and s, respectively. Thus,
the rank of AF is bounded by d r / s. The following lemma shows that ATN and
AFN are, in fact, asymptotically equivalent.

LEMMA 2. Let TN be an N x N Toeplitz matrix generated by T(z) in (4.1) with
the corresponding generating sequence satisfying (3.1) and (3.2). The ATN and AFN
are asymptotically equivalent.

Proof. Let us denote the difference between AFN and ATN by

/kEN AFN ATN

tN -+- t-N t_(N+l) t_(2N_2) t_(2N_l
tN+l tN + t-N t_(N+l) t_(2N_2)

tN+l tN -- t-gt2N-2 t-(N+l)
t2N--1 t2N--2 tN+l tN t_ t--N

It can be easily verified that the and l norms of/kEN are both bounded by

2N-1 -(2N-l)

n--N n=-N

Consequently, we have

II/XENII= <_ (IIAENII II/XENII ) <_ TF .
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Since "rE goes to zero as N goes to infinity due to (3.1), the proof is completed. 0
Since ATN is asymptotically equivalent to AFN and the rank of/kFg is bounded

by d, the number of outliers of T1ATN (or KITN) is bounded by d, which is,
however, not tight. We are able to determine a tighter bound by introducing an-
other asymptotically equivalent matrix of ATN (or/kEN), which has only 2 min(r, s)
nonzero eigenvalues in the following. This turns out to be the exact number of outliers
actually observed in all our numerical experiments. To exploit the low-rank structure
of/NFN, we transform/kFN to

(4.7) QF /kFNUDLB,

where UD is an N x N upper triangular Toeplitz matrix with the first N coefficients
in D(z) as the first row, and LB is an N x N lower triangular Toeplitz matrix with
the first N coefficients in B(z-1) as the first column. Note that since UD and LB
are full-rank matrices, the QF and/kFN have the same rank. The structure of QF is
described in the following lemma.

LEMMA 3. Let TN be an N x N Toeplitz matrix generated by T(z) in (4.1) with
the corresponding generating sequence satisfying (3.1) and (3.2). The elements of QF
are zeros except for the first s and the last r columns.

Proof. Note that F1,N and F2,N are Toeplitz matrices with elements

(F,N),i tN+-i and (F2,N)i,j t-N+i-j.

The (i, j) elements of F1,NUDLB and F2,NUDLB are

N N N N

E E tN+i-mdn-mbn-j and E E t-N+i-mdn-mbn-j,
n:l m:l n:l m:l

where b0 1 (do 1) and bi 0 (di 0) if the subscript i is not in the range
0 < </9 (0 < i < 6). If s < j < N r, we can simplify the above summations as

E tN+i+m’-n’-jbn’ din, 0
m=-O n--O

and

E t-N+i+m’-n’-jdm’ bn, O,
n =0 m’=0

where m’ n m, n’ n j, and the equalities are due to the recursion defined in
(4.3). Thus, the elements of

QF :/NFNUDLB (F1,N J= F2,N)UDLB

are zeros except for the first s and the last r columns. [:l

Consequently, we decompose the complex N-tuple space CN into two orthogonal
complement subspaces,

(4.8)
n(QF) {v CN v, O, < i <_ N- r},
Af(QF) {v cN v{ o, 1 <_ <_ s or N- r < < N},
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with dimensions

dim T(QF) d and dim .hf(QF) g d.

The subspace .A/’(QF) is contained in the null space of QF. Let QNW denote the
northwest s s block in QF, and QNE, QSW, and QSE the corresponding corner
blocks in QF with sizes s r, r s, and r r, respectively. By using the subspace
decomposition (4.8), it is easy to see that the nonzero eigenvalues of QF only depend
on the corresponding four corner blocks of QF, and are also the eigenvalues of the
d d matrix,

[ QNw QNE ]PF-- Qsw QsE

In other words, the rank of QF is the same as that of PF.
The bounds for the elements of Qw, QE, Qsw, and QSE are summarized as

follows:

I(Qs),I _< TSE, TSE O(ItNI + It-NI),
(4.9)

I(QN),I < (F1,NUDLB)i,N-r+j + TNE, TNE O(It--UNI),
I(QsW)i,l < (F2,NUDLB)N-s+i5 + TSW, TSW O(It2NI).

To derive (4.9), recall that the (i, j) element of QF is

N N N N

n=l m=l n=l m=l

which is bounded by

m =0 n =0 m’=0 n =0

Since the elements of QNW are the same those of QF with subscript (i, j), i, j s,
they are bounded by

m I+.l + m It-+-I).
i=0 j=0

To determine the bound for i=0
B(-’) ( lZ-)( r:z-)... (1 z-’).

A direct consequence of (3.1) is that all poles of A(z-)/B(z-) should lie inside the
unit circle, i.e., ri] < 1, 1 i , so that

Ibk, ()(mlrl) N (), where () (-k)k"
Therefore, we obtain

k=O k=O
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Similarly, =0 Idol 2 and thus, the elements of QNW are bounded by

where the last equality is due to the fact that, for large n, tn can be approximated by

(4.10) tn cr’, where Il m.ax Irl,

and where c is a constant. Similarly, we can prove that the elements of QSE axe
bounded by

The (i,j), 1 <_ i <_ s, 1 <_ j <_ r, element ofQN is the sum ofthe (i,N-r+j) elements
of F1,NUDLB and F2,NUDLB. It is straightforward to verify that the (i, N- r + j)
element of F1,NUDLB remains unchanged while that of F2,NUDLB is bounded by
TNE 2(f+)[t-2N+d+l O(It-2NI) for sufficiently laxge N. Similarly, we can
derive the bound for the elements in Qsw as given by (4.9).

Thus, when N becomes asymptotically large, the PF converges to

0 QwPF -sw 0

where QNE is the converged northeast s r block in F1,NUDLB and Qsw is the
converged southwest r s block in F2,NUDLB. Since the ranks of Q,NE and Qsw are
both bounded by min(r, s), the rank of PF is bounded by r/- 2 min(r, s).

Let us define a matrix QF by replacing the four corner blocks in QF with the
corresponding blocks in PF. Then, we have

TQ --IIQF- QFIIp- IIPF- PFIIp
<_ STNW + rTSE + max(r, S)(TNE + ’SW)
O(lNI + I-NI),

for p 1 and cx). The above bounds also hold for p 2 because

IIAII2 <_ (IIA IllAIIo)/2

for an arbitrary matrix A. Since TQ goes to zero as N goes to infinity due to (3.1), the
asymptotic equivalence between QF and QF is established. This result is summarized
in the following lemma.

LEMMA 4. Let TN be an N N Toeplitz matrix generated by T(z) in (4.1) with
the corresponding generating sequence satisfying (3.1) and (3.2). The QF and QF are
asymptotically equivalent.

Based on Lemmas 2-4, (4.2) and (4.7), T/T is asymptotically equivalent to

TI-FLU whose rank is bounded by /= 2min(r, s) and KcITN has at most /
asymptotic eigenvalues not converging to one (outliers).

4.2. The clustering radius ofKITN. We use perturbation theory to estimate
the clustering radius of the N-r/clustered eigenvalues. Instead of examining the
eigenvalues of T ATN directly, we study those of the similar matrix

GN LUT/kTNUDLB LIUITQT,
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where QT --/kTNUDLB. Let us define

HN LIuD1TI-F
It is clear that HN has only d nonzero columns as QF (or QF). The GN can be
viewed as a matrix obtained from HN by adding the perturbation matrix

(4.11) AGN GN HN LIUDT(QT --F)"

A bound of II/kGNII2 is given below so that we can estimate the clustering radius of
the clustered eigenvalues by using perturbation theory for eigenvalues.

LEMMA 5. Let TN be an N N Toeplitz matrix generated by T(z) in (4.1) with
the corresponding generating sequence satisfying (3.1) and (3.2). Then, .for sufficiently
large N, the II/kGNII2 is bounded by e O(ItN -}-It_NI).

Proof. We first study the 2-norm of QT QF, which is bounded by

As shown in the proof of Lemma 4, the second term IIQF QFII2 is bounded by
TQ O(ItN + It_NI) while the first term IIQT QFII2 is bounded by

-2N-Recall from (4.6) that II/ENII2 < Z-,n=N (Itnl + It-hi) By using (4.10), we have

2N-1 o
n ItNI MBItNI where MB

1E Itnl <- E Iqjrj I= 1 --Irjl 1 --Irjl"
n=N n--N

Similarly, -,n=N’2N-1 It-,I < MDIt-vl. Besides, IILII < Ek--o Ibl < 2 and IIUDII= <
-o Idol _< Thus, we obtain a bound for the first term, i.e.,

IIQT QFIIU < 2(+)(MBItNI + MDIt--NI) O(Itl + It--l),

and conclude that

IIQT- QFIIu < O(Itvl + It-NI).

With (4.11), we have

I]/GN]I2 < IILIII21IUXII2]ITI]21I(QT- F)II2.

Under the assumption that ITfflll. is bounded by a constant CT independent of N,
we want to show that IIL1112 and IIU1112 are also bounded. Let us factorize B(z-1)

B(z-) (1 rlz-1)(1 r2z-1) (1 rfz-1),
where we assume that all roots ri are distinct for simplicity. By applying the iso-

morphism between the ring of the power series and the ring of semi-infinite lower (or
upper) triangular Toeplitz matrices, the LB and L can be decomposed into the
products

LB Lrx Lr...Lr, L31 L L-1L
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where Lr, 1 _< i _< is anNN lower triangular Toeplitz matrix with [1,-ri, 0,..., 0]T
as the first column. It can be easily verified that L-1 is a lower triangular Toeplitz
matrix with [1, ri, ri,.. as the first column. Therefore,

N-I c
1

ri

k=0 k--0

p 1, 2, x,

and

i=1 i=1

CB.

Similar arguments can be used to prove that [[UI[[2 CD. Finally, we have

(4.12) II,aNIl CBCDCTI}(Q,T --0F)II2 O(ItNI + I-NI).

The proof is completed.
Let us denote the rank of HN LIUD1TIF by . Clearly, _< r/

2min(r, s). We arrange the eigenvalues of HN in a descending order so that

IAn+ll (An 0 for < n <_ N), and denote the corresponding normalized right-hand
and left-hand eigenvectors by xl, x2,..., XN and Yl, Y2,..., YN, respectively. Besides,
vectors xn with < n _< N are chosen to be othorgonal. The complex N-tuple space
is decomposed into the row and the null spaces of HN,

Row(Hg)--span{Xn, n _< }, Null(HN) span{xn, < n <_ N}.

Since GN HN -}- /kGN and [I/GNI[2 <_ , the eigenvalues and the right-hand
eigenvectors of GN are denoted by An(e) and xn(e), respectively. By using results
from perturbation theory for repeated eigenvalues [20], the eigenvectors xn(e) with
< n <_ N must take the form

l mn N

(4.13) xn(e) E (An Am)S,,
x, + E gmnXm + O(e2),

m=l m=+l

Hwhere mn yHmAGNXn, An O, 8m YmXm and gnu 1. Due to the construction,
we know that

(4.14) IIx.()ll IIx.ll 1.

The factor Imnl is bounded by

The 18n1[, 1

__
m <_ , is also bounded as given in the following lemma.

LEMMA 6. Let TN be an N x N Toeplitz matrix generated by T(z) in (4.1) with
the corresponding generating sequence satisfying (3.1) and (3.2). Then, the [snl[, 1 <_
m <_ , of HN is bounded by a constant independent of N.

Proof. The eigenvalues A and the right-hand eigenvectors x of HN satisfy

LBQFx ALBTNUDLBX.
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Since the elements of QF are zeros except the first s and the last r columns, so are
the elements of LBQF. Thus, the nonzero eigenvalues of HN only depend on the
northwest s s, northeast s r, southwest r s, and southeast r r blocks of LBQF
and LsTNUDL. The boundness of Isnll, 1 <_ m <_ , is guaranteed if the elements
of the four corner blocks of LsQF and LsTNUDLB remain unchanged for sufficiently
large N.

By using the band structure of Ls and the special structure of QF, it is straight-
forward to verify that the four blocks of LsQF remain unchanged for large N. Next,
we examine the matrix LTNUDLB. By using (4.1) and the isomorphism between the
ring of the power series and the ring of the semi-infinite lower (or upper) triangular
Toeplitz matrices, we can express TN as

TN LAL + UcU,
where LA is an N N lower triangular Toeplitz matrix with the first N coefficients
in A(z-) as the first column, and Uc is an N N upper triangular Toeplitz matrix
with the first N coefficients in C(z) as the first row. Then, we have

LBTNUDLB LAUDLB -k LBUcLB,

Hwhose four corner blocks remain unchanged for large N. Thus, Am and s, YmXm
with 1 _< m _< do not change with N, when N becomes sufficiently large.

Let vn(e) be the normalized vector of xn(e),

which can be decomposed as

+
where Vs(e) e Null(HN) and va(e) e Row(Hn). The magnitude of An(e), < n _< N,
of GN is approximated by

JAn(e)]--]lGNVn(e)l]2 --I]HNVR(e)+

By using (4.12)-(4.14), we obtain that

max II/ GNV.( )II 

/ II/XG rll 

for sufficiently large N. The above analysis is concluded in the following theorem.
THEOREM 3. Let TN be an N N Toeplitz matrix generated by T(z) in (4.1)

with the corresponding generating sequence satisfying (3.1) and (3.2). For sufficiently
large N, the preconditioned Toeplitz matrix KrTN has the following two properties:

P1. The number of outliers is at most } 2min(r, s).
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P2. There are at least N- eigenvalues confined in the disk centered at 1 with
radius eg where

g 0(Itgl / It-NI).

5. Spectral properties of preconditioned rational Toeplitz SITN. The
preconditioned Toeplitz matrix SITN has similar spectral properties as KTN. The
number of outliers of SITN can be obtained by proving that/kSN SN TN and
/kFN given by (4.4) are asymptotically equivalent.

LEMMA 7. Let TN be an N N Toeplitz matrix generated by T(z) in (4.1)
with the corresponding generating sequence satisfying (3.1) and (3.2). STN has
asymptotically at most 2 min(r, s) eigenvalues not converging to 1.

Proof. Let us define/SN SN --TN, and express the difference between/FN
in (4.4) and/SN as

/kEN /,SN E1,N W E2,N,

where E1,N and E2,N are N N Toeplitz matrices with elements

iN+i-j,(El,g)i,j
ti-j,

-(M- 1) _< i-j _< N- 1,
-(N- 1) <_ i-j <_ -M,

and

N- (M- 1) < i-j < N- 1,
-(N- 1) < i-j < N-M,

respectively. By using similar arguments in deriving Lemma 2, we can prove that/SN
and /FN are asymptotically equivalent. Since /FN is asymptotically equivalent to
the matrix -FLIUD with rank _< 2min(r, s) as described in Lemma 4, the
proof is completed. D

Similar arguments used in 4.2 can be applied to derive the following theorem.
THEOREM 4. Let TN be an N N Toeplitz matrix generated by T(z) in (4.1)

with the corresponding generating sequence satisfying (3.1) and (3.2). For sufficiently
large N, the preconditioned Toeplitz matrix STN has the following two properties:

P1. The number of outliers is at most 2min(r, s).
P2. There are at least N-? eigenvalues confined in the disk centered at 1 with

radius es, where

es O(ItN-MI -t- Itl-MI).

6. Numerical results. Five test problems, including both rational and nonra-
tional TN, are used to illustrate the above analysis. For the nonsymmetric Toeplitz
system TNX b to be solved, we choose b (1,..., 1)T and zero initial guesses
in the first four experiments. Without further specification, M is chosen such that
ItN_MI ,. ItS_M] to construct preconditioner SN. We use the first test problem, which
is generated by a nonrational function, to examine the clustering effect of singular
values. Test Problems 2-4 are generated by rational functions so that the number
of outliers and the clustering radius can be observed, which confirm the theoretical
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TABLE 1
Number of iterations required for the CGN method.

32 24 12 9

6:8 33 15 11
49 17 13

TABLE 2
Number of iterations required for the CGS method.

32 15 7 9
64 21 8 10
128 26 9 10

results developed in 4 and 5. One underdetermined Toeplitz system (singular TN)
is also given in Test Problem 5 with appropriate vector b.

TEST PROBLEM 1. Nonrational TN. Let TN be a Toeplitz matrix with generating
sequence

1/log(2- n), n _< -1,
t 1/log(2 n) + 1/(1 + n), n 0,

1/(1 + n), n >_ 1.

The singular values of SITN and KITN are plotted in Fig. l(a) for N 32, 64,
and 128. Both SITN and KclTN have clustered singular values. The eigenvalues of
KclTN with N 32 are plotted in Fig. l(b). It is clear that the eigenvalues possess
a certain clustering property. We apply both the CGN and CGS methods to solve the
preconditioned Toeplitz system P1TNx P b. The numbers of iterations required
for the CGN and CGS methods to achieve lib- TNXI[2 < 10-12 are summarized in
Tables 1 and 2, respectively. The case without preconditioning, denoted by TN, is also
included for comparison. The use of preconditioners does accelerate the convergence
rate of these iterative methods. The number of iterations required for SN and KN
increase slightly as N becomes large. The KN performs better than SN in the CGN
method. However, their performances are comparable for the CGS method. Note
also that it requires more iterations for the CGN method to converge than the CGS
method. Since the operation counts inside each iteration of the CGN and CGS meth-
ods are approximately equal, the CGS method performs better for this test problem.
However, the CGN method may have a more robust convergence behavior for general
problems. We refer to [13] for a more detailed comparison of these two nonsymmetric
iterative algorithms.

Although the necessary conditions for convergence of the CGS method are not
clear yet, there exists a direct relation between the convergence rate and the eigenvalue
distribution of the iteration matrix [11], [13]. We will only present results of the CGS
method for remaining test problems to verify the theoretic results about the eigenvalue
distributions of the preconditioned rational Toeplitz matrices.

TEST PROBLEM 2. Rational TN with (r, s) (1, 1). The generating function of
TN is chosen to be

1 / 0.7z-1 1 0.8z
T(z)

1 0.9z-1 + 1 + 0.7"
To show that the simple rule for choosing M, i.e., ItN_Ul [tl-M[, does provide
a better spectral clustering property and a better convergence rate for SITN, two
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FIG. 1. (a) The singular value distribution of SITN and KITN, and (b) the eigenvalue
distribution ofKTN for Test Problem 1.

preconditioners SN and SN are constructed. The SN is constructed with M such
that ItN_MI Itl_MI while the SN is constructed with M [N/2]. The eigenvalues
of TN, ITN, STN and KTN with N 32 are plotted in Figs. 2(a)-(d). All
preconditioned Toeplitz matrices have eigenvalues clustered around 1 except 2
2min(r, s) outliers. The KTN has the best clustering effect, and the eigenvalues
of STN are more closely clustered than those of ITN. The sums of magnitudes
of the last elements in constructing SN and KN and the corresponding clustering
radii are listed in Table 3. They are of approximately the same order, as stated in
Theorems 3 and 4.
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3

o
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_9.
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(a)

0.4

0.2

-0.2

-0"60.5 0.6 0.7 0.8 0:9 i:1 1’:2 1.3

real part

FIG. 2. The eigenvalue distribution of (a) TN and (b) 1TN for Test Problem 2.

The convergence history of the CGS method with various preconditioners is plot-
ted in Fig. 3 with N 32. The convergence rate of the CGS method without precon-
ditioning (the curve denoted by TN) is very slow. This phenomenon is not surprising
by examining the eigenvalue distribution given in Fig. 2(a). Preconditioning improves
the convergence behavior dramatically. It is clear that KN performs the best, while
SN performs better than g.

TEST PROBLEM 3. Rational TN with (r, s) (3, 1). The generating function of
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0.4

0.2

-0.2

-0.4

-0’.5 "0:6 0:7 0:8 0:9 i.1
real part

(c)

0.6

0.4

0.2

-0.2

-0.4

-0’.5 0:6 0:7 0:8 0:9 ’1’.1
real part

(d)

FIC. 2. The eigenvalue distribution of (c) SITN and (d) KITN for Test Problem 2.

TN is chosen to be

(1 + 0.5z-1)(1 + 0.7z-1)
T(z) (1 0.4z-)(1 0.6z-)(1 0.Sz-x)

1 + 0.8z
+ 1 / 0.9z

The eigenvalues of TN, STN, and KITN with N 64 are plotted in Figs. 4(a)-
(c). It is clear that K’TN has 2 2min(r, s) outliers. The outliers of SITN
are not easy to identify for this case. However, two outliers can be observed more

easily for larger N. Besides, the eigenvalues of KITN are more closely clustered
than those of SrTN. We list in Table 4 the sums of magnitudes of the last elements
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TABLE 3
Clustering radii e of preconditioners SIV and KN for Test Problem 2.

32

64

128

eS [tN-M[ + [tl-M[ ]1 eK It/V--l[-" [tl--N’l

8.2 x 10-2 2.8 10-1 3.5 10-2 6.8 10-2

4.6 x 10-2 2.1 10-2 1.2 10-3 2.3 10-3

3.3 x 10-5 1.1 10-4 1.4 10-6 2.7 x 10-6

102

10-
0 14

No. of iterations

FIG. 3. Convergence history of the CGS method for Test Problem 2.

in constructing SN and KN and the corresponding clustering radii. The convergence
history of the CGS method with N 64 is plotted in Fig. 5. We observe that the CGS
method without preconditioning does not converge and that the CGS method with
preconditioners KN and SN converges in 4 and 6 iterations, respectively. This seems
to suggest that the use of preconditioners does not only accelerate the convergence
rate by providing better spectral properties, but also improves the convergence of
nonsymmetric iterative algorithms by making the preconditioned matrix more close
to normal.

TEST PROBLEM 4. Rational triangular TN with (r, s) (1, 0). The generating
function of TN is chosen to be

1 -0.7z-1
T(z)

1 / 0.Lz-1"

Since there are only N nonzero elements in TN, we can make SN the same as KN. The
eigenvalues of KilTN with N 32 are plotted in Fig. 6(a). We see that all eigenvalues
are clustered around 1 with radius eK O(ItNI) 10-9. This is consistent with
Theorem 3, which predicts that KITN has 0 2 min(r, s) outliers. The convergence
history of the CGS method with N 32 is plotted in Fig. 6(b). The CGS method
with preconditioner KN converges in two iterations while the CGS method without
preconditioning does not converge.

TEST PROBLEM 5. Ill-conditioned TN. Let TN be the N N Toeplitz matrix
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FIG. 4. The eigenvalue distribution of (a) TN, (b) SITN, and (c) KITN for Test Problem 3.
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I0-o

K
4 6 8 10 12

No. of iterations

14

Fro. 5. Convergence history of the CGS method for Test Problem 3.

TABLE 4
Clustering radii e of preconditioners SN and KN for Test Problem 3.

128

es

1.7 x I0-I 1.4 i0-I

It-MI + It-ml II

2.7 x 10-2 1.3 10-2

1.7 x 10-3 1.6 10-4

K

6.1 X 10-2 2.8 10-2

5.1 X 10-4 1.6 10-4

5.8 X 10-7 1.7 10-7

generated by polynomial T(z) + z--1 with < 1, i.e.,

0 0 0 0 0
0 0 0

0 0 0
0 0

0 1 0
0 0 0 1 e

o(,-n).
The preeonditioner Kv (=

1
0

KN= 0

0
0

is

0 0 0 0 1
0 0 0

1

0 0 0
0 0

0 1 0
0 0 0 1 e

and IKll is bounded for large N. Since the rank of the matrix KN TN is one,
KITN has N- 1 eigenvalues repeated at 1 and our theoretic results still hold.

Matrix TN is nearly singular for large N and IT lll increase with N at the rate
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FIG. 6. (a) The eigenvalue distribution of KITN and (b) the convergence history of the CGS
method for Test Problem 4.

However, preconditioning TN by KN cannot improve the ill-conditionedness of matrix
TN. The preconditioned matrix KITN is still nearly singular, and the solution is
not accurate due to the ill-conditionedness.

For the extreme case 0, matrix TN is singular with eigenvalues repeated at 0,
and T does not exist. If b is in the rank space of TN, TNx b has more than one
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solution of the following form,

(6.1) x x* + v,

where x* is in the row space of TN with TNX* b, and v is in the null space of
TN. Note that K exists even though TN is singular. Since only the inversion of
the preconditioner is required in each iteration of preconditioned iterative methods,
the iteration can be performed without difficulty. It can be verified that KITN
has one eigenvalue at 0 and all other N- 1 eigenvalues repeated exactly at 1. As a
consequence of the eigenvalue distribution, the CGS method converges to one solution
in form (6.1) after one iteration.

7. Conclusion. In this paper, we generalized the circulant preconditioning tech-
nique from symmetric to nonsymmetric Toeplitz matrices. The resulting precondi-
tioned Toeplitz systems are then solved by various iterative methods such as CGN
and CGS. For a large class of Toeplitz matrices, we proved that the singular values
of STN and KTN are clustered around unity except for a fixed number indepen-
dent of N. When the generating function is rational, the eigenvalues of KITN and

SITN are classified into clustered eigenvalues and outliers. The number of outliers
depends on the order of the rational generating function. The clustered eigenval-
ues are confined in the disk centered at 1 with the radii eg O(ItNI / It-NI) and
s O(ItN-MI-I-Itl-MI) for KTN and STN, respectively. Since the eigenval-
ues of KITN are more closely clustered than those of STN, preconditioner KN
performs better than SN for solving rational Toeplitz systems.

Acknowledgments. The authors thank Professor Robert J. Plemmons for help-
ful discussion. The authors are also grateful to the referees for valuable suggestions,
including Test Problem 5 in 6.
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ON THE COMPLETION OF PARTIALLY GIVEN TRIANGULAR
TOEPLITZ MATRICES TO CONTRACTIONS*

GEIR N/EVDALt

Abstract. In this paper a complete description of the patterns of partial triangular Toeplitz
contractions, which are completable to triangular Toeplitz contractions, is given.

Key words, matrix completion, contraction, triangular Toeplitz matrix, partial matrix
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1. Introduction. In this paper we consider the problem of the completion of
partially given triangular Toeplitz matrices to contractions. By this we mean the
following: Suppose that some of the diagonals of a square triangular Toeplitz matrix
are given, and the other ones are to be chosen. Is it possible to choose the elements
that are not given in such a way that we obtain a triangular Toeplitz matrix which is
a contraction (i.e., with its largest singular value less than or equal to one)?

This is a matrix completion problem. Such problems constitute a current area of
research [3]. Among the types of matrix completion problems that have been studied
are completion to positive definite matrices, to contractions, and to minimal and
maximal rank completions. Positive definite and contractive completion problems are
closely related, in fact, all contractive completion problems may be reformulated as
positive definite completion problems (see [4]).

For many matrix completion problems there are some obvious conditions that
must be satisfied for a completion of a certain class to exist. For contractive com-
pletions, all submatrices that only contain given elements must be contractions; for
positive definite completions all completely specified principal submatrices must be
positive definite. A partially given matrix which satisfies such a condition is called a
partial contraction and a partial positive definite matrix, respectively. This terminol-
ogy will also be used for other properties.

One important area of research has been to determine for which patterns of given
elements all partial contractions are completable to contractions, and when a partial
positive definite matrix is completable to a positive definite matrix. For the posi-
tive definite completion problem, the solution is given by Grone, Johnson, S, and
Wolkowicz [2], and for completion of partial contractions, by Johnson and Rodman
[4]. A partial answer for completion of partial Toeplitz contractions is also given by
Johnson and Rodman [5]. In this paper, the solution for completion of partial tri-
angular Toeplitz contractions is given. An interesting open problem in this direction
is the partial positive definite Toeplitz completion problem. A conjecture about the
result is given in [3].

The problem of completing a partially given triangular Toeplitz matrix to a con-
traction is closely connected to the problem of Carathodory-Fejr interpolation with
gaps [6]. This problem may be stated as follows.
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Let P be a finite subset of the nonnegative integers, with n as the largest element
in P. We will call P the pattern of given elements, or just the pattern. For i E P let
ci E C be given. Does there then exist an f H(D) (the space of bounded analytic
functions in the unit disc) such that Ilfll <- 1 and f(z) -]in__o /izi+ O(Zn+I), where
i ci for i P?

If P {0, 1, 2,..., n}, this is the Carath6odory-Fej4r interpolation problem, and
it is well known that a necessary and sufficient condition for the existence of a solution

f with the given properties is that

co 0 0

C1 ". ".

Cn C C0

The theory of the Carathodory-Fej(r interpolation problem is extensively treated in
the monograph [1], to which the reader is referred for details and references.

In [6] the problem is solved for P (0, 1, 2,..., n- 2, n}, and it is also shown
that for all P’s there exists a unique function that minimizes the norm of those which
satisfy the interpolation condition.

Motivated by the connection to the Carathodory-Fejr interpolation problem we
number the diagonals for a (n + 1) (n + 1) lower triangular Toeplitz matrix in the
following way: The main diagonal is given the number 0 and then the diagonals are
numbered in increasing order to the last, which becomes the nth, one.

From the theory of Carath(odory-Fejr interpolation, we know that in the prob-
lem we are considering there is no loss of generality in assuming that the last diagonal
is given.

The main theorem of this paper is a description of those patterns P with the
property that all partial lower triangular Toeplitz contractions are completable to
lower triangular Toeplitz contractions. The pattern with this property will be called
completable. It turns out that the completable patterns are only those of the form
P (k + ip" k < p, 0 < < m} for some nonnegative integers k, p, m.

This result depends strongly on the fact that we consider triangular Toeplitz ma-
trices; the completable patterns are different from those obtained in [2], [4],
and [5].

2. The main theorem.
THEOREM 2.1. Let P be a finite subset of the nonnegative integers. Then P is a

completable pattern if and only if

(2.1) P- {k + ip" k < p, i runs through the integers O, 1,..., m}.

To prove the if part of the theorem is quite easy. For instance, we can look at the
corresponding interpolation problem for H functions, where the coefficients cj are
given for j P. Let us suppose that

/z inf Ilfll, f e H, f(z) "iz q- O(Zn+l) where -j cj for j e P
i=0
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is attained by a function fx. Then the function

I:(z) fl(Z) -- O.)-kfl (O.)Z) "- (M-2kf (O.)2Z) -}- O.)-(P-1)kf (OdP-I z)

where w exp i, is also an optimal solution of the interpolation problem Moreover,
this solution may be written as f2(z) zkg(zp) where g E H. Since the optimal
solution of the interpolation problem above is unique (see [6]), it follows that

(2.2) #

Ck 0 0

Ck+p

Cn Ck+p Ck

Thus we have proved the first part of the theorem, since the matrix above is a com-
pletely given submatrix of the partially given Toeplitz matrix.

It is also possible to prove this part of the theorem by noting that the partially
given Toeplitz matrix we are considering is equivalent, by doing row and column
operations, to a block matrix where all the elements in the diagonal blocks are given
and all the elements outside the blocks on the diagonal are unknowns or zeros. The
matrix given in (2.2) is then the matrix on the block diagonal with the largest norm,
and by choosing all the unknown elements equal to zero the first part of the theorem
is proven.

To prove the only if part we must construct partial triangular Toeplitz contrac-
tions that are not completable to triangular Toeplitz contractions. To do this, we use
an induction argument, and start working from the lower left part of the matrix.

3. Proof of the only if part of the theorem.

3.1. The first step. We use the following notation when denoting a partially
given lower triangular Toeplitz matrix, T. Let ci denote given elements, xi elements
which are not given, and yi elements placed in such a position that we want both
possibilities to be considered. To have a short notation for a partially given lower
triangular Toeplitz matrix, we define

o 0 0

o

Since in the rest of the paper we discuss only lower triangular Toeplitz matrices,
we will henceforth denote a lower triangular Toeplitz contraction by the term "con-
traction," and we will denote a partial lower triangular Toeplitz contraction by the
term "partial contraction."

The first three lemmas show that the theorem holds with the extra assumption
that n- 1, n E P.
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LEMMA 3.1. Let cn cn- (1/X/) and ci 0 if i n 1, n. Then

T(yo, Yn-3, Xn--2, an--l, Cn)

is a partial contraction, which cannot be completed into a contraction.

Proof. This follows since

if and only if x -(1//). ]

LEMMA 3.2. If Cn 1/lO, cn-1 1/4, Cn-2 737/792, and ci --0 for i
n 2, n 1, n, then

T T(yo,..., Yn-4, xn-3, an--2, Cn--1, On)

is a partial contraction, which is not completable to a contraction.

Proof. First we must check that all the submatrices which contain the elements
cn-2, cn-1, cn are contractions. The elements ca-2, ca-l, cn are chosen in such a way
that

Cn_1

Cn

for a unique xn-3. But for this x,-3,

which completes the proof.

Cn Cn 2

LEMMA 3.3. Letp > 3, cn cn-(p/2) (1//) ifp is even, cn-1 Cn--((p+l)/2)
(1/x/) ifp is odd; and let ci 0 for i # n 2, n if p is even, and i n +P2, n 1
if p is odd. Then

T T(yo,..., y=-p- 1, xn_, C=_p+1,..., c=)

is a paial contraction, which is not completable to a contraction.

Proof. If p is even note that

Cn

if and only if xn-p -(1/). If p is odd, the argument is similar.
Let us now consider the ce

T T(yo,... ,Yk-l,Ck,... ,Cp, Xp+l,... ,Xn-l,Cn).

LEMMA 3.4. If Ci 0 for i p 2,

)11 <1,
and

cv %-
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then there exist several choices of c, such that

T T(yo,... ,yp_3, Cp_2,Cp_l,Cp, Xp+l,... ,x,_,cn)

is a partial contraction. But there is only one choice of c, such that T is completable
to a contraction.

Proof. Since it is possible to choose xi, i < n such that

T’ T(yo, Yp-3, Cp-2, Cp-l, Cp, Xp/l, Xn--1)

is a contraction, all the completely given submatrices of T must be contractions.
All the completely given submatrices of T that contain cn are submatrices of a

matrix of the form

0 0 O

0

Cp--1
cv 0 0
cn Cp p-1 0 0

since ci 0 for i < p.
For every completely given submatrix there exists a disc with center at the origin

such that if cn is placed inside this disc the submatrix becomes a contraction. (This
follows by [1, Thm. IV.3.1].) The possible choices of cn in the lemma are then given
by the smallest of these discs.

From the theory of the Carath6odory-Fejr interpolation problem it is well known
that there exists a unique cn such that T is a contraction.

We also need a counterexample for the case

T T(yo,... ,Yp-3, Xp-2, cT-1,CT, Xp+l,... ,Xn--l,Cn).

LEMMA 3.5. For i < p- 2 let c 0, cv_ cv (1/x/) and cn O. Then

T T(yo,... ,yp_3,Xp_2, Cp-i,Cp, Xp+i,... ,x,_i,c,)

is a partial .contraction, which cannot be completed to a contraction.

Proof. Here the situation is described by looking at

Xp-2

Xp+l

Xp-2- Xp-2

1



550 GEIR N/EVDAL

and it easily follows that all the completely given submatrices must be contractions.
However, it is also well known that

x+

is not completable to a contraction [5].
The main ideas for constructing the necessary examples are now introduced. We

show that these ideas can be used to construct all the examples we need by doing an
induction step.

3.2. The induction step. Before continuing to the induction step, let us in-
troduce the following notation for describing the pattern of a partially given lower
triangular Toeplitz matrix. Let Cr denote that we have r consecutive diagonals with
given elements, let X8 denote that we have s consecutive diagonals with unknown
elements, and let Y denote that j consecutive diagonals are given where we want to
consider every possible structure. Then, for instance, we have

T T(yo,..., yj, Cj+l,..., cj+t, xj+t+l,... ,xj+t+s, cj+t+s+l,..., cj+t+s-t-r)
T(Yj+l, Ct,Xs, Cr).

Suppose that we have proved that the only possibilities for all partial contractions
to be completable to a contraction are when

T T(Yk, C1, Xp_, C, Xp_, C, Xp_, CI,...,..., Xp_, C, Xp_, C).

Then the theorem follows if we can prove that T, in fact, must be on one of the forms

T T(Xk, C1, Xp_I, C, Xp_, C, Xp_, C,...,..., Xp_I, C1, Zp-1, C1)

with k < p or

T T(Yk-p, C1, Xp-1, C1, Xp-1, C1, Xp-1, CI,...,..., Xp-1, C1, Xp-1, C1).

Let us construct the partial contractions, which are not completable to contrac-
tions for the other possibilities. There are four other possibilities that we need to
consider:

(3.1)
T T(Yk-p-1, C2, X-I, C1, X_, C, Xp-1, C1, ,

...,X-I,C1,X-I,C,)

(3.2) T- T(Yk_s_I, C,Xs, C,Xp_I, C1,X,_, C-,,. ,X,-, C,X,-, C)

with s < p- 1 or s > p- 1, and

(3.3) T-- T(Xk, C1,Xp_I, C1,Xp_I, CI,. ,. ,Xp_I, C1,Xp-I, C1)

with k >_ p. (Of course, we assume that p >_ 2.)
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Let us start with the case given by (3.1). Consider the possibilities of w in

(3.4) T

Ck--p-1 W

Cn--p Ck--p--

If the element w either belongs to the upper triangular part of T or is a given element,
let ci 0 if i = k p 1, n p, n; let

I1( ak-p-1 )ll < 1;

and let

Cn--p Ck-p- 1

Then use the same kind of argument as in Lemma 3.4. If w xj for some j, let
Cn-p Ck-p-1 (1/X/) and ci 0 for i # k-p- 1, n- p, and use the same kind
of argument as in Lemma 3.3.

The case given by (3.2) with s < p- 1 follows by a similar argument as the
one above, but now with ck-8 instead of Ck-p-1 in (3.4) (and Lemma 3.5 instead of
Lemma 3.3).

The theorem follows by proving the cases given by (3.2) with s > p- 1, and
by (3.3). These two cases are now completed by showing that the ideas of Lemmas
3.1-3.3 may also be used here.

By doing row and column operations we may transform the matrix to a block
matrix of the form

( Ao B 2 Blp+l

B A "’.

". A1 ".

". A1 Bpp+I
\ Bp+11 Bp+2 p+ C
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where

f Yn-mp 0 0

c-(k-llp

Cn Cn-(k-1)p Xn-kp Yn-(k+l)p Yn-mp

f Yn-mp 0 0

Yn-(k+l)p "" ""
Xn_kp . . .

c-(k-1)p

and the blocks outside the block diagonal and the block C consist of zeros and elements
that are not specified. (The block C may disappear, together with the corresponding
row and column in the block matrix.) The last step in the proof of the theorem now
follows by using the constructions in Lemmas 3.1-3.3 to construct partial contractions,
which are not completable to contractions.
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BUNCH-KAUFMAN FACTORIZATION FOR REAL SYMMETRIC
INDEFINITE BANDED MATRICES*

MARK T. JONESt AND MERRELL L. PATRICKt

Abstract. The Bunch-Kaufman algorithm for factoring symmetric indefinite matrices has been
rejected for banded matrices because it destroys the banded structure of the matrix. Herein, it is
shown that for a subclass of real symmetric matrices which arise in solving the generalized eigenvalue
problem using the Lanczos method, the Bunch-Kaufman algorithm does not result in major destruc-
tion of the bandwidth. Space/time complexities of the algorithm are given and used to show that the
Bunch-Kaufman algorithm is a significant improvement over banded LU factorization. Timing com-
parisons are used to show the advantage held by the authors’ implementation of Bunch-Kaufman
over the implementation of the multifrontal algorithm for indefinite factorization in MA27 when
factoring this subclass of matrices.

Key words. Bunch-Kaufman factorization algorithm, symmetric indefinite matrices, banded
matrices

AMS(MOS) subject classifications. 65F05, 65F15

1. Introduction. The Bunch-Kaufman algorithm is considered one of the best
methods for factoring full, symmetric indefinite matrices [3], [1]. For sparse matrices,
multifrontal methods that use pivoting techniques similar to the Bunch-Kaufman
algorithm have been developed [4]. Bunch and Kaufman [3] have shown that for
tridiagonal and pentadiagonal matrices the Bunch-Kaufman algorithm does not suffer
from catastrophic fill-in. To date, for matrices with a semibandwidth1 larger than 3,
the Bunch-Kaufman algorithm has been thought to destroy the banded structure of
the matrix [3]; therefore, either banded LU factorization or the multifrontal variant
of the Bunch-Kaufman algorithm had to be used.

Herein it is shown that for a subclass of real symmetric indefinite matrices, which
arise in solving the generalized eigenvalue problem using Lanczos’ method, the Bunch-
Kaufman algorithm does not result in major destruction of the bandwidth. Further-
more, for this class of problems, the Bunch-Kaufman factorization algorithm is a
significant improvement over LU factorization and the multifrontal method. In ad-
dition to taking advantage of symmetry, the Bunch-Kaufman algorithm yields the
inertia of the matrix essentially for free2 [3], which is important in eigenvalue calcu-
lations. LU factorization does not yield the inertia as a by-product and destroys the
symmetry of the matrix, thus increasing storage requirements for its implementation.

In 2 we give one of the several variations of the Bunch-Kaufman algorithm and
in 3 describe a subclass of matrices to which we apply it. An efficient implementation
of the method is described in 4. The space/time complexity of the implementation
is discussed in 5. Comparisons to other algorithms are given in 6. Conclusions are
drawn in 7.
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We include the diagonal in our definition of semibandwidth.

2 The multifrontal variant of Bunch-Kaufman also has these advantages.
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1) i=1
2) while (i .<_ n)
3) maxj=i+l,n aj,i
4) set r to the row number of this value
5) if ka <1 a, then
6) perform a 1 x 1 pivot
7) i:i+l
8) else
9) a maxj=i+l,n ar,:i
10) if aA2 < a [a, then
11) perform a 1 1 pivot
12) i= + 1
13) else
14) exchange rows and columns r and
15) perform a 2 2 pivot
16) i= i+ 2
17) endif
18) endif
19) endwhile
20) if inertia is desired, then scan the D matrix

FIG. 1. The Bunch-Kaufman factorization algorithm.

2. The Bunch-Kaufman algorithm. The Bunch-Kaufman algorithm factors
A, an n n real symmetric indefinite matrix, into LDLT while doing symmetric
permutations on A to maintain stability, resulting in the following equation:

(1) RAPT= LDLT,
where P is a permutation matrix, L is lower triangular, and D is a block diago-
nal matrix consisting of 1 1 and 2 2 blocks. Because A is indefinite, the usual
LDLT decomposition where D is diagonal may not exist. The Cholesky decomposi-
tion LLT fails because it attempts to take the square root of a negative number when
A is indefinite. Although several variations of the algorithm exist, algorithm D of
the Bunch-Kaufman paper is the least destructive of the banded structure [3]. The
algorithm is shown in Fig. 1.

The parameter in steps 5 and 10, , is chosen such that stability is maximized and
has been shown by Bunch and Kaufman to be approximately 0.525 [3]. The exchange
of rows and columns in step 13 maintains the symmetry of the matrix, unlike LU
factorization which destroys the symmetry of the matrix by permuting only rows.

3. Applicable set of matrices. Bunch and Kaufman show that, in general, if
m is the semibandwidth of a matrix being factored, then a 2 2 pivot can increase the
semibandwidth of the remaining nonzeros from rn to (2m)-2 and that this can happen
every other step, thus resulting in the complete destruction of the band structure due
to fill-in outside the band [3]. However, it is shown in 4 that for a subclass of matrices
this fill-in can be controlled. The number of 2 2 pivots is bounded by the number
of negative eigenvalues of A because each 2 2 pivot represents a positive-negative
eigenvalue pair [3]. Also, the increase of the semibandwidth from m to (2m) 2 is a
worst case that is not likely to occur in practice. Therefore, for matrices with a small
number of negative eigenvalues (in relation to the size of the matrix), it is possible
to use Bunch-Kaufman factorization with very little fill-in. Such matrices arise in
eigenvalue calculations where the smallest eigenvalues are sought. Methods such as
inverse iteration and Lanczos’s method are often used to find the smallest eigenvalues
of a matrix A. These methods often require the factorization of a matrix (A- aI),
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where a is normally very near the left end of A’s spectrum, but may not be to the
left of the smallest eigenvalue. Thus the matrix is indefinite [5] but has only a small
number of negative eigenvalues. These matrices can be banded, as they often are
in structural mechanics [2]. The difficulty is that the location and amount of the
fill-in outside the band is not possible to predict a priori. In the following section, an
algorithm that dynamically allows for fill-in during factorization is presented.

x rowi x
0 x x rowi+l 0 x x
O0..xxx 00o ooxxx
O00**xxxx O00.xxxx
O000.xxxxx O000.xxxxx
00000 x x x x x x rowr 00000 x x x x x x
000000xxxxxx 00000fxxxxxx
0000000xxxxxx 00000xxxxxx
00000000xxxxxx 00000fxxxxxx
O00000000xxxxxx O0000xxxxxx
O000000000xxxxxx O0000fffxxxxxx
00000000000xxxxxx 00000000000xxxxxx

FIG. 2. Example of fill-in (note: this is an example of worst-case fill-in).

4. Efficient implementation of the algorithm. As the algorithm in Fig. 3
is executed, the original matrix is copied, piecewise, from one place in memory to
another. This allows for dynamic allocation of fill-in as well as only requiring part of
the matrix to be in main memory at any particular time. Fill-in only takes place in
a small triangle when a 2 2 pivot occurs. If a pivot occurs at step i, this triangle
is of the form shown in Fig. 2, where .’s represent eliminated elements in L, x’s are
uneliminated nonzeros, O’s are zeros outside the band for which no storage is needed,
and f’s are areas where fill occurs. The triangle of fill is from row r / 1 to row r + m,
where m is the semibandwidth (this area may already contain nonzeros depending on
the value of r, so no extra memory may be needed). The algorithm is given in Fig. 3.
P is a vector representing the permutation matrices. The only time fill outside the
band occurs in step 14 of the algorithm when a 2 2 pivot occurs and then storage
for the fill is allocated dynamically.

5. Speed and storage analysis. In this section the space/time requirements
of this implementation of the Bunch-Kaufman algorithm are compared with those of
banded LU factorization. The storage requirements for both algorithms are analyzed
for two different situations: (1) when factoring a matrix that falls in the subclass
described in 2; and (2) when factoring a matrix pencil such as (g- aM), where g
and M are symmetric positive definite and a is near the left end of the eigenspectrum
of Kx Mx.

In the first situation, the storage required by the algorithm presented in 4 is
significantly less than that required by LU factorization for the set of matrices that
was described in 2. The storage requirements of LU depend on the pivot selections
made with the best-case storage requirement being 2mn and the worst-case storage
requirement being 3mn. The storage needed by banded Bunch-Kaufman is mn for
the original storage from which the matrix is copied, plus mn for the locations to
which the matrix is copied, plus an additional amount C, which is the amount of



556 MAI:tK T. JONES AND MERI:tELL L. PATRICK

4)

)
)
)
S)
9)
C
C
C
C
10)
11)
12)
13)
C
14)

upto 0
i=0
While (i <_ n)

read rows upto + 1 to min(n,i + m) of the matrix A into L
(no extra space for fill needs to be added for these rows)

upto min(n,/-m,upto)

set r to the row number of A
if Aa <-I a,{ then goto 11
a maxj=+l,upo ar,:

(it may be necessary to access some elements that are not
read in at this point, but the number of elements is small,
so they may be read into L or simply discarded,
this is only a concern if i/o is taking place)

if aA2 _< a[ai,i then
perform a 1 x 1 pivot
i-i+l

else
permute the matrix
read rows upto + 1 to min(n,r + m) of the matrix A into L,
and allocate space for the fill triangle

15) upto min(n,r + m,upto)
16) exchange rows and columns r and + 1
)
18) P+I r
19) perform a 2 x 2 pivot
20) i=i+ 2
21) endif
22) endwhile

FIG. 3. The banded Bunch-Kaufman ]actorization algorithm.

storage necessary for the fill-in triangles, giving a total storage of 2mn + C. Because
of the small number of negative eigenvalues, C is much less than mn. The D matrix
requires no additional storage: The diagonal of D can be stored in the diagonal of L3

and the subdiagonal of D can be stored in L because if a 2 x 2 pivot occurs at step
i, then li,i+l is 0 and therefore need not be stored. When C is small, approximately
mn storage locations are saved by using the Bunch-Kaufman algorithm instead of LU
factorization.

In the second situation (which arises in an efficient implementation of Lanczos’s
method for solving Kx AMx), the shift a may change during execution of the
algorithm, so K and M must be saved throughout the computation. In this situation,
the storage requirements4 for LU factorization are increased by 2ran, but the storage
needed by Bunch-Kaufman increases by mn, making it even more attractive in this
case.

The operation counts for situations 1 and 2 are the same, however, the operation
count for Bunch-Kaufman is significantly less than that of LU factorization because
symmetry is exploited and the fill-in is limited. For simplicity, the operations added
by the fill-in during Bunch-Kaufman are ignored, since this amount is very small. The
high-order term in the operation counts for Bunch-Kaufman is approximately nm2

arithmetic operations plus approximately 3nm comparisons5, while the high-order

3 The diagonals of L are all 1.
4 These bounds include the space for K and M.
5 This is an upper bound, calculated by adding the cost of the search for A, rim, to the worst-case

cost of the search for a, 2rim. Because the search for a usually does not occur at every step and
does not usually cost 2m, this bound is very pessimistic.
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TABLE 1
Operation counts for ]actorization: n 1824, m 240.

Method

Chol.
B-K
LU
B-K
LU

No. of neg. No. of 2 2 Adds. Mults. Comps.
eigenvalues pivots

N/A N/A 44433080 48140336 0
5 4 48277445 48686784 446326
5 N/A 137241687 137648943 409079

19 7 52023663 52445756 485452
19 N/A 137412094 137819350 409079

Fill

0
2083

658463
14837

659837

term for the operation counts for LU is approximately 4nm2 arithmetic operations
plus approximately nm comparisons.

6. Comparisons with other methods. In this section, the implementation of
banded Bunch-Kaufman is compared with two other classes of methods: methods
using banded data structures and methods using sparse data structures.

In the first set of comparisons, banded Bunch-Kaufman is compared to banded
Cholesky factorization and banded LU factorization. The comparison to Cholesky
factorization is given only as a reference point; the matrices are shifted before Cholesky
factorization to make them positive definite to allow the algorithm to succeed. The
sgbfa subroutine from LINPACK is used for the banded LU factorization. Because
methods using band data structures can be implemented in a similar fashion and rely
on the same computer operations, operation counts are used for the comparison rather
than execution times. The algorithms are compared using four matrices: the first two
matrices have a relatively wide bandwidth with 5 and 19 negative eigenvalues, and
the second two matrices have a small bandwidth with 5 and 15 negative eigenvalues.

Examination of the results in Tables 1 and 2 shows Bunch-Kaufman to be slightly
more expensive than Cholesky factorization in terms of add and multiply operations.
Banded LU factorization is shown to be significantly more expensive than Bunch-
Kaufman in terms of add and multiply operations and only slightly less expensive
in terms of comparisons. The number of operations required by LU factorization
falls short of the bound given in the previous section because the worst-case choice
of pivots is not made by LU and therefore the number of operations performed is
reduced. LU required significantly more fill-in than the Bunch-Kaufman algorithm.6

The results also show that as the number of negative eigenvalues increases, the fill-in
for Bunch-Kaufman tends to increase. Part of the reason for the small fill-in required
by Bunch-Kaufman is that the number of 2 2 pivots required tends to fall short of
the number of negative eigenvalues.

In the second set of comparisons, banded Bunch-Kaufman is compared to the
multifrontal method for indefinite sparse matrices given by Duff and Reid [4]. The
implementation of the multifrontal algorithm, MA27, from the Harwell library is used.
This set of comparisons is designed to show that for the class of banded matrices in
this paper, the banded Bunch-Kaufman algorithm is faster than the multifrontal
algorithm. Because the operations and data structures in the two algorithms are sig-
nificantly different, execution times from a Sun/4 are used as the basis for comparison.

6 Although sgbfa requires 2ran fill-in, it could be implemented in a similar fashion to the banded
Bunch-Kaufman algorithm and, therefore, take as little as mn fill-in. For this reason, the actual
fill-in outside the band, including the mn fill-in due to loss of symmetry, is reported in Tables 1
and 2.
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Method

Chol.
"’B’-K
LU
B-K
LU

TABLE 2
Operation counts for factorization: n 1980, m 59.

No. of neg. No. of 2 x 2 Adds. Mults. Comps.
eigenvalues pivots

N/A N/A 3321051 3434180 0
5 3 3322513 3435664 142978
5 N/A 10342067 10455196 115108
15 3 3324670 3437856 152370
15 N/A 10618321 10731450 115108

TABLE 3
Comparison of banded Bunch-Kaufman and MA27.

Method N M

B-K 1809 253
MA27 ’1809 253
B-K 1809 253
MA27 1809 253
"B-K’ 1980 59
MA27 1980 59
B-K 1980 59
MA27 1980 59

No. of Time in
neg. eigenvalues seconds

5 163.59
5 516.60
19 177.53
19 541.55
5 10.44
5 38.78
15 12.47
15 52.68

Fill

0
22

175206
57

178583

Matrices similar to those in the first comparison are used. In this comparison, MA27
is directed to use the natural banded ordering because: (1) factorization in MA27
is faster when the natural banded ordering is used than when MA27 uses its own
ordering; and (2) MA27 achieves an additional savings in time when it does not have
to produce its own ordering. An examination of the results in Table 3 shows that
banded Bunch-Kaufman holds a significant advantage over the multifrontal method.
The major reason for this advantage is the large overhead incurred when using sparse
data structures. The only conclusion that should be drawn from this comparison is
that for this class of matrices, the banded Bunch-Kaufman algorithm is preferable to
the multifrontal method as implemented in MA27.

7. Conclusions. An algorithm based on the Bunch-Kaufman method for fac-
toring banded symmetric indefinite matrices has been presented that greatly limits
fill-in outside the band and takes advantage of the symmetry of the matrix. This
method was shown to be a more efficient factorization method than LU factoriza-
tion in terms of time and storage for factoring symmetric indefinite matrices with a
small number of eigenvalues. Banded Bunch-Kaufman was also shown to be faster
than an implementation of the multifrontal method for this same class of problems.
Bunch and Kaufman have previously shown this method to be nearly as stable as LU
factorization [3].
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Abstract. Newton methods for large-scale minimization subject to linear equality constraints
are discussed. For large-scale problems, it may be prohibitively expensive to reduce the problem to
an unconstrained problem in the null space of the constraint matrix. We investigate computational
schemes that enable the computation of descent directions and directions of negative curvature
without the need to know the null-space matrix. The schemes are based on factorizing a sparse
symmetric indefinite matrix. Three different methods are proposed based on the schemes described
for computing the search directions. Convergence properties for the methods are established.
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1. Introduction. We consider methods for finding a local minimizer of the prob-
lem

minimize .f x
(1.1) e"

subject to Ax b,

where A is an m x n matrix and f E C2. We are interested in the case when n and
possibly m are large and when second derivatives of f are available. It is assumed
that A is a sparse matrix of full row rank. We also assume that an initial feasible
point x0 is known, and that the level set S(xo) (x f(x) <_ f(xo), Ax b} is
compact.

Problem (1.1) only involves linear equality constraints. Our main reason for con-
sidering such problems is to focus on certain computational and theoretical issues that
arise when solving large-scale constrained problems. If linear inequality constraints
are present, or some constraint functions are nonlinear, further difficulties arise. How-
ever, even for these cases, problems of the type (1.1) may arise as subproblems; for
example, if the inequality constraints are removed by a barrier transformation, and
the nonlinear constraints are linearized.

If (1.1) is solved by Newton’s method, the step p from the current iterate x may
be defined as p Zpz, where

(1.2) ZTHZpz --ZTg.

The columns of the matrix Z form a basis for the null space of A, H denotes the
Hessian matrix V2f(x), and g denotes the gradient Vf(x). Throughout the paper, Z
is used to denote any fixed matrix whose columns form a basis for the null space of
A. We shall refer to the matrix ZTHZ as the reduced Hessian and the vector ZTg
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as the reduced gradient. A mathematically equivalent way to obtain p is to solve the
equation

We shall refer to the matrix on the left-hand side of (1.3) as the KKT-matrix and
denote it by K.

Given p, the next iterate is obtained as x + p. If Newton’s method converges to a
solution of (1.1) and the reduced Hessian is positive definite and Lipschitz continuous,
convergence occurs at a quadratic rate. However, Newton’s method may not converge
from every starting point, and in the neighborhood of a saddle-point or a local maxi-
mizer, a sequence of iterates generated by Newton’s method may converge to such a

point. Consequently, if a method that generates a sequence of improving estimates
is required, some modification is needed. If ZTHZ is positive definite, p is a feasible
descent direction, i.e., a direction p such that pTg < 0 and Ap O. In this case, the
objective function value at x /p may not be reduced, but a step along p may be found
that yields the next improved iterate. If ZTHZ is not positive definite, the Newton
direction may not be a direction along which the objective function decreases.

Modifications of Newton’s method suitable for iterates where the Newton step
does not yield a su]ficient decrease of the objective function are known. The meth-
ods can be divided into two types, trust-region methods and linesearch methods. See
Mor and Sorensen [MS84] and Dennis and Schnabel [DS89] for discussions of these
different types of method. We focus on linesearch methods in this paper and in or-
der to simplify the notation, we shall refer to modifications of Newton’s method of
linesearch type as modified Newton methods. Such methods involve the computation
of a feasible descent direction s and, if the reduced Hessian has at least one nega-
tive eigenvalue, a feasible direction of negative curvature d. A direction d is said to
be a feasible direction of negative curvature if dTHd < 0 and Ad O. If s is a di-
rection of sujficient descent and d is a direction of su]ficient negative curvature, the
convergence of a modified Newton method for linear equality-constrained problems
follows from known results on modified Newton methods; see, for example, Fiacco
and McCormick [FM68], Gill and Murray [GM74], McCormick [McC77], Fletcher
and Freeman [FF77], Muki and Polak IMP78], Kaniel and Dax [KD79], Mor and
Sorensen [MS79], Goldfarb [GOL80] and Forsgren, Gill, and Murray [FGM89B]. We
require the computed directions s and d to be feasible, i.e., As 0 and Ad O. If
the reduced Hessian is known and has at least one negative eigenvalue, a direction d
such that IzTHZ < 0 may be obtained using techniques for unconstrained prob-
lems. Consequently, d-- Z is a feasible direction of negative curvature. Similarly, a

positive definite modification of ZTHZ enables the computation of a feasible descent
direction. Feasibility is therefore not an issue if the reduced Hessian is known, whereas
it is not immediately apparent how to satisfy As 0 and Ad 0 when utilizing K.

Although (1.2) and (1.3) are mathematically equivalent, they differ in the amount
of work required to obtain the search direction p. To obtain p from (1.2), the reduced
Hessian is required. A matrix Z may be obtained by forming the LU-factorization of
A; see Gill, Murray, Saunders, and Wright [GMSW87A]. Even if Z is sparse, the ma-
trix ZTHZ may be completely dense, and the amount of work required to form ZTHZ
explicitly may be prohibitive; see Gill, Murray, Saunders, and Wright [GMSW85].
To obtain p from (1.3), the KKT-matrix is required. If H and A are sparse, they
yield a sparse K. Consequently, if equations involving K are solved, it is possible to
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take advantage of the sparsity of the problem.
The goal of the methods described in this paper is to compute search directions

directly from equations involving the KKT-matrix K or a modified KKT-matrix. We
prefer to use the identical method to compute the Newton direction from (1.3) that
we would use if it was known in advance that ZTHZ was positive definite. Also, a
method for which there exists an efficient implementation for a large sparse matrix K
is preferred. Accordingly, we consider the LBLT-factorization, described in 3. Such
a factorization computes HTKH LBLT, where H is a permutation matrix, L is
a unit lower-triangular matrix, and B is a symmetric block-diagonal matrix whose
diagonal blocks are of size 1 1 or 2 2. The permutations are performed in order to
obtain a matrix L that is sparse and well conditioned. For unconstrained problems,
the matrices K and H are identical. In this case, Mor and Sorensen [MS79] have
shown how to compute a descent direction and a direction of negative curvature,
whenever they exist, from L and B. We describe a pivoting strategy in the LBLT-
factorization of K, so that the ability to compute a feasible descent direction and
a feasible direction of negative curvature is achieved by a single factorization of K,
analogous to the method of Mor and Sorensen. The computed directions are shown
to satisfy conditions needed to apply known convergence results for modified Newton
methods, which state that limit points of a generated sequence of iterates satisfy the
second-order necessary optimality conditions.

The above-mentioned pivoting strategy, sufficient for computing both a descent
direction and a direction of negative curvature, is then shown to be necessary in
order to guarantee that one is able to obtain the directions from a single factorization
of K. Two other methods for computing search directions are described that do
not require this pivoting strategy. One method always generates a descent direction,
whereas the other method generates a search direction that is either a descent direction
and/or a direction of negative curvature. Applying known convergence results for
modified Newton methods, limit points of a generated sequence of iterates using these
methods satisfy the first-order necessary optimality conditions. The main purpose of
introducing two additional methods is that the computation of the search direction is
likely to be cheaper than in the method motivated by convergence to a second-order
point. The intent is that the three methods may be mixed to obtain a more efficient
method.

2. Basics.

2.1. Terminology. Throughout the paper, the Hessian V2f(x) and gradient
Vf(x) are evaluated at points x e S(xo). Given an arbitrary point in S(xo), H
denotes the Hessian and g the gradient at such a point. The set of KKT-matrices for
which H is evaluated at some point in S(xo) is denoted by )U. All KKT-matrices con-
sidered belong to K:. For an iterative sequence (xk}=o a subscript k is included, so
that Hk V2f(xk) and gk Vf(xk). Also, for vectors and matrices, the norm used
is always the Euclidean vector norm and the corresponding induced matrix norm. For
a symmetric matrix M, we denote by )min(M) the smallest eigenvalue of M. The
vector ei denotes the ith unit vector of the appropriate dimension. In a number of
lemmas, matrices of zero dimension may arise. In such circumstances, there is no loss
of generality if we make the assumption that a matrix of zero dimension is positive
definite and has norm zero.

2.2. The inertia of a matrix. Let M be any symmetric matrix. We denote
by i+(M), i-(M), and i(M), respectively, the (nonnegative) numbers of positive,
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negative, and zero eigenvalues of M. The inertia of M--denoted by In (M)--is the
associated integer triple (i+, i-, i). The following lemma states an important rela-
tionship between the inertia of the KKT-matrix K and the reduced Hessian ZTHZ.

LEMMA 2.1. If rank (A) r, and Z is a matrix whose columns .form a basis .for
the null space of A, then In (g) In (ZTHZ) + (r, r, m r).

Proof. See Gould [Gou85, Lemma 3.4] for the proof.
This lemma implies that K is singular only if ZTHZ is singular or A is rank

deficient. In this paper, we assume that A has full row rank, so that singularity of K
always means singularity of ZTHZ. The following lemma shows that if A has full row
rank, there is a uniform relationship between the nonsingularity of K and ZTHZ.

LEMMA 2.2. Assume that rank (A) m, and let Z denote a matrix whose
columns .form a basis .for the null space of A. For a given positive constant Cl, there
exists a positive constant c2 such that for any KKT-matrix K E ]C having its smallest
singular value greater than cl, the smallest singular value of ZTHZ is greater than
C2.

Proof. If A has full row rank, Lemma 2.1 implies that K is nonsingular if and only
if ZTHZ is nonsingular. For a symmetric matrix, the singular values are the absolute
values of the eigenvalues. The norm of K is bounded, since S(xo) is compact. The
result follows by observing that the eigenvalues of K and ZTHZ vary continuously
with H.

3. The LBLT-factorization.

3.1. The factorization. An efficient method for solving equations involving
symmetric indefinite matrices is to use the factorization

(3.1) IITKII- LBLT,

where // is a permutation matrix that represents column interchanges in K, L is
a unit lower-triangular matrix, and B is a symmetric block-diagonal matrix whose
blocks are of size 1 1 or 2 2. We shall refer to this factorization as the LBLT-
factorization. Various algorithms for computing the factors have been proposed; see
Bunch and Parlett [BP71] and Bunch and Kaufman [BK77].

The algorithms proposed by Bunch and Parlett [BP71] and Bunch and Kauf-
man [BK77] have the property that the 2 2 blocks are always nonsingular with one
positive and one negative eigenvalue. Other algorithms have been proposed where the
2 2 blocks may have both eigenvalues of the same sign; see, for example, Duff and
Reid [DR82], [DR83].

In this paper, we do not elaborate on which algorithm to use, except to assume
that the algorithm performs a regular LBLT-factorization, where we define an LBLT-
factorization to be regular if it satisfies (i) the norm of L is bounded, and (ii) the
2 2 blocks always have one positive and one negative eigenvalue. Property (i) is
essential in our analysis, whereas property (ii) is used only to simplify the notation.
The algorithm of Bunch and Parlett [BP71] is an example of an algorithm that yields
a regular LBLT-factorization.

Forming the LBLT-factorization may be viewed as a step-wise procedure that
repeatedly computes Schur complements of decreasing dimension. If K is partitioned

N G



564 A. FORSGREN AND W. MURRAY

and T is nonsingular, the Schur complement of T in K will be denoted by KIT and
is defined as

K/T G- NT-1NT.

The matrix KIT will be referred to as "the" Schur complement when the matrix T is
clear from the context. By convention, we define the Schur complement as K when
T has dimension zero.

Given the partition from (3.2), the identity

N G NT-1 I 0 KIT 0 I

holds. In the first step of the factorization, the matrix T is a 1 x 1 or 2 2 principal
submatrix of K. Symmetric row and .column interchanges may be necessary in order
to obtain a T that is suitable as pivot. The elimination step yields one or two rows
of LT as (I T-1NT) and a diagonal block of B of size 1 1 or 2 2 from T. In the
next step, the process is repeated for the Schur complement KIT. Eventually, the
Schur complement has dimension zero, and the algorithm terminates with permutation
matrix H, unit lower-triangular matrix L, and block-diagonal matrix B. Algorithms
differ in the way the pivot is chosen. Since L is a unit lower-triangular matrix, when
the norm of L is bounded, then the norm of L-1 is also bounded. Consequently, it
follows from (3.1) that K is arbitrarily close to a singular matrix if and only if B is
arbitrarily close to a singular matrix. In our applications, the inertia of K is required.
This inertia is readily available if B is known, since Sylvester’s law of inertia yields
In (g)= In (B); see [GV89, p. 416].

We require bounds on the relative magnitude of the smallest eigenvalues of B
and LBLT. In the following lemma, suitable bounds are derived from the proof of
Sylvester’s law of inertia that is given in Golub and Van Loan [GV89, p. 416].

LEMMA 3.1. Let L be an n n nonsingular matrix and let B be an n n symmetric
matrix with at least one nonpositive eigenvalue. It follows that

IIL- I]2Amin(LBL <_ ,min(B) _< IILI[I ,’min(LBL )

Proof. By definition

xTBx
)min(B) min

o xTx

Let y denote an eigenvector corresponding to the smallest eigenvalue of B.
observing that L is nonsingular we obtain

Upon

(3.4) min(B)-
yTBy yTL-1LBLTL-Ty yTL-1L-Ty
yTy yTL-1L Ty yTy

The right-hand side of (3.4) is a product of two factors. Since the second factor is
positive, and )min(B) is nonpositive, it follows that the first factor is nonpositive.
Consequently, a lower bound on the smallest eigenvalue of B is given by

xTL-LBLTL-Tx xTL-1L-Tx
(3.5) )min(B) > min .max

xo xTL-1L-Tx xo xTx
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It follows from (3.5) that

(3.6) )min(B) > Amin(LBLT) IIL-II =.
Since 0 > Amin(B), it follows from (3.6) that LBLT has at least one nonpositive
eigenvalue. Therefore, B may be replaced by LBLT in (3.6). If we also replace L in
(3.6) by L-1 we get

(3.7) Amin(LBLT) >_ Amin(L-1LBLTL-T) IILll Amin(B)" IIL]I

The required result now follows by combining (3.6) and (3.7). D

3.2. Computational considerations. When K is sparse, the LBLT-factoriza
tion of K may be carried out in two steps. First, in the analyze phase, a symbolic
factorization based on the nonzero elements in K is performed. This symbolic fac-
torization yields an ordering of the rows and columns that attempts to minimize the
number of nonzeros in L. Then, in the numerical phase, the factors are computed,
attempting to maintain the ordering given by the analyze phase. However, for numer-
ical reasons, it may be necessary to perform additional permutations in the numerical
phase. Consequently, the permutation matrix//in (3.1) is the combination of the
ordering from the analyze phase and the additional permutations from the numerical
phase. In a modified Newton method, where a sequence of K-matrices is factorized,
the analyze phase need only be performed once, since the positions of the nonzero
elements in the Hessian remain the same. A robust and efficient routine that performs
such a two-step factorization is the Harwell routine MA27; see Duff and Reid [DR82],
[DR83]. (MA27 may use 2 x 2 pivots that are not indefinite. To fit the discussion
here, such a pivot may be viewed equivalent to two consecutive 1 x 1 pivots.)

3.3. Definition of pivot types. In a regular LBLT-factorization, the matrix B
consists of diagonal blocks of size 1 x 1 or 2 x 2, where the 2 x 2-blocks are indefinite.
These diagonal blocks are the pivots defined by the factorization algorithm. It is of
importance to distinguish between different types of blocks.

A 1 x 1-block is defined to be of type H+ if it is positive, and if the element in
the same position in HTKII is a diagonal element of H. Similarly, 1 x 1-blocks are
defined to be of type H- and H if they satisfy the same position requirements as the
blocks of type H+, but are negative or zero, respectively. We denote by n+,, n, and
o respectively, the number of such 1 x 1-blocks.nH
A 1 x 1-block is defined to be of type A+ if it is positive, and if the element in

the same position in HTKH is a diagonal element of the zero-part of K. Similarly,
1 x 1-blocks are defined to be of type A- and A if they satisfy the same position
requirements as the blocks of type A+, but are negative or zero, respectively. We

o respectively, the number of such 1 x 1-blocks.denote by n+, nT,, and n,,
A 2 x 2-block is defined to be of type HH if the elements in HTKII with the same

position are elements of H. We denote by nun the number of such 2 x 2-blocks.
A 2 x 2-block is defined to be of type AA if the elements in IITKII with the same

position are elements of the zero-part of K. We denote by n** the number of such
2 x 2-blocks.

A 2 x 2-block is defined to be of type HA if the elements in HTKH with the
same position consist of one diagonal element from H, one diagonal element from the
zero-part of K, and two elements from A.
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3.4. Applications in unconstrained minimization. For unconstrained prob-
lems, Mor and Sorensen [MS79] have shown how to compute a descent direction s and
a direction of negative curvature d, whenever such directions exist, using the LBLT-
factorization of the Hessian H, given by IITHII LBLT. The descent direction s
satisfies the equation IILLTIITs --g, where/ is a positive definite modification
of B. If H is sufficiently positive definite, then B B and s is the Newton search
direction. If H is not positive definite, / is obtained as
block-diagonal matrix with the same block structure as B, and D has rank equal to
the number of nonpositive eigenvalues of H. If H has at least one negative eigenvalue,
the direction of negative curvature, d, satisfies the equation LTIITd +V/--min(B)v,
where v is an eigenvector of unit norm corresponding to Ami(B), the smallest eigen-
value of B. The sign is chosen so that gTd <_ O. If H has all eigenvalues nonnegative,
d 0. For details, see Mor and Sorensen [MS79].

Similarly, in the linear equality-constrained case, a feasible descent direction (as-
suming such a direction exists), may be obtained by solving

A 0 -# 0

where/ is a modification of H such that zTIZ is positive definite. Utilizing the idea
of Mor and Sorensen [MS79] from the unconstrained case, we may try to use the
LBLT-factorization of K to modify blocks of B of types H-, H, and HH, yielding
a matrix/ such that LLT has n positive eigenvalues and m negative eigenvalues.
The following lemma shows that there is a sufficient number of blocks of types H-,
H, and HH to create such a matrix B.

o >i- +ioLEMMA 3.2. If In (g) (i+ i-, i), then n + nH + nHH m.
oProof. Assume the contrary, that n +n +n < i- + i -m. The dimensions

of H and A imply

(3.9a) n+ +n + o
H nH + 2nHH + alia n

0(3.9b) n+A "- T - A - nHi - 2nAA --m.

If In (K) (i+, i-, i), we get

(3.10a) n+H + nHH + nHA + n+A + nAA i+,
(3.10b) n + nHH + nHA + n] + nAA i-,

o o io(3.10c) nH - 7A

Adding (3.105) and (3.10c), we obtain nHA +n] +nAA +nOA > m, contradicting (3.95).
o m cannot hold.Thus n + nH + nHH < i- + i

However, although there are sufficiently many block elements of types H-, H,
and HH, if no additional conditions are imposed on H, the ordering may be insufficient
to guarantee that only the H-part of K is altered when a block element of type H-,
H, or HH is modified. Consequently, if an equation involving L[LT is solved, there is
no straightforward analogous way of obtaining a descent direction s such that As O.
As an example, consider

H=
2 0

and A= 2 1 sothat K= 0 -2 1
0 -2

2 1 0



NEWTON METHODS FOR LINEAR EQUALITY-CONSTRAINED PROBLEMS 567

If//is the identity matrix, we obtain

L 0 1 0 and B 0 -2 0
_1 1 0 0 -1 2

The matrix B has n+ n n] 1. Analogous to the unconstrained case, we make
the second diagonal element of B positive by adding a positive number d22. However,
the matrix L[LT will differ from LBLT in the A-part and the zero-part, since

L(B + D)LT= 0 -2 1 + d22 0 1 -1/2
2 1 0 0 -5

Because of the lower-triangular structure of L, if a diagonal block of B is altered,
the modification may alter elements of the permuted K with greater row and column
numbers. Consequently, if there are rows of A with greater row numbers, there is a
danger of altering parts of K other than the H-part.

It may appear that, by analogy with the unconstrained case, a feasible direction
of negative curvature may be obtained by solving the equation LTIITu V, where v
is an eigenvector of B corresponding to a negative eigenvalue of a block of type H-
or HH. (Note that such a vector v always exists if the reduced Hessian has at least
one negative eigenvalue, since Lemma 2.1 implies that K has more than m negative
eigenvalues. Consequently, since there are at most m block elements of types A-, HA,
and AA, there must exist a block element of type H- or HH for K to have more that
m negative eigenvalues.) The vector d is then defined as the first n components of u.
However, the ordering of the rows and columns of K given by//may be insufficient
to guarantee that Ad 0. In our example matrix, we obtain d (0 1)T for v (0 1
0)T, and consequently, Ad 1 O.

Conn and Gould [CG84] have proposed an algorithm for finding feasible directions
of negative curvature based on the LBLT-factorization of K. In addition to the
original factorization, the algorithm requires the factorization of a triangle-like matrix
of dimension m x m. In this paper, we adopt a different view and investigate what
pivoting strategy is necessary and sufficient to obtain the desired search directions in
a single factorization of K, using L and B in an analogous way to the approach of
Mor and Sorensen [MS79] for the unconstrained case.

4. Sufficient pivot conditions. If K is factorized using a regular LBLT-fac
torization, the permutations are performed in order to obtain sparsity of the factors
and boundedness of IILII. In the example given in 3.4, it was shown that these per-
mutations may be insufficient for computing a feasible descent direction and a feasible
direction of negative curvature. In this section, we investigate what conditions may
be imposed on the pivots in order to ensure the ability to compute these directions,
using L and B, whenever the directions exist.

Upon completion of the factorization of K, we have computed a permutation
matrix //, a lower-triangular matrix L and a block-diagonal matrix B such that
LBLT- IITKII. We will consider a specific step in the factorization. Therefore, the
permutation matrix//is partitioned as

(4.1) II ( II1 II2),
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where the matrix//TK//1 is the principal submatrix of K for which the factors have
been computed. Consequently, IITIK//1 LIBLT, where LI and B are the
leading principal submatrices of L and B, respectively. Note that at this step of the
factorization, the matrix//2 has not yet been determined.

The matrix//TIK// is a principal submatrix of K, and we introduce a permuta-
tion//for which

Hll H12 AIT1 A2T1
ITK: H21 H22 AIT2 A2T2

All A12 0 0

A2 A22 0 0

The matrix/ and the partition ofTK are such that if we define KI as

AT1 )(4.2) K AI 0

the matrix IITK// is a permuted version of K. The matrix KI is a principal
submatrix of K such that HI is an n nl principal submatrix of H, and A is an

nl )< rn submatrix of A. To simplify the notation, we say that KI contains n rows
of H and m rows of A.

Since//TKII denotes the part of K that has been factorized at a particular step,
its size increases from step to step. We say that//KIII and the associated K are
expanded when one step in the factorization is performed. For example, if in one step
of the factorization, a pivot of type HA is selected, the size of IITKII and KI is
increased by two, and both n and m are increased by one.

It is shown in this section that by selecting sufficiently nonsingular pivots of types
H+, A-, and HA, until the corresponding KI contains all rows of A, the ability to
compute a feasible descent direction and a feasible direction of negative curvature is
achieved. A matrix KI created in such a way will prove crucial for the computation
of descent directions and directions of negative curvature.

Properties of//KII that we want to describe are also properties of KI. In
particular, the eigenvalues of KI and//K// are identical. We consider KI since its
properties are easier to describe. The following lemma gives an explicit representation
ofK.

LEMMA 4.1. IfK is nonsingular, then

where Z is an orthonormal matrix whose columns form a basis for the null space of
AI, and the matrix satisfies the matrix equation

where A TH11’. IfAI is square, the matrix 2(2THl12)-12T i8 tO be interpreted
as a zero matrix of dimension m ml.



NEWTON METHODS FOR LINEAR EQUALITY-CONSTRAINED PROBLEMS 569

Proof. Direct substitution in (4.3) shows that A rTHllr. Lemma 2.1 shows
that nonsingularity of Kll yields nonsingularity of THll. Thus it remains to verify
that

All 0 ]pT 0

This holds if and only if Hll(THll)-IT+ATllT= I. If All is square, then I
A-tt, and (4.4) holds for 2(2THl12)-l,T= O. Otherwise, (4.3) gives 2THll O,
and it follows that

T Hll(THll)-lT’- AlT

The proof is now completed by showing that (Z Y) is nonsingular. Assume that
Zv + Yv O. Premultiplication by All yields v 0. Since the columns of Z are
linearly independent,

The following lemma shows that when HTKH1 has inertia (nl, ml, 0), a row in
HWKH/HKH1 corresponding to row of A cannot be almost linearly dependent on
the other rows of HTKH/HTKH1 unless A is almos rank deficient.

LEMMA 4.2. For given positive constants
with a principal submatrix Kll such that In (Kll) (nl, ml, 0), where the smallest

singular value o Kll is greater than cl. Define a matrix , which is a permuted
version of the Schur complement HTKH/HT KH1, in partitioned form as

$22 A22 0

A 0
H12 A2T1

0 A12 0

If ml < m, there exists a positive constant c2, such that if

(4.6a) eT S22ei < e

2Mn

and

(4.6b) II  T 2 ll
for some i, then

where Y is defined in (4.3) and e is any nonnegative scalar.
Proof. Assume that ml < m and that there is an i such that (4.6a) and (4.6b)

hold for some nonnegative e. Utilizing the notation of Lemma 4.1, we obtain

SII H22 U21]-,(,THII2)-12TH12 AT12THI2 H2117"AI2 T AT12THll:’AI2,
12 A2T2 H21(THII)-1_TAT21 AT12rTAT21
$21 A22 A21(THll)-1TH12 A21A12,
S22 -A212(2THll2)-12TAI
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The definition of 22 yields

iT22{i {/TA21 (THI1)-IZ-TA21eiT
If the smallest singular value of gll is greater than a positive constant c, and
In (K**) (n,,m,,O), Lemmas 2.1 and 2.2 guarantee that THll is positive def-
inite with its smallest eigenvalue greater than a positive constant. By the assumed
compactness of S(xo), the elements in HI, are bounded in magnitude. Consequently,
there exists a positive constant ,, such that

(4.8)
2Mn

where the left-hand inequality follows from the assumption that (4.6a) holds. Using
the definition of $2, we obtain

eTA22 /TA2I:-AI2 eT21 .. {TA212(THll)-ITH12.
It follows from this equation, (4.6b), (4.8), the nonsingularity of gll, and the bound-
edness of IIHII that there exists a positive constant 2, such that

The identities A**I?-- I and AT21e- AT1,(A1,AT11)-1A,1A1e + TAT21e yield

e/TA211VA** /TA21 e/TA21T..{_ e/TA21TAII"
Utilizing (4.8) and the nonsingularity of KII we obtain

(4.10)

for some positive constant 3. Consequently, (4.9) and (4.10) yield the existence of a
positive constant c2, such that

In the following lemma, we use the full-rank assumption on A and Lemma 4.2 to
show that if Kll has exactly ml (ml < m) negative eigenvalues and has its smallest
singular value greater than a positive constant, it is always possible to expand Kll so
that ml is increased by one.

LEMMA 4.3. For a given positive constant Cl, let K be any KKT-matrix in IC with
a principal submatrix Kll, such that In (gll) (hi, ml, 0), where the smallest singu-
lar value ofKll is greater than Cl. Assume that the factorization of IITI KII1 is known,
and that the next pivot is to be chosen from the Schur complement IITKII/IITI KII1.

If ml < m, there exists a positive constant c3, such that there is a pivot in
IITKII/IlTx KII1 of type A- or HA whose determinant is less than-c3.

Proof. Let c, be a given positive constant, and K any KKT-matrix in K: with a
principal submatrix K1, such that In (Kll) (nl, ml, 0), where the smallest singular
value of K** is greater than Cl. Using the terminology of Lemma 4.2, if K,1 has
inertia (nl,ml,0) and the smallest singular value greater than Cl, Lemma 4.1 and
the definition of S guarantee the existence of a constant M such that IISI] g M.
Let e/T(s21 $22) be a row of S corresponding to a row of A and let denote the
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corresponding row number of A. Since A has full row rank, there exists a positive
constant such that

for all scalars cj. Given cx and M, let c2 denote the constant from Lemma 4.2. Let
denote the positive constant defined by c2v /2. For this choice of , at least one
of

(4.12a) e/TS22ei > 2Mn

and

(4.12b) IleTS2xlI > v/

must hold since, if (4.12a) and (4.12b) do not hold, Lemma 4.2 implies that there
exists a vector a such that

(4.13)

which contradicts (4.11). It is now shown that if (4.12a) holds, there exists a pivot of
type A-, and if (4.12a) does not hold but (4.12b) holds, there exists a suitable pivot
of type HA. Assume that (4.12a) holds. Then eTS22ei is a pivot of type A- whose
determinant is less than -/(2Mn). Assume that (4.12b) holds but (4.12a) does not
hold. If (4.12b) holds, it must hold that n-n > 0, since the length of the row vector
eTs2 is n- nl. Moreover, there must exist a j, such that

(4.14) leT S2e.l >_

For this j, let P denote the 2 2 matrix defined as

By assumption, (4.12a) does not hold, and consequently, since eS22ei <_ O, it holds
that [eTS22ei[ <_ g/(2Mn). This assumption and the inequality [eSxxe:[ <_ M yield

le T 21e#l2det(P) <_ 2--
It follows from (4.14) that leTs21e#l

_
-, and consequently

det(P) _<

The determinant of P is negative, and therefore P must have one positive and one
negative eigenvalue. Consequently, P is a pivot of type HA whose determinant is
less than a negative constant. Therefore, there exists a positive constant c3 for which
there is a pivot of type A- or HA whose determinant is less than --3.
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Based on this lemma, the factorization algorithm is stated in Algorithm 4.1.
Initially, the matrix Kll has dimension zero, and for such a matrix the assumptions
of Lemma 4.3 hold. It follows from Lemma 4.3 that there exists a constant pivot
tolerance tol so that there is a pivot P of type H+, A-, or HA for which det(P)l _> tol.
KI is expanded using this pivot. This process is repeated until KI contains all rows
of A. When K contains all rows of A it is considered the "final" Kl-matrix, and
the remaining Schur complement is factorized using a regular LBLT-factorization.

ALGORITHM 4.1. An inertia-controlling LBLT-factorization of K.
tol - pivot tolerance;
repeat

ex .-- pivot P of type H+, A-, or HA exists with det(P)l _> tol;
if ex then

pivot - P;
else

Set tol to the largest value for which a pivot P of type H+, A-, or

HA exists with det(P)l- tol;
pivot - P;

end if
Expand KI using P as pivot;
Update m and n;

until ml -m
Factorize the remainder of K using a regular LBLT-algorithm;

In order to show that this algorithm is well defined, it is essential to show that
the required properties of Kll are maintained when KI is expanded. The following
lemma shows that this is true.

LEMMA 4.4. For a given positive constant Cl, let K be any KKT-matrix in with
a principal submatrix KI such that In (K) (nl, m, 0) and the smallest singular
value of Kll is greater than c. Assume that the factorization of IIKII is known,
and that the next pivot P is of type H+, A-, or HA and has det(P)l _> c3, where
c3 is a positive constant. Then, there exists a positive constant ca such that if Kll is
expanded using P as pivot, the expanded Kll has inertia (nl, m, 0) and its smallest
singular value is greater than ca.

Proof. If KI is expanded using a pivot P of type H+, A-, or HA, the expanded
matrix still has inertia (nl, ml, 0). The existence of ca remains to be established. Let
KI denote the expanded Kl-matrix. Since the smallest singular value of Kll is
greater than Cl, there must exist a positive constant 5 such that det(K11)l _> 51.
It follows from (3.3) that det(/11) det(g11)det(P). If Idet(P)l >_ c3, it follows
that det(Kl)l >_ 51c3. Consequently, since the norm of K is bounded, there exists
a positive constant ca such that the smallest singular value of K is greater than
ca. [:]

This lemma shows that, since A has full row rank, a K-matrix with inertia
(nl, m, 0) and the smallest singular value greater than a positive constant may be
expanded until it contains all rows of A and has m negative eigenvalues. Moreover,
the smallest singular value of the final K-matrix is bounded away from zero. Note
also that the pivot tolerance tol is bounded away from zero by a constant, since it is
greater than a positive constant for each step in the expansion of Kt.

If it is required that only sufficiently nonsingular pivots of types H+ A-, and
HA are utilized, until a matrix HTKIII containing all rows of A is created, this will
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impose other permutations than the ones provided in a regular algorithm for the
LBLT-factorization. Consequently, it is essential that the boundedness of the norm
of the L-matrix is maintained. Since the pivots of the associated Bl-matrix all have
singular values bounded away from zero by a constant, the following lemma shows
that the boundedness of the norm of L is maintained.

LEMMA 4.5. Assume that 11T K111 LllB1LTl, with its smallest singular value
greater than a positive constant. Furthermore, assume that IILl111 is bounded by a
constant. For any 112 consistent with 111, defined from (4.1), let L21 denote the
unique solution to the matrix equation L21B1LT11 11T2K111, and assume that IIL2111
is bounded by a constant. If Kll is expanded by a pivot that has the absolute value
of its determinant bounded away from zero by a positive constant, then the expanded
Lll and L21 still have norm bounded by a constant.

Proof. Let P denote the pivot, which is of size 1 x 1 or 2 x 2. Since K and
(11TKII1)-1 have bounded norm, it follows that the norm of 11TK11/111TIK111 is
bounded. Consequently, the norm of P is bounded by a constant. If, in addition,
the determinant of P is bounded away from zero by a constant in absolute value,
the norm of p-1 is bounded by a constant. Comparing with (3.3), it follows that
Lll is expanded with a zero block at the upper-right corner, a 1 x 1 or 2 x 2 unit
matrix at the lower-right corner, and one or two rows from the previous L21 at the
lower-left corner. Consequently, the expanded Lll has bounded norm. Similarly, it
follows from (3.3) that one or two rows are removed from L21, and that one or two
columns are added to L21 by postmultiplying one or two columns of 11TK11/11TIK111
by p-1. Since p-1 has bounded norm, it follows that the norm of the expanded L21
is bounded. D

When a matrix Kll that contains all rows of A has been created by accepting
pivots of types H+, A-, and HA, as described in Algorithm 4.1, it is considered the
final Kll-matrix. For the rest of this section, the matrix Kll is assumed to be such
a final Kll-matrix. The factors from the factorization described in Algorithm 4.1 are
also assumed to be known. For this final Kll-matrix, the partition of 11 from (4.1) is
used. This partition induces a partition of L, B, and 11TK11 as

(4.15) 11T2K111 11T2K112 L21 L22 0 B2 0 L2T2
If Kll contains all rows of A, all blocks in B2 correspond to pivots of type H+,

H-, or HH. This means that modifications of B2 only alter the H-part of K. If the
factorization of K given in Algorithm 4.1 is known, the following theorem shows how
to obtain a feasible descent direction.

THEOREM 4.6. Let K be any KKT-matrix in ]C. Assume that the LBLT- factori-
zation of K given in Algorithm 4.1 is known. Assume that the eigenvalue decomposi-
tion of B2 is known as B2 UAUT. For a positive tolerance CTO,., let the ith diagonal
element of the matrix A, denoted by Ai, be defined using the ith diagonal element of
A, denoted by Ai, as max{IAil, CTo, }, and let [2 UUT. Let [1 B1 and let
[ denote the matrix consisting of the diagonal blocks [1 and [2. Let z (sT IIT )L
where s is an n-vector and lI is an m-vector, be defined as z 115, where 5 satisfies
the equation

L[LTb=HTI -g)’0
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Then, As--O, and there exist positive constants cl and c2 such that

Proof. Since the matrix Kll has its smallest singular value greater than a pos-
itive constant, the compactness of S(Xo) and the boundedness of ILL-111 guaran-
tee that liB211 is bounded by a constant. Consequently, B2 is a bounded block-
diagonal matrix whose smallest eigenvalue is greater than CTO.. Consequently, since
In(B1) (n,m,O), and the norm of L is bounded, the matrix L[3LT has inertia
(n, m, 0) and all singular values bounded away from zero by a constant. Since all rows
of A are contained in K, the modification of B2 only alters H. Consequently,

L[LT----IIT( IA AT)O
where/ is a modification of H, and z satisfies the equation

from which it follows that As 0, and s may be written as

(4.16)

Since L[LT has inertia (n, m, 0), Lemma 2.1 implies that zTIZ is positive definite.
The boundedness of IIL[LTII guarantees that IIzTIZII is bounded. Consequently,
premultiplication by gT in (4.16) yields the existence of a positive constant cl, such
that --gTs >_ cIIZTgll 2. Lemmas 2.1 and 2.2 imply that zTIZ has its smallest eigen-
value greater than a positive constant. Consequently, utilizing norm properties and
the boundedness of II(zTIZ)-II, (4.16) guarantees the existence of a positive con-
stant c2, such that c211sll <_ IIZTglI.

Note that the direction s computed in Theorem 4.6 is the Newton direction when-
ever B2 is sufficiently positive definite, i.e., when the reduced Hessian is sufficiently
positive definite. Only if the reduced Hessian is not sufficiently positive definite is the
matrix B different from B.

If Kll is nonsingular, contains all rows of A, and has m negative eigenvalues, but
K has more than m negative eigenvalues, there exist feasible directions of negative
curvature. Moreover, since In(K) In(IITKII)+ In(IITKII/IITKII1), it must
hold that IITKII/IITIKIII has at least one negative eigenvalue, and consequently,
B2 must have at least one negative eigenvalue. Because of the structure of S2, the
smallest eigenvalue of B2 and its corresponding eigenvector are readily available. The

LBL -factorization of K given infollowing theorem shows that the factors from the T

Algorithm 4.1 enable the computation of a feasible direction of negative curvature.
THEOREM 4.7. Let K be any KKT-matrix in IC with more than m negative

eigenvalues. Assume that the LBLT-factorization of K given in Algorithm 4.1 is
known. Define w =_ IIo, where satisfies the equation

0 L2T2 2 u
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ux is an eigenvector of unit norm corresponding to Amin(S2), and the sign is chosen
so that gTd <_ O. Let d denote the vector composed of the first n elements of w. Then
Ad 0 and there exist positive constants Cl and c2 such that

2 (zTHz) and dTd < --c2)min(ZTHZ).dTHd _< Clmin

Proof. From (4.17) and the definition of w we obtain

Kw=+Y/-Amin(B2)II(O)"L22B2u),

Since Kll contains all rows of A, (4.18) yields Ad O. It follows from (4.17) that

(4.19) dTHd wTKw 2 (B2)--’min

Using the boundedness of IILII and the identity L22B2L2T2 IITKII/IITKII1, Lemma
3.1 guarantees the existence of a positive constant 1 such that

Amin(B2)

_
5I,min(IlTKII/IITIKII1) < O.

Since Kll has inertia (hi,m, 0), it contains a nonsingular m m submatrix As of
A. Without loss of generality, we may assume that the partition of A is such that
A (As AN), where AN is the remaining submatrix of A. Let Z be a reduced-
gradient-type null-space matrix generated by As defined as

Properties of HTKH/IITKII1 are independent of the pivoting order in which Kll is
created. Without loss of generality, assume that Kll was created by first factorizing
the 2m 2m principal submatrix of K containing As. Then, with appropriate sub-
stitution in the definition of S in Lemma 4.2, it follows that ,TH is a permuted
version of the Schur complement of this 2m 2m principal submatrix in IITKII.
Moreover, the 2m 2m principal submatrix has inertia (m, m, 0), and since the iner-
tia of (IlTKII/IITKII1) is (hi, m, 0), it must hold that when the 2m 2m principal
submatrix has been processed, the remaining n -m pivots until Kll has been pro-
cessed are all positive. Hence, [FGM89B, Lemma 3.3] implies that

(4.21) )imin(IITKII/IITiKII1)
_
Amin(2TH2) < 0,

where the second inequality follows from Lemma 2.1. Since there exist only a finite
number of nonsingular rn m submatrices of A, it may be asserted that there exists
a positive constant 52 such that

(4.22) Amin(2TH2) _< 2min(ZTUZ) < O.

Combining (4.19), (4.20), (4.21), and (4.22), there exists a positive constant Cl such
2 (ZTHZ).that dTHd <_ -cl ’min

It remains to show the existence of c2. From (4.17) and the definition of we get

Ildll I1 11 IIL-111V/-Amin(B2)
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Since L is unit lower-triangular with bounded norm, [IL-1 is bounded. Since Ad O,
d Zfor some . Hence, since Z is a fixed matrix with full column rank, we conclude
that there is a positive constant 3 such that -dTHd <_ -3[[d[12,min(ZTHZ). The
existence of c2 now follows by combining (4.19) and (4.23) and using the boundedness
of IlL-1 I[ and the existence of 3.

The strategy for choosing pivots given in this section allows the construction of
a nonsingular principal submatrix of K that contains all rows of A and has exactly
rn negative eigenvalues. This strategy only permits pivots of types H+, A-, and HA
until all rows of A have been processed. However, as the following lemma shows, if
the full Hessian is sufficiently positive definite, the pivot strategy described in this
section is of no impact at all, since all pivots in such circumstances are of types H+,
A-, and HA.

LEMMA 4.8. IfH is positive definite and A has full row rank, then the only pivots
that occur in a regular LBLT-factorization of K are of type H+, A-, or HA.

Proof. Since K is nonsingular, no pivots of type H or A are used. The posi-
tive definiteness of H implies that any principal submatrix of H is positive definite.
Consequently, any nonsingular principal submatrix K has inertia (n, m, 0). This
property cannot hold if pivots of type H-, A+, HH, or AA are used.

The conclusion of the lemma does not hold if the Hessian is not positive definite.
Consequently, the strategy described in this section may require permutations in
addition to those required for a regular LBLT-algorithm. For example, a pivot of
type H- would not be accepted unless all rows of A have been processed. From the
point of view of sparsity, these additional permutations are undesirable since we wish
to minimize the change to the ordering determined by the analyze phase.

One possible scheme for choosing the pivots of types H+, A-, and HA is to use
m pivots of type HA. Such a scheme has been proposed by Gill, Murray, Saunders,
and Wright [GMSW87B] in the context of large-scale quadratic programming. They
name the HA pivot a tile and refer to this scheme as tiling. A scheme of this type
automatically fulfills the inertia requirements of Algorithm 4.1. For specific applica-
tions, it is known how to choose m tiles as the initial set of pivots. However, how to
choose such pivots efficiently for general matrices is not known.

Finally, if the problem is unconstrained, the matrix K equals H, and the pivot
strategy described in this section equals the strategy of a regular LBLT-factorization,
since if A does not exist, all rows of A are processed at the very first step of the
factorization. The computed directions are then equivalent to those computed by
Mor and Sorensen [MS79].

5. Necessary pivot conditions. In the previous section it was shown that a
sufficient condition for the computation of a descent direction and a direction of
negative curvature is to use pivots of types H+, A-, and HA until all rows of A have
been processed. This scheme creates a principal submatrix IITKIII that contains
all rows of A, has inertia (n,m, 0), and has a smallest singular value greater than
a positive constant. However, it may also be necessary to obtain such a principal
submatrix in order to compute a feasible descent direction and a feasible direction of
negative curvature, as in the scheme of Mor and Sorensen [MS79]. In the example
of 3.4, since/-/- I, the only principal submatrix obtained in the factorization that
contains all rows of A is K itself. If a block of type A-, AA, or A is modified,
then the zero-part of K is altered and the subsequent search direction is not feasible.
Hence, in the example of 3.4, the only part of B that may be modified is the second
element. However, it was shown that such a modification altered both the A-part and
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the zero-part of K. Similarly, when computing the direction of negative curvature
using an eigenvector of B as a right-hand side vector, only eigenvectors corresponding
to blocks of types H- and HH may be used. Again, the example of 3.4 shows that
solving for the eigenvector corresponding to the second element of B does not yield a
feasible descent direction.

It was shown in 4 that a sufficient condition for obtaining a nonsingular principal
submatrix containing all rows of A with rn negative eigenvalues was to use pivots of
types H+, A-, and HA until all rows of A had been processed. Such a scheme may
appear unduly restrictive. However, in this section it is shown that these conditions
are also necessary to guarantee obtaining such a principal submatrix in a single fac-
torization. We utilize the notation of 4 and let IITKII1 denote a leading principal
submatrix of HTKII, for which the factors LI and B1 are known. Also, to simplify
the notation, the related matrix K from (4.2) is used.

The following lemma shows that unless the inertia of IITKI-I1 is kept equal to
(n, ml, 0) until all rows of A have been processed, it may happen that no nonsingular
principal submatrix with rn negative eigenvalues, containing KI and all rows of A,
exists. Consequently, the results from 4 are not applicable and there is no guarantee
that we are able to compute descent directions and directions of negative curvature,
as described in 4.

LEMMA 5.1. Assume that n > m. IfIn(K) (n t, ml + t,O), where t > O,
the matrix A may be such that any nonsingular principal submatrix of K, containing
KI and all rows of A, has more than m negative eigenvalues, independently of H2,
H2, and H22.

Proof. If t > 0, Lemma 2.1 implies that there exists a nonzero vector p such
that pTHipl < 0 and AIpl O. If n > m, and A has full row rank, the nullspace
of A has dimension n- m, which is at least one. Consequently, A may be such that
A2p O, in which case

A2 A22 0 0

and

Consequently, Lemma 2.1 implies that K has more than m negative eigenvalues.
If any nonsingular principal submatrix of K containing KI and all rows of A is
considered, by extending the vector p with the appropriate number of zero elements,
it follows that such a principal submatrix has more than rn negative eigenvalues. This
property depends only on the matrices A and K, and therefore it is independent of
the matrices H12, H21, and H22. [:]

The following example illustrates that even when the reduced Hessian is positive
semidefinite, if it is singular, then the restrictions on the choice of pivots given in
Algorithm 4.1 are necessary to ensure that a nonsingular KI exists with the number
of negative eigenvalues equal to m. Let
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for which the reduced Hessian is zero. If the corresponding K-matrix is factorized,
the first pivot must be either of type HA or HH. If an element of type HH is chosen
as first pivot, it is not possible to obtain a nonsingular principal submatrix of K,
containing this pivot and having as many negative eigenvalues as it contains rows of
A. Consequently, Theorem 4.6 does not apply. For this situation, when the reduced
Hessian is positive semidefinite and singular, Conn and Gould [CG84] have shown
how to compute a descent direction from a single factorization of K. That scheme is
not considered here, since it has not been shown that the descent direction given by
that scheme satisfies the conditions of Theorem 4.6. In practice, however, the scheme
of Conn and Gould [CG84] may be a viable alternative.

On the other hand, it is of interest to detect as early as possible whether K
has inertia different from (n, m, 0). However, the next lemma shows that given any
nonsingular principal submatrix K with no more than m negative eigenvalues, it
may hold that K is nonsingular and has rn negative eigenvalues.

LEMMA 5.2. IfIn (K) (n t, m + t, 0), where m + t <_ m, it may hold that
In (K) (n, m, 0).

Proof. If In (KI) (nl t, ml + t, 0), where ml + t _< m, it may hold that
K can be expanded with all rows of H so that In (KI1) (n- {, ml + {, 0), where
ml + t <_ m + t <_ m. Consequently, if we let Z denote a matrix whose columns form
an orthonormal basis for the null space of the rows of A contained in the expanded
KI, Lemma 2.1 yields In (2TH2) (n m t, t, 0). Let vi, i 1,..., u m,
denote orthonormal eigenvectors corresponding to eigenvalues Ai of 2TH2, where the
eigenvectors are sorted so that Ai _< Ai+I. If the remaining rows of A equal vT2T,
i 1,... ,m- m, then A has full row rank and pTHp > 0 for all p 0 such that
Ap 0. Consequently, Lemma 2.1 yields In (K)

6. A suttlcient pivoting method. In this section, we discuss algorithms that
generate a sequence {xk}kC=o to solve (1.1) that use the descent directions and di-
rections of negative curvature described in Theorems 4.6 and 4.7. To complete the
description of an algorithm, we need to define precisely how sk and dk are utilized to
generate x+ from x. In all cases discussed, Xk+l is formed from xk by adding a
linear combination of s} and d. Consequently, since As 0 and Ad} 0, an iterate
xk is of the form xk Xo + Z2k. It follows that the sequence {2k}=0 may be viewed
as a sequence that attempts to find a minimizer to the unconstrained problem

(6.1) minimize f() f(x0 + Z).

This means we may use known convergence results for unconstrained optimization.

6.1. Linesearch conditions. For unconstrained minimization, Mor6 and Soren-
sen [MS79] discuss various methods for combining a descent direction Sk and a direc-
tion of negative curvature dk to form an iterative sequence with desirable convergence
properties. In this section, we review these conditions and discuss how they may be
used with either a regular linesearch or a curvilinear linesearch. To fit with the discus-
sion of this paper, we consider minimizing the problem (6.1) and let {_}k__0 denote
the generated iterative sequence, k denote the descent direction, and d denote the
direction of negative curvature.

First, we introduce a more generic notation, where we do not specify how k and
k are combined. At each iterate k, define the univariate function Ck(a) as

(6.2) () f( + F(())
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for a twice-continuously differentiable function F -- n-m, where it is required
that Ck(0) ](k) and (0)

_
0. Let # e (0, 1/2) and r/e [#, 1) denote preassigned

constants. The next iterate k+l is defined as k+ +Fk(ck) for a positive scalar
ak E (0, cm], for which we require the following sufficient-decrease conditions. (If
(0) 0 and (0) _> 0, the algorithm terminates, and we may define ck 0.)

If (0) >_ 0, Ck is determined such that either ck e [0, an] satisfies

Ck(ak) _< Ck(0) + #k(0)ak and

or

Ck(ak)

_
Ck(0) q- #k(0)ak and ck Oma

If Ck (0) < 0, then ak is required to satisfy either ak (0, amax] and

1 r 2(6.5a) Ck(ck)

_
Ck(0) + #((0)Ck +

and

(6.5b)

or

For the case Cg(0)

_
0, conditions (6.3) and (6.4) are steplength rules that have

been discussed by Gill, Murray, Saunders, and Wright [GMSW79]. For the case
Cg(0) < 0, conditions similar to (6.5) and (6.6) have been proposed by Mord and
Sorensen [MS79], the only difference being that in Mor and Sorensen [MS79], con-
dition (6.5b) is stated without absolute value. However, it follows from the proof of
Lemma 5.2 in Mord and Sorensen [MS79] that k is well defined.

Combining the results from Gill, Murray, Saunders, and Wright [GMSW79] and
Mor and Sorensen [MS79], we arrive at the following lemma.

LEMMA 6.1. Consider an iterative sequence ( k}k=O generated from (6.2) and
(6.3)-(6.6). /f the level set S(0) {" f() <_ f(0)} is compact, I(0)1 is bounded,
and ICg(0)l is bounded, then

lim k(O) 0 and lim inf Cg(0) > 0.
k--}o k--*oo

Proof. It suffices to ensure that the statement of the lemma holds for any
subsequence of a generated sequence {k}=0. For a subsequence {xk}kegl, where
Cg(0) >_ 0, it follows from Gill, Murray, Saunders, and Wright [GMSW79] that
limkegl,k--.oo (0) 0. For a subsequence {Xk}kEg2, where Ck(0) < 0, it follows from
[MS79, p. 18] that limkej.,k-oo (0) 0 and limkeg.,k-.oo Ck(0) 0.

The following lemma shows that if k is a direction of su]ficient descent and dk is
a direction of sujficient negative curvature in the sense required by [MS79, Thm. 6.2],
the second-order necessary optimality conditions hold at all limit points.

LEMMA 6.2. Assume that k has bounded norm and satisfies V](k)Tk
_

O, and
that

Vf(k)Tk --* 0 implies Vf(k) ---} 0 and k -- O.
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Also assume that d- has bounded norm, satisfies 2](2k)dk <_ 0 and Vf(2k)Tk <__ O,
and that

dk-kTV2](2k)k --, 0 implies :kk -* 0 and d-k --* O,

where )k is the minimum o.f zero and min(72](2k)).
If the level set (20) {2" ](2) _< ](2o)} is compact, any limit point Z* of an

iterative sequence {2k }kc__o generatedfrom (6.3)-(6.6), using (() f(2k++(dk
or Ck(a) ](2k + a2gk + k), has the properties

and min(V2](25))
_

0.

Proof. To make the notation less cumbersome, it may without loss of generality
be assumed that 2 converges to

If F(a) a + ad we obtain (k +(0) dk)Tvy(2k) and Cg(0) (k +
d)Tw2f(2k)(k +dk). Utilizing V](2k)Tdk <_ O, it follows that (0) _< kWf(2k) <_ O.
Consequently, the assumed properties of k and Lemma 6.1 now yield k -- 0 and
Vf(Z*) 0. Now, since k -- 0 and I]dkl] and IIV2f(2k)ll are bounded, Cg(0) 0
implies 72f(2k)dk - O. Consequently, the assumed properties of dk and Lemma
6.1 now imply d-k 0 and Amin(V2f(Z*)) _> 0.

If Fk() a2k + adk, we obtain Cg(0) 2T_7_f(2)+ d-72f(2)d. Again,
Lemma 6.1 and the assumed properties of k and d now yield the desired result.
See Mor and Sorensen [MS79] for details.

6.2. Convergence properties. In this section, it is demonstrated that the de-
scent direction sk and the direction of negative curvature dk from Theorems 4.6 and
4.7 are such that the convergence analysis reviewed in the previous section may be
applied directly, upon observing that s Z and dk Zd.

THEOREM 6.3. Consider a sequence {x}k__0, generated from (6.3)-(6.6), using
(() f(x + ask + ad) or (() f(x + a2sk + cdk), where sk is from Theo-
rem 4.6 and dk is from Theorem 4.7 when zTw2f(xk)Z iS not positive semidefinite;
otherwise dk O. Any limit point x* of such a sequence has the properties

zTVf(x*) 0 and rnin(ZT2f(x*)Z)
_

O.

Proof. First note that V](2k)-- zTWf(xk) and V2](2k)= zTw2f(xk)Z. Conse-
quently, it suffices to show that if sk is defined from Theorem 4.6 and dk is defined
from Theorem 4.7, they satisfy the sufficiency conditions of Lemma 6.2 when written
as sk Zk and dk Zk, respectively.

Theorem 4.6 implies that sk has bounded norm and satisfies Vf(x)Ts <_ O, and
that Vf(x)Ts -- 0 implies zTVf(x) - 0 and s - 0. Since Z is a fixed matrix
with full column rank, s --, 0 implies k - 0.

Theorem 4.7 implies that dk has bounded norm, satisfies d2f(xk)dk <_ 0 and
f(xk)Td

_
O, and that d2f(xk)dk 0 implies

min{Amin(zTv2f(xk)Z), 0} -- 0 and dk -- O.

Since Z is a fixed matrix with full column rank, dk -- 0 implies dk O.
Note that Theorem 6.3 still holds if instead of sk and dk we use "k8k and kdk,

where e _< "k and k _< eu for some positive constants e and eu. The best choice of
scaling of these directions has yet to be ascertained.
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If {xk}=0 converges to a point &* at which the reduced Hessian is positive definite,
then dk 0 for k sufficiently large. Moreover, linesearch conditions (6.3) are satisfied
for ak 1, using Ck(a) f(xk +aSk) or Ck(a) f(Xk +a2sk), for k sufficiently large.
Theorem 4.6 implies that sk is the Newton direction whenever the reduced Hessian at
xk is sufficiently positive definite. This implies that the iterates are generated using
Newton’s method for k sufficiently large, and the asymptotic rate of convergence is
quadratic provided zTw2f(x)Z is Lipschitz continuous in a neighborhood of &* (see
Mor and Sorensen [MS84]).

7. Artificial constraints. In 4, we discussed what conditions may be imposed
upon the pivots in order to ensure the ability to compute descent directions and
directions of negative curvature from a single factorization of K. An alternative
strategy for yielding a descent direction or a direction of negative curvature would
be to factorize K using a regular LBLT-factorization, and from the inertia of B,
deduce the inertia of the reduced Hessian. If the reduced Hessian has at least one
negative eigenvalue, an artificial constraint may be added to A, so that the number
of positive eigenvalues of K is increased by one, and consequently the number of
negative eigenvalues of the reduced Hessian is reduced by one. An artificial constraint
is a temporary additional constraint that is not specified in the original problem. The
only requirement for an artificial constraint is linear independence from the original
constraints and other artificial constraints. Artificial constraints do not restrict the
feasible region, since they are only introduced at a particular iterate and may be
removed from the problem at any iterate. If a scheme for adding artificial constraints
is known, a positive definite reduced Hessian could be obtained by adding a sufficient
number of such constraints. Unless the dimension of the reduced Hessian has been
reduced to zero, a descent direction can be obtained. A method for computing a
direction of negative curvature for a positive definite reduced Hessian in the presence
of artificial constraints has been proposed by Forsgren, Gill, and Murray [FGM89A].

However, as the following lemma shows, to find an artificial constraint that reduces
the number of negative eigenvalues of the reduced Hessian by one is equivalent to
finding a direction of negative curvature in the null space of A. Consider the case
when a nonsingular KKT-matrix

is given, where K has more than m negative eigenvalues. The question of finding an
additional artificial constraint a such that

H AT a IA 0 0

aT 0 0

has one more positive eigenvalue than K is equivalent to finding a direction of negative
curvature for the reduced Hessian corresponding to K. The precise statement is given
in the following lemma and uses the solution of the equation

(7.1) ( HA
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LEMMA 7.1. If In (/) In (K) / (1, 0, 0), then p from (7.1) is a direction such
that Ap 0 and pTHp < O. Conversely, if q is a direction such that Aq 0 and
qTgq < O, then In (/) In (g) -- (1, 0, 0) for a- Hq.

Proof. Assume that In (/) In (g) -t- (1, 0, 0). Let wT- (aT 0) and let uT- (pT
#T). It follows that

K
wT 0

and that u solves the equation Ku w. Sylvester’s law of inertia implies that
wTg-lw < 0. Using the identity Ku w, it follows that uTgu < 0. Consequently,
(7.1) yields pTHp uTKu < O, and Ap O.

Assume that q is a vector such that Aq 0 and qTHq < 0. Let uT= (qT 0) and
w Ku. We get wTK-lw qTHq < 0. If a Hq, it follows that wT- (aT 0).
Sylvester’s law of inertia implies that In (g) In (g) + (1, 0, 0). a

Consequently, the ability to add an artificial constraint is linked with the ability
to compute a direction of negative curvature in the null space of A. As an example,
consider the case when no constraints exist, and H I- eeT, where e is an n-vector
with all components one. This matrix has one negative eigenvalue and n- 1 positive
eigenvalues. If less than n artificial bounds are added to H, the corresponding K-
matrix will have a reduced Hessian that is not positive definite. However, if the single
artificial constraint eT is added, the corresponding reduced Hessian is positive definite.
Consequently, although there exist artificial constraints to add, we do not know how to
compute them directly. Conn and Gould [CG84] have given a computational scheme
for obtaining a direction of negative curvature from the LBLT-factors of K. However,
this scheme requires the solution of a system of equations with an m m triangle-like
matrix.

8. A descent method. If no attempt is made to avoid altering the KKT-matrix
when the reduced Hessian is positive definite, we may consider an algorithm that yields
a descent direction in a single factorization. When forming the factors, pivots corre-
sponding to elements of H are modified, if necessary, so that the principal submatrix
factorized at each step is nonsingular and has as many positive eigenvalues as it con-
tains rows of H. This modification corresponds to adding to the diagonal of H, and
may be expressed as a positive semidefinite diagonal matrix D of the same dimension
as H. If the pivots are modified so that the factorized principal submatrix has its
smallest singular value bounded away from zero by a constant, this yields a correction
matrix D with bounded norm, such that ZT(H + D)Z is positive definite and has
its smallest eigenvalue bounded away from zero by a constant. Such a correction can
be computed in a single factorization and requires only the permutations of a regular
LBLT-algorithm. However, in this method, the correction matrix D may be substan-
tial even if the reduced Hessian is positive definite. Therefore, there is no guarantee
that this method has the same rate of convergence as Newton’s method. For example,
if the original ordering of K is used in the factorization, this method will modify H
so that H + D is positive definite. Consequently, if ZTHZ is positive definite, but H
is not, the KKT-matrix is modified unnecessarily. On the other hand, if m pivots of
type HA are chosen initially, H will be modified only if the reduced Hessian is not
sufficiently positive definite. However, the ordering of the latter case is such that the
second-order method described in 6 would not require additional permutations.

Given the modified K-matrix, a descent direction p may be obtained by solving
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the equation

Upon termination of the factorization algorithm described in this section, .the
LBLT-factors of the left-hand side matrix of (8.1) are known, and the search direc-
tion p may be obtained from these factors. Since ZT(H + D)Z is positive definite
with bounded norm and smallest eigenvalue greater than a positive constant, the
search direction p from (8.1) is a sufficient descent direction. If an iterative sequence
(xk}=o is generated as xk+l Xk + kPk, where Pk is defined from (8.1), and if,
for Ck(c) f(xk + aPk), ak is chosen to satisfy the sufficient-decrease conditions
(6.3)-(6.4) (irrespective of Cg(0)), known convergence results show that the reduced
gradient is zero at all limit points of a sequence {xk}=o. See, for example, Gill,
Murray, Saunders, and Wright [GMSW79].

9. A delta-method. In this section, a method based on a diagonal perturbation
of the Hessian is described. For a fixed positive constant i, a multiple i of the identity
matrix is added to H. Given , assume that a search direction p is computed at each
iteration from the equation

where D is a positive semidefinite matrix with bounded norm and the sign of the
right-hand side vector is chosen so that gTp <_ O. The matrix D has all elements
zero when the reduced Hessian is sufficiently positive definite. Nonzero elements in
D arise for two reasons: first, to ensure that the smallest singular value of the left-
hand side matrix of (9.1) is bounded away from zero; second, if having formed an
initial factorization there are more than m negative eigenvalues, it may be possible to
alter B to reduce the number of negative eigenvalues without impacting the property
Ap 0. When A is sparse, the possibility exists that there may be some elements of
B that can be modified without losing the property Ap 0. The constant i may be
chosen numerically small, for example, in the order of the square-root of the machine
precision. Ideally, the ordering in the factorization of the modified K-matrix, where
iI is added to H, may then be kept to whatever is satisfactory for preserving sparsity.
However, as was pointed out by the example (5.1), the Schur complement may be
singular, and there may be no rows of H left, so we cannot guarantee solving equation
(9.1) with a single factorization. However, if it is determined that a single factorization
is impossible, by refactorizing, utilizing the factorization method described in 8, we
may always guarantee a positive semidefinite correction matrix D, such that the left-
hand side matrix of (9.1) is sufficiently removed from a singular matrix. In practice, we
may hope that a small value of would not impact the rate of convergence compared
with Newton’s method in the neighborhood of a local minimizer, where the reduced
Hessian is positive definite. Since for most problems it is unlikely that the matrix
on the left-hand side of (9.1) is singular, it will almost always be possible to form an
initial factorization.

The following lemma shows that, unless ZTg O, the search direction from (9.1)
is a nontrivial descent direction or a nontrivial direction of negative curvature.
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LEMMA 9.1. The vector p from (9.1) satisfies Ap O. It holds that pTg <_ 0 and
at least one of the following conditions is satisfied:

(9.2a) pTg
_
__p p,

5T(9.2b) pTUp <_ ---p p.

Proof. It follows from (9.1) that Ap O. The sign of p is always chosen so that
pTg g O. Utilizing (9.1), we obtain

(9.3) pTHp g _pTg pTp pTDp"

Assume that (9.2a) does not hold. Since D is positive semidefinite, (9.3) yields pTHp
$ T--p p, and consequently, (9.2b) holds.

If the same linesearch as described in 6.1 is applied, we can show that the reduced
xgradient is zero at all limit points of a sequence ( k}k=0. At the kth iterate, p is

defined from (9.1), and we define

Using this definition of Ck, the sufficient-decrease conditions (6.3)-(6.6) are applied.
The following theorem shows that the reduced gradient vanishes at all limit points
generated by such a sequence.

THEOREM 9.2. Let (xk}=o be a sequence such that Xk+l Xk+Ckpk, where Pk is

defined by (9.1) and ak is chosen to satisfy the linesearch conditions (6.3)-(6.6), using
(a) f(xk + apk). Furthermore, assume that the nonnegative diagonal matrix Dk
is always chosen so that the matrix of (9.1) has bounded norm and smallest singular
value bounded away from zero. Then, any limit point x* satisfies zTVf(x*) O.

Proof. Assume that for some positive constant e there exists a subsequence
{xk}kej such that IIZTgklI >_ e for all k e J. Consider any k e J. If/k is de-
fined as [-Ik Hk + I -}- Dk, it follows from (9.1) that Pk Zpk, where/k satisfies

+Zrg .

Utilizing (9.5), we deduce

1
(9.6) II  ll IIZT l Zll IlZT  ll"

By the statement of the theorem, II/ kll is bounded, which implies that IIzW kZll is
bounded. Consequently, since Z is a fixed matrix of full column rank, (9.6) implies
that there exists a positive constant cj such that IIP[I >- cg for all k E J. Thus, for
any k E J, at least one of the following conditions is satisfied:

(9.7a) Pgk <_---c2j,
(9.7b) TpkHkpk <_ --- C2j.

Since the smallest singular value of the matrix of (9.1) is bounded away from
zero, Lemma 2.2 implies that II(zT[-I:Z)-III is bounded. Thus (9.5) and the com-
pactness of S(xo) imply that IlPkll is bounded. Upon observing that (0) pkgT
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and Cg(0) TpkHkpk, (9.7) contradicts Lemma 6.1. Consequently, the subsequence
(xk}kej such that IIZTgkll >_ e for all k e J does not exist, and we conclude that
limk__.o ZTgk O. ]

However, since the search direction is zero whenever ZTg O, it follows that no
stronger result than convergence to a first-order point is possible with this method.
A slightly modified method may be obtained by letting i be variable, i.e., by defining
a value ik at the kth iteration. If, at the kth iteration, the initial LBLT-factorization
has more than m negative eigenvalues, then 5k+l > 5k, in order to reduce the amount
of negative curvature in the null space of A. Otherwise, ik+l < ik. If (Xk)=0
converges to a solution where ZTHZ is positive definite, then 5k may be reduced so
that limk_o ik 0, ensuring that the asymptotic rate of convergence is identical to
that of Newton’s method.

10. Discussion. The pivot strategy discussed in 4 is more restrictive than a
regular LBLT-factorization, since it only allows pivots of type H+, A-, and HA until
all rows of A have been processed. Consequently, if an initial ordering is given by the
analyze phase, this pivot strategy is likely to change the ordering more than a regular
LBLT-factorization. To attempt to maintain sparsity of the factors, it is desirable
to reduce the number of additional pivots required in the numerical phase. In some
circumstances, it may be possible to accept pivots of other types than H+, A-, and
HA. It was shown in 3.4 that modifying a diagonal element of B of type H- or HH
may alter the A-part and the zero-part of K. However, the only altered elements
correspond to nonzeros in the outer product created by the corresponding column or
columns of L. It is a simple matter to check if these nonzeros of L correspond to rows
of A. If they do not, the particular H- or HH pivot can be accepted, even if the
number of negative eigenvalues of KI exceeds m by doing so. When K is sparse,
it may be a common event that the nonzeros do not correspond to rows of A once
a significant portion of the rows of A have been processed. If the nonzeros do not
correspond to rows of A, the reduced Hessian has at least one negative eigenvalue,
and we can still obtain a feasible direction of negative curvature.

Another scheme is to accept any pivot a regular LBLT-factorization would accept,
keeping track of restart points, where K has inertia (n, ml, 0) and is sufficiently
nonsingular. If it turns out that K has inertia (n, m, 0), the reduced Hessian is
positive definite and the Newton direction is a descent direction. Otherwise, when
forming the factorization, let K denote the part of K that is factorized when it is
discovered from the Schur complement that the inertia of K is different from (n, m, 0).
If KI contains all rows of A, has inertia (n, m, 0) and is sufficiently nonsingular, the
results of 4 apply. If not all rows of A have yet been processed, an attempt may be
made to find pivots of types H+ and A+ in order to form a Kll that is sufficiently
nonsingular, contains all rows of A, and has m negative eigenvalues. If this attempt is
successful, Theorems 4.6 and 4.7 apply, and the desired directions may be computed.
If the attempt is not successful, part of KI, from the latest restart point, may be
refactorized, imposing the pivoting strategy of 4.

If the number of positive eigenvalues in the reduced Hessian is large compared to
the number of negative eigenvalues, we expect the number of pivots of types H- and
HH to be low. Consequently, if the rows of A are processed early in the factorization,
there is a high likelihood that these pivots will occur only after all rows of A have
been processed. A new version of MA27 (MA47) allows 2 2 pivots in the analyze
phase. See Duff et al. [DGRST89]. Moreover, these pivots, which in our case would
be HA pivots, are preferred over 1 1 pivots. We expect this scheme to make the
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difference between the additional permutation requirements of the scheme of 4 and
the additional permutations required by a regular LBLT-factorization smaller, since
in many instances the conditions of 4 will be fulfilled automatically.

It may also be observed that the ability to compute a direction of negative curva-
ture is only required if the reduced gradient is small in norm. The methods described
in 8 and 9 may be applied whenever the norm of the reduced gradient is sufficiently
positive. Only at points where the reduced gradient has small norm and the reduced
Hessian is not positive definite is it necessary to apply the strategy of 4.

As was discussed in 7, to add a suitable artificial constraint is equivalent to
generating a feasible direction of negative curvature. It can be shown that an artificial
constraint that is linearly independent of the constraints in A may be found by one
solve with K utilizing a suitable right-hand side. If this artificial constraint increases
the number of positive eigenvalues of K by one, a direction of negative curvature may
be computed as described in Lemma 7.1. Although this is not guaranteed to be the
case, in practice, it may be a viable strategy.
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PERTURBATION BOUNDS FOR THE POLAR DECOMPOSITION*

ROY MATHIAS

Abstract. Let Mn(F) denote the space of matrices over the field F. Given Ae Mn(F) define

IAI =_ (A’A)1/2 and U(A) =_ AIA1-1 assuming A is nonsingular. Let al(A) >_ a2(A) _> _>
an(A) >_ 0 denote the ordered singular values of A.

Majorization results are obtained relating the singular values of U(A + AA) U(A) and those
of A and AA. In particular, it is shown that if A, AAe Mn(R) and al(AA) < an(A), then for any
unitarily invariant norm I1" II, IIU(A + AA)- U(A)I

_
2[an-l(A) + an(A)]-IlIAAII. Similar results

are obtained for matrices with complex entries.
Also considered is the unitary Procrustes problem: min{llA-UBII Ve Mn(C), U*U I} where

A, Be Mn(C), and a unitarily invariant norm I1" are given. It was conjectured that if U is unitary
and U*BA* is positive semidefinite then U must be a solution to the unitary Procrustes problem for
all unitarily invariant norms. The conjecture is shown to be false.

Key words, polar decomposition, perturbation bound, unitarily invariant norm, majorization,
unitary Procrustes problem

AMS(MOS) subject classifications. 15A45, 15A12, 15A48, 15A60

1. Introduction. Let Mn(F) denote the space of n n matrices over the field F.
(We will take F R or F C.) Given A E Mn(F) there is a unitary Ve Mn(F) and
a positive semidefinite P Mn(F) such that A UP (this is the polar decomposition
of A). It can be seen that P (A’A)1/2 =_ IAI. When A is nonsingular then so is IAI
and hence V must be AIAI-. For a nonsingular A we define U(A) =_ A}AI-. We
say that a norm I1" II on Mn(F) is unitarily invariant if

IIAII IIUAVII for all unitary U, Ve Mn(F).

We will say more about these norms later in this section.
In this paper we consider bounds on IIU(A) U(B)II in terms of IIA- BII for

unitarily invariant norms II II. The perturbation theory of the polar factor in the polar
decomposition is of interest, as it is often necessary to compute U(A) numerically.
(See [4] for a variety of applications of the polar decomposition. For a more recent
application, see [12], where the authors use the polar decomposition in a crucial way
to compute block Householder transformations.) The case where I1" II is the Frobenius
norm has been studied by several authors and the best bounds to date are given by
Barrlund in [2]. We will strengthen his result slightly, generalize it to all unitarily
invariant norms, and deduce the corresponding result about the condition of the
function U(-). It will be seen that the cases F R and F C are different.

The perturbation theory of the map A --. IAI is also of interest. We will briefly
review what is known about it at the end of the paper.

We define the Hadamard product of A [aj], B [bj]e Mn(F) by

A o B =-- [aijbij].
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The rest of this section is devoted to background information on singular values
and unitarily invariant norms. Given AE Mn(F) we use ax(A) >_ >_ an(A) to
denote its singular values. For each k 1,..., n we define the Ky Fan k-norm, which
is unitarily invariant, by

k

i=1

Note that [IIAIII (A) is the spectral norm or operator norm of A (often denoted
I[A[[2). The norm [[[. [[[n on Mn(F) is called the trace norm, and can be represented as
[[[A[[[, tr[A[. We will denote the Frobenius norm by [[-liE, i.e., [[X[[ _= tr X*X.
von Neumann showed (see, e.g., [5, Thm. 7.4.24]) that for every unitarily invariant
norm [[. on Mn(F) there is a corresponding symmetric gauge function g on Rn (that
is, a permutation invariant absolute norm on Rn [6, Def. 3.5.17]) such that

[IA[[ =g(al(A),...,an(A)) for all Ae M,(F),
and that, conversely, every symmetric gauge function g(.) on Rn defines a unitar-
ily invariant norm in this way. The following is a well-known result of Ky Fan [6,
Cot. 3.5.9].

LEMMA 1.1. Let A,B Mn(F) be given. Then

if and only if

or equivalently,

for all unitarily invariant norms on Mn(F)

IIIA III -< IIIB III k= 1,...,n,

k k

E a,(A) <_ E
i--1 i:1

k=l,...,n.

LEMMA 1.2. Let A,B Mn(F) be given. Then

k k

(1.1) E[a,+l_i(A) a,(B)] _< E a,+l_,(A + B),
i=1 i=1

k=l,...,n.

Proof. The inequality (1.1) is equivalent to

k k

(1.2) E[a,+l_i(A) a,+_i(A + B)] _< E hi(B),
i=l i=l

which we will prove. Take k {1,..., n}. Then

k

E[a,+_i(A) a,+_(A + B)] _<

k- 1,...,n,

We have used [5, Thm. 7.4.51] for the second inequality.

k

max E
j=l

k

< Eai(a- (a + B))
i=1

k
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2. Results for real matrices. We begin with a basic computational lemma
from [2, eq. (2.18a)].

LEMMA 2.1. Let A diag(al,... ,an) and assume that an > O. Let BE Mn(F)
and let X(t) A + tB. Then

or equivalently,

(2.1) _d U(X(t))lt= C o (B B*),dt

where C [(ai + aj)- 1].
The following lemma is essentially the same as [11, Thm. 3.1].
LEMMA 2.2. Let al > a2 >_ > an > 0 and let C =_ [(ai + aj)-]. Let

BE Mn(R) be skew-symmetric. Then

k
1

k
1

=1 = 2r 2r =
Using these two results we can prove our first perturbation bound.

THEOREM 2.3. Let AE Mn(R) be nonsingular. Then for any AAE Mn(R) with
a(AA) < an(A) and any unitarily invariant norm I1" II,

(2.2) I[U(A + AA) U(A)[ < 21IZXAi.___I log (1 an(A)+an_(A)

Proof. By Lemma 1.1 it is sufficient to prove the inequality for the norms
for k-- 1,..., n. Let X(t) A + tAA. Then choose to E [0, 1] and let X(to) VW
be a singular value decomposition of X(to). Then

dIIlU(X(t))lt=tolllk- lilY U( + tVTmAWT)lt=o Wlll
IIlU( + tVTAAwT)It-oIIIk

--IIIC [VTAAWT (VTAAWT)T]III

< IIIVTAAWT -(VTAAwT)TIIIk
an( -t- toVTAAWT) -I- an-( -+- toVTAAWT)

an + toVTAAWT) + an- + toVTAAWT)

an(A + t0AA) + an_(A + toAA)

< 2IIIAAII]k
,(a) + ,,_(a) tolllzXalll=

We have used the case k 2 of Lemma 1.2 for the last inequality. Integrating this
gives the required bound:

IIIU(A + AA) U(A)III III f U(X(t))dtlllk
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IIlU(X(t))llldt
21llAAlllk< dt

aN(a) + a_(a) tlilaalll2
2lllAlllk log (1- IIIAIII2 )IIIAIII (A) + _(A)

It is easy to show that our bound when restricted to the Frobenius norm is better
than the bound in [2]"

IIU(A + AA)- U(A)IIF -x/log (1
(Just use the fact that clog(1- b) > log(1- ab) if a,b E (0, 1) and the fact that
/IIAAJlF >_ I]IAAII]2.) The reason that our inequality is better than that in [2] is that
we used Lemma 1.2 rather than the Wielandt-Hoffman inequality which was used in

Note that if we take A M,(R) with a,_l(A) > a,(A) then for any unitarily
invariant norm I1" II, Theorem 2.3 gives

In view of this, one might expect that the condition al (AA) < aN(A) in Theorem 2.3
can be replaced by a(AA)+ a2(AA) < a,(A)+ a,_(A). It cannot. Consider, for
example,

A=(I: 0) and AA=(0 0 )1 0 -2

It is easy to check that a(AA)+ a2(AA) < aN(A)+a_(A) holds for this choice of
A and AA, but that (2.2) does not.

The following result can be proved in the same way as Theorem 2.3 and can be
applied more generally. Neither bound is uniformly better than the other.

THEOREM 2.4. Let A, AA M,(R) be given. Assume that A+tAA is nonsingular
for all t e [0, 1]. Then for any unitarily invariant norm

IIIU(A+ AA) U(A)III
< 2 max{[a(A + tAA) + a_(A + tAA)]-" 0 <_ t <_ 1} IIIAAIII.

The following corollary may be deduced from either Theorem 2.3 or Theorem 2.4.
The result (2.3) when the norm is the Frobenius norm was first noted in [8, Whm. 2.3].



592 ROY MATHIAS

COROLLARY 2.5. Let n >_ 2 and let A Mn(R) be nonsingular. Then the con-
dition of the function U(.) at A with respect to real perturbations and any unitarily
invariant norm is

(2.3) a(A) 2Jan(A) + an_(A)]-.
Proof. That a(A) _< 2[an(A)+ an_l(A)] -1 follows from either Theorem 2.3 or

Theorem 2.4. Let us show a(A) _> 2Jan(A) / an_l(A)] -1. Let A be nonsingular, and
let A UEV be a singular value decomposition of A. Let

( (0 1)) VB--U 0n-2 -1 0

and let X(t) A + tB. Then Lemma 2.1 gives

U(X(t))lt= an(A) + an-l(A)"
Thus

a(A) > lim
IIU(A + tB) U(A)I

-o
1 ]IU(A + tB) U(A)I

limIIBII tto t
1 d

-IIBI--I U(X(t))lt-o
2

+
If we allow ourselves to bound IIIU(A / AA)- U(A)III in terms of the singular

values of AA rather than in terms of IIIAAIII, then we get the next result, which is
stronger than Theorem 2.3.

We will need the following notation. Given a finite sequence {ai}in__l we will define
the sequences {}= and {b}= as follows:

(2i (2i--1 (U2i --(n 0 if n is odd),

i 1,..., In/2]

(bn +cx if n is odd). Notice that if a is an increasing sequence, then @i is increasing
while & is decreasing.

THEOREM 2.6. Let Ae Mn(R) be nonsingular, let AAe Mn(R) be such that
a(AA) < an(A), and let I1" II be any unitarily invariant norm. Then we have the
majorization

(2.4) Ei=l ai(U(A + AA) U(A)) <_ 1"= log 1
&(A)

k=l,...,n

and the bound

bt(A)
,...,log 1

bn(A)
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where g is the symmetric gauge function corresponding to I1" II.
Proof. In view of Lemma 1.1 it is sufficient to prove the majorization (2.4). Let

us use the same notation as in the proof of Theorem 2.3. Then, as before, but using
the stronger inequality in Lemma 2.2, we have

(2.6)
[[[ U(X(t))[t=to [Ilk ][[C o [VTAAWT (VTAAWT)T]II[k

k

<-- Z i(VTAAWT (VTAAwT)T)
i=1

i( + toVTAAWT)

The matrix VTAAWT-(VTAAWT)T is a real skew-symmetric matrix, so its singular
values occur in pairs. This fact, together with the inequality

k k,,(vw (vw)) <_ ,(vAw)
i=1 i=1

k

/Za’((VTAAwT)T)
i--1

k

2 ,(a),
i--1

gives

k k

(2.7) Zai(VTAAWT (VTAAwT)T) <- 2 i(AA), k 1,..., n.
i--1 i--1

Since &l( +toVTAAWT) >_ (}2(E -+- toVTAAWT) >_ >_ n( +toVTAAWT) the
majorization (2.7) and the inequality (2.6) together give

k

1 i(AA)(2.8) I]lU(X(t))l]lk <_ 2
2i(A / tAA)’

k 1,..., n.

Lemma 1.2 implies

k k

(A + ,aA) > (A) ,(aA),
i--1 i--1

k- l,...,n.

Since {&(A/tAA)}=I is a nonnegative increasing sequence, Theorem 5.A.2.iii (with
g(t) t-) in [91 together with the previous majorization gives

k k

Z &,(A + tAA)- <_ -[#,(A) t,(AA)]-i=1 i=1

k- 1,...,n.

Combining this with the inequality (2.8) we have the bound

k

IllV(X(t))lllk <- Z 5,(A)-
i--1

k-1,...,n.
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Integrating this bound, as in the proof of Theorem 2.3, gives the majorization
(.A).

In the case of II1" lilt (the spectral norm) this theorem gives a slight improvement
over the bound given by Theorem 2.3. The factor

2[[I AAII[ 2at (AA)
[[IAAI[[2 al (AA) + a2(AA)

is replaced by 1.

3. Complex matrices. The formula for the derivative in Lemma 2.1 is still
valid when A and AA are complex. However, the bound in Lemma 2.2 is not valid
for possibly complex skew-symmetric matrices B. For this reason the results in the
previous section are not valid for complex matrices. For example, it is easy to check
that if

.4=(1: 0) and A=(0 0 )1 0 i/2

then (A) < (A), but (2.2) does hog hod for ghe spectral norm.
In ghe complex ce we have ghe Nllowing bound on ghe norm of a HMamard

produc (which is a special ce of [1, eq. (lc)]).
LNMMA a.1. et B, ff M(F) be 9iven. Assume that C is positive semidefinite

nd that it ordered min N9onl entes re c c. Then

k k

E a,(B o C) <_ E
i=l i=1

k-1,...,n.

Given at >_-.. >_ an > 0, one can show that the Cauchy matrix
is positive semidefinite using the idea in [5, Problem 17, p. 401]: For

*Cx + f0ij 12E xie-cit dt >_ O.
i--1

Thus, using Lemma 3.1 in place of Lemma 2.2, we have the following analogues of
Theorems 2.3, 2.4, and 2.6.

THEOREM 3.2. Let AE Mn(C) be nonsingular. Then .for any AA Mn(C) with
at(AA) < an(A) and any unitarily invariant norm I1" II,

IIU(A / AA) u(A)ll _<
at(AA) log(l-at(AA))an(A)

THEOREM 3.3. Let A, AA Mn(C) be given. Assume that A+tAA is nonsingular
for all t e [0, 1]. Then for any unitarily invariant norm II1" III

IIIU(A + AA) U(A)Ill _< max{[an(A + tAA)]-" 0 < t <_ 1} IIIAAIII.

COROLLARY 3.4. Let A Mn(C) be nonsingular. Then the condition of the
function U(.) at A with respect to any unitarily invariant norm is

(3.2) a(A)
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Proof. Use Theorem 3.2 or 3.3 to show a(A) _< al(A). For the reverse inequality
use the method on the proof of Corollary 2.5 with

B U(0n_l [ll)V.

THEOREM 3.5. Let Ae Mn(C) be nonsingular and let AAe M,(C) be such that
al(AA) < an(A). Then we have the majorization

(3.3)
k k

i=l i=l

k-1,...,n

and the bound

(3.4)

II]U(A + AA) U(A)III <_ 9 (log (1
\ \ an(A)

,...,log 1-
a(a)

where 9 is the symmetric 9au9e function correspondin9 to II1" II].
4. Counterexample to a best approximation conjecture. In this section

we will consider the unitary Procrustes problem:

min{llA- YBII Ye Mn(C), Y*Y I},

where A, Be Mn(C) and a unitarily invariant norm II" ]l are given. It is easy to show
that if I1" II is the Frobenius norm then Y attains the minimum in (4.1) if and only if
Y*BA* is positive semidefinite (see, e.g., [5, Example 7.4.8] for the details). If A and
B are nonsingular then this says that U(AB*) is the unique solution to the unitary
Procrustes problem (4.1) for the Frobenius norm. Marshall and Olkin asked whether
this is true for all unitarily invariant norms [9, pp. 269-270]. We show that it is not
true, and solve problem (4.1) for the trace norm (111" IIIn) in a special case.

Our analysis is based on the following lemma [5, Thm. 7.4.9].
LEMMA 4.1. Let A e Mn(C) be given. Then

Re tr YA <_ tr IA] IllAlll, for all unitary Ye M,(C)

with equality if and only if UA is positive semidefinite.
LEMMA 4.2. Let A, Be Mn(C) be given and assume that IAI IBI is positive

semidefinite. Let V, We Mn(C) be unitary and such that V*A IAI and W*B IS I.
Then

.for all unitary Ye Mn(C).

Equality holds if and only if Y VW{ where V and W are unitary matrices such
that VA- IAI and W{B ISl.

Proof Since IAI- IBI is positive semidefinite we have

IliA- VW*BIJJ, --IJJV*A- W’BIll. --JJlIAI- IBJlII tr (IAI- JBJ).
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Now given any unitary Ye Mn(C) and any unitary VIE ME(C) such that VA
let Wt V*U. Then using the triangle inequality and Lemma 4.1 we have

(4.3)

which establishes (4.2).

_> tr Ial- tr IB]
tr (]A]- [B]),

All that remains is to show that if equality holds in (4.2) then Y must be of
the required form. If Y is such that equality holds in (4.2) then we must have
equality in (4.3). By Lemma 4.1 this requires that W1B be positive semidefinite as
desired. 0

Now we will show that U(BA*) is not a solution to (4.1) for the trace norm if

and B=( 2 O)0 1

It is clear that A, BE Mn(C) are positive semidefinite and that A- B is also positive
semidefinite. Since A and B do not commute, BA* is not positive semidefinite and
so U(BA*) I. But from Lemma 4.2 we see that I is the unique solution to (4.1)
for the trace norm.

5. Bounds on II IAI- [BI II. Considerably less is known about bounds of the
form

II IAI- IBI II aliA- BII,

where [1.1[ is a given unitarily invariant norm and c is a constant, possibly depending
on I[" [I. In fact, little is known except for the Frobenius norm (in which case the
problem has been solved) and the operator norm (in which case there are some partial
results). Davies [3] has obtained bounds for the Schatten p-norms.

THEOREM 5.1. Let n >_ 2 and let A, BE ME(C). Then

(5.1) II [A]- [BI IIF v/[IA -BIIF.
Furthermore, x/ is the best possible constant.

Proof. The inequality (5.1) is stated in [2] with the additional restriction

an(A) + an-(A) > /IIA- BI]F.

A slight modification of the proof in [2] shows that this restriction is not necessary.
Alternatively, see [3, Lemma 2].

To see that v/ is the best possible constant take

(1 0) and B-( 1 e)A=
0 0 0 0

and let
From Theorem 5.1 it follows that we have a bound for the operator norm:
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In [7] Kato shows that there is no constant c independent of n such that

III IAI- IBI Ill cilIA- BIII for a A, Be Mr(C).

It appears that the best value of cn for each n is unknown. It is known that

n <_ cn <_ 2/n + l,

where /n (2/.)log is a known constant [10, Cor. 4.3].
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ERROR ANALYSIS OF UPDATE METHODS FOR THE
SYMMETRIC EIGENVALUE PROBLEM*

JESSE L. BARLOWt

Abstract. Cuppen’s divide-and-conquer method for solving the symmetric tridiagonal eigen-
value problem has been shown to be very efficient on shared memory multiprocessor architectures.

In this paper, some error analysis issues concerning this method are resolved. The method is
shown to be stable and a slightly different stopping criterion for finding the zeroes of the spectral
function is suggested.

These error analysis results extend to general update methods for the symmetric eigenvalue
problem. That is, good backward error bounds are obtained for methods to find the eigenvalues and
eigenvectors of A + pwwT, given those of A. These results can also be used to analyze a new fast
method for finding the eigenvalues of banded, symmetric Toeplitz matrices.

Key words, divide-and-conquer, spectral function, eigenvalue update, Toeplitz matrices

AMS(MOS) subject classifications. 65F15, 65G05

1. Introduction. In this paper, we provide an error analysis of Cuppen’s [4]
divide-and-conquer algorithm for solving the symmetric tridiagonal eigenvalue prob-
lem. The method is highly suitable for shared memory multiprocessor computers [81,
[15]. We make some implementation suggestions that are slightly different from those
proposed by Dongarra and Sorensen [8]. Jessup and Sorensen [16], [15] developed a
variant of the procedure for the bidiagonal singular value decomposition. Although
we do not explicitly analyze this method, the ideas in this paper could be extended
to the Jessup-Sorensen procedure. These algorithms are being considered for imple-
mentation in LAPACK [5].

In fact, this analysis really concerns more general updating strategies arising out
of the eigenvalue update procedure of Bunch, Nielsen, and Sorensen [3]. Robust im-
plementations of this procedure have been proposed by Sorensen and Tang [23] and
by Kahan [18]. For the most part, we will discuss the Sorensen-Tang [23] implemen-
tation. This analysis is also used to prove the stability of the procedure of Handy and
Barlow [13] for symmetric, banded Toeplitz matrices.

The paper is organized as follows. In 2, we summarize Dongarra and Sorensen’s
version of the divide-and-conquer algorithm of Cuppen [4] and extend some of the
results there. In 3, we discuss the problem of finding the zeroes of the spectral
function, and give the properties of a more general stopping criterion. Section 4
presents a backward error analysis of the algorithm and of general update procedures.
In 5, we discuss the implications of our results for the Toeplitz eigenvalue procedure
of Handy and Barlow [13], which we demonstrate. Tests by Jessup and Ipsen [14],
[17], [15] indicate that Cuppen’s method obtains eigenvectors that are more closely
orthogonal than those obtained by inverse iteration and obtain eigenvalues that are
accurate in the absolute sense given in [24], [20], and [10]. Whether or not the method
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obtains good eigenvalues in the strong relative error sense defined by Barlow and
Demmel [1] is an open question.

2. An outline of Cuppen’s method for the symmetric tridiagonal eigen-
problem. Consider the problem of finding the eigenvalues of the symmetric tridiag-
onal matrix T given by

al bl 0 0
bl a2 b2

52
bn-1

bn- 1 an

We partition the problem by rank-one tearing. To do that, we consider the partitioning

T1 b:e,eT1 )TT
bkelek T2

where 1 _< k _< n and ej represents the jth unit vector of appropriate dimension. We
then write T as

0 2 -[- fI)wT’

I ek ) 00, :0V/I+0-2,(1) o=bk, w=(l+0-2 1/2
0_le1

where 1 and 562 are modifications of T1 and T2 such that

(2)

(3)

al bl 0
bl a2 b2

1 b2

0

0 0

bk-2 ak-1 bk-1
b,-1 5k

5k+l b,+l 0 0 0
bk+l ak+2 bk+2

bk+2

bn-2 an-1 bn-1
0 bn-1 an

Here

(4) : ak Ob:, lk+l a:+l O-lbk.
The parameter 0 is chosen to avoid potential numerical difficulties associated with
cancellation. If sign(ak) sign(ak+l), we choose 0 :i:1 so that sign(-0bk)
sign(ak). If sign(ak) --sign(ak+i), Dongarra and Sorensen [8] recommend that "the
sign of " be "chosen so that 0bk has the same sign as one of the elements and the
magnitude of 0" be "chosen to avoid severe loss of significant digits when 0-1bk is
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subtracted from the other." Actually, for this analysis, we can always just choose
0 sign(ak). The value 0 -1-1 will be assumed for the rest of this paper.

The tearing operation (3)-(4) separates the problem of finding the eigenvalues of
T into that of solving the two eigensystems

1 Q1D1QT, 2 Q2D2Q,

where Q1 and Q2 are orthogonal matrices and D1 and D2 are diagonal matrices. These

two eigenproblems can be assigned to separate sets of processors. The eigensystems
of T1 and T2 can each be "torn" into smaller eigensystems in the same manner. This
process can be performed recursively down to a 1 1 or 2 2 eigensystem, hence the
divide-and-conquer nature of the algorithm. The eigenvalues of T can be obtained
from

0 Q2D2QT2 -F Obk 0_le1

--diag(Q1, Q2) [diag(D1,D2)-btgbk ( O_q2 ) (qTl,0-1qT2)] diag(Q1T, Q2T),

where qi QTek and q2 QT2el. We can then find the eigenvalues of T by solving
the eigenproblem

D + pzzT Q)d)T,
where

() D diag(D,D), 0 b, (1 + 0-) 1/2
O_q

We note that we have normalized z in (5) and w in (1) so that I]zll2 --[lUll2 1. This
will be assumed throughout this paper. Here is a diagonal matrix of the eigenvalues
and is the orthogonal matrix of eigenvectors. Let D diag(51,52,... ,Sn) where
1 > (2 > > 5n and assume that no component i of z is zero. If (q, A) is an
eigenpair, then

(D + pzzT)q Aq

and thus

(D AI)q -p(zTq)z.

We first show that (D- AI) -1 exists. If A 6 for some i, then our assumption
that i 0 implies that zTq O. This, together with the assumption of distinct
eigenvalues, implies that q is the eigenvector ei of D; then zTei 0 contradicts the
original assumption. Thus we have established the existence of (D- AI)-1. Some
algebraic manipulations imply that an eigenvalue A is a root of the equation

(6) f(A) =0,

where

f(A) 1 + pzT(D- AI)-1z=I+Pj-A’.=
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The function f in (7) is often referred to as the spectral function. Golub [9] first
discussed the problem of finding the roots of (6)-(7). Without loss of generality, we
can assume that p > 0. If p < 0, we consider -D- pzzT.

Bunch, Nielsen, and Sorensen [3] show that the eigenvectors, the columns of Q,
are given by

(8) Oi "yi(D AiI)-lz,
where -y is chosen to make [1[[2 1 and A is the ith eigenvalue of D + pzzT.

In the case where ti and ti+l are close, Dongarra and Sorensen [8] advocate a
deflation strategy. Essentially, if [ti+l -t[ is small, we consider the 2 x 2 submatrix
of D + pzzT given by

0 ) (0 &+l +P +
We can construct a Givens rotation to introduce a zero in one of the two corresponding
components of z. It is given by

-s c 0 &+ + p
i+ s c

0)(,) ( )0 $i+1 + p 0 (T, 0) + (6i+1 --$i)CS
0 1
1 0

where + 1. , , + ,+, ,+ , + ,+x, d, Cf + Chx. If
we put Gi equal to the n x n Givens transformation constructed from the identity by
replying the appropriate diagonal block with the 2 x 2 rotation just constructed, we
have

Gi(D + pzzT)G D + 22T + Ei,

where e2 and e+1 O, eDei i, e+lDei+l i+, and

I1,11 I(,+1

Deflation is done only when [6- 6+1]]cs[ e2 is satisfied where e2 is some tolerance.
Deflation can speed up this algorithm considerably.

Dongarra and Sorensen [8] show that the error bound caused by deflation will
be no more than that caused by a perturbation 6TD where [[6TD[[2 upD(n)]T[[2
and pD(n) is some modestly growing function of n. It is ey to show that the
reductions from rank-one tearing, that is, the arithmetic in obtaining 1 and 2 from
T, contribute a backward error 6T where

[[TR[[ eu[[T[[ + O(u), e O(1).

Thus, in the absolute error sense, neither the reduction nor the deflation will seriously
ect the quality of the eigenvalues.

The remaining problem is to show that computing the eigenvalues om (6)-(7)
produces a backwd error of no more than [[6Ts [[2 where

IITsll ups(n)[[T[[2 + O(u2).
Here ps(n) is a modestly gowing function of n.

In the next section, we discuss how to find the zeroes of f(A) in (7).
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3. Finding the zeroes of the spectral function. Bunch, Nielsen, and Soren-
sen [3] developed a method inspired by the work of Mor [19] and Reinsch [21], [22]
to find the zeroes of f in (7). It relies upon rational approximation to construct an
iterative method to solve (6)-(7). To find a zero of f, we write the function as

where

and

j=i+l

From a standard result on the symmetric eigenvalue problem [10, Chap. 8], the root
A lies in the open interval (,+1). For A in that interval, all terms of (A) are
negative and all terms of (A) are positive. An iterative method is derived for solving
the equation

(9)

by starting with an initial guess A) E (i,i+l), and constructing simple rational
interpolants of the form

do d3(10)
dl ’ 42 + -----,

where is fixed at the current value of fi+l and the parameters di, i 0, 1, 2, 3 are
defined by the interpolation conditions

d3(11) dl--d-l)
do Ct d3(12)

(e-

The new approximate AI) is the root of the equation

-do d3(13)
dl-A =l+d2+-A"

We can construct an initial guess that lies in the open interval (ti, A). A sequence
of iterates {Ak)} can be constructed where A is derived from as was

from A). Bunch, Nielsen, and Sorensen [3] show that this iteration is quadratically
(k+)convergent and the iterates satisfy Ak) < A < A, thus there is no need for

safeguarding. The stopping criteria used are

(14)
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(kT1) (k+l)

(k-F1)where Ai is the current iterate. The second condition is designed to preserve the
orthogonality of the eigenvectors. The stopping criterion (14) does not seem necessary
from the analysis in this paper.

We instead propose that the single stopping criterion

(16)

be used.
Actually, in exact arithmetic (15) and (16) are nearly equivalent, as shown by the

following theorem.
THEOREM 3.1. Let the stopping criterion

(k+l) k) min{]6i

be satisfied by the iterates of the Bunch, Nielsen, and Sorensen procedure. (Note
(k-t-l)that the right side uses )) and not .) Then i] el

_
0.2290, in the absence of

rounding error,

_2

Before proving this theorem, we need two simple lemmas.
LEMMA 3.2. For the current iterate Ak), the coefficient dl in (10)-(11) satisfies

Proof. Let # Ak). From the interpolation property,

-d0 ,(#)-d0 (#), (dl #)2dl -p

If we eliminate do from these expressions, then we get the quadratic equation in dl
given by

(dl p)(#) (dl p)2,(#) 0.

This has two roots, dl -# 0, which violates the interpolation condition by creating
a pole at #, and

(17) dl #

Let/) diag(61,..., di) and let 2 (Zl, z2,..., z)T. Then

(#) p2T(D- pI)-2, ’() p2T(D- #1)-22.
We have

#I ipy,T(b_ yTy
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where

y (D- #I)-lz.

We need a second lemma to establish the signs of do and d3.
LEMMA 3.3. The coecients do in (10) and d3 in (12) satisfy do < 0 and d3 >_ O.
Proof. From the interpolation condition,

-do () > 0.

From the form of ’(A) and (17),

dl-A=
(A)

>0.

Thus do _> 0. Likewise we have from the form of ’(A),

> 0.

Thus

d3 ((i+1 ,)2(,() >_ 0.

Now we can prove Theorem 3.1.

Proof of Theorem 3.1. Let # k) and/2 )i The rational interpolation
function is

do d3T() 1 + d2 + +

From the interpolation property we have

T(#)-- f(p), T’(#) f’
and from the fact that/2 is a root we have T(/) 0. Using a Taylor expansion of
T(/2) yields

0 T(/2) f(p)+ (/- p)f’(p)+ (/
2

where w is between/2 and #. Therefore,

(18) f(P)
f’() 2 f’(/.,)

Noting that do _< 0 and d3 _> 0 from Lemma 3.3, we have that

-do d3 dT(F AI)-2d,T’(A) (41 A)2 + (t,+l A)2
-2d0 2doT"(A) (dl .)3 + ((i+1 ,)3 2dT(F- )I)-3d’

d -X/o, V3)T, F diag(dl, +1).
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Thus

T"(W)
2
dT(F wI)-3d

f’(#) dT(F- I)-2d
y (F- II)-ld.

2YT(F wI)-3(F I)2y
yTy

Therefore, we have the bound

_< 211(F wI)-3(F

{(dl-#)2 (5 +l-tt)2}
The second term in (18) satisfies

Since Iw- #1 <-[f- 1 <- min{lhi- #[, [5i+l- #[}el, we have

If’(#)l i " i
Let s (1/(1- 1))31 Substituting back into (18) yields

l+sIf’(#)l 1-s

If s < 1/2 then the theorem is satisfied. We may verify that if el < .2290 then

s<. []
(k+l) Ak)We should note that if Ai and satisfy (15) then

1

1--1

The condition (16) is used for the rest of this paper for two reasons.
1. It is relatively independent of the method used to find the zeroes of the

spectral function. The approaches of both Sorensen and Tang [23] and Kahan [18]
are based upon interpolating the function and its derivative, therefore, (16) can be
computed with little extra effort.

2. The results given below work nicely with (16). In the absence of rounding
error, they would work similarly for (15) with the Bunch, Nielsen, and Sorensen [3]
iteration. We see no reason why (15) cannot be used even in the presence of rounding
error, although we know of no results in this direction.

It is important to show that the stopping criterion (16) is effectively satisfied. The
following theorem generalizes a discussion in Sorensen and Tang [23]. This discussion
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was inspired by Kahan [18]. The difference here is that we do not require f(A) to be
evaluated at the root.

THEOREM 3.4. Let # Ak). Let f(#) be computed on a floating point computer
with machine unit u2, let f’(p) be computed with machine unit u > u2, and let
f(lt)/f’(#) be computed with machine unit u. Assume

(19)

Then

(20)

where

computed

<_ II(D I)-zll(2n / 8)u + [I(D tI)-X II-xx + O(u2q),

I,l _< , (1 + (n + 5)u) + O(eu2).

Proof. Let fl(.) describe computations in machine unit u and let f/2(’) describe
computations in machine unit u2.

First, we note that

f(#) 1 + pzT(D #I)-’z 1 + p
=1 -/

f’(#) PzT(D #I)-2z O (6./- ,)2"
i=l

From standard error analysis results for sums and inner products [24], we have

(21) fl2(f(#)) f(lt) + (1 + IzlTl(D #I)-lzl)ao,
fl(f’(#)) f’(p)(1 + al) PlI(D gI)-zll(1 + a),

I01 < (n + 4)u2 + 0(u22), lall < (n + 4)u + O(u2).
Here Izl denotes componentwise absolute value. To simplify (21), we use the fact that
IzlTl(D #I)-lzl <_ Ilzll211(D #I)-zll2, and the fact that Ilzl[2 1. We then have

If()l (1computed (If(#)l <
f’ + a2)

\ If’(.)l ] (.)i
Io:1 <_ ( + )u + o(,’).

From the assumption (19), we have that

If(g)l 1 + .oil (D- p,I)-lzll2
(22) If’(g)l

<
,oll(D- gI)-lzll

where

1 + PlI(D I)-11:
.oll(D- g.r)-zll o-,

Io1 <_ Iool < (, + 5),.,: + o(g).

o + II(D- M)-11I16,

g e (1 + a2)-1 _< {1 (1 + (n + 5)u) + O(u21).
Using the expression for f(#) and f’(#) and (22), we have

1 <_ --pzT(D #I)-Iz + (1 + pll(D #I)-izll2)a
+ pll(D M)-II- II(D

_< II(D I)-.11, + o- + PlI(D .Z)-’ll,(o + ),
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from II(D- I)-zll _< II(D- I)-llllzll and the fact that Ilzll . Therefore,

(23) 1 <_ plI(D I)-;11:(1 + o- + 1)/(1 a).

If we put (23) into (22), we have

If(u)l
If’()l

pII(D p,I)-X I1:_< 2pll(D X)_=llO + II(D #I)- I1- +
_< 211(D Z)-,ll,:, + II(D Z)- I1=- + o(2q).

There are two terms in (20), one from the stopping criterion and one from round-
ing. For the stopping criterion to be effectively satisfied, the error from rounding
should not be significantly larger.

Thus we would like

II(D I)-zll
a

II(D- I)-11

The precision u2 is such that a O(u2). Hence a desirable condition is

: < II(D- X)-=ll:
II(D- X)-II2

A lower bound for II(D- I)-zll2/ll(D- I)-11 is minl<j<n I1, which leads to
the condition

u2 < el min I’. l"
l_<j<n

In theory, this minimum could be zero, but we rule out zero components, since, in
that case, the problem decouples. In general, we have a tolerance, call it e3, such that

I1 >- e3, j 1,2,...,n. Then

U2

_
31

If el, ea O(u), where u is the standard machine unit, then f(#) should be computed
in double the current precision. The present single precision LAPACK routine [23]
uses double precision for this part of the software. However, for the double precision
routines, Sorensen and Tang [23] resolve this issue by using routines that simulate
quadruple precision floating point operations in double precision.

Actually, the Sorensen-Tang procedure satisfies

computed (f(#))- f/2(#)(1 + &),

where

< eu + O(u=).

However, if we substitute that hypothesis into Theorem 3.4, the result holds with the
change that

I1 _< el(1 + (e + n + 5)u) + O(u2el).
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Remark (largely paraphrased from [23]). The routines in [23] work on any com-
puter that satisfies the IEEE floating point standard. In fact, all that is necessary is
that the floating point operations

A+B, A.B

produce exact results when the result is exactly representable. Also, for base 16
machines, it is necessary that these operations are always rounded to the nearest
representable value.

CRAY’s arithmetic is the one notable example of an arithmetic that does not
satisfy these criteria. It satisfies the multiplication requirement, but not the addition
requirement. Adding a guard digit in the addition/subtraction hardware would make
CRAY’s arithmetic satisfy all of the necessary assumptions.

For the above reason, as demonstrated recently by Kahan [18], eOcient software
for the solution of (6)-(7) on a CRAY is difficult, perhaps impossible, to develop.
Software for this problem has been developed for CRAYs, but it is slow, even on a
CRAY. The above discussion is considerably expanded in [23].

As a consequence of Theorem 3.4, from this point forward, we will make the
assumption that (16) is satisfied.

4. Backward error analysis of updating procedures. In this section, we
give a detailed error analysis of this updating procedure. The error analysis could be
extended to any sequence of rank-one updates to a symmetric eigenvalue problem. As
a result, we can give an analysis of the stability of Cuppen’s procedure in floating point
arithmetic. We will show that it is a stable method for finding all of the eigenvalues
of a tridiagonal matrix.

We first cite the famous Newton-Kantorovich theorem. It will be used frequently
in the arguments that follow. The theorem is stated for the sake of self-containment.
Our statement of it is adapted from Dennis and Schnabel [7]. We consider the system
of nonlinear equations

F(x) -O, x ,
where F(x) (F(x),..., Fn(x))T. In the statement of the theorem I1" II is any vector
norm or its induced matrix norm, depending upon context. For simplicity, define
N(x(), r) as the set

N(x(), r)= {x "llx- < r}.

LEMMA 4.1 (Kantorovich). Let r > O, x() n, F n
__
n, and assume that

F is continuously differentiable in the set N(x(), r). Let JF(x) be the Jacobian of F
and assume that it satisfies the Lipschitz condition

IIJ ( (1)) < II
for all x N(x(),r). Assume also that JF(x(O)) is nonsingular and there exist
constants/, ? such that

Define -/; ( . If <_ 1/2 and r >_ ro (1- v/i 2c)// then the sequence
(x() } produced by

x(+) x() Jf(x(k))-F(x(k)), k O, 1,...
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is well defined and converges to x*, a unique zero of F in N(x(), r0). If < 1/2, then
x* is the unique zero of F in g(x(), rl) where rl min(r, 1 + V’I 2c//} and

We really use the following result due to Dennis [6].
LEMMA 4.2. Assume the hypothesis of Lemma 4.1 and < 1/2. Then

(k)_x(k+) II < < 211 

Better upper and lower bounds for the Newton iterates are given by Gragg and
Tapia [11]. These are somewhat more complicated, but would slightly improve the
bounds given below.

We will apply Lemma 4.2 to two different functions. The first is the spectral
function f(A) in (7). The second function will be given in the proof of Theorem 4.8.
We must verify that r _> r0 (1 v/i 2)/3. Note that

2a < 2a
21.ro= (1+41-2a)3-

We need to have existence of the first and second derivatives in N(A(), r). Here
r 2v/, since that is the bound in Lemma 4.2. Note that

(24)
(25)

f’(A) pzT(D- AI)-2z,
f"(A) 2pzT(D- AI)-3z,

and that these derivatives exist unless A ii for some i. Thus for A 6 (5i, ii+), we
must have

(26) min{IA  i+11}

However, from (16),

(27) r/= min{IA ,1.

From (27), (26) holds if e _< 1/2. Since e O(u), this is a reasonable assumption.
Thus, if the stopping criterion is satisfied, the spectral function is differentiable in a
large enough interval.

Next we show that the constant c in Lemma 4.1 is less than 5"
LEMMA 4.3. Assume that # Ak) 6 (6i,6i+1) satisfies the stopping criterion

(16). Let r 21 in Lemma 4.1 be defined by (27). Then c in Lemma 4.1 is bounded
by

Proof. Using the expressions (24)-(25) for f’(#) and f"(#) we have that

max
If"(w)l min{lii *1.,et.-=..,+=.l If’(t*)[
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Let y (D #I)-lz. Then

=2

<2

<2

yT(D-wI)-a(D-gI)ZYmin{[ imax
wE[/z-2r/,/+2r/] yTy

m m

<2max( 1 )
3

From (27), we have

(1" FI

It should be noted that the condition

from Lemma 4.1 will hold if

1

el _< 0.1145...,

which is a root of the cubic equation

-(1 2el)3 2el 0.2

Again, el O(u), so it is reasonable to assume that the hypothesis of Lemma 4.2
holds. Therefore, we may conclude that

(28)

The following lemma from [8] shows us that we can also have nearly orthogonal
eigenvectors.

LEMMA 4.4. Suppose that and ft are numerical approximations to the exact
zeroes ) and # of (6). Assume that the roots are distinct and let the relative errors

for the quantities 6i and 6i # be denoted by Oi and li, respectively. That is,

6i- (6i- A)(1 +
(5i -/2 ((5i p;)(1 +

for i 1, 2,..., n. Let qx and qg be defined according to the formula (8) using the
computed quantities that satisfy (16). /f 10il, Ir/il _< e, then

Iqqftl < IqEq.I < e(2 + e)
l-e_.
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with E a diagonal matrix whose ith diagonal element is

E,,
(1 -.I-- 0,)(1 -4-- ’r/,) (,)f’(ft)

The following corollary will be used extensively in our analysis of this procedure.
COROLLARY 4.5. Assume that (16) is satisfied. Then

Iqqfl <- 4el + O(e),

where and f are distinct eigenvalues of D + pzzT that have been computed by (9)-
(10).

The next lemma bounds the norm of the computed eigenvector matrix and its
inverse.

LEMMA 4.6. Assume that )1,..., )n satisfy the stopping criterion (16) and that

O, (qi,...,qn),

where q qx from Lemma 4.4. Then

(29) II011: -< 1 --t-- 2he1 --I-O(e21), I1-111: < 1 + 2he1 -+-O(e).

Proof. From the bound (28),the hypothesis of Lemma 4.4 is satisfied with e

2el + O(e). Thus from the conclusion, we have that

0(4Iq ql <- 4ex +
Thus

where

00 + Q,

II’QIIF _< 4he1 -t-O(e).

The conclusion on II011: results from

IIOT)II: -IIQII, _< 1 + 4n1 + O().

Thus 11(112 satisfies (29). We still need to bound I1-1112. By the Neumann lemma
[10, p. 59], we have that

Clearly,

II(0T0)-XlI: I1(I + ’Q)-XlI: --<
1 + 4n1 --t-- O().

1 1< + 0(4)
1 IIQII: 1 4he1

We need the following technical lemma so that the Lipschitz condition in Lemma
4.1 can be established.
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LEMMA 4.7. Let

J(z) 2 diag(yx, 72,..-, %)VT,

where

vi (D- AiI)-Xz.

Then J(z) satisfies

IIJ(z(1))- J(z(2))ll2 <_ lIZ(1) Z(2)112,

where

(30) " T1/2 max
l<i<n

Proof. This is just a straightforward norm inequality. [:]

Lemmas 4.6 and 4.7 lead directly to a proof of Theorem 4.8, the main result of
this paper. We show how to obtain the exact sequence of updates that yield the
sequence of eigenvalues at each stage of the computation. This theorem considers the
problem of finding the eigenvalues of

(31) T D + pjwjw,

where $1wll2 1,j 1, 2,..., s, using the procedure

(32) Do D,

(33) Dj Q(Dj-1 -t- pjzjz)Qj, k 1, 2,..., s,

where zj Qj_... Qwj and D8 is the diagonal matrix of the eigenvalues of T. The
form (32)-(33) coves not only Cuppen’s algorithm, but a variety of procedures.

THEOREM 4.8. Assume that the method described by (9)-(13) is used with stop-, no (6) od h iana of T i (3) h aonhm (32)-(33).
Make the normalizing assumption that IIwj 112 1, j 1, 2,..., s. Iffor j 1, 2,..., s
we have

(34) 1105-112 max I’)l- < 1
l<i<n

where z (),... ,(nJ))T, then the computed eigenvalues from this algorithm are
the exact eigenvalues of

(35) D + piib’,
j-1

where

(36) I1 w 112 n1/2 x + o().



UPDATE METHODS FOR THE SYMMETRIC EIGENVALUE PROBLEM 613

Proof. The proof is by induction on the number of updates, j. For j 0, the
theorem is trivial.

Assume true for j- 1. Then

Dj-I HT-I Do +ZJl Hi_
/-I

for some orthogonal matrix Hi_ (which may not correspond to the computed eigenvec-
tor matrix). Consider the application of the jth update in (33). Let Ai, i 1, 2,..., n
be the computed eigenvalues at stage j. By the stopping criterion (16),

If(:,)l- [l(O- ),I)-1[12

We note that f’(Ai) I[(D- 1)-1z1122, therefore,

2If()l < p II(D- I)-z[I
II(D- 1 p, II(D- )kiI) -1

where

(37) [l(O- A,I)-lzll2.
We now consider the system of nonlinear equations

n ? ) 0, j (1,... n)T(38) ffi(j) ip;1 1 + pj Z 5 ,
/=1

Clearly, from (6)-(7), a vector j that is the root of (38) corresponds to the matrix
D + pj" that has exactly the eigenvalues A1,..., An. We note that the Jacobian of
g(zj) (gl(zj),... ,gn(zj))T is J(zj), as given in Lemma 4.7. Thus g(zj) is Lipschitz
continuous with Lipschitz constant given by (30). Moreover, it is Lipschitz contin-
uous for all values of zj, thus we can satisfy the r >_ r0 requirement of Lemma 4.1.
We also have that J(zj) 2Qj, thus the parameters and r/from Lemma 4.1 are

IIJ(z)-1112 1/2 IIQ-1112 f _< 1/2 + ?Z1 - O(21),

I[J(z)-lg(zk)[[2
_

1/2[IQj-lll2n1/2ex
_

-1271/2I -I- O().

Therefore the condition c < 1/2 from Lemma 4.1 is satisfied if

1/4n,llQ;lll22 max "ll(O- A,I)-IIu < 5.l<i<n

From (37), we can conclude that

"ll(O AiI)-lll2 "Yi max(ll(O A,I)-le, ll2, I[(O AI)-le,+lll2}
,,,,+11 },

hence (34) implies the hypothesis of Lemma 4.2.
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From Lemma 4.2, we have

Thus he zb in (35)-(36) satisfies he bound

I1- 112 <_ IlQx Oll211- zl12 _< IIQ1... Q-IlI2IIQ;IlI2n1/2’
From Lemma 4.6, the above bound becomes

I1 -wl12 _< (1 + )/1n1/2,1,
where 2n, + O(,). Hence (a). t

Again, note that we need tolerance for the components of z, discussed aer
Theorem 3.4 d by Sorensen and Tg [23].

A global bound on the perturbed eigenvalues kom the Cuppen method is e(ly
derived. The Wielandt-Hoffman theorem [24, pp. 104-105] states that if 1,..., n
e the eigenvalues of , and 1,..., e the eigenvalues of T, then

i=1

That is used to obtain the following corollary.
COROLLARY 4.9. Assume the hpothesis of Theorem 4.8, noting the assumption

that 11w112 x, y 1, 2,..., s. Let A, i 1, 2,..., n be the computed eigenvalues of
T in (31) by the algothm (32)-(33) and let $, i 1, 2,..., n be the exact eigenvalues
of T. Then

n

(39) Z(,- A,)2 _< 2n1/2 II(p,..., )TIlx + O().
i=1

Proof. From Theorem 4.8, ghe computed eigenvalues , i 1, 2,..., n are the
exact eigenvalues of

Do +
5--1

where

The difference between and T is bounded by

(40)

Using the fact that

_< 2n1/2el - O(e),
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and taking square roots in (40) yields (39). 0
A second corollary yields a backward error bound for Cuppen’s method.
COROLLARY 4.10. Consider the algorithm in 2 .for solving the symmetric tridi-

agonal eigenvalue problem. Let i i 1, 2,..., n be the computed eigenvalues and let
), i 1, 2,..., n be the exact eigenvalues. If we use the stopping criterion (16), then

A)2

_
2n1/211TIIFe + O(e).

Proof. The values of pj ,j 1,2,...,s are pj 0j(1 + 0-2)1/2bkj where kj,j
1, 2,..., s are distinct values from the off-diagonals of T, and 0i +1. Thus IPI
x/lbkj so that

II(p,---, P)TII= ll(b,,..., b.)TIl= _< IITIIF.
The application of Corollary 4.9 obtains the result. 0

We note here that this result depends upon the choice 4-1 and that the
cancellation problem discussed by Dongarra and Sorensen [8] does not seem to be a
factor in this analysis.

5. Applications to banded symmetric Toeplitz matrices. The results in
this paper can also be directly applied to the analysis of a procedure due to Handy
and Barlow [13] for finding the eigenvalues of banded, symmetric Toeplitz matrices.
Numerical tests of this procedure are given in [13].

Define Toepn(al,a2,... ,an) as the n x n symmetric matrix

Toepn(a1, a2, an)

al a2 an
a2 a an-

al

an an- a2 a

A Toeplitz matrix of bandwidth k is given by

Toepn(a, a2, ak, 0,..., O)

f ai a2 ak 0 0
a2 a ak 0

ak ak-1
0 ak
0 0 ak_ ak

\ 0 ak a2 al

We denote Toep(a,..., ak, 0,..., 0) as Tn,k. Bini and Capavoni [2] show that Tn,k
can be written as the sum of two matrices

The second matrix Hn,k_2 is a Hankel matrix of the form

vx o o)Hn,-2 0 0 0
0 0 v
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a3 a4 ak
0

V1 a4 ak

at: O. 0

0 0 a

V:= 0 a a_l

ak ak-1 a3

and the first matrix C,,k has the form

C, Cross Sumn(hi a3, a2 a4,..., ak-2 ak, ak-1, ak, 0,..., 0),
where the notation above means that the first row is defined by the arguments and
the subsequent rows are defined by the recurrence

(41) ci-l,j +ci+,j =cij_i +ci,j+i, i,j-- 1,2,...,n

with the convention that c0,j c,0 0. The matrix C=, has a known eigenvalue
decomposition

where

Cn,k UDUT,

2 ijT(42) D diag(#l,p2,...,/zn), U (u,j), uij
n +1 sin ’n+l

The ft can be computed in kn multiplications using the relationship
n

ftjUji Ciklljk,
k--1

and choosing a nonzero component uij. If we choose i ] then ]uji _> 1/v/n + 1,
thus the computed pi satis

(43) ( ,)2 Jn + ll]C=,kl]fu

where u is the machine unit.
The eigenvalues of T=,k can be found using rank-one updates. In pticul, the

eigendecomposition of gn,k_2 yields

2k-2

gn,k-2 p,Z,Z
where pi, i 1,2,... ,2k- 4 e the nonzero eigenvalues of Hn,-2 and zi,i
1, 2,..., 2k- 4 e vectors with only k- 2 nonzero components.

Thus the eigendecomposition of Tn,k can be obtained om
(44) T=, U(D + UTH,_U)UT

(4) U D+ Oww U wi U i, i=1,2,...,n
i=1
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The middle eigenproblem can be solved using 2k-4 rank-one updates by the algorithm
described in 2. The vectors wi UTzi can be computed in 2(k-2)2n multiplications,
or if 2k- 2 > log2 n this can be reduced to (k- 2)n log2 n multiplications by using
fast Fourier transforms.

By our theorems, the errors from the update operations satisfy the bounds

(47)

(48)

where i are the true eigenvalues starting with

D diag(l,..., fin),

and i, i 1,2,... ,n are the computed eigenvalues. A straightforward argument
yields the conclusion

(50) (Ai i)2 _< (n1/2el + 2(n + )1/2u)IIT,,IIF + O(u2 +

Hence, this procedure is numerically stable. Handy and Barlow [13] show that this
approach can be faster than band QR when k << n.

6. Conclusions. We have shown rigorous backward error bounds on eigenvalue
update algorithms. These bounds show that the method of Cuppen [4] with slight
alterations to the implementation of Dongarra and Sorensen [8] and Sorensen and
Tang [23] is stable in the classical sense [24], [20], [10]. However, it is not known
whether the algorithm satisfies the stronger stability criterion described by Barlow
and Demmel [1].

These results confirm those in the tests by Jessup and Ipsen [14], [17], [15] and
those in the tests by Handy and Barlow [13], [12].

Acknowledgments. The author is very grateful to Jim Bunch and the referees.
Their suggestions greatly improved this paper. He also thanks Jim Demmel, Danny
Sorensen, and Peter Tang for their help.
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JACOBI’S METHOD FOR SKEW-SYMMETRIC MATRICES*
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Abstract. A Jacobi-type method is given for reducing real skew-symmetric matrices to real Schur form.
4 4 rotations are used to reduce the "off-diagonal" part of the matrix. Asymptotic quadratic convergence is
established for the special cyclic method, provided the eigenvalues are distinct.
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Introduction. Jacobi’s method for orthogonally diagonalizing symmetric matrices
is based upon the fact that any symmetric 2 X 2 matrix S may be diagonalized by means
of a rotation matrix which is expressible in terms of S by means of a simple formula.

In this article we present a Jacobi-type method for orthogonally reducing a real
skew-symmetric matrix to real Schur form, a question first considered in [P]. Evidently,
in the skew-symmetric case, 2 2 rotations are of no use. Our method uses 4 4
rotations to annihilate off-diagonal 2 2 submatrices. It is possible to use 3 3 rotations
instead but the resulting algorithm is more complicated.

Our main result is Theorem 1, which asserts that, given a 4 4 skew-symmetric
matrix A, there exists a simple formula for calculating a rotation matrix which will
transform A into real Schur form. An essential ingredient of the formula is the (well-
known) parametrization of 4 4 rotations by pairs of quaternions. Despite the presence
of the latter, the resulting algorithm is fairly simple, which may make it attractive in the
context of parallel computing.

1. 4 4 matrices and quaternions. In this section we review some of the basic
properties of quaternions and how these are related to the algebra of real 4 4 matrices.

Real 4 4 matrices form a 16-dimensional (normed) algebra. The norm is the
Frobenius norm

(1.1) ]IA[ /
k,l

The quaternions are a four-dimensional vector space over the real numbers with the
standard basis 1, i, j, k }. The multiplication rules

(1.2) 2 j2 k2 Ok
make the quaternions an associative algebra. The typical quaternion a + bi + cj + dk is
denoted by q. The real part of q is a and the pure quaternion part is bi + cj + dk. , the
conjugate of q, is given by

(1.3) a- bi- cj- dk.

The modulus of q is the Euclidean norm of q, namely,

(1.4) ql /a2+b2+c2+d2.

Received by the editors May 8, 1990; accepted for publication (in revised form) October 23, 1991.
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An easy calculation shows that

(.)

From the last formula we have

(1.6) Iql z q l12;

conjugation is related to multiplication by

(1.7) p-- @.
Now q is real and therefore

(.8)

Hence

qt a2 + b2 + c2 -I- d2.

pql 2 pqp pqfi ppqq.

(1.9) Ipql Ipl Iql.

From the formula q [ql 2 we deduce the distinguishing feature of the quaternions
-1which is that any nonzero quaternion has a multiplicative inverse. The formula for q

is

(1.10) q-

For any pair of quaternions p and q, we define p, q to be the matrix (relative to the
basis 1, i, j, k) of the linear transformation which sends a quaternion v to pv. Thus
p, q is a real 4 4 matrix and such matrices multiply together according to the rule

(1.11) (p,q)(r,s) (pr),(qs).

Ifq a + bi + cj + dk, then

(1.12)
-b a -d

and q,1
b a -d c

1,q
-c d a c d a -b
-d -c b d -c b a

The 16 matrices

1,1 i,1 1,i k,k

2 2 2 2

are, in fact, an orthonormal basis (relative to the Frobenius norm) for the 4 4 matrices.
We shall not use this fact.

2. 4 4 rotations. By analogy with two- and three-dimensional rotations, we use
the word rotation to mean "orthogonal linear transformation of determinant + 1."

LEMMA 1. Ifp and q are quaternions ofmodulus one, then p, q is a rotation.

Proof. Both p, and q are easily seen to be orthogonal matrices. Furthermore,
a quick calculation shows that p, and q both have positive determinants. Thus both
p, and q (and therefore also p, q) are rotations.

We note that ifp q, then the rotation p, q sends to and is therefore a rotation
of the 3-space of pure quaternions.
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LEMMA 2. If Tr is a pure quaternion ofmodulus one, then 7r, r is a 180 rotation
ofthe pure quaternions, and its axis ofrotation passes through

Proof. Since rTr" 7r the axis of rotation of r, 7r passes through 7r. Furthermore,
(r,r) - r2,"2 -1 ,-1 1. Hence 7r,r is a notation through 180 or 360. It
cannot be through 360 because, clearly, 7r, 7r 4:1 1.

LEMMA 3. IfO and 4 are pure quaternions ofmodulus one, then the rotation

o o(2.1)
I1-0bl * ll-04l

takes ch into O.
Proof. Every rotation of 3-space may be written as the product oftwo 180 rotations.

To rotate to 0, we first rotate through 180 about the bisector of the angle 00. This
takes 4 to 0 and 3’ to -3", where 3’ is any pure quaternion perpendicular to 0 and 4. Next
we rotate through 180 about the axis through 0. This leaves 0 where it is and brings -3"
back to 3’. Since the bisector of angle 004 passes through 0 + 4 the required rotation is

0+ )(2.2) (0,0)
10 + 4-* l0 + 41

which equals

04- 04-
10-1 10-1’

which, in turn, is clearly the same thing as

0 0
I1-o41 I1 -o4,1

The only time this formula does not work is when 0 + 4 0.

3. Reduction of 4 4 skew-symmetric matrices. We can now write down our
formula for the rotation which reduces a given 4 4 skew-symmetric matrix to real
Schur form.

We will need the following characterization of skew-symmetric matrices.
LEMMA 4. The 4 4 matrix A is skew-symmetric ifand only if

(3.1) A 7r, + 1,if,

where 7r and p are pure quaternions. Furthermore, 7r, + tp is in real Schurform if
and only ifboth r and tp are real multiples of i.

Proof. This follows immediately from the matrix expressions for 7r, and ,ft.
Writing

(3.2) 7r=ui+vj+wk and ff=xi+yj+zk,

we have

(3.3) 7r, + , 0 x-u y-v
u-x 0 -w-z
v-y w+z 0
w-z -v-y u+x

z-w 1v+y

from which 7r and ff may be found in terms ofA.
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THEOREM 1. IfA is the skew-symmetric matrix r, + p and R the rotation
matrix

I1 i- I1 if(3.4)
I11 irl *111 ibl

then RAR- is in real Schurform.
Proof. We seek p and q, both of modulus one, such that

(3.5) (p,q)(r, + ,p)(p,q)- si, + ,ti,

where s and are real.
In other words, we want

(3.6) pTrp- si and qpq- ti.

By Lemma 3 we should choose

I1 iTr I1 i(3.7) P numeratorl
and q

numeratorl

Then R p, q is a rotation matrix and

(3.8) RAR- Irli* / 1,11i.

This formula can be checked by direct calculation using the equation

(3.9) (11 ir)r Irli(lrl i),

and similarly for ft.
If we prefer, we can replace by -i in the above formula. We choose the sign

according to the following rule, which is the analogue of the condition 101 --< in the
symmetric case.

Let r ui + vj + wk. Choose

Irl ir
ifu>=0P numeratorl

and

I1 +iTr
(3.10) p if u < 0,

numerator

and similarly for ft. The exceptional case 7r 0 is dealt with by settingp 1, and similarly
for k 0.

4. Asymptotic quadratic convergence. By analogy with the symmetric case,
one may define the various Jacobi methods (cyclic, etc.). We need only deal with the
2n 2n case because the 2n + 2n + case can easily be reduced to this, as follows.
Let A be a 2n + 2n + skew-symmetric matrix. As its determinant is zero, there
exists a vector (v, say) of norm one such that Jv 0. Completing to an orthonormal
basis v, v_ V2n +, we get an orthogonal matrix (G, say) such that

(4.1) GIG- =( A0)"
A is, of course, also skew-symmetric, so we are reduced to the 2n 2n case. An obvious
question now is how fast the algorithm converges. We content ourselves with considering
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the special cyclic method. In this case, adapting an argument of Wilkinson [W], we are
able to establish asymptotically quadratic convergence, provided the eigenvalues are dis-
tinct. Sadly, the proof of the general case, given in [K], does not carry over (the fly in
the ointment being the equation AIk) )‘11 etc, in [K, p. 20]). We deal with the row-
cyclic method, the proof for the column-cyclic method being similar.

By the phrase "distinct eigenvalues," we mean that the eigenvalues of the skew-
symmetric matrix A (necessarily pure imaginary) are )‘ i, )‘ )‘ i, )‘ i, where

(4.2) 0_-<)‘1<),2<... <

We define

(4.3) min [)‘r- )‘,l.
r4=s

A may be partitioned into 2 2 blocks:

All
(4.4) A

Anl

O A12
A21 O

(4.5) Define Off(A) ..
in other words, Off(A is A with each Aii replaced by O.

THEOREM 2. Let A be a skew-symmetric matrix with distinct eigenvalues (as defined
above). Suppose one sweep of the special cyclic Jacobi method transforms A into the
matrix Z. Then, provided that Off(A )II < 6, we will have

4.6 Off(Z )11 IIOff(A) =

where e 6 Off(A
Proof. We will need the following key inequality.
LEMMA 5. Suppose thefirst rotation ofthe sweep (i.e., the one that annihilates A12

and A21 transforms A into B. Then, for m 4 1, 2,

(4.7) []Blml[ []Alml] +

Proof. Let

=Tr, + 1,ft.
A21 A22

Writing 7r ui + vj + wk and k xi + yj + zk, we have, as in (3.3),

(4.8) All
A21

0 x-u y v

A12 u- x 0 -w- z v + y

A22 ] p-y w -k-z 0 -u0--w-z -v-y u+x
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Assume that

(4.9) u>=0 and x>=0.

The first rotation of the sweep is R p, q, where

I1 / u / wj- vk
(4.10) p

numerator

and

I1 + x + zj- yk
(4.11) q

numerator

Setting Q (g/o), we have B QAQ-1, where B12 0 B21 For m 4: 1, 2,

(4.12) ( Blm i(AlmB2m) A2m)
and Blm Aim if both 4: 1, 2 and m 4: 1, 2. Thus, for m 4: 1, 2, one has

(4.13) Z Bimll 2 E [IAim[I 2.

On’(n) =< Off(A because

4.14 off(B 2 Off(A 2 2 A ,2 =,
Each 2 2 block of both p, and q is a scalar multiple of an orthogonal matrix. For
a 2 2 matrix W, let us write

(4.15) WI IIWI[.

If W and M are 2 2 matrices and W is a scalar multiple of an orthogonal matrix, we
have

(4.16) I1WM[] will MII,

because W is WI times an orthogonal matrix.
Let us write

(4.17) p,
r21 P22

and * q Q21 Q2

For m 4 1, 2 the first rotation of the sweep transforms

AimAm)
into

(4.18)
B2m P21 P22 Q21 Q_] A2m

Thus

(4.19) Blm (PllQI + P12Q21)Alm + (PIQ12 + P12Q22)A2m,
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so that

(4.20) [IB,,[I =< [P,l[ [Q,,[ I[A,,[[ + + [P,2[ [Q22[llA2m[[.

Now ]Pll] 2 d- P12] 2 since ]p] 1, and

(4.21) ]Q]2+ [Q]2= since ]q] 1.

Thus Pll ]Qll + P12 [Q21 ----< 1. Hence

(4.22) I]Blml] <= ][Amll + (IP,21

From the formulas for p and q

Vl) 2 -I- W2 }/y2 nt_ Z 2

(4.23) P121 =< and ]Q,21--<
I1 + u I1 +x

Therefore,

Vl)2
(4.24)

2u 2x

To show that x and u are not too small, we apply the Wielandt-Hoffmann Theorem
to A (A Off(A)) + Off(A). We assume, in addition to u >_- 0, x >_- 0, that u >=
x >= 0. We deduce, in particular, that there are eigenvalues ai, fli of A (where a and /
are, of course, real) such that, for 6 as in (4.3),

->__a>_-O

and

(4.25) (u- x- a) 2 + (u + x-/3) 2 _-< 1/211Off(A)l[ 2.

Interpreting this in terms of distances in the plane, the distance between (a, /) and
(u x, u + x) is at most

IIOffA[I

Projecting onto the line x + y 0, it follows that

(4.26) 12xl I- o_ IIOffAll

and therefore that

As we assumed u >_- x, we also have

(4.27) u >=-.
2

If x >= u >_- 0, we deduce likewise that u >_- . So

(4.28)

/V2 + W2 + /y2 + Z2

Blm < Aim -4c- Azm

=< []A,ml[ + f (/v 2 + w2 + y + z2)llA2mll,
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but

(4.29) iiA12112 2(v2 + w2 + y2 + z2).

Therefore,

Blml] <- Aim +

as required.
If u < 0, (4.10) is replaced by

(4.31) p
17r] u-- wj + vk

[numerator[

and similarly for x < 0. In (4.23) and (4.24) u and x are replaced by ]u[ and ]x] and
we now conclude that ]u] >= and ix} >_- , and that therefore Lemma 5 holds, whatever
the signs of u and x may be. We observe that for e > 0 the exceptional cases r 0 and

0, cannot occur because neither u nor x can be zero. V1
With this inequality at our disposal, we may now prove Theorem 2 along the lines

of [W]. As the sweep proceeds, 6, of course, remains unchanged and ]]Off A does not
increase, so we may use the same e in the analogous inequality at each stage ofthe sweep.

We will prove (4.6) for n 5. The proof for arbitrary n is similar. The sweep
transforms A into Z as follows.

(4.32)

So Ao Bo Co Do S 0 B1 C1 Dl
To Eo Fo Go T1 El F1 G1

A Uo Ho Io -- Uo Ho Io
Vo Jo Vo Jo

Wo Wo

$2 A2 0 62 D2 $3 A3 B3 0 D3
Tl E2 F1 G1 Tl E2 F2 G1

Vo Jo V1 Jl
Wo Wo

$4 A4 B4 C4 0 $4 A5 B5 C4 0
T1 E2 F2 G2 T2 0 F3 G3

"- U1H2 12 -- U2H3 I3
VI J2 V J2

W W

$4 A6 B5 C5 0 $4 A7 B5 C5 D5
T3 E4 0 G4 ".. T4 E5 F5 0

U2 H4 I3 U2 H4 14
v2 J3 v2 J4

W W2
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S4 A7 B6 C6 D5 $4
T4 E6 F6 O

U3 O 1
V3 J5

$4 A7 B7 C7 D7
T4 E7 F7 G7

U4 H7 17 --Z.
V4 J7

(The dots stand for -Ar and so on.)
Applying (4.30) three times, we have

IIB, IIC=ll(4.33) IIA41I--< IIE, /

A7 B7 C6
T4 E7 F6

U4 H6
1/3

F, + ,,1! D3

Similarly,

IIC211(4.34) B4II H, + D3.!I I,

and

lID3116411 J, II.

Hence

96
G5
O
J6

(4.35)

IIA4II 2 / 1134112 / IIC41l 2 _-< (IIB, 2 / IIC2112 / IID3112)(IIE, 2 / IIF, 2 / IIG, 2)

+ IIC=ll = + 11D311 =)( H, = + 11 =)

+ -- (ll D3112)(1[ J, )

-ltz (IIBlll 2 + 1162112 + IID3112)(IIE, 2 + IIF, 2 + [101112

+ H, : + II/, + J, :+).

The argument now proceeds just as in [W], mutatis mutandis. At the end of the
sweep we will have

Of(A )ll = Of(A )11 =
(4.36) IlOff(Z)[[2 <

2e 2 2

which proves Theorem 2.
Thus, for distinct eigenvalues, the convergence of the special cyclic method is

asymptotically quadratic.
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As to convergence, we observe that the classical Jacobi method can be shown to
converge in the usual way. If, in A, we annihilate the off-diagonal A;j of largest norm,
we obtain B (say) where

2
Off(B) --< n2 n

and this guarantees that the off-diagonal norm tends to zero.

Aeknowletlgment. The author is grateful to Manchester University, Manchester,
England, for its hospitality.
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Abstract. It is shown that the Moore-Penrose inverses of Hankel matrices are generalized Bezoutians.
This result generalizes the well-known fact that Hankel matrix inverses are (classical) Bezoutians.
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1. Introduction. In the present paper, we investigate the structure of the Moore-
Penrose inverse (MPI) of Hankel matrices

1.1 H SI. $2 Sn.
Sm- Sm Sm+ 2

with complex entries. The main aim is to extend some well-known results on the structure
ofthe inverses ofHankel matrices to MPIs. These results open the door to the development
of fast algorithms for the construction ofthe Moore-Penrose inverses ofHankel matrices
and related matrix classes.

A convenient tool to describe the results, both the classical ones and those of the
present paper, is the generating function of a matrix defined as follows: If A

m-In-1[ai]0 0 then A (), #) denotes the polynomial in two variables

m-1 n-I

A()L #) , aijXi# j.
i=0 j=0

DEFINITION 1.1. An n n matrix B is said to be a classical (Hankel) Bezoutian if
and only if it has a generating function of the form

a(X)b(#) b()a(#)
(1.2) B(X, #)

where a(X) and b(X) are polynomials with degree less than or equal to n. The matrix
B is called the Bezoutian of the two polynomials a(X) and b(X) and is denoted by
Bez (a, b).

The Bezoutian concept was introduced in connection with root localization problems
(problems ofthe Routh-Hurwitz type). For information about the history ofthis concept,
we refer the reader to [19] and [25].

It is well known that the inverse of a nonsingular Hankel matrix is a classical Be-
zoutian. For the positive definite case, this fact already follows from the Christoffel-
Darboux formula of the theory of orthogonal polynomials; in the general case it is a
consequence of the Gohberg-Semencul formula (see 8 and also 13 ], 18 ], and 21
for the inverse of a nonsingular Toeplitz matrix. This fact was first observed by Lander
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in 20 ]. In this paper, it is also proved that, vice versa, the inverse of a regular Bezoutian
is a Hankel matrix.

Ifthe Hankel matrix H is singular, then the question is whether there is a generalized
inverse of H, which is a Bezoutian. By a generalized inverse of a matrix A, we mean a
matrix B satisfying

(1.3) ABA A, BAB B.

In 13, I, 7.2 ], it is shown that any n n Hankel matrix possesses a generalized
inverse that is a classical Bezoutian.

A singular matrix has many generalized inverses. The most important of them is
MPI, denoted by A /, which fulfills the following additional conditions:

(1.4) (A+A) * A+A, (AA+) * AA +.
Here A * denotes the conjugate transpose of A. The MPI of a matrix exists always and
is uniquely determined (see [4]).

One can easily see that the MPI of a Hankel matrix is not necessarily a classical
Bezoutian. As an example, we consider the 3 3 Hankel matrix

0 1]H= 0 0
0

The MPI of this matrix equals

H+= 0 4
0

which is not a classical Bezoutian.
In order to describe the structure of the MPI of Hankel matrices, we introduce the

concept of an r-Bezoutian.
DEFINITION 1.2. An rn n matrix B is said to be a (Hankel) r-Bezoutian if and

only if there are polynomials u;()) and vi(X) (i 1,..., r) such that

(1.5) (X )n(k, /2) bli(k)l)i(lA).
i=1

The minimal r for which a representation 1.5 exists will be called the Bezoutian rank
of B.

For a given matrix B, let VB denote the matrix with the generating function
( u)B(, t). If B [bij], then VB is given by

7B bi- 1,j bi,j- 1].

It is an immediate consequence of the definition that the Bezoutian rank ofB equals the
rank of the matrix VB.

Clearly, classical Bezoutians are special 2-Bezoutians. It can be shown (see 13, p.
36]) that any nonsingular 2-Bezoutian is classical.

Furthermore, it is obvious that any symmetric 2-Bezoutian is classical. With the
help of symplectic linear algebra, this can be generalized to the following assertion: If
the Bezoutian rank of a symmetric matrix B is equal to r then r is even and B can be
represented as the sum of r/2 classical Bezoutians.
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In fact, let VB GF be a full rank decomposition (G, F cnr). Since B is
symmetric, VB is skew-symmetric. This implies the existence of a nonsingular skew-
symmetric r X r matrix C satisfying G FC. It is well known that the order of any
nonsingular skew-symmetric matrix C is even, and C can be represented in the form

0 Im]Kr,C=K
--Im 0

where K Cr r. From this representation, our claim follows immediately.
For r 2 the r-Bezoutian concept was introduced in the more general block matrix

context by Anderson and Jury 2 ]. The general r-Bezoutian concept appears for the first
time in the papers of Lerer and Tismenetsky 21 ], 22 (see also 9 and 24 ).

Let us note that there is a close relationship between the concept of an r-Bezoutian
and the concept of matrices with a displacement structure, which was introduced and
extensively studied by Kailath, Kung, and Morf [17] and Kailath and Chun [18]. Actually
the (Hankel) displacement rank of an n X n matrix B equals the rank of a certain
n n submatrix of the (n + (n + matrix XTB. Hence the displacement rank is
less than or equal to the Bezoutian rank. More discussion about these topics can be
found in 3 ], 6 ]- 8 ], 19 ], and references therein.

Knowing from the example presented above that the MPI of a Hankel matrix is in
general not a 2-Bezoutian, it is natural to ask whether it is an r-Bezoutian for certain r.
The positive answer of this fact will be the contents of the present paper. We are going
to formulate the main results.

THEOREM 1.1. The MPI ofa Hankel matrix is a 4-Bezoutian.
In the square case the result can still be strengthened.
THEOREM 1.2. The MPI of a square Hankel matrix is the sum of two classical

Bezoutians
The proof of these theorems will be presented in 3. In 6 the exact Bezoutian

rank ofH+ for the square case rn n is computed. In order to formulate the corresponding
theorem, we introduce the concept of a Hankel circulant.

DEFINITION 1.3. An n n matrix H is said to be an a-Hankel circulant (c C) if
and only if it is Hankel, H [si / j.], and

Si+n OlSi (i 0,..., n 2).

We call H an ov-Hankel circulant if and only if

si 0 (i 0 n 2).

When speaking of a Hankel circulant, we have in mind an a-circulant for a e C or

After reversing the order of rows or columns, a Hankel circulant goes over into a
(generalized) circulant in the usual sense (see 5 or 4 for the definition). For a a
Hankel circulant is a g-circulant in the sense of 5 ]. It is well known that the Hankel
circulants are the only Hankel matrices for which the inverse is again a Hankel matrix
(see [10], [16], and [23]).

THEOREM 1.3. Let H be a nonzero square Hankel matrix and let r denote the
Bezoutian rank ofH+. Then

a r 2 ifH is regular or a Hankel circulant;
(b) r 4 otherwise.
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In addition to this theorem, let us note that in the nonsquare case the description
of the Bezoutian rank is more complicated. In particular, there are Hankel matrices the
MPI of which has Bezoutian rank 3. As an example, we put

0 0 0]H=
0 0

The MPI of this matrix is given by

and the Bezoutian rank ofH+ equals 3.

Il
In 5] it is proved in principle that the MPI of a 1- or (-1 )-Hankel circulant is a

Hankel circulant again. This result immediately extends to the case ]a] 1. However,
it fails to be true if ]al 4 1. As an example we choose a matrix of the form

where Ho is a regular upper triangular Hankel matrix. H is a 0-Hankel Bezoutian. The
MPI ofH is given by

H+=[ H-10 00]"
Clearly, H+ is not a Hankel circulant.

From Theorem 1.3, it follows now, however, that the MPI of a Hankel circulant is
a 2-Hankel Bezoutian. Since it is symmetric, it is actually a classical Bezoutian.

The fact that the MPI of Hankel matrices are Bezoutians is not only of theoretical
interest, but has important computational consequences. Let us explain this fact.

In 4 it will be shown that r-Bezoutians can be represented as the sum of r products
of circulant matrices. The formulas are, in a sense, generalizations of the Gohberg-
Semencul formula and the formulas ofAmmar and Gader ]. For more details we refer
to (see also 18 and 2 ). The multiplication of a circulant matrix by a vector is
equivalent to the cyclic convolution of two vectors. That means, in order to compute
the vector By for an n n r-Bezoutian B, one can apply fast convolution algorithms or
fast Fourier transform (FFT), which means that the computational complexity can be
reduced to O(n log n) floating point operations (flops). Thus the pseudo-solution of a
system Hx y, which is x H+ y, can be computed with this amount, provided that
the parameters of the matrix representations are given.

Let us shortly explain from where these parameters come. In order to evaluate the
MPI of a Hankel matrix, we utilize the familiar extension approach, which means we
extend H to a regular matrix JOg. To get a convenient extension, we apply a kernel
structure theorem for Hankel matrices. This leads to a matrix g, which is a Hankel
mosaic matrix in the sense of[14 ]. Now we can apply a result of[14 ], which is related
to the block generalization of the Gohberg-Semencul formula (see [7], [18], and [2 1])
and states that the inverse of Jeg can be constructed from a system of eight vectors via a
Bezoutian-type formula. The vector system is called a fundamental system. It also de-
termines the MPI H+. In 5 we present various possibilities to characterize and construct
a fundamental system.
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Of course, now the problem arises of how to compute the fundamental system
effectively, i.e., via a fast algorithm with complexity less than O(n3). This problem was
treated in Hellinger’s diploma thesis [15 and will be considered in a subsequent paper
ofthe authors in this journal. Actually, it can be shown that O( n -) complexity algorithms
to evaluate fundamental systems do exist.

Toeplitz matrices ai-j] are closely related to Hankel matrices. A Toeplitz matrix
goes over in a Hankel matrix after changing the order of columns or rows. In that way
all results formulated in this paper can immediately be transformed into the corresponding
Toeplitz matrix results. The Hankel Bezoutian concept has to be replaced by the fol-
lowing one.

DEFINITION 1.4. A matrix A is said to be an r-Toeplitz Bezoutian if and only if
there are polynomials ui( 3 vi( r) such that

X#)A (X, #) ui( k
i=1

2. The extension approach for the MPI. In order to construct the MPI, we use the
familiar extension approach, which is based on the following property.

LEMMA 2.1. [4]. Let A be an arbitrary matrix, U a matrix the columns of which
form a basis ofthe kernel ofA, and V a matrix the columns ofwhich form a basis ofthe
kernel ofA *. Then the matrix

(2.1) 1
U* 0

is regular and 1-1 admits the representation

V+ 0

where the superscript "+" denotes the MPI.
This lemma indicates that in order to construct the MPI of a matrix A, one has to

find the kernels of A and A*. For Hankel matrices there exists a remarkable kernel
description. This description concerns more a family of Hankel matrices than a single
matrix H. For given complex numbers si 0,..., rn + n 2), we consider, the family
of Hankel matrices Hk k rn + n ),

(2.2) Ok-- [Si+j]{-:J(l-- rn + n- k).

We formulate the corresponding result in polynomial language. Ifx (Xk)-1, then we
denote x()) x0 + xl + + xn X 1. Instead ofker Hk, we describe the polynomial
subspaces

% { u(X):/-/u 0 }.

THEOREM 2.1 13 ]. Let { Hk } be a family of Hankel matrices given by (2.2),
Hk 4: O. Then there exist integers p and q, p <= q, with p + q rn + n and vectors
u Cp+ 1, v 6 Cq+ such that thefollowing is true:

(a) Ifp < k <= q, then { u()), )k-p- lU() } is a basis of Ck;
(b) If q < k, then { u(), )k-p-lU()), V()) kk-q-1/)()} forms a

basis of Cgk
(C) Ifp >= k, then k {0).
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In order to construct the MPI, we also need the kernel of the adjoint matrices
H. But we have H =/ql, where m + n k and the bar denotes the matrix with
conjugate complex entries. Hence for c , { x(X)" x ker H } we have

Now we consider the matrix H defined by 1.1 ), which is equal to Hn. The integers

x’=n-p, ,:=n-q (=p- m)

are called partial indices ofH. A system of vectors { u, v } or corresponding polynomials
{ u(X), v(X) } possessing the properties formulated in Theorem 2.1 is called afundamental
system of H. A fundamental system of a Hankel matrix can be constructed recursively
with O((m + n) 2) operations or, if FFT is utilized, with O((m + n) log2 (m + n))
operations (see [12] and references therein).

For a given vector u (uk), let Mn(u) (n > p) denote the n (n p) Hankel
matrix

0 u0
//0 Ul

Mn(u)= u0 Up n.

u_ u
Up 0

According to Theorem 2.1, we distinguish between cases (a) >= 0 >= ,, (b). > 0, and
(c) < 0.

THEOREM 2.2. Let H be an m n nonzero Hankel matrix, ( u, v } a fundamental
system, and , . the partial indices ofH, >= ..

(a) If >= 0 -> , then

(2.3)

is nonsingular and

(2.4)

(b) If. > O, then

is nonsingular and

2’=[ H Mm(ff) ]M(if) T 0

3’-1 [ H+
Mm()+

(M"(ff) T)+ ]0

(2.5)

dCt: M(ff)

,jet- [H+ W+], where W
lMn(

(c) If < O, then

2F [H M,(tT) Mm()]

If 0 or v 0, then Mm(if) or M,(if) r does not appear in
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is nonsingular and

W+
where W Mm( ff) Mm( ) ].

3. Hankel mosaic matrices and proof of Theorem 1.1. In the previous section, the
problem of the MPI of Hankel matrices H is reduced to the problem of the inversion of
a matrix consisting of Hankel blocks. Such a matrix is referred to as a Hankel mosaic
matrix. Matrices of this type were investigated in [14 ]. We present some results of the
paper 14 ], which will be used for the proof of the main theorems.

Let Jog [Hij]= l]= be a nonsingular Hankel mosaic matrix, where the H;j are
m; nj Hankel blocks. Furthermore, let 90 [Bi]}= li= be the inverse of , where
the nji are nj. mi blocks.

For notation purposes, we need a block generalization of the generating function
concept defined in 1. For two multi-indices N (n,..., ns) and M (m,..., mr),
let CNM denote the space of all block matrices A [Aig] where Ai=lj=l

Now A(, ) is defined as the s r polynomial matrix

[Ao(X, )]si=lj=l

where Aij( k, u) means the generating function in the usual sense. If, in particular, all m
equal 1, then CN M will be the space of block columns X col (Xg), X C" M, and
the generating function is a polynomial only in k.

We still need some more notation. The last unit vector (0,..., 0, in C will be
denoted by e(m). IfM (m,..., mr), then e(M)will be the block diagonal matrix
diag (e(m) e(mr)) CMl(r), where l(r) := 1, (r times). For a given
Hankel matrix H hk / l] =-0 7_--o we introduce column vectors

g(k, H) := [hn+m-k hn+m-2hn+m-1] T - Ck,

where hn + m-1 stands for an arbitrary fixed number. For a Hankel mosaic matrix
[nolr;= we define

g(M, ) [g(mi, HO)] ri= j=
_
cM l(s).

THEOREM 3.1 [14]. Let Hi C,M N, M { m mr}, N
{hi ns}, be a nonsingular Hankel mosaic matrix. IfX C.Nxltr), W CN(s),

CM (s), 1 CM (r), are the solutions ofthe equations

(3.1) 5/gX e(M)

W g(M,

;/gT e(N),

o’/t rI g N g/t r

respectively, then the generatingfunction ofop-1 _.NM is given by

(3.2)

where

Y(X) W(X) e(N + l(s))(h), (X) IY() e(M + l(r))(X).

Now we are able to prove Theorem 1.1. We distinguish between the cases (a), (b),
and (c) of Theorem 2.2.
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Proofof Theorem 1.1. Case (a). In this case we have r s 2 and X(X), Y(X),
)(X), and IY(X) admit representations

1( k 2( x
where xi, yi E C n, i, 1"]i C.-v, i, i c.m, i, i - Cx. Applying part (a) of Theorem 2.2,
we get

(3.3) H+(X, u) (Xl(X)37(t) + x2(X)372(u) y(X)2(u) y2(X)22(t)).

That means H/ is a 4-Bezoutian.
Case (b). In this case r 3 and s 1. Therefore, we have representations

X(X) [Xl(X)x2(X)x3(X)], Y(X) y(X),

Applying Theorem 2.2, we obtain

(3.4) H+(X, #) (Xl(X)371() + X2(X)372(#) + X3(X)J73(z) yl(X)2l(X)),

which shows that H/ is a 4-Bezoutian also in this case.
Case (c). Case (c) is analogous to (b). Thus, Theorem 1.1 is proved. C]

ProofofTheorem 1.2. In the case ofa square matrix H, the matrix o’g is symmetric
and g(M, o/g) g(N, gig r). Hence X P and W I7, which implies X -i and
Yi 29i for 1, 2. Thus we get from (3.3)

H+ Bez (x, Y + Bez (x2, Y2),

which proves Theorem 1.2.

4. Matrix representations. Let A be an r-Bezoutian. We show that A can be rep-
resented as a product sum of circulant matrices, in particular, of triangular Toeplitz and
Hankel matrices. Without loss of generality we may assume that A is square. Otherwise
we would add some zero columns or rows to get a square matrix.

For a given vector g (gi) and complex a, let C,(g) denote the so-called
(a-Toeplitz) circulant matrix

Ca(g)

+ egn g gn-1
Otgn-. go + Ogn ""... gn-.. 2

agl cg2 go +

We have

(4.1) C,(g) g(Z,),
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where Z denotes the matrix

0

We consider matrices of the form

(4.2) B C(gi)rC(hi),
i=1

where gi, hi e C n + and a,/3 e C.
LEMMA 4.1. Let B be oftheform (4.2). Assume thatJbr all complex 0

(4.3) , gi(X-)hi(X) O.
i=1

Then

(4.4) B(X, #)=

Proof. We introduce the vectors l(X) [1 X xn- 1]T. Then B(X, t) l(X)TBl(t).
Furthermore,

Zl(t) tl(t) mod (#n _/3)

and

/(x) -- x/(x) mod (k a).

Hence we get, taking (4.1) into account,

B(,, #) ., l(X)rgi(Zo)hi(Z)l(#)
i=1

_, gi(X)hi(#)l(X)Tl(#)
i=1

., gi(X) hi(l)
X ’Xtti=1

mod (Xn a, /.t )

mod (k a, n _/3).

In view of (4.3), E gi(X) hi(#) is divisible by Xx. Hence we may employ the relations
k O/mod (An a) and #n =/3 mod (#n _/3) and obtain (4.4) as a congruence. Since
both sides of (4.4) have degree less than n in and , the congruence is actually an
identity, ff]

Let J denote the matrix of the flip operator
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LEMMA 4.2. Suppose that A JB and (1 X#)B(X, /) b(X, #). Then
(X z)A(X, ) a(X, t), where a(X, ) b(X -1, )X’. In particular, A is an r-Hankel
Bezoutian ifand only ifB is an r-Toeplitz Bezoutian.

Proof We have/(X)TJ )f-ll(-l)T for all 2, 4: 0. Hence

A(X,/z) l(X)rJBl(#) x"-l/(x-1) r Bl(#)

b(X-l,#))k n.

THEOREM 4.1. Suppose that A is an r-Bezoutian,

(X #)A(X,/) ui()k)l)i(#)
i=1

and a, [3 fixed numbers with 1. Then

(4.5) A
a/3 iZ1= JC,(li) TCI3 (l)i)

where lli(
Proof. Let A’ denote the fight-hand side of (4.5). Then B := al3)JA’ is of the

form (4.2), where gi ti, hi vi. Since Z ui( X)vi(X) 0 for all X, the condition (4.3)
is fulfilled. Thus, by Lemma 4.1,

B(X, ) -- aC3NU tZl.= i( )t )/)i(L).

It remains to apply Lemma 4.2 in order to get (4.5).
Let us note that, for a 4: 0,

Ca(l) T-- o/C1/.(u

Taking this relation into account, we obtain from (4.5) for 4: 0, letting a -- , the
formula

(4.6) A
/ iZ1= JCo(ui)C[3(l)i).

Furthermore, we get for a 4 0, letting/3 - oe, the formula

(4.7) A E JCa(lli) TCo(f)i) T.
O/i=

Letting both a -- and/3 -- , we obtain

(4.8) A JCo(ui)Co(f)i) T.
i=1

COROLLARY 4.1. For A given in Theorem 4.1, the formulas (4.6), (4.7), and
(4.8) hold.

Let us note that in formula (4.8) only triangular Toeplitz and Hankel matrices are
involved. Therefore, it is, in a sense, a generalization ofthe well-known Gohberg-Semencul
formula.
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5. Characterization of the parameters. In 3 we have proved that the MPI H/ of
a Hankel matrix H has a generating function of the form

4

(5.1) H+(X, "t) X Ui(k)l)i(#)"
k--i=

In 4 we have shown that this formula leads to matrix representations, which can be
utilized for the fast computation of pseudo-solutions. In this section, we discuss the
problem of how the parameters ui and vi can be characterized. We present several pos-
sibilities.

For simplicity of presentation, we restrict ourselves to the case of an m n Hankel
matrix with rank H < min ( m, n }. This includes the singular square case. The full rank
case can be considered in a similar way.

5.1. First we recall how the vectors ui and vi (i l, 2, 3, 4) appear in the proof of
Theorem I. in 3. According to (3.3), the relation (5.1) holds with ui, vi being

Ul Xl, U2 X2, U3(k) Wl(k)- kn, /14--

I)I(X)-- ll()k)- xm, /)2-- I2, 1)3-- --21, I)4-- --22.

Here xi, wi, 2i, and vi denote the first parts, i.e., the first n components, of the solutions
of the equations

(5.2)
2 e( Yr)

[ w2 ] [ g m Mm( ff

2 0

and the analogous equations for r.
In order to have regard for the corresponding equations for and , we introduce

the notation ffl -v3, 72 -v4, b3 ;91, /1"4 1)2. We introduce furthermore the
polynomial matrices

and the signature matrix

0 0

0il0 0 0
-1 0 0
0 -1 0

Then the relation (5.1) can be written in a compact form, i.e.,

5.3 H+ X, #) U(X)OO(#) r.

5.2. We characterize now the vectors occurring in (5.1) in terms ofpseudo-solutions
for the matrix H. In view of Theorem 2.2, we have

X H+e(m), W H+g(m, H), w2 H+g(m, Mm(ff)),
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and

x2 (Mn( ff)T)+e().
We introduce the matrix T Mn(if) TM(u), which is a positive definite Toeplitz matrix.
Then we have

(Mn() T) + Mn(tt) T-
Hence

x2 M(u)Tle().
That means H+ can be constructed with the help of three pseudo-solutions and the last
column of a Toeplitz matrix inverse.

5.3. A more general characterization will be obtained using the solutions of certain
homogeneous equations. To explain this we need some notation.

For an r s Hankel matrix H0 [hk/t]6-16-, OHo will denote the (r
(s / Hankel matrix [hk+t]6-26. The matrix OHo is one member of the family of
Hankel matrices generated by H0 as it is described in 2. If ggg Hij] is a Hankel mosaic
matrix, then we define 0Jog [OHj]. In particular, for ggg defined by (2.3), 0Jog will be
a full rank matrix with kernel dimension 4.

Observation. The vectors

0 0 -1
u4-(5.4) U 1 U2= 2 U3=

r/1

0 0

form a basis of ker 03F.
Now let Z Zi

T ’T T 1, 2, 3, 4) be an arbitrary basis of ker 03g. Then there
is a regular 4 4 matrix C such that [U1 U2 U3 U4] [Z Z2 Z3 Z4]C.

The matrix C can be determined as follows. Let ,I, denote the matrix with the four
rowsf (i 1, 2, 3, 4), where

fl [Sm-1 Sm+n-1 p 0

f [a0 a0 00 01,

f3 -[e(n + 1) T 0] , and f4 -[0 e(gg + 1)v] v. Then [U1 U2 U3 U4] I4 and
P := if[Z1 Z2 Z3 Z4] is nonsingular. Now we have p-1 C.

Denoting Z(h) [zl(h) z2(h) z3(h) z4(h)], (5.3) goes over into

H+(X, z) Z(h)p-lO/3-12(#) w,

where (u) and fi are analogously defined as Z() and P. So we have proved that H+

is determined by any basis of ker 0gCg and ker 03g T.
Remark. It can be checked that already ker 03g determines H+.
5.4. We show now that two vectors belonging to the kernel of 0o’g can easily be

determined. For these vectors, the last components vanish. Suppose that [x 0] T

ker 0Jog, x C" / 1. Then x ker OH and x ker M+1(if’), where u’ [0 u 0] ,
and vice versa. According to Theorem 2.1, we have x ker OH if and only if there is a
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g Cx+l such that x Mn+ l(b/)g. Hence [x 0] r belongs to ker 0oW if and only ifx is
of this form and T’g 0, where T’ is the ( X (x + Toeplitz matrix

T’ Mn+ l(ff’)TMn+ I(H).

Let us note that T defined above goes over into T’, applying a transformation which
is analogous to the transformation 0 for Hankel matrices. The kernel of T’ is two-di-
mensional and can be described with the help of the first column of T-1 In fact, let c
be this column. Then

gl :[o]C, g2:[0]
is a basis of ker T’. Recall that denotes the reflection of c. Hence

Vi [Mn+’o(U)gi ] (i= 1,2)

belong to ker ONe. Furthermore, these two vectors are linearly independent.
In order to get a basis of ker 0g, one has to add two of the vectors Ui defined by

(5.4). The question we still have to answer is that oflinear independence. U1 is obviously
linearly independent of the V,. if (1 # 0. According to (2.4),

Mm( ff) +e(m --T_,,Mm(u)re(m).

From this relation we conclude that ( :/: 0 if and only if the last component of u
is nonzero. So we have proved that H/ is determined by the vectors U, U4, and c if
Up :/: O. In [13] singular matrices with this property are called quasi-regular.

It can be shown that when Up O, the vector U1 can be replaced by U2 in order to
get a basis of ker &g.

5.5. Finally, we discuss the problem of whether H/ can be constructed with the
help of some columns and rows ofH/. First we observe that the vector x occurring in
(5.1) and (5.3) equals the last column ofH/. Let x0 denote the first column ofH/ and
let (o be such that

where e0 denotes the first unit vector in Cm. Then [0 xr 0 (r] r belongs to ker &gg. We
have

0 Mm(if) +e0 P- Teo,]I/lrn( l,l

Hence (0 # 0 if u0 # 0. Thus we obtained that the vectors (0 and ( and, therefore also
the corresponding elements of ker 0oCg, are linearly independent if u0 # 0 and Up # O.
So we got the following result.

THEOREM 5.1. Let H be an m X n Hankel matrix with rank H < min { m, n } and
let u be a vector generating the kernel ofH as described above. If the first and the last
components of u are nonzero, then the matrix H+ can be constructedfrom its first and
last columns and rows and thefirst column ofthe inverse ofthe Toeplitz matrix T.

6. Proof of Theorem 1.3 and MPIs of circulants. In this section we restrict ourselves
to square Hankel matrices. Our main aim is the proof of Theorem 1.3. Since, as noted
above, the inverse of a nonsingular Hankel matrix is a 2-Bezoutian, we may assume that
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H is singular. We split the proof of Theorem 1.3 into the necessity and sufficiency parts.
First, we shall prove the following.

THEOREM 6.1. IfH is a singular square Hankel matrix such that the MPI H+ has
Bezoutian rank less than 4, then H is a Hankel circulant matrix.

Proof. According to (3.3), we have
4

(6.1) VH+
i=1

where

Ul
0

U2
0

U3 /,/4
0

/) /13 /)2 /,/4 /)3 u /)4 m/,/2

and xi, wi denote the first parts of the solutions of (5.2).
According to the assumptions, we have rank VH+ < 4. That means the vectors Ul,

u4 are linearly dependent. Since the last components of ul, u2, u4 vanish and the
last component of u3 equals -1, the vectors Ul, u2, u4 are already linearly dependent.
Hence there is a nontrivial vanishing linear combination, i.e.,

aXl -- /X2 3"W2 0.

We now apply the operator Mr Mn(zT)T to this equality. In view of (2.3) and
(5.2), we have

Mrxl O, MTx2 e_ l, MTw2 O.

Hence fle_ 0, i.e.,/3 0. So we have proved that the vectors xl and w2 are linearly
dependent.

According to the definition ofxl and w2, we have xl H+en-l, w2 H+Sff, where
S denotes the backward shift operator, i.e.,

(x)- (0)
(s)(x)

In view of axl 3’w2 0, we have aen-1 3"Sff ker H+. But ker H+ ker H*
ker/. Hence aX"-1 3’(Sff)(X) 6 Cn. Now we apply the kernel structure Theorem
2.1 and conclude that there is a polynomial q(X) such that

a(x)- (0)akn-1 3" q(X)ff(X).

From this relation we see that a 4 0 or u(0 4 0; otherwise we would have a contradiction
to Theorem 2.1. Furthermore, we obtain

O/)k 3"/(0) (3" "
By Theorem 2.1, this implies aX 3"ti(0) 6 n+l. In other words, ae,
belongs to the kernel of Hn +l. That means we have

OlS’-i+n 3"(0)" (i O, n 2)

or, equivalently,

Si+ n [u(O)si.
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Taking into account that one of the numbers a or 3’ and one of the numbers a or u(O)
are different from zero, one concludes that H is a t-Hankel circulant for u(O)/&,
t=0, ort= . V]

We still have to prove the sufficiency part of Theorem 1.3, which means we have
to investigate the MPI of Hankel circulant matrices.

Let us start with an observation concerning Hankel circulants. Any a-Hankel cir-
culant H, a 4: c, can be represented in the form

(6.2)

where

H Ho(g) + aHoo(g),

g gn 0 go

H(g)= ’" "’" O
Ha(g)= "’"g go gn-1

In the case a m, we have H Ho (g). It is easily checked that

Ho(g) Bez (g, 1), H(g) -Bez (g, Xn),

where g(h) go + glh + + gh’. Hence the following is true.
PROPOSITION 6.1. An a-Hankel circulant matrix H can be represented in theform

H=Bez(g, 1-aX") ifa# or H=Bez(g,-h) ifa= .
Now we are going to prove the following theorem, which will be formulated for

general Hankel circulants.
THEOREM 6.2. The MPI ofa Hankel circulant matrix H is a classical Bezoutian.
Proof. For the case of a nonsingular matrix H, the assertion follows from the well-

known facts that the inverse ofa circulant is a circulant again and that a Hankel circulant
is a classical Bezoutian (cf. 1).

Now let H be a singular a-Hankel circulant. First, we consider the case a 4: .
Obviously, the vector e, ae0 (EC" + belongs to ker OH (OH was introduced in 5.3
or, what is the same, X & E eta,+ i. Let u(h) denote the polynomial occurring in
Theorem 2.1. Then, according to this theorem,

Xn- a q(X)ff(X)

for a certain polynomial q(X). Hence a -q(0) if(0) and

X"= q(X)ff(X)- q(0)ff(0),

which implies

Xn-l- q(O)
if(X)- if(O)= ql()k)t(k),

where

ql ()k)
q(X)- q(0)

Thus e,_ q(0)Sff belongs to ker H ker H+.



644 GEORG HEINIG AND FRANK HELLINGER

Now we take into account that H+en -1 Xl and H+ Sff w2, where Xl and w2 are
involved in the representation (6.1). We obtain Xl q(0) w2, which implies

Ul q(0)U4, /)3 --q(0)V2.

Now (6.1) goes over into

VH+ u4(q(0)l)l q- v4) T -}- (//2 q(O)u3)v

u4(q(0)u3- u2) T- (-u2 q- q(0)u3)uff.

Hence H+ is the Bezoutian of u4(X) and q(0)U3()k) U2(k).
It remains to consider the case a oo. In this situation, the function that is identically

equal to belongs to off, +l or, what is the same,

for a polynomial 7(X). Hence u(X) is a constant, which implies w2 0, due to (5.2),
and u4 v2 0. In this case, (6.1) looks as follows:

VH+ Ull)lT /)lUl
T UlU" bl3U.

This shows that H/ is a classical Bezoutian.
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DISPLACEMENT RANK OF GENERALIZED INVERSES
OF PERSYMMETRIC MATRICES*

PIERRE COMONf AND PASCAL LAURENT-GENGOUX:I:

Abstract. Toeplitz matrices are persymmetric matrices belonging to the large class of so-called structured
matrices, characterized by their displacement rank. This characterization was introduced 12 years ago by Kailath
and others. In this framework, properties of singular structured persymmetric matrices are investigated with
the goal ofproving the possible existence of fast algorithms for computing their pseudo-inverses. Loosely speaking,
it is proved that the pseudo-inverses of some structured matrices with displacement rank r have a displacement
rank bounded by 2r.

Key words. Toeplitz, structure, persymmetric, singular, Schur algorithm, pseudo-inverse

AMS subject classifications. 15A09, 15A57, 65F30

1. Introduction. Toeplitz matrices and more generally structured matrices are en-
countered in several problems, including prediction ofalmost stationary processes, mod-
eling of stochastic processes by state-space systems, lossless transmission lines, localization
in antenna array processing, or testing relative primeness of polynomials ], 2 ], 5 ],
[6 ]. Because of their sometimes very large size, the structured linear systems must be
solved by resorting to specialized algorithms taking advantage of their particular features
in order to reduce both computational load and storage requirements, without disregarding
the possibilities of parallel implementations.

There exist numerous fast algorithms for solving linear Toeplitz systems, and the
most well known are the Levinson and Schur algorithms. Extensions have been proposed
since 1979 for matrices whose structure was close to Toeplitz in some sense [2 ], [3 ].
For full-rank matrices, the main results may be found in 3 ]-[ 5 and 9 ]. Nevertheless,
the leading minors are required to be nonzero in order for existing fast algorithms to be
stable [2 ]. Improvements have been proposed in order to allow fast algorithms to run
in a stable way for the larger class of regular matrices with arbitrary rank profile [12],
14 ]. Besides this first limitation, it is now proved that the proximity of a regular matrix

to the Toeplitz structure is preserved by inversion, but nothing is known to date regarding
singular matrices. Singular structured matrices will be the subject of our discussion, and
we shall focus our attention on persymmetric matrices (relevant in the Toeplitz case, for
instance). It will be proved that the generalized inverse of a singular structured persym-
metric matrix has a structure that could be defined with the help of generators, exactly
as in the regular case 3 ]; in other words, its displacement rank is bounded. Our approach,
however, is not constructive in the sense that no means is provided to obtain explicitly
the corresponding generators. Only their existence is proved. This result is important
since it demonstrates that the generalized inverse of an N X N close to Toeplitz matrix
can be completely described only by a restricted number of vectors of size N (four in the
case of a singular Toeplitz matrix).

The paper is organized as follows. Section 2 defines notations and states mostly
known results for regular matrices. The body of the paper is 3, in which properti_es of
some singular symmetric persymmetric structured matrices are investigated. Section 4
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briefly extends the result of 3 to the nonsymmetric case. Although Theorem 3.1 is a
particular case of Theorem 4.1 ( 3 could be partially skipped), we found it clearer to
go first through the less general symmetric case.

2. Displacement of matrices. The concept of matrix displacement has been intro-
duced in [2], and discussed in a more general framework in [5]. Only a few definitions
and notations are recalled below for convenience, and readers are invited to consult the
above-mentioned references as well as [1], [3], and [4] for more details.

DEFINITION 2.1. Let Z be a fixed nilpotent square matrix. Two types of displaced
matrices will be Used; for any square matrix T, they are defined as

(2.1) VT= T- ZTZ and AT= T- ZtTZ.

The rank of matrix VT (respectively, AT) is called the displacement rank of Twith
respect to Z (respectively, Z t).

DEFINITION 2.2. Any set of pairs of vectors {(Xl, Yl), (x2, Y2),..., (Xq, yq)},
satisfying

q

(2.2) 7T

_
otixiy, oi 6 {--1, },

i=1

is a set of generators. If the matrix T is symmetric, then we can take x; Y and the
sequence of signs { ai } is called the displacement signature of T.

Ifq is minimum, i.e., ifq is equal to the displacement rank of T, then those generators
are called minimal 7 ]. Only minimal generators will be referred to in the rest of the
paper. The Crout decomposition of 7T is one way for building minimal generators.

Property 2.1. As indicated by their name, generators can be used to recover the
original matrix. In fact, it suffices to form the sum

N-1

(2.3) T= ZiVTZa.
i=0

Another equivalent expression may be obtained by stacking the successive, shifted
generators in triangular matrices,

q

(2.4) T oitiUi, Zi [xiZxi zN-1xi], Ui-- [yiZYi zN-lyi] t.
i=1

This property shows that if a matrix T has a small displacement rank compared to its
size, then it may be stored efficiently under the form of 2q generators (q are sufficient if
T is symmetric).

DEFINITION 2.3. For the sake of simplicity, the displacements ofthe inverse matrix
T-1 will be denoted in short as 7T-1 and AT-1, standing for 7( T-1 and A( T-1 ). Inverses
of displaced matrices are not used in the paper, thus avoiding any confusion.

THEOREM 2.1. If T is a nonsingular square symmetric matrix, displaced matrices
VT and AT- have the same rank. The same property holdsfor AT and T- 1.

This result is attributed to Gohberg and Semencul and can be traced back to 1972.
The first proof given below can be found in [1 ], [4 ], and [5 ], and has some interest
because of its conciseness. Useful relations with orthogonal polynomials are also stressed
in [10], 11]. We derive then a second proof, more convenient for further extensions to
the case of singular matrices. This emphasizes the differences between the principles
utilized.
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First proof. The shortest proof that can be given consists of writing the matrix

in two different manners:

(TZ T-1

0 0 T-1 TZ I ZtT-1 0 AT-1 0 I

Yet, from the Sylvester lemma, inertia is preserved by congruent transformations, which
shows that AT-1 and VT have the same inertia, since so do T-1 and T. Note that this
result is stronger than the theorem.

Second proof. We shall prove in three steps that the null spaces of AT- and VT
have the same dimension. Denote U Ker 7T and V TZ (U) the image of U by the
operator TZ t. We prove first that

(2.5) V c Ker AT-1.

Let u e U and v TZ tu. Then

AT-v T-1TZtu_ ZtT-ZTZtu.
But since u e Ker VT,

ZTZtu Tu,

and hence

AT-iv Ztu- ZtT-1Tu O,

which proves (2.5). Next TZ is one-to-one on U. In fact, if TZ tu 0 for u e U, then
Tu ZTZtu 0, implying u 0 because T is nonsingular.

This implies that dim U dim V, which together with (2.5) and the definition of
U yields

dim VT < dim Ker AT- 1o

A similar argument with Tand Z replaced by T-1 and Z, and with V and A interchanged,
implies the reverse inclusion. This completes the proof.

THEOREM 2.2. Let the matrix Z denote the so-called "lower shift" matrix

Then a symmetric Toeplitz matrix T always has a displacement rank 2 with respect to
Z. Moreover, if diagonal entries of T are normalized to 1, the range of VT is spanned
by t and ZZttl, where tl denotes the first column of T. The vectors tl and ZZttl are
minimal generators of VT.

Proof. See 4 or 7 for a proof.

3. Displacement rank of Moore-Penrose inverses.
DEFINITION 3.1.. Define the generalized inverse of any square matrix T, denoted

T-, as the matrix satisfying the four Moore-Penrose conditions: (i) TT-T T, (ii)
T-TT- T-, (iii) (TT-) TT-, and (iv) (T-T) T-T.
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The null space of the generalized inverse T- is the null space of T and the range
of T- is the range of T 8 ]. Hence in the symmetric case the generalized inverse T- has
the same range and null spaces as T.

For the sake of simplicity, we shall only concern ourselves with the symmetric case
in this section. The nonsymmetric case will be postponed to 4.

DEFINITION 3.2. Define the backward identity matrix J as

Ji,j 0 except Ji,N- + 1.

J is sometimes called the anti-identity matrix, or the reverse unit matrix. A matrix M
will be called persymmetric if it satisfies

JMJ Mt.

From now on the displacement matrix Z will be assumed to be persymmetric.
THEOREM 3.1. Let T be an N N symmetric and persymmetric matrix. Then if r

is the displacement rank of T, the displacement rank of its generalized inverse T-, is
bounded by 2r.

Let us examine step by step the proof derived above in the nonsingular case for
T-1. The first obstacle in extending it to the generalized inverse of T is that we cannot
use the property T-T IN, but only TT-T T; this means that the main step of the
proof fails, namely, that TZ(Ker VT) c Ker AT-.

Nevertheless, we can still prove, as we shall see, that the quadratic form associated
with AT- (and not the linear operator itself) vanishes on a subspace E of dimension
N- r; from this it follows that the dimension of Ker AT- is smaller than N- 2r, as
will be shown subsequently. This subspace E is built as a sum of two subspaces, V W,
where V TZ(Ker VT) and W is a subspace of Ker T. The proof of Theorem 3.1
requires two lemmas.

LEMMA 3.1. The quadratic form AT-v, v) vanishes for all v V, V
TZ(Ker VT).

Proof. Let u be in Ker VT and v TZtu. Let us calculate {AT-v, v)"

< XT-, > < T-TZ’, TZ’.>- <Z’T-ZTZ’, TZ’>.
By using the transpose rule for operators and the symmetry of T, we get

<6-, > <-z’, z’> < -zTz’, zz’>.
But gTZtu Tu for u Ker VT, and TT-T Tby definition of T-. Hence

< 6-, > < z’, z’>- < -u, >,
and resorting to transposition gives

< XT-,, ,> <ZTZ’., .>- < T-T., .>.
Now using the properties ZTZ tu Tu and TT-T T again yields

(AT-v, v) (Tu, u) ( Tu, u) O. I-1

LEMMA 3.2. Define K as the null space ofthe operator TZ in Ker VT, i.e.,

K Ker TZ I"] Ker VT.

Define also the subspace

W J(K).
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With the notations defined above, we have
(i) Wc Ker AT-,
(ii) dim (W) dim (K), and
(iii) Wc Ker T.
Proof. Symmetry and persymmetry imply centrosymmetry:

T JTJ,

while the following identities are also satisfied:

Z-- JZtJ and j2 IN.
First, let us check that W is included in Ker AT-. Let x be in K and note that this is
equivalent to

TZtx= O and Tx= ZTZtx.
Thus x K if and only if

(3.) TZtx- O and Tx= O.

Define y Jx and notice that x Jy. Thus

(3.2) Ty JTJy JTx O,

(3.3) TZy JTJJZtJy JTZtx O.

Now it follows from the definition of the generalized inverse T- that matrices T and T-
have the same null space. Hence from (3.2),

T-y= O,

and from 3.3 ),

T-Zy= 0.

These two results prove statement (i) of Lemma 3.2, namely,

Wc Ker AT-.

Next, K and W J(K) have the same dimension since J is one to one. This proves (ii).
Finally, result (3.2) immediately gives us the assertion (iii). V1

ProofofTheorem 3.1. On one hand, the quadratic form associated with the matrix
AT- is null on the subspace V. On the other hand, the subspace W is included in the
null space of the linear operator AT-. From these properties, it is straightforward to
conclude that the quadratic form is null on the whole subspace E V + W. Moreover,
V _1_ W because V range T and W Ker T, hence E V@ Wand

dim (E) dim (V) + dim (W),

dim (E) dim (V) + dim (K).

The dimension of V TZt(Ker XTT) is obtained from the dimension rule for the range
and null space of the restriction of TZ to Ker XTT:

(3.4) dim (V) dim (Ker X7T) dim (K).

Thus

dim (E) dim (Ker 7T) N r.
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The quadratic form (AT-x, x) vanishes at least on a subspace E of dimension N- r.
Consider an orthogonal basis whose first N- r vectors form a basis ofE. In such a basis
this quadratic form is defined by a matrix PAT-P that has at most r nonzero rows and
r nonzero columns, as shown in the following:

X
X

pAT_pt 0 X
X
X

X X X X X X

Thus its rank is at most 2r, and consequently the rank of AT- is at most 2r.
Notice that Toeplitz matrices are persymmetric, and we therefore have Theo-

rem 3.2.
THEOREM 3.2. Let T be an N N symmetric Toeplitz matrix, and Z be given as

in Definition 3.2. Then the displacement rank of its generalized inverse "T- is bounded
by4.

Remark 3.1. In order to generate a positive Toeplitz matrix of rank r for numerical
experiments, we use a form of Caratheodory’s representation [13 ], constructed with the
help ofKrylov subspaces. We first build an arbitrary orthogonal matrix with an invariant
subspace of dimension N-r, as a product of r arbitrarily chosen symmetries. Then, we
generate a vector x at random and we form the matrix M, whose columns are the
vectors x, x -x. Notice that the Krylov subspace built with matrix and
starting vector x is indeed of dimension r. The required matrix is the covariance matrix
T-

Remark 3.2. As particular cases, let us insist that generalized inverses of N N
symmetric Toeplitz matrices of rank have in general a displacement rank of 2. If their
rank is larger than and smaller than N, they will have in general a displacement rank
of 4 from Theorem 3.2. In particular cases, however, their displacement rank may fall
to 3 (see the example below).

Example. This simple example illustrates the practical issues addressed in the
remarks above. Let N 5 and r 3, and define the vectors a (1 0 0 0 0), b

!/ !f 0 0 0) , and c (0 /f /f 0 0)q Following the procedure proposed in
Remark 3.1, the orthogonal matrix Q (I- 2bbt)(I- 2cc) is built, and the matrix
M [a Oa Q2a Q3a Q4a],

0 0 0 0 0 0 0
-1 0 0 0 0 0 -1 0 0

Q= 0 -1 0 0 0 M= 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Now, a symmetric Toeplitz matrix of rank 3 can be obtained by computing MtM. We
get

0 0 0 0 0 0
0 0 0 0 0 0

T 0 0 0 0 4T-= 0 0 4 0 0
0 0 0 0 0 0

0 0 0 0 0 0
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It can be checked that the displacement rank of T- is 3. Another example would
show that the bound can be reached for the same value of rank (T). Change a into
(0 0 0)t, for instance, and get a displacement rank of 4 for T-, with

2 2 3 -1 -2 3 -1
2 2 -1 3 -2 -1 3

T= 2 16T-= -2 -2 12 -2 -2
2 2 3 -1 -2 3 -1

2 2 -1 3 -2 -1 3

4. Nonsymmetric case. In this section we extend Theorem 3.1 to the wider class
of persymmetric matrices, containing in particular the nonsymmetric Toeplitz matrices.

THEOREM 4.1. Let T be an N Npersymmetric matrix with displacement rank r.
Then the displacement rank of its generalized inverse T- is bounded by 2r.

First we need to modify Lemma 3.1.
LEMMA 4.1. The subspaces V, TZt(Ker VT) and V2 TtZt(Ker VT) are or-

thogonalfor the bilinearfortn (AT-y, z).
Proof. The proof is derived in a similar manner as in Lemma 3.1. Let v, TZ tu,

with u, in Ker XTT and let v2 TtZtu2 with u2 in Ker VTt. Now calculate (AT-v,, v2,
By using the transpose rule for operators, we get

{ AT-v,, 2) { TT-TZ’u,, Z’u2 ) { T-Tu,, Z TtZ’u2 ).
But Z TtZtu2 Ttu2 for uz e Ker VTt, and TT-T T by definition of T-. Hence

< AT-v,, v2 > < TZ’u,, Ztu2 > < T-Tu,, Ttu2 >,
and resorting to transposition gives

( AT-v,, v2) (Z TZ’u,, u2) ( TT-Tu,, u2).
Another use of the properties ZTZu, Tu, for u, Ker ’T and TT-T T yields

(AT-v,, v2) (Tul, u2 ) (Tu,, u2 ) O. FI

Next we modify Lemma 3.2.
DEFINITION 4.1. Define K as the null space of the operator TZ in Ker VT, i.e.,

K, Ker TZ Ker VT,

and define K2 as the null space of the operator TtZ in Ker 7Tt, i.e.,

K2 Ker TtZ f’) Ker VTt.

Also define Wi as the subspace J(K;).
LEMMA 4.2. The subspace W, is included in the null space of the linear operator

AT-, and W2 is included in the null space ofthe linear operator AT- Moreover,

dim (Wi) dim (Ki),

W, cKerT and W2 c Ker T.

Proof. Recall that T JTJ, Z JZtJ, and j2 IN. First, let us check that W1 is
included in Ker AT-. Let x be in K1 and remark that this is equivalent to

TZ x O and Tx ZTZx.
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Thus x e K if and only if

(4.1) TZtx= O and Tx= O.

Define y Jx. Noticing that x Jy gives

(4.2) Try JTJy JTx O,

(4.3) T’Zy JTJJZtJy JTZtx O.

Now by definition of the generalized inverse T-, the operators T and T- have the same
null space. Hence

T-y= O and T-Zy= O.

This proves that W1 c Ker AT-. Next, J is one to one; thus K1 and W1 J(K) have
the same dimension, whereas the result (4.2) gives us W c Ker Tt. A similar proofholds
for W2 [-1

Proofof Theorem 4.1. The subspaces V1 and V2 are orthogonal with respect to the
bilinear form associated with the matrix AT-. The subspace W is included in the null
space of the linear operator AT- while the subspace W2 is included in the null space of
the linear operator ATt-. From these properties, it is straightforward to conclude that
the whole subspaces E1 V + W1 and E2 V2 + W2 are orthogonal, according to the
bilinear form associated with the matrix AT-. Indeed, ify, z, Y2, and z2 are, respectively,
in V, W1, V2, and W2,

<AT-(yl nt- z1) (Y2 -- z2)> <AZ-yl, Y2> -t- <AT-z1, (Y2 -- z2)> -- <Yl, Art-z2>,
and each term on the fight-hand side of this expression is null from preceding results.

Moreover, V1 I W1 because V1 c range T and W1 c Ker T. Hence E1 gl (]) W1
and, following the proof of the symmetric case, we may conclude that

dim (El) N- r.

The bilinear form ( AT-x, y) has two orthogonal subspaces El and Ea, both ofdimension
at least N- r. It is easy to conclude, as in the symmetric case, that the rank of this
bilinear form is at most 2r and consequently the rank ofmatrix AT- is at most 2r. Vq

5. Concluding remarks. Theorem 4.1 says that if a persymmetric matrix T has a
displacement rank r with respect to a persymmetric displacement matrix Z, then its
pseudo-inverse T- has a displacement rank bounded by 2r. In other words, the matrices
T and T- can be completely characterized by at most 2r and 4r generating vectors,
respectively. If T is symmetric Toeplitz, four vectors are sufficient to characterize matrix
T-. Now in order for this result to be fully exploited, it would be necessary to find an
algorithm able to express explicitly the generators of T-. This issue is left open.

Acknowledgment. The authors are indebted to the pertinent recommendations of
the referees.
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Abstract. Given only the zero-nonzero pattern of an m n matrix A of full column rank, which entries
ofQ and which entries ofR in its QR factorization must be zero, and which entries may be nonzero? A complete
answer to this question is given, which involves an interesting interplay between combinatorial structure and
the algebra implicit in orthogonality. To this end some new sparse structural concepts are introduced, and an
algorithm to determine the structure of Q is given. The structure of R then follows immediately from that of
Q and A. The computable zero/nonzero structures for the matrices Q and R are proven to be tight, and the
conditions on the pattern for A are the weakest possible (namely, that it allows matrices A with full column
rank). This complements existing work that focussed upon R and then only under an additional combinatorial
assumption (the strong Hall property).
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1. Introduction. For m >= n, an m n matrix A [a;j] has a unique factorization
A QR, in which Q [qij] is m n and has orthonormal columns and R [ri] is
n n and upper triangular with positive diagonal entries, exactly when A has full rank
n. In this event, we say that A has a unique QR factorization, and we mean the one in
which R has positive diagonal. There are several possible ways to compute such a fac-
torization (with exact arithmetic), for example, using plane rotations (method ofGivens),
Householder transformations, or the Gram-Schmidt procedure. When A has a unique
QR factorization, it does not matter, except for insight or computational considerations,
which algorithm is used to obtain the factorization.

By a nonzero pattern 1 of size m n we mean the set of positions in an m n
matrix in which the nonzero entries occur. We typically describe such a pattern via an
m n array with 0 and entries, in which denotes a nonzero. For example,

A=
0

is a matrix with pattern
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If matrix A has pattern a, then we write A e 1. By s + 3 (or s U 3) we mean the
union oftwo patterns ofthe same size, that is, a pattern that has a zero in a given position
only when both patterns are zero in that position. Multiplication of patterns is carried
out under the following assumptions: (,. ,) and (,. 0) (0. ,) (0.0) 0. Two
column vectors (or vector patterns) are combinatorially orthogonal if each term in the
inner product is zero.

Our primary purpose is to give a complete solution to the following problem. For
m >_- n, given an m n nonzero pattern se that allows full rank, determine the union,
over all full column rank matrices A e st, of all patterns occurring in the matrix Q and
in the matrix R such that A QR is the QR factorization ofA. The resulting unions are
denoted by 2 and , respectively. Our solution to this problem continues earlier work
GH ], GLN ], CEG ], and a small part of GN ), which focussed mainly on the upper

triangular pattern (rather than ) and gave a description only under an additional
combinatorial assumption (the strong Hall property) on the pattern /. The present
work is based on the Gram-Schmidt procedure and is in the spirit of an analogous
combinatorial analysis of the LU factorization of a square matrix that was given in
JOD ]. However, there are subtleties that are quite different from the LU case.

We note that, for a given pattern s, different zero patterns may occur among the
Qs, or among the Rs, in the QR factorization ofdifferent full rank matrices A with pattern
set. This is due to the possibility of chance numeric relations among the entries of a
specific matrix A, which cause "accidental zeros." Our interest is in ignoring chance
cancellation and in obtaining the union of all patterns for both Q and R. Knowledge of
2 and is useful for computational purposes, as they are the smallest patterns that are
guaranteed to contain the nonzero entries of the QR factorization of an arbitrary A
Thus, and could be used to define a suitable data structure for Q and R, respectively.

Some particularly simple cases occur when is square. If is full upper triangular,
then has the same pattern and 2 is diagonal. If is full upper Hessenberg, then
has this same pattern and is full. However, if is full lower triangular, then both
and 2 are full.

A combinatorial necessary condition for an m n matrix A to have rank n is the
following (see, e.g., CEG ]).

DEFINITION. For m >= n, an m n matrix A (or pattern st) satisfies the Hall
property if every k columns, =< k _-< n, collectively have nonzero entries in at least
k rows.

It is clear that there are full rank matrices with pattern s’ if and only if 1 satisfies
the Hall property. So that our problem is well defined, we wish to assume that each
matrix A to be factored has a unique QR factorization. Thus the problem statement
assumed that A has full column rank, and therefore, we restrict our attention to patterns
satisfying the Hall property. If A has a unique QR factorization A QR, then, for an
m m permutation matrix P, PA also has a unique QR factorization PA (PQ)R.
Since Q is modified in this simple way, and R not at all, we may permute the rows ofA
for convenience. For example, under the Hall property assumption, we may permute
the rows so that the diagonal entries are all nonzero. We note, however, that permutation
of the columns ofA, in general, radically changes both Q and R.

In [CEG] the possible nonzeros for are identified under an additional assumption.
(The following definition, a slight variant from what appears in [CEG ], now seems to
be standard.)

DEFINITION. For m >_- n, an m n matrix A (or pattern st) satisfies the strong
Hall property if
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(i) m n > and every k columns, =< k < n, collectively have nonzero entries
in more than k rows, or

(ii) m > n and every k columns, -< k < n, collectively have nonzero entries in
more than k rows.

Note that, if m n and each main diagonal entry ofA is nonzero, then A satisfies
the strong Hall property ifand only ifA is irreducible. Under the strong Hall assumption
on it is shown in [CEG] that is accurately predicted by applying "symbolic Gaussian
elimination" (i.e., "symbolic LU factorization") to the symbolic product TN, or by
doing "symbolic Givens rotations" on z’. In this case, can also be bounded by the
pattern of U in the symbolic LU factorization (with partial pivoting)of; see [GN].

Without the strong Hall assumption, the complete analysis is considerably more
delicate. There can be interplay between the combinatorics of the arrangement of zeros
and nonzeros and the algebra (associated with orthogonality required in Q) of the QR
calculation that forces zeros that are missed by any naive analysis. This is illustrated in
the following example from [CEG ], in which z’ satisfies the Hall property but not the
strong Hall property.

Example 1.1. Let

(1.1)

0 0 0 0 0
0 0 0

0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0

As pointed out in [Gel, when 2 and are predicted by a symbolic analog of the
(numeric) method of Givens (where nonzero entries in the jth column are zeroed out
in the order aj + 1,j to an,j), too much fill is predicted. Specifically, this approach gives

(R) (R) (R) 0 0
* (R) (R) (R) (R) 0 0

(1.2)
0 0 (R) (R) (R)

9= * * * *
0 0 0 (R) (R) (R) (R)

0 0 0 0 (R) 0 (R)
(R) (R) (R)

where (R) ,, whereas (R) 0 gives the true patterns. The entries in designated by (R)
are called bogus fill in [CEG]. The pattern for in (1.2) with (R) is also obtained
when symbolic LU factorization of the symbolic product zqT is performed [GH] or
when symbolic LU factorization (with partial pivoting) of ’ is performed [GN].

In the next section we begin by defining the notion of a Hall set. This enables us to
define a sequence of bipartite graphs that lead to the identification of all zero entries in
2. The orthogonality of Q can require zero entries in in somewhat subtle ways. Some
graph-theoretic results concerning these bipartite graphs are given in 3. The purpose
of 4 is to show that the remaining entries of 2 are, in fact, nonzeros. It begins with
explicit consideration of a special form for the pattern of and then uses embedding
and continuity to prove our result for general patterns. An algorithm for determining 2
is given. In 5 it is shown how to determine the pattern in a simple way, once the
pattern is known.
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2. Zero entries in . Related to the Hall properties, we introduce the concept of a
Hall set. Given any m n matrix A (or pattern ) we denote the jth column ofA (or
/) by Aj (or j), and the restriction ofA to the row index set a by A;[a].

DEFINITION. For an m n matrix A (or pattern /) with m >_- n, a set ofk columns
in A (or ), _-< k _-< n is a Hall set if these columns collectively have nonzero entries
in exactly k rows.

Under the assumption that A (or ) has the Hall property, the union of two Hall
sets is a Hall set, so there exists a unique Hall set of maximum cardinality (>-_ 0) in any
given set ofcolumns. Let S be the Hall set ofmaximum cardinality in the firstj columns;
we define So 4. For example, in the pattern 1.1 ), $1 4 and S { ’g2,
for 2 =< j -< 5. Note that if an rn n matrix has the strong Hall property, then Sj
<=j<=n- 1.

The Gram-Schmidt orthonormalization process (see, e.g., [HJ, 0.6.4]) can be
used to construct the matrix Q of the QR factorization of a matrix A. We show below
how to adapt the Gram-Schmidt procedure to determine 2 for a pattern ’. Clearly
21 1 as Q1 is a (nonzero) multiple of Al. If 2 is combinatorially orthogonal to
/i, then ’2 ’g2. However, if/ is not combinatorially orthogonal to ’gl and S1
4, then 22 /l + /2 21 + s/2. The effect of Hall sets on this columnwise "naive
accumulation" of nonzero entries is now investigated.

Let s be the set of all row indices covered by the columns of S; thus
(Note that if we assume all diagonal entries of / are ,, then s9 { i: _-< N j,
; $9 } however, we do not make this assumption in this section.) For a given /, we
define a bipartite graph that leads to a partition of the row indices of /and identifies
the zero entries in a column of 2. For a fixed j, =< j _-< n, the bipartite graph B(1)
(Rj-(/), C(1 ); Et(/) is defined as follows:

C I Ck k: <= k _-< j and kS-l};

Rt(/) { r; i: _--< <- rn and there exists Ck C(
with a in row ri and ri t s_ 1}

{ ri, Ck } E(1), the undirected edge set, if and only if r; e Rj(1)
and Ck Cj(1) and the (i, k) position of is ..

Thus, to construct Bj.(/), delete columns in Sj-_ 1, rows s_ and zero rows from
[l 9], and take the bipartite graph of the remaining pattern (with the labelling
inherited from the original pattern).

A path (undirected) in B.( is an alternating sequence ofrow and column vertices
of the form rk, Cjl rk2, rki, Cti with each edge { rk,, C, }, { Cj,, rk2 },..., { rki, C;i }
E(). Such a path is associated with the sequence (kl, jl), (kz, jl),..., (ki, ji) of
entries that are in /. A path may begin or end with either a row or column vertex,
may have just one vertex, and is always assumed to be simple.

Let p be the set of all row indices occurring in Rj.(/) that can be reached by a path
from ct. Let uj be the set of all row indices occurring in R() that cannot be reached
by a path from c9. Finally, let t9 be the set of all row indices of 1 not in Rj.(’) or st_ 1.

We then have that st_ l, pj, uj., and t form a partition of all rn row indices.
To illustrate this partition, consider again the pattern 1 in example (1.1); the

bipartite graphs for j 3 and for j 6 are shown in Fig. 1.
We use the partition defined above to identify the zero entries in a column of .
THEOREM 2.1. For rn >= n, let 1 be an rn n pattern with the Hall property. For

anyfixedj, <= j <= n, the entries of in positions st_ 1, t, and u are zero.
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The bipartite graph B3(6’ The bipartite graph B6 (s’)

s2 {r:} Q s5 {r2, r3, r4, rs}

P3 {r3} P6 {rl, r6}

U {rl, r6} U6

t3 {r4, r5 t
FIG.

Proof. We rely on two facts that follow from the Gram-Schmidt procedure:
(i) Qj. e span {A1, Aj.}, and
(ii) Qj is orthogonal to A1, Aj_ 1.

Consider first the positions tj. In these rows the entries in columns A1, Aj of any
A /are all zero; so by (i), the positions tj- are all zero for any Q 29.

For the positions sg_ 1, fact (ii) above implies that Qj is orthogonal to each column
in $9_ 1. But the columns of $9_ 1, restricted to rows sg_ 1, span a subspace of dimension
sj- 11 and are zero outside these rows (by the definition of a Hall set). Thus Qj[ s_ is

orthogonal to every vector in the above subspace, and so must be zero. Thus the positions
s_ of any Q9 e 9 are zero; these are due to the presence of a Hall set.

Finally consider the positions uj, and let {Ai, Aik be the set of columns on
a path in B(st) from indices in ug. From (i) and because u9 f’l (p t.) sj_ (]), Qj[ blj] .
span {Ai,[ug], Aik[uj.] }. Because of (ii), and because Ai[pg] O, g 1,..., k,
and Q[sj_ 1] 0 (and Aig[t] O, g 1,..., k, and Q[t] 0), Q[ uj] is orthogonal
to each A[ uj.]. However, as the intersection ofa subspace and its orthogonal complement
is zero, Q[ u] 0 and the positions u of any Qj j. are zero. vq

We have thus identified three sets ofrow indices in . that are zero for any full rank
matrix A s with A QR. In particular, the presence of a Hall set in columns
{ st l, j._ l} means that qi, 0 for sj_ (in fact, qi,9 + 0 for sg_ and
k 0, n -j). Ifi tg, that is, ai 0 for k 1, ...,j, then qi9 0. Ifi e uj-, then
qo 0 because of combinatorial orthogonality in the columns of st, which occurs in a
subtle way (see Corollary 4.9).

3. Strong Hall bipartite graphs. In this section we analyze the strong Hall property
from a graph-theoretic point of view. The objective is to obtain a result (Thm. 3.2)
concerning the bipartite graphs B(/) defined in 2. We first prove a preliminary result
concerning strong Hall bipartite graphs, which we now define.

DEFINITION. Let G(X, Y; E) denote a bipartite graph with vertex sets X, Y and
undirected edge set E and if S

_ , let Na(S) denote the set of all neighbors in X of
vertices in S. Then G(X, Y; E) is strong Hall with respect to Y if

(i) XI IYI > and ISI < INa(S) I, for all proper nonempty subsets S
of Y, or

(ii) X > Y and SI < INa(S) l, for all nonempty subsets S of Y.
There is an obvious equivalence between patterns 1 that satisfy the strong Hall property
and bipartite graphs G(X, Y; E) that are strong Hall with respect to Y when the vertex
sets X, Y are associated with the row and column sets of st, respectively, and edges
correspond to nonzero entries in st. Note that the bipartite graphs Bj.(s) defined in
2 are strong Hall with respect to C(/)\ { cj-}.

The following theorem is used to prove Theorem 3.2, but is of independent interest
as it gives a characterization of strong Hall critical graphs G (X, Y; E) with
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IX] > YI (i.e., strong Hall graphs that are no longer strong Hall if any one edge is
removed). Let G be strong Hall with respect to Y. If for all y Y, the degree d(y) 2,
then it is clear that G is strong Hall critical with respect to Y. We now show that the
converse is also true.

THEOREM 3.1. Let G (X, Y; E) be strong Hall with respect to Y, where
IXI > YI. Ify Y has degree d(y) >= 3, then there is at most one edge e { x, y E
such that G e is not strong Hall with respect to Y.

Proof. Suppose there exists y Y with d(y) >- 3, and there is an edge e
{ x, y } E such that H G e is not strong Hall with respect to Y. Let S

_
Y,

S 4: qS, be such that NH(S)I <= Sl. If y S, then NH(S) Na(S), and hence
INn(S) INa(S) > SI since G is strong Hall with respect to Y. Therefore,
y S. If x e Na(S\ { y}), then again NI(S) Na(S), a contradiction, and so x
Na(S\ {y}). Thus ]Na(S)] N/(S)] / =< SI / 1, and since G is strong Hall
with respect to Y, N(S)I- SI / 1.

Now suppose there exists y e Y with da(y) >- 3 and there exist distinct edges el
{ x,, y } and e2 { x2, y in E such that for 1, 2, Hi G ei is not strong Hall with
respect to Y. Then for 1, 2 there exists Si Y, Si 4: 4, such that N/ (Si)l =< Sil.
From above, y e S, fq $2, and for 1, 2,

(3.1) IN(S;)I- ISil /

and

(3.2) xi N(Si\ {y}).

First suppose (S, fq $2)\ { y } S 4 b. For each z 6 S and 1, 2, { z, xi is not
an edge in G by (3.2). Thus

IN(S, S_)l- IN({y})\N(S)I / IN(S)I

>= 2 + N(S)] since x, x2 N(S)

>2+ IS[ sinceS4:4 and G is strong Hall

=2+(IS, fqS21 1)

IS,S21 / .
If, on the other hand, S, fq $2 y }, then

INo(S, f-)S2)I IN({y})[ >= 3 > IS, fq $21 + 1.

Therefore, in any case,

(3.3) IN(S) N(S2)I >= ]N(S S)I >= S S2I + 2.

Thus

IS 521 (ISl + 1)+(IS21 + )-(IS S21 +2)

IN(S)l + IN(S=)l IN(S) N(S2)l by (3.1) and (3.3)

ING(S,) N(S2)I

ING(S Sz)l.

This contradicts the stipulation that G be strong Hall with respect to Y (note that

Xl > YI). Hence, at most one such edge ei can exist.
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The next theorem provides a matching property of strong Hall bipartite graphs that
is used to prove the main theorem in 4. (Recall that a matchingM in a bipartite graph
G is a subset of its edges no two of which are adjacent. We say that M saturates a subset
S of the vertices of G if every vertex in S is incident with one of the edges in M.) We
will use the following notation in the next theorem. If 3’1 and "Y2 are paths in a graph G,
and 3’1 ends in a vertex adjacent in G to the first vertex in "//2, then ’)’l"Y2 denotes the
juxtaposition of ’1 and ")’2 as alternating sequences of vertices and edges so that the edge
from the end of "/1 to the beginning of -y_ is added giving a single path.

THEOREM 3.2. Let G (X, Y; E) be a bipartite graph with ]XI >-- Y], let y Y,
and suppose that G y is strong Hall with respect to Y\ { y }. Ifthere is a path " fromy to xfor some x X, then there exists a path z from y to x and a matchingM in G
such that M saturates all vertices in Y that are not on the path .

Proof. Suppose the statement of the theorem is false, and let G (X, Y; E) be a
counterexample with the fewest edges. Then there exists x X and a path 3’ from y to
x. Let I Y\ y} and 0 G y. Since G is a counterexample there must exist a
vertex 33 Y not on 3’.

If dd() >= 3, then by Theorem 3.1, there exists {:e, 33 } such that ifH G
then H y is strong Hall with respect to I. Now q is a path in H also, and since G is a
counterexample with the fewest edges, there exists some path from y to x and a matching
M in H r such that M saturates all the vertices in Y that are not on the path z. But
this matching and path are also in G, a contradiction.

Therefore, d() 2 (note that d(33) > since ( is strong Hall with respect to
I). Let x and x2 be the neighbors of 33 and let H (U, V; F) be the graph obtained
from G by identifying xl and X2 and by removing 33. That is, U (X\ { xl, X2
where x* X t_J Y and V Y\ { }. Moreover, for all u U and v V, { u, v } F if
and only if

(i) ueX\ {Xl, x2}, ve Vand {u, v} eE; or
(ii) u x*, ve V, and {xl, v} Eor {x2, v} eE.

Let I? V\ { y},/-} H- y, and note that since XI > 117"1, we have U[ >
Claim. I is strong Hall with respect to I.
Proofofclaim. Let S _c 1, S 4 4. Ifx* N/(S), then xl Nd(S) and x2 N(S).

Thus NIt(S) Nd(S), and since 0 is strong Hall with respect to I, IS[ <
INo(S)I- [N(S)I.

Suppose there exists S __c l such that ]S] _>- ]N/(S)]. Then x* Nq(S), by the
above, and hence at least one ofxl or x2 is contained in N(S). If only one is contained
in N(S), then since it is only replaced with x* in H, we have N(S)[ [N/(S) I, a
contradiction to IS] < ]N(S)]. Thus both xl and x2 are contained in No(S). Since
and x2 are replaced with x* in H, INo(S) N/(S)[ / and N0(S tO {33 } N(S).
But then

Igt0 {}l- ISI / >--IN(S)I / -IN(S)I- INe(StO {})1
contradicts the fact that 0 is strong Hall with respect to I (note that S tO {33 _c I). This
completes the proof of the claim.

We now identify a path r/in H that is dependent upon the path 3’ in G. Table
describes how is defined in H given the structure of -/. In Table 1, 7r, 0, and a are
nonempty paths (i.e., they each contain at least one vertex).

Let rt end at vertex u. Note that u U and that r starts at vertex y. Since/-} is strong
Hall with respect to I7", and H has fewer edges than G, there exists a path 0 in H from y
to u and matching 57/in H- oa that saturates all vertices in V that are not on oa. We will
use this path and matching to construct similar ones in G. The constructions will differ
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TABLE

Case 3’ Path in H

3" (xl and x2 not on 3") 3"
2 rx or 7rx2 7rx*o
3 "irXlpX2ff or 7rx2pxl tr X

4 wxpx2 or x2px rx*
5 x or x2 x*

depending on the structure of 3’ in G, but each will contradict the assumption that G is
a counterexample to the theorem. The cases below are described in Table 1.

Cases 1-3. Here we have xl 4 u 4 x2, and hence u x.
If x* is not on o and x* is not saturated by r, then o is a path in G from y to x

and M 5]r to Xl, 33 } } is a matching in G, which saturates all vertices in Y that are
not on 0, a contradiction.

If there exists a v e V such that { x*, v } e 2r, then x* is not on w, and hence, o is
a path in G from y to x. Moreover, {z, v} e E for some z e {xl, x2). Let {w}
{ Xl, X2 \ { Z }. Thus M (21r\ { { x*, v } U { { z, v }, { w, 33 } } is a matching in G,
which saturates all vertices in Y that are not on o, a contradiction.

Therefore, x* is on w, and ]Q is a matching in G. Let w wx*w and let v and v
be the neighbors of x* on w such that (.01 ends at Vl and w_ starts at re. If { Xl, x

___
Na( Vl, v2 } ), then at least one ofr (.01Xl;X2(.o2 and r2 wx2xw is a path in G that
starts at y and ends at x. Thus, for some { 1, 2 }, 21) saturates all vertices in Y that are
not on ri, a contradiction. Hence, { xl, x2 ; Na( { v, v } ). Thus, since x* is adjacent
to v and vz, they are both adjacent to Xl or to x2 in G. If Vl and v2 are neighbors of Xl,
then r (.o 1XlO)2 is a path in G from y to x, and M 2Q U { X2, } } is a matching in
G that saturates all vertices in Y that are not on , a contradiction. Similarly, if v and
vz are neighbors of x2, then r (.olxzw2 is a path in G from y to x, and M
{ { Xl, 33 } is a matching in G that saturates all vertices in Y that are not on , another
contradiction. Therefore, Cases 1-3 cannot occur.

Cases 4 and 5. Note that u x*, and hence w ends at x*. Moreover, 21) is a
matching in G. Let w WlX* and let Vl be the last vertex of the path w. Since Vl is
adjacent to x* in H, it is adjacent to either x or x2 in G. Thus, either r Wl Xl, T2
(.01X2;Xl, T 0.)lX2, or T4 WlX1;X2 is a path from y to x in G. If T2 is such a path in
G, then M saturates all vertices in Y that are not on z2; similarly, if r4 is a path from y
to x in G. Otherwise, to { { x2, 33 ) ) saturates all vertices in Y that are not on r or
h tO { { x, 33 } saturates all vertices in Y that are not on r3, a contradiction. Therefore,
Cases 4 and 5 cannot occur.

Since these cases exhaust all possibilities, we have a contradiction. Therefore, no
such counterexample G can exist, and the theorem is proved.

4. Nonzero entries in . In 2, we have identified positions in that must be zero
for a variety of more or less subtle reasons. To complete the solution to our problem
and see that we have identified all the necessarily zero positions in 2, we must show that
for each remaining position there is a full rank matrix A s whose QR factorization
has a nonzero entry in Q in the position of interest. Our strategy is, for each nonzero
position, to identify a particular full rank matrix A which produces a Q with a nonzero
in that position and whose pattern is contained in that of 1. A simple perturbation
argument then yields an A with the exact pattern of . We note that our argument is
sufficient to prove that the zero/nonzero structure for 2 is tight (i.e., the best possible).
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We first consider a particularly simple form for 1. To describe our construction,
we introduce the notation QU for a matrix that has orthogonal columns that are not
generally of unit length (i.e., unnormalized); Q denotes the jth column of this matrix.

LEMMA 4.1. Let 1 be an f fpattern with bipartite graph Bu() (Rf(),
Cf(); Ef(l)), in which Rf() { rl, rf }, Cf(,f) { Cl Cf }, and the edges
in Ey(sl)form a simple path oflength 2f from cfto some ri, <= <= f. There exists
a nonsingular matrix A 1 such that irA QR, then qiy is nonzero.

Proof. Assume that the path from cf to ri is

cf %, rke, %_,, Cj2, rk2, Cj,, rk, ri.

Let A [ade] be the f f (0, matrix with aae if and only if { ra, Ce } lies on the
path; thus A /. Matrix A has exactly two entries equal to in each column (except
the last). Since A is permutation equivalent to a lower triangular matrix with ones on
the main diagonal, A is nonsingular. The columns (except cf) can occur in any order on
the path, but the exact order is important to the following construction of Q].

Consider

(4.1) Q=Q=fAj-(f-1)Aj-_, + T-2A2+A,,
where the columns are from matrix A, the multiplying factors have alternating signs,
and f is the number of columns on the path. Clearly, this Q span {A, A#},
and we need to check the orthogonality conditions. By the construction of A, we have
A, .A, 2, Aj.,-A 1, and Aj, "Ak 0 for k 3,..., f. Thus Q. A, 0. Similarly
Ak.A, 2 for k 2,..., f- 1, and Aj,.A_,= A.Ak+, for k 2,..., f- 1,
with A (combinatorially) orthogonal to all other columns. Thus Q.Aj, 0 for k 1,

f- 1. The construction ofA and the distinct multipliers in (4.1) mean that there
can be no numerical cancellation, and so the ith entry of Q] is nonzero. It is clear that
if the column Q is normalized to have unit length, then column fof the matrix Q of
the QR factorization ofA is obtained, with qif O. [--]

Note that the construction in Lemma 4.1 guarantees that all entries in column fof
Q are nonzeros, not just qif. To illustrate Lemma 4.1, consider an example in which

2 and f= 3.
Example 4.2. Consider the pattern /and bipartite graph B3(/) in Fig. 2. The

edges in E3(1) form one path from column c3 to r2, namely, c3, r3, c, rl, c2, r2. Take
the matrix

0]A= 0 0 6/.
0

From (4.1), Q 3A3 2A + A2 (-1, 1, 1)T (note that the order of the Ai in this
equation is determined by the path), and the (2, 3) entry of QU is equal to 1. Thus, if
A QR, column 3 of Q must be a scalar multiple of Q (by the uniqueness of the QR
factorization), and in fact

2
0

-.
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’ with B3(5’):
0

FIG. 2

Example 4.3. In the event that z has bipartite graph Bf(z) with edges forming a
path traversing the columns in order cf, cf_ l, c, then A e z is bidiagonal. For
example, when f= 5,

0 0 0 0
0 0 0

A= 0 0 0
0 0 0

10 0 0

the corresponding QU is the full upper Hessenberg matrix

-1 -1 1-
-1 -1

0 2 -1
0 0 3 -1
0 0 0 4

and note that R is bidiagonal upper triangular.
To prove our result for more general patterns, we need the fact that Q depends

continuously on A. More specifically, if A is a matrix with full column rank and
A QR, then there exists a neighborhood ofA such that every matrix in this neighborhood
has full column rank and the orthogonal matrix ofits factorization depends continuously
on the entries. This qualitative fact (which is all we need) may be straightforwardly
proven by elementary means, but precise bounds have been given in [S, Thm. 3.1 ]. We
now use continuity to prove our main result on nonzero entries in

THEOREM 4.4. For m >= n, let be an m X n pattern with the Hall property. If
ri pj, <- j <= n, then there is an A zl ofrank n such that A QR with qij nonzero.

Proof. Without loss of generality, we can assume that each diagonal entry of 1 is
(Thus, as noted in 2, sj. i: =< =< j and i Sj.), and consequently, if some

column Ce C’("), where =< Ce < j, then re Rg(/).) As ri 6 p, there exists at least
one path in B(1) from c to r;. Thus, by Theorem 3.2, there exists a path, say

(4.2) Cj Cjf, rkf, Cjf_,, J2, rk, Cj,, rk, ri,

from cj to ri of length 2f- f =< j), and a matching M in Bj.() of all columns
in B(/) that are not on the path (4.2) to some subset of the rows in B(1) that are
not on the path (4.2). For any nonzero e, letA aae] be the m Xj matrix whose pattern, is the same as the first j columns of zz and such that aae { 0, 1, e with nonzero
terms given by the following construction:
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if the edge { ra, ce } is on the path (4.2),

or if the edge {ra, Ce} M,

or if d e and Ce C(1), the column vertex set of Bj( z);

e if the (d, e) entry of /is * and aae has not been set
to above.

(Note that j+ 1, n do not enter here.)
Let Ao denote the matrix At with all e entries set to zero, and let [ae] be the

(0, square submatrix of A0 restricted to rows rkl, rks and columns Cl, cs,
with 6ae if and only if aae 1. Let be the pattern of ; then lsatisfies the
conditions of Lemma 4.1 and J is the matrix of the construction in Lemma 4.1. Thus,
ifJ /, then 4i is nonzero.

Now we consider the matrix A0, and note that is embedded in A0. By construction,
columns ofA0 not on the path (4.2) contain distinct unit vectors, so A0 has full column
rank. IfA0 QoRo, then 0 is embedded in Q0 in the same way as is embedded in A0,
with corresponding unit column vectors in columns not on the path. Thus the i, j) entry
of Q0 is equal to 4i and is nonzero.

Finally, consider At QR, which has the same column rank as Ao, namely j, for
sufficiently small e. By the continuity statement above, for sufficiently small e, the matrix
Qt has its (i, j) entry nonzero. Thus, any full rank matrix A e 1 with the submatrix in
its first j columns equal to At has qij nonzero, where A QR, since column j of Q is
independent of Aj + 1, A,. if]

To illustrate this construction, consider the following example.
Example 4.5. Consider the pattern and bipartite graph B4(//) in Fig. 3.
There is one path in B4(zz) from c4 to r2, namely c4, r4, c, r, c2, r2, implying that

the (2, 4) entry of is .. As this is the only path in B4() from c4 to r2, this must be
the path (4.2) in the proof of Theorem 4.4, and the matching M can be chosen as either
the edge { r3, c3 } or the edge { rs, c3 }. If the first of these is chosen, then

and = 0]0 0
0

0 0 0

,= 0 0
0 0 ..0

with B4(s’):
0 t3

0 0

FIG. 3
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From the proof of Lemma 4.1, the third column of is a scalar multiple of 1, 1, ,
implying that the fourth column of Q0 is a scalar multiple of (-1, 1, 0, 1, 0, 0)v. Thus,
by continuity, the (2, 4) entry of Q is nonzero, implying that the (2, 4) entry of is
nonzero.

Now consider a further example, with a pattern having more than one path from

c to r; (cf. Example 4.5 with a change in column ).
Example 4.6. Consider the pattern 1 and bipartite graph B3(/) in Fig. 4. Focussing

on the (6, 3) entry, there are two paths, namely c3, r, c, r6 and c3, r, c2, r6, from c3 to

r6. The path (4.2) in the proof of Theorem 4.4 (i.e., the path in Theorem 3.2) is the
first of these, and the matching M is the edge r2, c2 }. Note that for the other path from
c3 to r6, there is no matching in the bipartite graph of c with any row vertex not on this
path (i.e., r2, r3, r4, or rs). This illustrates the care required in the selection of a path
(4.2) in the proof of Theorem 4.4; there must exist an associated matching M so that A
is constructed such that A0 has full column rank. The result ofTheorem 3.2 ensures that
this is always possible.

With the choice of the path c3, r, Cl, r6 above, we obtain

e 1"
0 0
0 0 e

0 0 0
0 0 e

e O.
For sufficiently small e, ifA A QR, then q63 is nonzero.

We now combine the results of Theorems 2.1 and 4.4 to solve the problem stated
in the introduction (as far as - is concerned) in terms ofthe row index partition defined
in2.

THEOREM 4.7. For rn >= n, let 1 be an rn n pattern with the Hall property. Then
the i, j) entry of. is zero ifand only if sj_ U t2 u2. Equivalently, the i, j) entry
of is nonzero ifand only if p.

The next two corollaries indicate how can be computed. In the strong Hall case,
$2_1 , 2 j n, and 2 is the union of 2 and ceain columns w, w

COROLLARY 4.8. For m n, let be an m n pattern with the strong Hall
property. For anyfixedj, j n, partition , into two disjoint sets and
,for which , every column of is combinatorially orthogonal to every column
of, and is as large as possible. Then w, w .

Proof. Since $2_ , 2 j n, the bipartite graph B() has Q()
{ c, c} and R() { ri i: there exists a in row in one of the columns of
C2() }. For k j, column Ck if and only if there exists a path from c2 to some

with B3()"

FIG. 4
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ri, where column Ck has a in row ri. By definition of Ps, this is true if and only if
ri Ps; and by Theorem 4.7, ri Ps ifand only ifqo is nonzero. Together these give exactly
the union statement above.

For /having the Hall property, the essential modification to the result ofthe above
corollary is that in the union of columns /w specifying s, the column vectors in Ss_
and nonzeros in rows ss_ must be omitted.

COROLLARY 4.9. For m >= n, let d be an m n pattern with the Hall property.
For any fixed j, consider the subpattern ofd in columns { ,;all dS } Ss-1 and
rows vs { m} ss_ 1; this is an (m Iss_ I) (j ss- 11) pattern. Partition
the columns ofthis subpattern into two disjoint sets s and s, with ds[ vs] s, every
column of s is combinatorially orthogonal to every column ofs, and Isl is as large
as possible. Then s[ss-] 0 and s[ vs] t_J alw[ vs], with dw[ vs]

Proof. By definition, Ps is the set of all row indices ri such that
(i) ri q sj-l;
(ii) there exists a column ck, =< k =< j, such that dk Ss_ and there is a in

row ri of c; and
(iii) there exists a path in Bs(/) from cs to ri.

Thus the positions of nonzeros in vectors de[ vs] cs correspond precisely to entries in
Ps, and the result follows from Theorem 4.7.

The following algorithm implements the construction in Corollary 4.9.

ALGORITHM 4.10. Computation of the pattern
Notation:

d is an m n pattern, m >= n, satisfying the Hall property.
ds is the jth column of 1, -< j =< n.
(ags) {i[ the ith entry of ds is }.
Ss, ss are as defined in {} 2.
1. For =<j_-< n 1, compute S and s
2. Initialization

l 3(1)

0:2 5(d2 S1
If a og2 =/= , then og2 og2 [...J o

3(2) Og2

3. Forj= 3,4 ,ndo
3.1. If ss_ 4 ss_ 2, then do

Fork= 1,2,...,j- ldo
If k ss_ then do

Ck 3(s) SS-
Fori= 1,2 ,k- ldo

If ss_ and a f) ai 4 then a a U
3.2. %. 3(ds)- Sj_
3.3. For 1, 2,...,j- do

If a ss- and as f’l a , then as as tO a;
3.4. 3(,)

We illustrate this algorithm with the pattern d ofExample 4.5. The only nonempty
Hall set Ss, =< j =< 4, is $4 /1, 4 }, giving s4 1, 4 }. For j 4, s2 s3 4, so
computation of 4 proceeds from step 3 of Algorithm 4.10 as follows. In step 3.2, O/4

/(/4) {4}. In step 3.3, for 1, 2, 3, accumulate /3(,-/1), /3(d2), /3(ga/3) into
giving Og4 { 1, 2, 3, 4, 5, 6 }, and so 4 is full. For j 5, as s4 4 s3 in step 3.1, update
a2 {2, 6} and a3 {3, 5}. In step 3.2, as 3(ds) s4 {3, 5}. This remains
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unchanged in step 3.3 because now a5 f’) a2 and a5 f a a5. Thus step 3.4 gives
/3() a 3, 5 }. The entire pattern is given by

* * * * 0
0 0.= 0 0

* * * * 0

;0 0
0 * * *

We now summarize a graph-theoretic way to compute the Hall sets required by
step of Algorithm 4.10. First, a maximal transversal in the m n pattern / is
obtained; see, e.g., [LP, p. 15] for an algorithm, or [D] for the case m n. Without
loss of generality, this maximum matching gives a square n n pattern in which all
diagonal entries are ,. Second, for the digraph associated with this square pattern, find
the strongly connected components using an algorithm of Tarjan (see, e.g., [RND])
and use these to construct its condensation digraph. The Hall sets ofmaximal cardinality
can be determined from this condensation digraph by traversing paths starting at vertices
of indegree zero.

The time complexity of this procedure to determine the Hall sets is dominated by
the computation ofa maximal transversal and is O(r(m + n)1/2), where r is the number
of nonzero entries in /(see, e.g., [LP ]). Step 3 of Algorithm 4.10 has time complexity
O((h + )mn2), where h is the number of distinct (nonempty) maximal Hall sets Sj-,
<=j<=n-1.

5. Pattern . Given a pattern , Theorem 4.7 determines the pattern 2, and we
now consider the pattern . As noted in the introduction, the pattern is invariant
under row permutations of

THEOREM 5.1. For m >- n, let l be an m n pattern with the Hall property. If
the pattern is determined as in Theorem 4.7, then the pattern 1 is given by the upper
triangular part of

Proof. Without loss of generality, we can assume that each diagonal position of
is ,. Since pg, _-< _-< n, the (i, i) entry of is by Theorem 4.7. Thus, since the
(i, i) entry of /is ,, the (i, i) entry of T is ,. The diagonal entries of are all
(by definition of the unique QR factorization), thus the patterns of N/and agree
on the diagonal.

Now consider in a fixed (i, j) entry with < j _-< n. If is combinatorially
orthogonal to j., then f’j 0. Also, for any A /, ifA QR, then R QrA and
so rj QA 0 in this case of combinatorial orthogonality.

If N; is not combinatorially orthogonal to /, then / is ,. We must show that
there exists a matrix A e ’ such that if A QR, then ri 4: 0. Suppose that the (k, j)
entry of is for some k, =< k _-< m, and the (k, i) entry of is ,. Then k p;, and
by the construction in Theorem 4.4, the submatrix in the first columns of A can be
determined so that in its QR factorization, the entry qk 4: 0. (Note that in the QR
factorization of any A 1, Qi is completely determined by the first columns of A.)
Since -i and .’j are not combinatorially orthogonal, we may choose A e ’ so that A
is not orthogonal to the already determined Qg. Thus, ro QA is nonzero, completing
the proof. (Note that only columns A l, Ai and Aj. have been specified; the other
columns ofA are arbitrary subject to A

Returning again to Example 1.1, we see that Theorem 4.7 predicts the true pattern
for ., that is, as in 1.2) with (R) 0. Theorem 5.1 then predicts the correct pattern for, again (1.2) with (R) 0. For example, the (4, 6) entry of 9t is zero, as 4 is combi-
natorially orthogonal to 6.
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The (i, j) entry of is if and only if there is an index k such that ak 4 0, and a
path in Bi () from column to row k (passing only through columns numbered less
than i). If has the strong Hall property and A /, this is equivalent (ignoring
cancellation) to the existence of a path in the graph of A rA from to j passing only
through vertices less than i. As the existence of such a path is equivalent to a genetically
nonzero entry in the (i, j) position of U in the LU factorization ofA rA, our result for, specialized to the strong Hall case, yields the same result as that of CEG mentioned
in our introduction. We note that, since the columns of are determined sequentially
(without appeal to previously determined columns), the rows of may be determined
serially. Thus, if only the pattern of is of interest, it may be determined without
necessity for storage of . In fact, if only row of is desired, it may be determined
from ’i (and s) for which only the Hall set Si- and Bi are necessary.

Remarks. We thank F. Ruskey, M. Gillespie, and the referees for useful comments.
We also note that Lemma 2.5 of[Gi] (which was brought to our attention after preparation
of this manuscript) is closely related in substance to our Theorem 3.2. The two proofs
are quite different, and the underlying concept seems to be an important one for exhibiting
nonzeros in factorizations of sparse matrices. The report Gi does not consider strong
Hall critical matrices, as in our Theorem 3.1.

In addition, A. Pothen (private communication in response to our manuscript)
proposed an alternate proof of our Theorem 4.4, based on the Dulmage-Mendelsohn
(DM) decomposition and a statement equivalent to Lemma 2.5 of[Gi]. Pothen also
notes that the DM decomposition can be used to construct the required Hall sets, and
notes (via an argument based on algebraic indeterminates) that the collection of all
entries that may individually be nonzero in Q may simultaneously be nonzero for some
(in fact, almost all) allowed instances ofA.

Note added in proof. After this paper was accepted for publication, we noticed that
Problem 7.6 and its solution (in Combinatorial Problems and Exercises, L. Lovfisz,
North-Holland, Amsterdam, 1979 )could be applied (with k instead ofour Theorem
3.1 in the proof of Theorem 3.2.
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ON SERIES EXPANSIONS AND STOCHASTIC MATRICES*

MOSHE HAVIV"f AND Y. RITOV:I:

Abstract. Let P(0) R be a stochastic matrix representing transition probabilities in a Markov chain,
which is completely decomposable into m independent chains plus a number of transient states. Also, suppose
that for all > 0 small enough P(e) P(O) + eC is a stochastic matrix representing a unichain Markov process.
Let r(e) be the stationary distribution of P(e) and let Y(e) be the deviation matrix of P(e) for > 0. It was
proved by Schweitzer that r(e) has a series expansion around zero whose terms form a geometric sequence. He
also showed that Y(e) admits a Laurent expansion. In order to compute the series expansion of r(e), a system
of equations is defined resulting from equating coefficients of identical powers in the identity a-(e)(I- P(e))
0 r. The authors prove that the minimal number of coefficients needed to be considered in order to get a system
of equations that determines uniquely the leading term in the expansion for r(e) equals the order of the pole
of Y(e) at zero plus one. Finally, the same system, but with a different right-hand side, determines the geometric
factor of the series and hence the entire series expansion.

Key words, near uncoupling, series expansions, stochastic matrix

AMS subject classifications. 41, 60

1. Introduction. For e, 0 < e _-< 8max, let P(e) P(O) + eC with P(e) R be a
stochastic matrix, representing transition probabilities in a unichain Markov process.
Assume P(0) to be stochastic but not necessarily representing a unichain Markov process.
Let r(e e R be the stationary distribution ofP(e) for 0 < e =< Cmax. Thus 7r(e uniquely
satisfies

and

() (),()

where 1 is a vector of ones with the compatible dimension.
Also, let Y(e) R be the deviation matrix of P(e) for e > 0. Specifically, Y(e)

is the unique matrix satisfying

Y(e)(I- P(e)) I- E(e) (I- P(e))Y(e)

and

Y(e)l O, z(e)Y(e) 0 T,
where E(e) Dr(e), namely, a matrix with all its rows equal to r(e), and where
0 R"1 is a vector of zeros. We note here that for unichain P(e) the conditions
Y(e)(I- P(e)) I- E(e) and Y(e)l 0 determine Y(e) uniquely once E(e) is given.
The deviation matrix plays an important role in perturbation analysis of Markov chains
and in the computation of mean passage times. See Schweitzer 17 ], Meyer 14 ], 15 ],
or Haviv and Van der Heyden [10]. The matrix Y(e) is the group inverse of I- P(e).
For more on group inverses, see Campbell and Meyer [1].

Following a number of authors, especially Schweitzer 17 ], 18 ], 19 and Haviv
and Ritov [9 ], we look for an issue involving the series expansion for r(e) and the
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Laurent expansion for Y(e) for e > 0 small enough. The case where P(0) is unichain is
relatively simple. From Schweitzer [17] we learn that for this case an expansion 7r(e)
=0 r ti)ei for e small enough exists with r 0) being r(0), the stationary distribution of

P(0), and where for >_- 1, r ti) #-)CY(O) with Y(0) being the deviation matrix of
P(0). Finally, the deviation matrix Y(e) is analytic in some neighborhood of zero. In
particular, Y(e) E = 0 Y(i)e for e >= 0 small enough for some matrices Y(i) E R""

>_- 0 with yt0) Y(0). Note that the single set of equations r()(I- P(0)) 0’resulting from equating the free coefficients in the identity 7r(e)(I P(e)) 0 T plus the
normalization condition r(e)l 1, determine 7r

(0) completely, and note that the order
of the pole of Y(e) at zero is zero.

More involved is the case where P(0) is not unichain, namely, P(0) represents a
Markov chain that is completely decomposable into a number of chains that do not
interact one with the other, plus a number of transient states. In particular, note that in
this case 7r(0) is not well defined. We mention that in this case, P(e) for small values of
e is usually called in the literature nearly uncoupled or nearly completely decomposable.
This model was looked at by a number of authors, for example, Courtois 4 ], Courtois
and Louchard [5], Haviv and Van der Heyden [10], Vantilborgh [21], and for the
question looked at here, mainly by Schweitzer [18], [19] and Haviv and Ritov [9]. See
also Schweitzer [20 ], which surveys a large number of computational methods suitable
for these models.

Next, we consider the case where P(0) is completely decomposable. As noted in
Schweitzer 18 ], the assumption that P(e) is unichain for 0 < e =< emax implies that 7r(e)
is analytic in that region, and hence r(e) admits for that range a series expansion,
70 r i)ei, for some sequence { r i) } = 0. Schweitzer also shows that Y(e)
Z = Yti)ei for all e > 0 small enough, namely, Y(e) has a pole at zero of order not
greater than n. The next question is how to compute the corresponding coefficients.
Before commenting on that, we need to develop some notation. The complete decom-
posability assumption on P(0) implies that it can be represented as

P(O)

Qoo Q Q2 QoP o
o o P2 o

0 0 0 Pm
for some m >= 2, for some indecomposable matrices Pi, <= <= m, and for some transient
matrix Qo. Next, we construct the eigensystems of P(0) belonging to the eigenvalue 1.
Let 71" be the unique vector satisfying 7" 7l’iP and 7l’i! 1. For --< =< m, let 0i E R1
be the vector (0 7-, ,_0 T, 71" ,_0 T, ’’’,_0 T) where "ffi appears at the indices corresponding
to the independent chain i. Then let V Rmn be a matrix whose ith row equals Oi. Let
wf e. R ’ be the vector ((I- Qo)-Qil T, or,..., 1 T, or), where the vector 1 T

appears in the indices corresponding to the independent chain i. Finally, let W R"
be a matrix whose column equals wi. Note that VP(O) V, P(O)W W, VW I,
and VP(O)W I, where I Rmm.

It is well known that both the algebraic and geometric multiplicities of the eigenvalue
ofP(0) equals the number of independent chains rn, and hence Vand Ware full-rank

matrices spanning the corresponding left and fight eigenspaces. From the fact that
7r ()(I P(0)) 0 T, one gets that 7r

() z()V for some z()E Rm. Also, by equating

Of course, if the order of the pole is k for some k < n, then Y() 0 for i, -n =< < -(k + ).
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the coefficients of e in the identity r(e)(I- P(e)) 01, we get that r)(I- P(0))
r ()C. From the analysis in Haviv and Ritov [9] or Haviv, Ritov, and Rothblum [11],
we learn that these two facts imply that z() lies in the left null space of VCW. Hence, if
this space is of dimension one, then we conclude that the first two sets of equations
resulting from equating coefficients of identical powers are the minimal needed in order
to determine r () uniquely. This case is analyzed by Schweitzer [18 ], who named this
as the full rank case. Moreover, he showed that for this case r (i) r (i-1)U for >_- 1,
where here U CY[I CW( Vcw)gv], and where (VCW)g is the group inverse of
VCW.2 Finally, Schweitzer also showed how to compute the Laurent expansion of the
deviation matrix in the full rank case. In particular, he showed that Y(e) has a simple
pole at zero. Again, as for the case when P(0) is indecomposable, we get that the minimal
number of coefficients needed to be considered in order to get a system of equations that
determines r(0) uniquely (up to a multiplicative factor, of course) equals the order of
the pole of Y(e) at zero plus one.

Schweitzer [18] showed that if the Markov chains associated with P(0) and P(e)
for 0 < e -< emax have the same set of transient states, then the full rank assumptions are
met. However, the full rank assumptions do not hold in general. See 3 for an example.
Moreover, in many practical situations under the perturbation eC some states which are
transient under P(0) become recurrent and vice versa. See Rohlicek and Willsky [16]
for some models in which this is typical. The aim of this paper is to establish the fact
that is stated next as Theorem 1.1. Its proof is deferred until 2.

THEOREM 1.1. The minimal number of consecutive coefficients of various powers
ofe in the identity r(e)(I- P(e)) O r that need to be equated in order to get a system

of equations that determines r (o) uniquely equals the order of the pole of Y(e) at zero
plus one. Moreover, the same system ofequations, but with a different right-hand side,
determines the geometricfactor matrix U R such that r (i) r () Ui.

Finally, we refer the reader to some other papers dealing with the same issue but
from a different angle. Coderch, Willsky, Sastry, and Castanon [2 ], [3] and Rohlicek
and Willsky 16] suggest a method for computing r (o). Another method for computing
r (0) is given in Delebecque [6 ]. He extended it to the computation of the entire series
{ r (;)} =o. The analysis of these authors who were concerned mainly with transient
behavior of Markov processes is based on Kato’s 12 classical perturbation results. We
have already mentioned Schweitzer’s work and note that an alternative method for com-
puting the series expansion for r(e) and the Laurent expansion for Y(e) is suggested in
Haviv and Ritov 9 ]. Also, in Hassin and Haviv 8 we can find a combinatorial algorithm,
which finds the order of the poles of all the entries of Y(e) at zero. Finally, we mention
Langenhop 13 ], who suggests a method for inverting near singular matrices. Specifically,
note that for e > 0 small enough

r(e) (1, 0, O)A(e)-and

Y(e) B(e)A(e)-,
where A (e) is the matrix 1- P(e) whose first column is replaced by a column of ones,
and where B(e) is the matrix E(e) whose first row is replaced by zeros (Denardo [7]).
Note that A (0) is singular. Hence, we can invert A (e) by the method suggested by Lan-
genhop and get the order of the pole of Y(e) as a byproduct.

In Schweitzer 18 we can find a different expression. However, we omit a proofthat both representations
are equivalent.
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2. Proof of Theorem 1.1. Solving for the unique r(e) _- 0 7r (i)8 i, which satisfies
r(e) 7r(e)P(e) and 7r(e)l for e > 0 small enough, is equivalent to finding the
unique sequence { 7r

(i) } = 0 with a positive radius of convergence, which satisfies

(0) 7r()(I- e(o)) QT,

7r()(I- P(0)) 7r ()C 0 T,

(i) 7r<i)(I e(0)) .if(i-1)C

coupled with the normalization conditions r ()1 and r (;)1 0 for >= 1. The above
systems of (difference) equations will be called the fundamental equations.

Schweitzer 18 proved that

Y(e) Y(i)ei
i=-n

for some sequence {Y(i)} =-n- Specifically, as Y(e) equals B(e)A(e) -1 (see the end of
the introduction), each of its terms is a ratio between two polynomials, each of which
has a degree not greater than n.

Let be the minimal number of consecutive sets of fundamental equations needed
to be considered in order to get a system of equations that determines r 0) uniquely.3
This means that the set of fundamental systems of equations (0, plus the
equations concerning the normalization requirements are sufficient in order to define a
system of equations for which the corresponding solution for 7r

0) is unique. We first
show that the order of the pole of Y(e) at zero is at most 1, namely, that y(i) 0
for -n < =< -t, where 0 e Rx is a matrix with all entries equal to zero.4 Aiming
a contradiction, let j be t-he minimal index such that Y() 4 0 for some j =< -t. Then
consider the following set of systems of equations, which result from equating the
coefficients ofe, e;+ e;+- in the matrix identity Y(e)(I- P(e)) I- E(e)"

Y(J)(I- P(0)) 0,

Y(+ 1)(1- P(0)) Y()C O,

Y(+-I)(I- P(0)) Y(J+-2)C 0.

For example, look at the first row ofeach ofthe Ymatrices here and consider the resulting
equations. It is easy to see that these equations, coupled with the requirement that the
sum of entries in that row be zero (resulting from the identity Y(e)l_ 0_), are like the
set of equations for r (), r (1), r (- 1) but with a different fight-hand side (in the
normalization part), which is now identically zero. As the solution for r (0) is unique,
so is the solution for Y(Y). It is easy to see that Y(Y) Y(Y + 1) y( + - 1) 0
solves this system, and hence Y(J) 0 is the unique solution for Y(;).

Next we prove the converse inequality, namely, we show that the order of the pole
of Y(e) at zero, which is denoted by k, is at least 1. Let 3,

()
3,() 6 R" be

any solution for the first k + sets of systems of fundamental equations, which also

In Haviv and Ritov 9 it was proved that this number is bounded by n + 1.
This inequality is stated in Schweitzer 19 ].
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satisfies 3,()_1 1. Of course, for some sequence { 6 (;) } =o in Rn with 6()1 0, for
all e > 0 small enough, r(e) 3,(e) + 6 (e) where 3,(e) /k= o 3, (i)e and where 6 (e)
Z =o 6(i)e i. We will complete our proof by showing that 6 (0) 0 r. First, note that

[3,(e) + 6(e)][I- P(O) eel 0 r.
Since 3, )}/k=o solves the system of equations resulting from the first k + sets of
fundamental equations, the above identity implies that

()(I- P(0) C) -v (C/ ,
and then that

() v(CY()+ + ()r()
for some a(e) --0 a(i)e eR. But 6()1 0 and Y(e)l 0 and since 7r

c) 4: 0rwe
conclude that a co) 0. As the order of the pole of Y(e) is k, the above fight-hand side
is of the order of magnitude of O (e) and hence 6 c) O r as required.

We conclude the proof by establishing the fact that the geometric matrix factor can
be derived from the same set of equations. Suppose we have determined the system of
equations that determines 7r

c0) uniquely and suppose we compute 7r c). By considering
the fundamental sets 1, 2,..., t), introducing the normalization requirements r (i)1
0 for =< =< and treating 7r co as known, we get the same system as the one considered
previously when solving for 7r

c0) with a different fight-hand side. Since the solution for
a-(o) is unique, the same is now the case for 7r (). In particular, if 7r

co) was computed by
some matrix inversion, the same matrix inverse can be used in order to compute 7r el).
Also, r l) is a linear function of r co), and hence r l) r (o) U for some matrix U e
RnX,.6 By considering the fundamental sets (2, 3 + and the normalization
requirements, we get that r c) plays the same role in the computation of r (2) previously
played by 7r

co) in the computation of 7r (). In particular, 7r
c2) . ) U for the same

matrix U. Likewise, for all >= 1, r ) r U or r i)
71"

(0) Ui"

3. A numerical example. The following example is taken from Haviv and Ritov
[9 ]. More details are given there. This example is also considered in Hassin and Haviv
[8]. Let

0 0 0 -1 0 0
P(e) P(O) + eC= 0 0 0 + e

0 0 -1
0 0 0 0 0 -1

Here

V=
0 0 0

and W=
0
0

and hence

(0VCW=
0

The last observation is based on the fact that if A is the group inverse of A and the system of linear
equations xA b is feasible, then x is a solution if and only if x bA + y for some vector y in the left null
space of A. See, e.g., Campbell and Meyer [1].

For an explicit expression for U, see Haviv and Ritov [9 ].
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We can see that the full rank assumptions are not met, as the null space of VCW is of
dimension larger than one. Note also that P(0) and P(e) for e > 0 do not possess the
same set of transient states.

It is easy to check that the two conditions rr)(I-P(0))=0 T and
7r l )(I- P(0)) r )C 0 r do not determine rr c0) uniquely. Specifically, for any scalars
c,/3, , and 6 the vectors 7r

(0) (0, a, 0,/3) and 7r
() (a, y,/3, 6) are feasible. Then,

introducing the third system, 7r
(2) (i P(0)) rr ()C 0 T, restricts the solution to

rr () (0, a, 0, a) for any a. Finally, the normalization requirement rr ()1 leads to
the unique solution 7r

() (0, 1/2,0, 1/2 ). The matrix U equals

0 0 0 0 t-1 0 0
0 0 0 0
0 0 -1

and since U (-1)i+ 1U, we get that 71
"i (-1)i+ (.5, -.5, .5, -.5).

By Theorem 1.1 the pole of Y(e) at zero is 2. Indeed, as computed in Haviv and
Ritov 9 ],

y(-2)

0 .25 0 -.25 t0 .25 0 -.25
0 -.25 0 .25
0 -.25 0 .25
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THE NUMERICAL EFFECT OF MEASUREMENT ERROR
IN THE EXPLANATORY VARIABLES ON THE OBSERVED

LEAST SQUARES ESTIMATE*

SAMPRIT CHATTERJEE? AND GLENN HELLER

Abstract. The numerical effect of measurement error on the least squares estimate in the linear regression
model is examined. The change in the least squares estimate is measured by calculating a stochastic upper
bound on the relative distance between the true (unobserved) and observed (with error)jth component. The
bound is derived in the case of k of p explanatory variables measured with error. If the bound indicates that
none of the estimates are badly perturbed, the analysis can continue without concern about the effect of mea-
surement error. Simulations are carried out to compare this bound with the first-order upper bound of Golub
and Van Loan [Matrix Computations, Johns Hopkins University Press, 1983 ], and the componentwise upper
bound of Higham Contemp. Math., 112 (1990), pp. 195-208 ].

Key words, measurement error, upper bound, perturbation theory, stochastic ordering, linear regression
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1. Introduction and notation. Throughout this paper we use upper case letters for
matrices, lower case letters for scalars, and lower case bold letters for vectors. For a real
matrix A (aij) with n rows and m columns, the following definitions and inequalities
involving matrix norms are used [10]"

(la) II ll sup

(lb) IIAIIoo max laijl,
j

IIAII -
j

(ld) IIAII2 --< IIAIIoo,

(le) iiAII2 <=
In addition, we denote the expectation and variance of a random variable by E(. and
var (.), respectively.

Given the classical linear regression model Yi zir/3 + e; (i 1, n), the least
squares estimator of the regression coefficient vector/3 is b (zTz)-IZTy, Z T

(Zl, z,). Here zr (zi0, zil, zip) is a row vector denoting the ith observation
of the p explanatory variables with Zio 1, and the { ei } are independent identically
distributed random variables with mean zero and variance a2. Often the variables zi in
the regression model are contaminated with measurement error, so the observable vari-
ables x; z; + u; are utilized. As a result, the observed least squares estimator is b
(X rX 1X Ty, where X T x1, x, ).

There is a substantial body ofliterature devoted to the development ofmeasurement
error models for linear regression, and many estimators have been proposed as an alter-
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native to the observed least squares estimator bx. Fuller [7] gives an overview of these
models. Often, however, the assumptions needed to implement these measurement error
models are untenable. A typical assumption is that the covariance matrix of the inde-
pendent identically distributed rows of the error matrix (el U), e (el, en) T, Uv

(ul, un), is known up to a scalar. If such an assumption cannot be made, then the
analyst will be led to use the well-defined observed least squares estimate bX. However,
is bX a reasonable estimate to use when measurement error is present?

One approach to answering this question is explored in a series of papers by Gallo
[8 ], Carroll, Gallo, and Gleser [2 ], and Gleser, Carroll, and Gallo [9]. These papers
provide necessary and sufficient conditions for the linear combination cXb to be a con-
sistent estimator of cx/3, and the condition when such linear combinations are asymp-
totically no.rmally distributed. They show that the class oflinear combinations is restricted,
and they also note that c is a vector function of the limiting value of n-xTx and may
not be known. A special case of their work proves the well-documented result that the
jth observed coefficient b is not a consistent estimator of

A second approach, often called small sample asymptotics, or kth-order perturbation
theory, assumes that s]] uII / is negligible for fixed n and scalar s. The motivation for
this method is that if the elements of U are small relative to the smallest eigenvalue of
XVX matrix, then the unobserved ZVZ matrix is nonsingular and b is well defined. An
advantage to this methodology is that (zTz)- may be expanded in a series up to the
kth-order term allowing for algebraic manipulation inside the inverse function. A first-
order upper bound on the distance between the jth elements of the vectors b
based on the 2-norm is [10]

(2) b by =< Ile(XTX)-’XWll2l[ Ull2[lbxll2 + I[eT(XTX) -’ I111 u[1211y

where ej is the jth unit basis vector. This inequality is obtained by setting
11X][2 in [10, p. 143]. Other examples of the benefits of this expansion are found in
Stewart 15 ], 17 and Higham and Stewart 12 ], who derive a first-order upper bound
for the case of only one explanatory variable measured with error. (Stewart 16 drops
the first-order assumption and examines the problem of measurement error in the linear
functional model, i.e., e 0. However, he still maintains the restriction that only one
explanatory variable is measured with error.) A second-order perturbation expansion
was computed by Hodges and Moore 13 to examine a bound on the bias ofthe observed
least squares estimator E(b b’). However, their result gives the bias in terms of
(zTz) -1 and/3, which are unknown.

Two related approaches are developed by Davies and Hutton 5] and Fletcher [6].
Davies and Hutton [5 calculate a bound on the asymptotic bias ofb x, lim,_ E(b
bZ). The large sample asymptotics used to bound the asymptotic bias provide the same
benefit as the second-order calculations ofHodges and Moore 13 ]. Fletcher 6 provides
a first-order upper bound on the mean squared error function El b b z[I 2. The first-
order bound is based on the assumption that the measurement errors ui are independently
distributed with mean zero and known variance.

A third approach examines componentwise perturbations in the covariate matrix.
Higham [11] assumes that the measurement errors ui9 obey bounds of the form uil
ha0.. The bound, which is developed using primarily triangle inequalities, is

(3) Ibm- bl --< 6{ lef(STS)--STlAIbZl + ler(XTS)--’lATly- Zbl
where [xl (I xi[), and aiy ay for each i. Although the upper bound given in (3) is
rigorous, it is a function of the unobserved regression coefficient b and residual r
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y Zbz. Higham’s suggestion is to estimate b and r with b and rx. Note that the
bound is no longer rigorous after this estimation.

In this paper we have chosen an alternative approach that combines elements of
the previous methods to answer the question, "Is b a reasonable estimate when mea-
surement error is present?" A stochastic upper bound on a distance measure between
the true and observed least squares estimate of/3j, in the general case of k explanatory
variables measured with error, is derived. This bound does not rely on first-order expan-
sions, nor does it require that the sample be large. When the upper bound is small,
measurement error can be ignored and/3j is well estimated by b]. From here on, unless
otherwise specified, all variables are centered.

2. An upper bound for the relative error. A useful measure of the distance between

bf and b} is the relative error

Ib; ,1

However, since the true covariate matrix Z is unknown, the relative error cannot be
computed. Instead, an upper bound of this metric is used to gauge the effect of mea-
surement error on the least squares coefficients. Theorem provides an upper bound for
the relative distance between bj and b} in the general case of k explanatory variables
measured with error. The proof of this theorem is given in the Appendix.

THEOREM 1. Let d [Ix/[Izll UII2. Ifd < 1, and
+ T + + +IleX+ezl122 < IleZ 1122 < [le.X I1[ / {[le(X+- z )l[2/[leX 1122}],

then

(4)
b; b __< Fj

d[ { d(2 d) }2 + d)2] ’/

Ib;I Icos %.1(1 d)

where X+ (XTX)-X (X is assumed to befull column rank), Pz ZZ + is a projec-
tion matrix, is defined as the angle between (X+)re and y, and I’ is defined by
cos { cos- (d) ’j }.

The cosine and I’ functions can be interpreted as correlation measures. It can be
shown that the sample correlation r, of y and (X/)Te, the component of xi orthogonal
to Xt1, (the nx(p matrix formed from the observed (centered) covariate matrix X
by removing its jth column) is equal to cos 3’. In addition, if it is assumed that d is
small, then I’j r})/2.

Although ]IX+I[2, cos 35, and I’j can be calculated from the observed data, the
measurement error matrix U is not observable and, consequently, d is not calculable.
However, if an assumption is made on the precision of each of the p measurement
instruments, further progress can be made. We assume that

(5) lull <aj (i= 1,2,...,n) (j= 1,2,...,p)

(fR represents an uncentered variable). This assumption implies that it is possible to
specify for each variable an upper bound on the absolute value ofthe measurement error.
This is a realistic assumption after gross errors have been eliminated. Then from d),

u[12 I/n( a),

and the bound for U[[2 can be used in (4) to derive a calculable upper bound for the
relative error.
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Unfortunately, this bound is conservative in that it assumes that, for each observation,
the maximum possible error occurs in each of the variables simultaneously. This is an
event that occurs with very low probability. The approach taken in 3 to tighten this
bound is to assume that the errors are stochastic, and to consider bounds that hold
100( 6)% of the time. This enables the analyst to ignore large values of uij found in
the upper tail of the measurement error distribution. We now derive a bound for
under weak probability assumptions about measurement errors.

3. A stochastic upper bound. The bound on UII2 can be sharpened if we make
some assumptions about the probability law of the measurement errors, and allow the
bound to hold with probability 6. To compute the bounds we need the following
definition and lemma.

DEFINITION. The random variable w is stochastically larger than the random variable
v if

Pr[w>c]>_-Pr[v>c] for allc.

For a discussion on stochastic ordering, see [14].
LEMMA 1. Let the random variable w be uniformly distributed with support in

[-a, a ]. Among the class ofrandom variables v with probability densityfunctions sym-
metric about zero, nonincreasing in Iv I, and support [-a, a ], w2 is stochastically larger
than I) 2

The proof of Lemma is given in the Appendix.
Assuming that the measurement errors uij are independent random variables (i

1, 2,..., n;j 1, 2 p) satisfying Lemma 1; then from e), we can find a constant
c such that

Pr[[lU[]22<c]>--Pr[[]WIIF<c] 1-6,

where wij Unif -a, a] are independent. Thus U]] 2 is bounded by c with probability
greater than 6. Although c can be found explicitly, the calculations needed are difficult.
Utilizing the first two moments of w},

4aJE(w) J var (w/-) 45’

and the central limit theorem (assuming the Lindeberg-Feller conditions), a simple
approximation to c is

4n 4(6) c (Zl-) - Z a + a,
where Z_ is the 6) quantile of the standard normal distribution.

By replacing c for [1U[I 2 in the upper bound of Theorem 1, we have exchanged a
rigorous bound for a probabilistic bound. However, if 6 is kept small, the analyst can be
confident that the relative error will not exceed this upper bound with a very high prob-
ability. Simulations executed in 5 demonstrate this point.

COROLLARY 1. Let q2 C ]IX+l] . Ifq2 < 1, and

IleX+ezl122 <= Ileffz+[l. _-< IleX+[l[ 4- ([le(X+-

then

(7) .l....b b}]__< I’j.
q[{q(2 q))2 + (1 q)2]/2

b cos 71( q)

with probability
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The relative error is invariant to column scaling of the carrier matrices X, Z and
hence provides freedom to rescale for the purpose of reducing the upper bound in (7).
In particular, only q2 is affected by the choice of the column scaling matrix D
diag {d }. Let

14n ]/2nCD (Zl_6) - (4.aj) +- , (aj),
II(XD)+II22 -IID-1X+II22"

Although an optimal scaling matrix is unknown, one strategy is to choose a contraction
mapping (0 < dj _-< 1;j 1, 2,..., p), which reduces cz but maintains (XD)/ [l. in
the neighborhood of x+ II [181. The theorem given below and proved in the Appendix
specifies/ so that (xD) /

2 is never farther than /p from its lower bound.
THEOREM 2. Let 4(X +) maxj IlerX + 112, Choose the diagonal matrix D, so that

the rows ofD-1X+ are ofequal length, and dj. for some j. Then

(i) (])(-Ix+) infD { [[D-1X+[I2:0 < 4 --< 1},

(ii) 4(/-X+) _-< I]/-X+[I _-< /pck(b-X+).
Remark. The equilibration matrix D is generally defined up to a multiplicative

constant. The constraint d for some j provides a unique/.

4. An illustrative example. We illustrate the numerical effect ofmeasurement error
on the least squares estimates using the abrasion loss data (see 3 ]). This data set examines
the relationship between the response variable (y) abrasion loss (in grams per horsepower-
hour) and the explanatory variables, (Xl) hardness (in degrees Shore) and (x2) tensile
strength (in kg/sq, cm). The unit-degrees Shore represents the angle a Shore hammer
reaches at its maximum after bouncing offa rubber surface. Both variables are significant
predictors of abrasion loss, and the uncentered regression equation is

Ji-- 885 6.57x 1.37x2.
Suppose that the instrument measuring the angle of the Shore hammer was accurate to
within +.5 units, and the instrument measuring the tensile strength was accurate to
within + unit. Then, letting 6 .05 in (7), there is a probability of .95 that the upper
bounds for the relative distance of bj.x and b(j 1, 2) are (q .047)

[.041, j=b2- bl _<

Ibl -.107, j-2.

Hence the regression coefficients are measured correctly to within +__.25.

5. Simulations. We conducted a series of simulations to compare our estimate of
the maximum relative error (7) (after rescaling) with the first-order upper bound given
in (2) and the componentwise upper bound given in 3 ). A linear regression model with
two covariates and a sample size of 50 was used. Simulations were conducted conditional
on the set ofobserved variables (Xl, X2, y). The first observed covariate x took on equally
spaced values in the interval (0, 100 ]. The second observed covariate was manipulated
to produce a range of condition numbers for the XrX matrix, but maintaining IIx 112
IIx2112. The condition numbers examined were 1.18, 2.66, 12.37, and 72.29. The observed
response variable y was generated from the model

y 50 + 5x + 0x + .
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The equation error i was generated from a normal distribution with mean zero and
variance a 2. The variance was chosen to correspond to an R2 of either .30 or .80. The
statistic R 2 IIrll /Ily is one minus the standardized length ofthe residual vector
rx, and is a measure of the strength of the observed regression relationship. For each
simulation, the random component was the measurement error (uRij), which was uni-
formly distributed in the interval (-aj, a.). In the first set of simulations given in Table
(a), a a2 1. For the second set of simulations given in Table (b), we assumed

that there was measurement error only in the second covariate, a 0 and a2 1. These
errors are commensurate with the scale of the observed covariates, which are recorded
in units of ones.

To calculate the first-order upper bound (2), we applied the methods ofDavies and
Hutton 5 ], Hodges and Moore 13 ], and Stewart 17 to estimate the unobserved [1UI] 2
In these papers, it is assumed that the measurement errors u/ are independent, and that
as the sample size n gets large, the matrix n- UrUconverges in probability to the variance-
covariance matrix of the measurement errors A diag { , }. For the simulations in this
paper, it is assumed that u are uniformly distributed with support [-a, a.], and therefore
that IIuIIN is estimated by max (na/3)[j 1, 2].

Tables (a) and (b) present the results of the simulations. These results compare
the estimated upper bounds to the maximum relative error based on 10,000 replications.
The two entries in each group represent the results for the two regression coefficients b,
b2. The upper bounds for the three methods are recorded for each regression coefficient,
along with the maximum relative error based on 10,000 runs. The following observations
are made:

(a) The diagnostic q (Corollary ), which measures the size of the measurement
error matrix U relative to the smallest eigenvalue of xTx, is the primary indicator in

TABLE (a)
a= 1, a2 1.

Maximum Stochastic First-order
Condition relative upper upper Componentwise

number K(X’X) error bound bound upper bound

r .80

K(X’X) 1.18 .0292 .0768 .0721 .1301
q .031 .0139 .0214 .0337 .0675

r(X’X) 2.26 .0312 .0809 .0708 .1362
q .040 .0147 .0182 .0342 .0754

r(X’X) 12.37 .0595 .1992 .1545 .2988
q .083 .0313 .0798 .0822 .1729

K(X’X) 72.29 .1181 .4698 .2626 .5567
q .117 .0518 .1963 .1205 .2628

r .30

r(X’X) 1.18 .0624 .1637 .1493 .2416
q .031 .0225 .0582 .0618 .1062

r(X’X) 2.66 .0385 .1056 .0955 .1731
q .040 .0279 .0781 .0730 .1443

K(X’X) 12.37 .0775 .2193 .1950 .3931
q .083 .0603 .1658 .1557 .3285

K(X’X) 72.29 .1795 .5078 .4059 .8420
q .117 .1329 .3611 .2921 .6153
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TABLE (b)
a 0, a2 1.

Maximum Stochastic First-order
Condition relative upper upper Componentwise

number K(X’X) error bound bound upper bound

r .80

K(X’X) 1.18 .0263 .0580 .0721 .0715
q .022 .0124 .0160 .0337 .0517

r(X’X) 2.26 .0233 .0577 .0708 .0765
q .028 .0123 .0127 .0342 .0505

r(X’X) 12.37 .0533 .1555 .1545 .1823
q .059 .0291 .0615 .0822 .1117

r(X’X) 72.29 .0799 .3312 .2626 .3205
q .083 .0394 .1367 .1205 .1560

r .30

(X’X) 1.18 .0285 .1238 .1493 .0828
q .022 .0228 .0439 .0618 .0926

K(X’X) 2.66 .0170 .0755 .0955 .0710
q .028 .0231 .0557 .0730 .0898

(X’X) 12.37 .0581 .1712 .1950 .2083
q .059 .0498 .1292 .1557 .1917

(X’X) 72.29 .1155 .3582 .4059 .4175
q .083 .0884 .2539 .2921 .3203

determining how badly the observed regression coefficients can be perturbed. It is not
the size of the measurement errors or the condition number alone, but their joint rela-
tionship that determines the maximum relative error. This observation has been noted
by Davies and Hutton [5 ], Beaton, Rubin, and Barone [1], and Stewart [16], [17]. A
general rule is that if q <. 10, the analyst can proceed, ignoring the measurement error.

(b) For q <. 10 and a a2 (Table (a)), the stochastic upper bound and the first-
order upper bound are comparable. The componentwise upper bound is uniformly weaker
over all entries of Table (a).

(c) For q <. 10 and a v a2 (Table (b)), the stochastic upper bound is generally
the tightest, with the first-order and componentwise upper bounds comparable but weaker.

(d) The first-order upper bound is at its strongest when a a2, as is the case
of the simulations presented in Table (a). This is a result of letting IIUII2
max (naj /3 ). However, when the magnitude of the measurement errors varies between
covariates (a 4: a2), the bound may be considerably weakened, since only the maximum
aj is used in the calculation. This is illustrated in Table (b), where the first-order upper
bound remained unchanged from Table (a), even though there was no longer mea-
surement error in the first covariate. Note that both the stochastic and componentwise
upper bounds are reduced in Table (b) as a result of setting a 0. In general, as the
ratio max a) / min a) increases away from one, the first-order upper bound gets weaker
compared to the stochastic and componentwise upper bounds.

(e) The distance of the stochastic upper bound to the maximum relative error is
relatively constant across values of q and R2. The stochastic upper bound is approximately
two to three times the size of the maximum relative error for most entries in Tables (a)
and (b).
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(f) The strength ofthe observed regression relationship affects the maximum relative
error. A weaker regression implies that the regression coefficients take on a greater range
of values, resulting in a larger maximum relative error. This is in line with first-order
theory, which shows that the bound is oforder K(xTx) when the residual r is significant,
and of order K(X) when r is small. The condition number for the matrix X is defined
as (X).

6. Concluding remarks. We have presented a diagnostic q and a stochastic upper
bound that together describe the conditions under which the effect of measurement can
be ignored for a given set of data. The resultant methodology encompasses a general
measurement error framework, requires relatively simple computation, and can be applied
to small data sets. We propose that an analyst examine the potential effects ofmeasurement
error. If the effects are minimal, then the presence of measurement error should cause
no concern.

Results of the simulation study comparing this upper bound to a first-order and
componentwise upper bound show that if the diagnostic q is less than. 10, the stochastic
upper bound is stable in the sense that it compares favorably to the other bounds over
all conditions described in the simulation. In contrast, we found that while the first-order
upper bound was at its best when a a2, it produced a weaker bound relative to the
stochastic upper bound when the precision of the measurement error varied between
covariates. We also found that the componentwise upper bound was greater than the
stochastic upper bound over almost all entries in Tables (a) and (b).

The method of least squares generally produces poor estimates of the regression
coefficients when the covariates are nearly collinear. Our simulations have demonstrated
that the stochastic upper bound for the change in the least squares estimate (as well as
the other bounds studied) is weak when the condition number of the observed covariate
matrix is large. The situations where the stochastic upper bound is weak correspond to
situations where least squares estimation is unsatisfactory. Therefore, this methodology
should not be applied in highly collinear situations. If the data contains nearly collinear
covariates, other methods of estimating the regression coefficients should be considered,
such as principal components, ridge regression, or the removal of covariates [4 ]. The
computation of bounds for least squares estimates in these situations is moot.

In conclusion, we believe that the applicability of the presented methodology to
most data sets will encourage data analysts to address the problem ofmeasurement error,
which is often ignored, in the linear regression model.

Appendix.
ProofofTheorem 1. The matrix norm used in this proof is the spectral norm ( 1,

equation (la)). We begin with the equality
T T - hj)ll =gj y hj yl [{ [IPz(gj + II(!- Pz)(gj hj)ll 2 }

(A1)
X IlY 2 {COS2 0(y, gj hj) } 1,

where

p= x(xrx)-’x, p= Z(ZrZ)-Z T,

gj x(xTx)-lej hj z(zTz)-lej,

bf g,r.y, b hy,
and e is the jth unit basis vector. The identity in (A1) follows from the Pythag-
orean Theorem and the Law of Cosines. In addition, it is noted that Pzhj h and
(I-ez)hj=O.
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To develop an upper bound for the difference between the observed and true jth
estimated regression coefficients, a bound must be found for the first two terms inside
the bracket and the cosine function on the fight-hand side of (A ).

(i) A bound on the second term inside the bracket is

(A2) (I Pz)(g hi) 2 (I Pz)(Z + U)X+g112 __< g ill 2 x / 2 ull 2,

where the equality follows from (I- Pz)h 0 and Pxgi
(ii) To calculate an upper bound for Pz(gi hi)I] 2, we use the assumption stated

in Theorem 1,

(A3) ezg.ll 2 _-< IIhjl[ 2 --< IIg.l[=[1 / (llh- gjII 2/ Ilg [12)]

This assumption restricts the size ofthe unobservable vector hj to lie in the neighborhood
of the observed IIgll.

Letting d x/ u[I, it follows from Fig. and (A2) that

sin 01 (I Pz) gill / g[I =< d.

In addition, since 01 and 03 are complementary angles,

(A4) 03 >= 7r/2 sin- (d).

Now, based on assumption (A3),

gj
2 + gj h 2 h 2

>0COS (03 -[- 04) 2[Igll Ilg- hjII
or 03 + 04 =< 7r/2. Therefore, by (A4),

04 =< sin- (d),

and since 02 and 04 are complementary angles,

02>r/2-sin-(d) and cos(02)=<d.

If cos 02 is rewritten as [Iez(g h)ll/llg hll (see Fig. 1), then a bound on
IIP(g- h)ll will be accomplished by bounding IIg- hill. Using a standard decom-

FIG.
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position in perturbation theory, g- hjT- gT + TpUZ g x(I Pz) and assuming
X+ UI[ < (see, for example, 19 ])"

ligi-hill =< [[gilld{(2-d)/(1-d)).

Since cos (02) =< d, it follows that

(A5) [[P(gi- h)ll --< Ilgi[ld2{(2 d)/(1 d)).

(iii) To obtain a bound on the cosine function in (A1), let 05 03 + 04, 06 be the
angle formed by g and y, and 07 be the angle formed by g hi and y.

To bound [cos 071, we note that 05 =< 06 + 07 and, since 03 >= r/2 sin -1 (d), it
follows that r/2 >= 05 >= cos -l (d). So

07>=c0s-l(d)-06 and cos 07 -<cos{cos-l(d)-06}.
Therefore,

(A6) [cos 0(gj hj)y[ cos cos-1 (d) 06 }.
(If { cos -1 (d) 06 < 0, then we set the upper bound of (A6) to 1. We use the notation
I’ to denote the upper bound in (A6), and 3’ to denote the angle 06.

Therefore, from (A ), (A2), (A5), and (A6),

b; by __< Pd[ { d(2 d) } 2 + d)21 ’/2.
[b ]cos 3’1(1 d)

ProofofLemma 1. Letfw(w) a and-a <- W =< a. Let S V2, where the density
of V satisfies the conditions in Lemma 1. If F is the distribution function of S, we want
to show that inff Fs(s) occurs when f is the uniform density. Note that

F,(s) 2 fz(v) dv

by symmetry about zero. Since (1/s)Fs(s) is a decreasing function of s,
2 fv(v) dv > (0 < Vs < a).

a

But /a 2 frofw(w) dw, i.e., the minimizing distribution is uniform.

Proofof Theorem 2. Proof of Theorem 2 begins with

(a7) ck(D-1B+) <= IIO-lB+ll2 _-< f-4(O-’B+)

(see, for example, 10, pp. 15-161). Given D diag { d }, if dj. _-< 1, j 1, 2, p,
b(B+) =< b(D-1B+), and therefore, 4(B+) -< [ID-1B+I[2. Now

I)(/--1 B+) d1 ilefB+[12 j 1, 2 p,

and since/ is chosen so that the rows of B/ are of equal length with d9 for some j,

b(D-’B) b(B+).

This proves (i), and (ii) follows immediately from (AT).
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Abstract. Mixed, componentwise, and structured condition numbers for continuous maps in finite-di-
mensional spaces are introduced. For differentiable maps, convenient formulas for the estimation ofsuch condition
numbers are given and illustrated on the example of Toeplitz matrices. Applications to Vandermonde matrices
are also presented.
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1. Introduction. In this paper, we study condition numbers of maps in finite-di-
mensional spaces F P- Eq. The condition number off at a point a DF characterizes
the instantaneous rate of change in Fa with respect to perturbations in a. It provides an
approximate error bound for computing Fa in the worst case over all perturbations.
Definition and properties ofa condition number can be found in papers by Lyubich 14
and Rice 15]. The usual way of measuring perturbations in a and Fa is by the relative
error in norm. Thus the usual condition number relates Fx Fall/[I Fall to x all/
Ilall. If F is differentiable at a then the usual condition number ofF at a is

IlF’(a)ll[lall
k(F, a) IIFall

where F’(a) P -- q is the derivative of F at a.
Skeel [17 defines a new condition number for the solution of linear systems of

equations, Ay b, which relates Fx Fall/[I Fall to perturbations in a satisfying the
componentwise inequality

(1.1) Ixi ai[ < ela;I, 1,...,p.

Skeel’s condition number characterizes perturbations in y with respect to perturbations
in A and b caused by their representation in a computer arithmetic, which satisfies 1.1 ).
It gives more accurate error bounds than the usual condition number. It is also useful
for the analysis of sparse matrices (see also Arioli, Demmel, and Duff ], Demmel and
Kahan 6 ], and Higham 11 ).

More accurate error bounds for perturbations in Fa can also be obtained if it is
known that perturbations of a are restricted to a proper subset S of DF, which is param-
eterized by a map from a space " to P with n < p. Such bounds for the solution of
Ay b, where A is a Vandermonde matrix, are given by Higham [10 ]. Analysis of the
inversion of Cauchy matrices is given in Gohberg and Koltracht [8]. (See also Babuka
[2], Van Dooren [20], and Higham and Higham [12].)

In this paper we propose condition numbers for a general continuous map F at a
point a, which relate normed or componentwise errors in Fa to componentwise errors
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in n, as well as to perturbations in n restricted to a "low-dimensional" structured subset
S. Such a structured subset consisting of Vandermonde matrices is considered in 3.

In 2.1, we consider the definition and properties of the usual condition number.
In 2.2, we introduce mixed and componentwise condition numbers, which relate normed
and componentwise errors in Fa, respectively, to componentwise errors in

In 2.3 and 2.4 we give expressions of mixed and componentwise condition num-
bers for two concrete problems, matrix inversion, and solution of a linear system of
equations, respectively. In 2.5, we introduce the notion ofa structured condition number
and discuss its relevance in connection with the numerical stability of algorithms for
structured computational problems, with examples of Cauchy and Toeplitz matrices.

In 3.1 we give an a priori bound for the structured mixed condition number of
the map of matrix inversion on the subset of Vandermonde matrices A (a)i,j.=0. We
show that if F" (a0, an) - y, where yis any row ofA -1, then

m(F, a) <= n 2 max (nA, n +
where

i,j:0 [ai- aj["
i4:j

This a priori bound indicates that the structured condition number ofa row ofthe inverse
of a Vandermonde matrix can be much smaller than the usual condition number
IIAII ]IA -1 II, as the latter one can grow exponentially with n (see Gautschi and Inglese
[7]). This suggests that we should look for algorithms that take full account of the
structure of a Vandermonde matrix. Two such algorithms, those of Bj6rck and Pereyra
and of Traub, are shown in certain cases to yield errors that are not a multiple of the
structured condition number when they are used to compute the inverse of a Vander-
monde matrix. We present a new inversion algorithm that reflects the structured condition
number in numerical experiments, and we conjecture that it is stable in this sense in
general. In 3.2, we show how this new algorithm can be used for an efficient solution
of linear systems of equations with Vandermonde coefficient matrices.

2. Condition numbers. In this section, we consider condition numbers of a contin-
uous map from one finite-dimensional space to another.

2.1. The usual condition number. Let F" P -- q be a continuous map in normed
linear spaces defined on an open set DF c P. For a given a DF, a 4= 0, such that
Fa v 0 and e > 0 small enough such that B(a, e) { x 6 NP x all --< e c DF, the
e condition number k(F, a, e) is defined by

(2.1) k(F, a, e)= sup { llFx- Fall // llx- all }xEB(a,e) IlEal[ Ilall
xqa

Although NP and Nu may be equipped with different norms, we will use the same notation
for both ofthem as long as it does not cause any confusion. The number k(F, a, e) gives
the worst possible magnification of errors in n (of size at most e) when n is transformed
into Fa. Since k(F, a, e) is nonincreasing when e goes to zero, there exists

lim k(F, a, e) k(F, a).
e---O

By definition, the number k(F, a) is called the condition number of the map F at the
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point a. This definition appears in Lyubich 14 and Rice 15 ]. If F is differentiable at
a, then it is easy to see that

F’(a) a[I
(2.2) k(F, a)

Ilfall
where F’(a) is the norm of the derivative of Fat a as a linear map F’(a) [P Iq.

One purpose of the condition number is to provide approximate error bounds. For
x sufficiently close to a we have

(2.3)
Fx Fall < k(f a)

x all
][Fail [la][ + o( x all ).

If, say, Fa is to be computed in finite arithmetic with unit round-off error u, then
the representation fl(a) of a in this arithmetic satisfies lla) al[ --< ullall. Thus,
even without the effect of round-off errors in the performed calculation, the error in the
computed value Fa can be of size k(F, a)u. The problem of computing the value of the
map F at the point a is said to be well or ill conditioned depending on how large
k(F, a)u is relative to the allowed error in the computed value Fa. (In the context of
matrix computations, see Wilkinson [21], Golub and Van Loan [9], and Bunch [5] for
more details.)

There are situations in which the usual condition number, k(F, a), may give un-
necessarily large error bounds. Next, we consider cases in which more adequate condition
numbers can be defined.

2.2. Mixed and componentwise condition numbers. Here we assume that pertur-
bations x of the data point a satisfy the componentwise inequality 1.1 ). Note that the
zero components of a are not perturbed. This is the case, for example, when xi fl(a
is the representation of the component ai in a computer arithmetic. Thus [x ai[ <=
u lai[, 1, p, where u is the unit round-off error. It is clear that the inequality
1.1 implies that

(2.4) x all -< ellall.
This is, of course, not true in the opposite direction. In fact, if (2.4) holds, then 1.1
can be guaranteed for the largest component of a only, namely, [xg a0[ =< e lag 1,
where I%1 Ila[I Relative errors in other components ofa can be arbitrary. Therefore,
the problem of computing F at a could be ill conditioned with respect to perturbations
in a satisfying (2.4) while being well conditioned with respect to perturbations satisfying
1.1 ). Here we propose a definition of a mixed condition number, which relates errors

in Fa in norm to componentwise perturbations in a. Let

B(a,e) (x lxi- ai[ <elai[, 1, ...,p}

DEFINITION 2.1. Let F P -- q be a continuous map defined on an open set
DF P. For a given a OF, a 4 O, such that Fa 4:0 and e > 0 small enough such that
B a, e.) OF, let

m(F, a, e) sup (llFx- Fa[l /(x a))xO(,) IlFall
x4:a

(2.5) i(x, a)= max {[xi--ai[}i= p ai
aib 0

where
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The mixed condition number of the map F at the point a is

m(F, a) lim m(F, a, e).
e--O

Note that B(a, e) c B(a, ella o) and that for x B(a, e)

[Ix-allo__< max (Ixi-ail}=6(x,a)"Ila[l /=1 p ai
ai4 0

Therefore, m(F, a, e) <= k(F, a, ellallo), and hence,

m(F, a) <-_ k(F, a),

where k(F, a) is taken with respect to the infinity norm. For the map F (A, b) - y,
where y is the solution of a linear system of equations Ay b, such a mixed condition
number is given by Skeel [17, Thm. 2.3], namely,

[A-’I IA[ 13’1 / IA-I Ibl[l
(2.6) re(F, (A, b))

where AI { ail in, j =1"
IfF is differentiable at a, then we can show (using, for example, the same argument

as in Gohberg and Koltracht [8]) that

(2.7) m(F,a)=
I[F’(a)Dall

In this case, if x 6 B(a, e) with e sufficiently small, then

Fx Fa < F’(a)Da + o().

Following Gohberg and Koltracht 8 we also give the definition ofa componentwise
condition number, which relates componentwise errors in Fa to componentwise pertur-
bations in a. This condition number gives a more detailed characterization of errors in
Fa and is useful when Fa is the data point for another map.

DEFINITION 2.2. Under the conditions ofDefinition 2.1 let Fa (fi (a) fq(a))
be such that fj.(a) 4: 0, j q. Then the componentwise condition number of the
map F at the point a is

c(F,a)= lim sup
0 xBO(a,e)

xa

where

{ 6(Fx, Fa)/b(x, a) },

IJ(x) J(a)l
6 (Fx, Fa) max

j=l q I(a)]

It is shown in Gohberg and Koltracht 8 that ifF is differentiable at a, then

(2.8) c(F, a) []DF’(a)Da]]o

where Dra diag { fl (a),..., fq(a) }. Ifx B (a, e) with e sufficiently small, then

6(Fx, Fa) <= ]lDaF’(a)Da[le + o(e).

It is straightforward to check that the condition numbers k, rn, and c satisfy the
following semiadditivity relations.
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Let F FzoF where F n _. p and F2 P -- q are continuous maps. Let
a OF,, Fa DF2, a 4: O, Fa 4:0 and Fa 4: O. Then

(i) k(F, a) <-_ k(F, a)k(F2, Fa).
(ii) m(F, a) -< m(F, a)k(F2, Fa).
(iii) m(F, a) <= c(F, a)m(F2, Fa) provided that Fa has no zero components.
(iv) c(F, a) <= c(F, a)c(F2, Fa) provided that Fa and FzoFa have no zero

components.
These relations indicate the limitations of the mixed condition number re(F, a),

namely, it is applicable to the perturbation of original data, or to a value of another map
with no zero components, only. Next we consider two particular maps.

2.3. Matrix inversion. Let F be the map of matrix inversion defined on the open
set of all nonsingular n n matrices. Then F’(A)(.) -A- (.)A - and k(F, A)
IIA ]111A - (see, for example, Belitskii and Lyubich [3 ]). To find m(F, A), consider F
as a map from n2 to E2, where the data vector consists of all elements ofA arranged,
say, row by row and so is FA A- Let A- { a0} ,j= and observe that

0-0
Oapq flip 0-qj, i, j, p, q n.

In particular, the infinity norm ofA - as a vector is

max
i,j

The ((n 1)i + j)th row of F’(A)DA (regarded as a matrix in 2n2) is of the form
[0-ia0-j, 0-iazazj,..., 0-inann0-nj], and its 1-norm is therefore [ril ]A] Icj[, where ri is
the ith row ofA- and c is thejth column ofA - Thus

F’(A )DA
m(F, A) IIFAII(R) IIA-II

It is easy to see that ifA - has no zero entries, then

c(F, A)
O’ij i,j=l

where [A-[ [A[ [A-[ (ai)i,= (see also Rohn [16]). Note that if Ck maps A into
ck, the kth column ofA- then

[A-[ [AI [Ck[ 1[o
(2.9) m(C, A)

cll
and ifR maps A into r, the kth row ofA- then

Irl(2.10) m(R,A)
Ilrllo

If the column Ck or the row rk have no zero components, then, respectively,

c(C,A) IlO IA-I IAI Icl Iloo
and

c(Rg, A) Irgl IAI
It is clear that m(C, A) does not depend on the row scaling of A, and m(R, A)
does not depend on the column scaling of A, (see also Skeel [17 ]). Indeed, if T



COMPONENTWISE AND STRUCTURED CONDITION NUMBERS 693

diag { l, tn } and S diag { sl,..., Sn ), then

m(Ck, TA)= m(Ck, A), m(gk, AS) m(gk, A).

It is interesting to note that the componentwise condition number does not depend on
either column or row scaling. That is,

c( Ck, TAS) C( Ck, A)

and

C(Rk, TAS) C(Rk, A ).

2.4. Solution of Ax b. Let F (A, b) - y, where y is the solution of the linear
system of equations Ay b. Then it is well known that

sup k(F, (A, b)) 211All IIA-II.
b el

To find the mixed condition number observe that Ay b is equivalent to

A -b x 1]"
It immediately follows from (2.9) with k n + that

[A-l[ I/I lyl + I/-ll Ibl I1m(F, (A, b)) Ilyllo

which is Skeel’s condition number (2.6). If y has no zero components, then

c(F, (A, b)) IID;(IA-1I IAI lYl / IA-I Ibl)llo.
Once again, it is clear that m(F, (A, b)) does not depend on row scaling ofA, while

c(F, (A, b)) does not depend on either row or column scaling ofA. (This does not mean,
of course, that scaling cannot improve performance of a particular algorithm for solving
Ay b.)

2.5. Structured condition numbers. Suppose that a point b belongs to a subset
S c D, where G P -- q and S is parameterized by a map H from a space the
dimension of which is less than p. Furthermore, suppose that perturbations in b are
restricted to the subset S. Then the errors in Gb can be smaller sometimes much smaller)
than predicted by (2.2). To obtain more adequate error bounds we give the following
definition of a structured condition number.

DEFINITION 2.3. Let G be a continuous map G P -- q. Let H n -- P,n < p, be a continuous one-to-one map such that HDn S c D. Then the subset S is
called a structured subset ofD with the structure imposed by the map H. The corre-
sponding structured condition number ofG at b S is by definition the condition number
(k, m, or c) off GoH at a H-lb.

The restriction that H is one-to-one can be omitted, in which case the structured
condition number is not unique. In this case, it is important to find a preimage of b at
which F has the smallest condition number.

Apart from providing error bounds for the initial perturbation of data, structured
condition numbers can be useful for understanding numerical stability of algorithms for
structured problems. Following the general definition in Stoer and Bulirsch [18, 1.3 ],
an algorithm for computing Fa is said to be stable if the contribution of intermediate
round-off errors to the error in computed Fa is of the same order of magnitude as that
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ofthe original perturbation of data. This notion of stability is often referred to asforward
stability and is not to be confused with the stronger property ofbackward stability, which
requires that the computed solution is the exact solution of a slightly perturbed problem.

Let us consider now the example of matrix inversion. Let G be the map of matrix
inversion defined on the set of all n n nonsingular matrices. Let S be a structured
subset of Da (e.g., Toeplitz, Vandermonde, or Cauchy matrices), with the structure
imposed by H m _. n2" Suppose that we have two algorithms for inverting B S.
One is a general purpose matrix inversion algorithm defined on Da, and the second is a
structured algorithm for computing values of F GoH on H-1 (S). Let the general
condition number of G at B be much larger than the structured condition number (of
the same type) of F at a H-1 (B). Then the general purpose algorithm, even if it is
stable on Da, may become unstable on the structured subset S. Indeed, a column of the
computed inverse would be exact for some nonsingular matrix close to B, but may not
be an exact column of the inverse of any matrix from S. In this case, the structured
algorithm should be preferred if it is shown to be stable on DF H-l(S). Using forward
error analysis, the stability of Bjrrck-Pereyra algorithms on a subclass of Vandermonde
matrices was established by Higham 10 and for an algorithm for the inversion ofCauchy
matrices by Gohberg and Koltracht [8] (see also Example below).

On the other hand, it may happen that there is not much difference between general
and structured condition numbers (the structured condition number may be, in principle,
even larger). In this case, a stable general purpose algorithm remains stable on the struc-
tured class and should be preferred unless it is shown that the structured algorithm is
more trustworthy (for definition, see Stoer and Bulirsch 18, 1.3 ). We will demonstrate
elsewhere that the Cholesky algorithm is stable on positive definite Toeplitz matrices and
is more trustworthy than the Levinson algorithm. The relevance of structured pertur-
bations to the numerical stability of algorithms is also discussed in Babuka [2 ], Van
Dooren [20], and Higham and Higham [12].

Structured condition numbers can be found in different ways. If the values of Fa
are given explicitly in terms of entries of a, then we can compute the derivative ofF and
use (2.7) or (2.8). This can be done for Cauchy matrices (see Gohberg and Koltracht
[8] and Example below), and for Vandermonde matrices (see 3, and for a different
method, Higham [10]). If the values of Fa are not available in terms of a, but the
derivatives of G and H are known, then we can use the chain rule

F’(a)=G’(b)H’(a).

In Example 2 we show how to find F’(a) for Toeplitz matrices when G is the map of
matrix inversion or the map of a simple eigenvalue.

Example 1. Let G be the map of matrix inversion G n2 -- n2, and let D be
the open set of all n n nonsingular matrices. Let S be a subset ofD consisting of all
Cauchy matrices

li Sj ij=l

where (tl, tn, sl, Sn) is an arbitrary 2n-tuple of pairwise different numbers.
Thus

F GoH :2n n
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and

F( tl, tn, s1, Sn)
ti Sj =

It is shown in Gohberg and Koltracht [8 that

c(F, a) <
[lall
A

(8n-6),

where

min lai al
i,j 2n

ivj

with a (tl,..., tn, sl,..., Sn) (al,..., a2n).

In particular, for a Hilbert matrix

Hn
+j- i,j=l

which belongs to the class of Cauchy matrices (ti i, s -j), we have for n 10,
c(F, a) <= 740, while c(G, H10) - 1012 and k(G, H10) - 1016. It is also shown that one
structured algorithm for computing the inverse ofa Cauchy matrix is stable and produces
accurate results when general matrix inversion algorithms fail.

Example 2. Let S be the set of all nonsingular Toeplitz matrices A (a;_ ),=o.
Then Ha =_ akZk, where Zk is an (n + (n + matrix with l’s in positions
of afls in A and zeros elsewhere. Let G be the map of matrix inversion. Then it is clear
that for k -n n

OFi i,j=O ,n,
Oa OZ

where OGo/OZk is the directional derivative ofthe (i,j)th element ofA -1 in the direction
of Zk at A. Thus

Oak ri Zkcj,

where Co, Cn are the columns of A -1, and r0 rn are the rows of A -1. The
numerator in the formula for the mixed condition number m(F, a) is given therefore
by

IIF’(a)Oallo max 2 lal IriZcjl.
i,j 0 k -n

IfA (ali-jl),j= o is symmetric, then

(2.11 F’(a)Dall max ak riZkcl,
i,j=O n k=0

where Zk is now a symmetric matrix with l’s in positions ofak’s in A and zeros elsewhere.
Similar formulas can be obtained for other classes of matrices defined in Van Dooren
20 as pattern matrices, e.g., Hankel, circulant, and Sylvester matrices. Detailed analysis
of structured condition numbers of Toeplitz and other structured matrices will be given
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in a forthcoming paper by the authors. Here we will only mention that, using (2.11 ), it
is not hard to show that for a positive definite Toeplitz matrix A the following inequalities
hold:

(n + 1) 2 m(G,A) <= m(F, a) <= m(G,A).

We also remark that using the Gohberg-Semencul formula for A-1 and the fast Fourier
transform we can compute riZkCj, i, j, k O, n in O (n log n) flops, and for any
fixed orj (which corresponds to the structured condition number of the ith row orjth
column ofA -1 respectively) in O (tt 2 log n) flops. A different technique for computing
structured condition numbers for linear systems of equations with Toeplitz and other
structured coefficient matrices can be found in Higham and Higham 12 ].

Let 4:0 be a simple eigenvalue of a Toeplitz matrix A and let G A - X. Then
it is well known (see Wilkinson 21 that

OG yZx
k= 1,...,n,

OZ yTx
where x and y are the properly normalized fight and left eigenvectors corresponding to
X. Thus the mixed structured condition number in this case is given by

E lal lyZxl.m(F, a)
I,1 lyxl

In the next section we analyze structured condition numbers ofVandermonde ma-
trices and present a new structured algorithm for their inversion.

3. Applications to Vandermonde matrices. In this section, we consider computa-
,whereai4 fori+j. Thetional problems with Vandermonde matrices A { aj } i,j 0 ai

main emphasis here is on the case when ao, an have arbitrary signs. The case of
constant signs is treated in detail by Higham [10 ].

3.1. Matrix inversion. It is well known (see, for example, Knuth 13, p. 36 ]) that
exists and

-1 Pi( a)
(3.1) Ai =(-1)

qi(a)
i,j= O, n,

where

(3.2) Po( a , amo am,,_j_
0

_
mo mn-j- <=
mo mn-j- 4=

i,j=0 n,

and

(3.3) qi(a) fi (am ai), 0,..., n.
m=0
m4i

In the notation of 2.5 G is the matrix inversion map, S is the subset of Da consisting
of all Vandermonde matrices, H is defined on all n + 1-tuples of pairwise different
numbers

i,j= 0,H (ao, an) (aj)
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and F is given by

F (ao, a) -- ((-1) P(a))qi(a) i,j= o

The componentwise structured condition number c(F, a) is not defined for a general a,
because Fa can have zero components. For example, Pn,n- l(a) a + a2 + + an.
Therefore, we will estimate the mixed structured condition number m(Ri, a), O,

n, where Ri maps a into the th row ofA-l,

Ri ao, an) - ( (-1)J PiJ( a) )jqi(a) =o

THEOREM 1. Let Ri map a ao, an) into the ith row of the inverse of the
Vandermonde matrix A aj

n
o Then

(3.4) m(Ri, a) =< n 2 max (nA, n +
where

Jail(3.5) /x max
i,j=o,n a; al

i4=j

Proof. It is enough to show (3.4) for 0. For other rows the proof is exactly the
same. Thus

Roa ql(a)((-1)Jpoj(a))’=o.

We will estimate the ratio IlR’o(a)Da[I/IIRoal[ in 1-norm first, and then will pass to the
-norm. We have

(3.6) R’o(a)Da (-1)a po(a) + po(a)
0

qo a Oa: Oa qo a , o

Since (O/Oao)Po(a) 0 for all j 0, n, it follows that the first column of
R (a)Da is of the form

1)JaoPo(a)
qo(a) =0

Thus

aoqo a
qo a

nl
ao _-<n/x.

am ao

For k 1, n the kth column of R’o(a)Da is of the form ck c], + c, where

c ql(a) (-1)Jak po(a)
=o

and

c], (- )apoj(a) Oa--- qo(a) =o
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Thus

akqo(a)
IlRoa qo()

Let us now consider c),. It follows from (3.2) that

0

kOa Poo( a 0

0

kOa PO,n- ,(a) 0

la aol

(--1)n- l(_ak)n-

a
--ak po,(a)

0

This is easy to see by using the inverse ofthe above matrix, which is bidiagonal with unit
diagonal and ak above the diagonal. Hence, if akl =< 1, then

IIcLll < lakl nIqo(a)l m=0

Iqo(a)l
((-1)po(a))Y=oll,.

(Note that Pon(a) 1, and hence (O/Oak)Pon(a) 0.) It also follows from (3.2)that

aa Poo(a)

ak

-a POn a

-1 Poo(a)
-ak

(-1)" (--ak) -n+ --a- POn- (a)

and hence, if akl >- 1, then
n-1

IIcL[l < 2; la-mlll((-1)poj(a))g-ol[-Iqo(a)l m=0

_< n ((-)po(a));=ol],.
-I qo(a)l

In any case, c, [I/[I Roa II1 <= n and

IIcll, <cll, __< cZ II,
/ II--odli, n + A,

IlRoall IIRoall
Therefore,

k 1,...,n.

e a Da Ill Ck
maxIIRoa II 0 n IIRoa =< max (nA, n + A).

To complete the proof note that from (2.7)

m(Ro, a)=
[[R’o(a)Oalloo < rl

2 [IR’o(a)Dal[1
IlRoallo IIRoall

We remark that since the ith row ofA -1 consists of coefficients of the elementary
Lagrange polynomial Li (z) such that Li(ai) and Li (aj) 0 for j O,..., n, j 4 i,
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it follows that (3.4) gives a bound of the condition number of computing coefficients
of Li z).

Theorem gives an a priori bound on m(Ro, a). The approximate value of
m(Ro, a) can be computed a posteriori via (3.6) using expressions for (O/Oak)ql(a)
and (O/Oak)po(a) obtained in the proof of the theorem. Since the computation of
(O/Oa,)po(a), k 1,..., n, amounts to the solution of n linear systems of equations
with a bidiagonal coefficient matrix, it follows that m(Ro, a) can be computed in O (n 2)
flops. A different technique for computing structured condition numbers ofVandermonde
matrices is given in Higham [10 ]. The bound (3.4) shows that the structured condition
number m(Ro, a)can be much smaller than the usual condition number k(A)
A IIA -ill as the latter can grow exponentially with n (see Gautschi and Inglese 7 ]).
The following example shows that even for small values of n the difference between
m(Ro, a) and m(G, A), where G maps A into the zeroth row of A -z can be very
significant. Let a 100 + k) -, k 0, n. Then for n 5, A 105 and bound
(3.4) is equal to 13,125, while rn (G, A) 10 . For n 10 we have A 110, and the
bound of (3.4) is equal to 1.1.105, while m(G, A) 5.1017. Numerical computation
of m(Ro, a) also shows that the bound of(3.4) differs from m(Ro, a) by a factor that is
approximately equal to n 2. This factor of/72 comes from passing from 1-norm to oo-
norm in the last line ofthe proof ofTheorem 1. Moreover, in a large number of numerical
experiments (reported below in Example ), we observed that m(Ri, a) never exceeded
1.5 max (n A, n + A) and that it was always greater than A. Therefore, we suggest using
max (nA, n + A) as an a priori approximate upper bound for m(Ri, a), and A as an
approximate lower bound.

The comparison of structured and general condition numbers gives additional jus-
tification to conclusions in Bjrrck and Pereyra [4] and Higham 10] that structured
algorithms for computation with Vandermonde matrices should be preferred to general
purpose algorithms.

The natural question now is to find a stable structured algorithm for computing
rows of the inverse of a Vandermonde matrix. Stability of the Bjrrck-Pereyra algorithm
for this problem in the case when a0,..., an are ofthe same sign is established in Higham
[10 ]. Another structured algorithm is given by Traub [19 ]. Let us describe these two
algorithms.

ALGORITHM (BJrRCK-PEREYRA).
(i) C8 1, Cj. 0 (j 1,..., n).

Fork=0ton-
_(k) (k)

cJk+l)= cj --Cj_
(j=n,n-- 1,...,k+ 1),

a a_
_

(k)ci k+) cj (j O, k).
(n)(ii) yj c’ (j=0 ,n).
Fork=n- lto0step-1

y) #,+1) a. ,,,k +
.+ (j=k+ 1,...,n- 1),

y. yi+ ) (j O, k, n)
(iii) Roa y
This is the algorithm for dual systems in Bjrrck and Pereyra 4]. It computes Roa

in O (n 2) flops and A- in O (n 3) flops.
Traub [19] presents an O (n 2) algorithm for computing the whole A -1 However,

as indicated in Higham 10 ], this algorithm does not have the crucial property of the
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Bjrrck-Pereyra algorithm, namely, that there are no subtractions of numbers with the
same sign in the case when a0, an have the same sign. The Traub algorithm can be
easily modified to satisfy this property as follows. (Note that it is done on expense of
making it an O (n 3) algorithm for computing the whole A-1.

ALGORITHM 2 (TRAUB).
(i) Co

o

(ii) Fork=0ton-

(iii) Roa ((- c’] ’]= oqo(a)

A numerical example at the end of this section demonstrates that neither of these
two algorithms is stable for computing Roa when a has entries with different signs. To
derive a new algorithm we observe first that for k 0,..., n,

n

(3.7) -, (--1)Jpkj(a)zj= I-[ (am--Z),
j=0 m=0

m4=k

where z is any complex number. In particular, if z wj e2i[j/(n+ 1)], then

q-l(a) fi (am- y)

q-l(a) I-I (am- Wj)
m O

Thus, if o (W.j:)k,j=0kn is the discrete Fourier transform matrix, then

A-lo D-I S
where Dq diag { q0 (a), qn(a) and

Ski fi (am--Wj),
m=0
rn4=k

k,j=O ,n.

Therefore,

-1S-1(3.8) A Dq

where 0-1 [1/(n + )](v)j,k=0. The ith row ofA -1 is of the form

Ria q?l(a)[ fi (am--Wo) fi (am--Wn)
=0 m=0

m4=i m4k

The following algorithm is for the zeroth row. The rest can be found similarly.
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ALGORITHM 3.

(i) q= I2[ (am--ao).
m=l

(ii) Forj=0ton
n

zj I-[ (am--Wj).
m=l

(iii) Roa q- Zo zn -1.

This is an O (n 2) algorithm for computing one row ofA -1 and O (/7 3) for the whole
A -1 We remark that the computation of q gives small forward error (see Wilkinson
21 ). The computation of zj’s amounts to multiplication by scaled orthogonal matrices,
because if

a + i (Olm + im), then
m=l /1 O1 /n-1 On-1 n

The final step in computing Roa is the multiplication of a vector by a unitary matrix.
Since multiplication by unitaff matrices is considered harmless, we may conjecture that
Algorithm 3 will give errors propoional to the structured condition number. This con-
jecture is supposed by the following numerical experiment. (Note that the algorithm
and the representation (3.8) for A- remain valid when a0,..., a are complex numbers.)

Experiment 1. To illustrate numerical propeies ofAlgorithms 1, 2, and 3 we com-
pare them on the following sets ofVandermonde matrices. Let a cos (2k / 2n r,
k n, be the roots of the nth-degree Chebychev polynomial T(x), and let a0
be chosen randomly in (-1, ). Thus the first row ofA- y, consists of coefficients of
T,(x) (after scaling by T(ao)), which are computed as integers from the recursion
T+ (x) 2xT(x) T_(x). Let y, y, and 23 be computed via Algorithms 1, 2,
and 3, respectively, and let

i= 1,2,3.

In Table we present the worst errors ei over 20 runs, with ao chosen randomly in
(-1, for each run. This is done for n 10, 80(10). Because of round-off eors, the
entries in computed Y3 have nonzero imaginaff pas, so that, in fact,

[IRe (23) yl[
Ilyll

TABLE

n gl $2 3

10 3.0 X 10-6 3.0 X 10-6 3.0 X 10-6

20 1.6 10-5 9.0 10-6 2.5 10-6

30 1.7 10-4 9.0 10-5 1.1 10-5

40 4.0 10-3 9.0 10-4 0.9 10-6

50 5.0 10-2 1.8 10-2 1.4 10-5

60 1.7 0.1 5.6 10-6

70 19 13 4.9 10-6

80 2687 5221 3.0 10-6
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For n > 80, overflows are encountered. The experiment was carried out on a SUN 3/50
workstation in single precision (u - 10-7). In all cases, we computed m(Ro, a) and
found that m(R0, a) =< 5.103 always. Since the computer precision is approximately
10 -7 we can conclude that Algorithms and 2 (from Bjrrck-Pereyra and Traub, re-
spectively) are unstable on the class of all Vandermonde matrices. We also computed
m(R;, a) for different i’s and various choices of a0, an, and found that in all cases

A < m(Ri, a) < 1.5 max (nA, n + 4).

3.2. Solution ofAy b. The representation (3.7) ofthe inverse ofa Vandermonde
matrix can be used for the solution ofAy b. The computation of entries of S in (3.8)
requires O (n 3) flops, but it can be reduced to O (n 2) flops as follows. Ifaj. 4: w,j, k
0, n, then

where

and

S CDw,

ak-wj ,j=0

Otherwise, there always exists a point on the unit circle, a ei, such that

eia 4 Wk, j, k 0,..., n.

Then the solution ofAy b is also the solution ofDaAy Dab, where Da diag { 1, a,
an}. Since DaA is a Vandermonde matrix defined by oao aan, it follows that- CaDawo -1 Dab(3.9) y --- Dqwhere

and

Ca=
oa,-wj j=0

Daw diag I-I am Wo Oam Wn
m=0 m=0

The computation of y via (3.9) requires O (n 2) flops on a sequential computer and
O (n) flops on a single instruction multiple data (SIMD) parallel machine. We remark
that since I] 1, it is not hard to show, using techniques similar to those in the proof
of Theorem 1, that multiplication of a by c does not affect the structured condition
numbers, namely, that m(Ri, a) m(Ri, oa), 0,..., n. When a0 an are real
numbers, then we can choose 0 r/(n + ), in which case

k,j=O k.

When a0,. an are complex numbers, the choice ofc is more complicated and requires
additional study.
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TABLE 2

n 1 e2

10 9.3 X 10-6 1.4 X 10-6

20 2.7 X 10-2 5.0 X 10-6

30 3 4.0 10-2

40 22 1.2 10-4

50 400 3.6 10-2

60 312 1.4 10-3

70 898 2.0 10-4

Next, we present results of a numerical experiment in which the solution (3.9)
compares favorably with the Bjrrck-Pereyra [4 algorithm for primal systems.

Experiment 2. The points ao,..., an are chosen randomly in (- 1, ), which implies
that we can take a in (3.9). The solution ofAy en is computed via the formula

Y= a
i=0

in double precision. The solutions Yl and y_ are computed in single precision via the
Bjrrck-Pereyra algorithm for primal systems and (3.9), respectively, and

Yi yl[
i= 1,2.i Ilyll

In Table 2 we present the worst errors el and e2 over 20 runs with (ao, an) chosen
at random in (-1, for each run. This is done for n 10, 70(10). Overflows occur for
n > 70. The experiment was carried out on a SUN 3/50 workstation.

The same experiment has been carried out using (3.9) with a it e" +1, with very
similar results. Similar results for this c have also been obtained for cases when a0,...,

an have been chosen at random in (-1, and then a0 has been set to for even n and
to or-1 for oddn.
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AN IMPROVEMENT OF HADAMARD’S INEQUALITY
FOR TOTALLY NONNEGATIVE MATRICES*

ZHANG XIAODONG" AND YANG SHANGJUN-

Abstract. In this paper an improvement is obtained of Hadamard’s inequality for totally nonnegative
matrices: IfA (a0) is an n n totally nonnegative matrix with ala22 ann =/= 0, then

=i1 (ii),/2 I(akiaik))det A < min aii max ai.ti)a(i)i min akk aii
lqaeSn akk

i4k

and the inequality is a strict one when A is totally positive and n >= 3. Then we prove that for an n n totally
nonnegative matrix A, det A ala22 ann if and only if each diagonal product, except the main diagonal
product, ofA has a zero entry on it.

Key words, totally nonnegative, totally positive, Hadamard’s inequality. Sylvester’s identity

AMS subject classification. 15A

1. Introduction and preliminaries. The following theorem is a well-known classical
result (cf. 4 ).

HADAMARD’S THEOREM. IrA aij) is an n n positive semidefinite Hermitian
matrix, then

det A <= - aii.
i=1

Furthermore, equality holds ifand only ifA is diagonal or A has a zero row or column.
It is known (cf. [5 ]) that Hadamard’s inequality holds for a totally nonnegative

matrix A. More interesting results related to Hadamard’s inequality can be found in 2 ],
[3], [6], etc.

In this paper we shall obtain some inequalities stronger than Hadamard’s inequality
for totally nonnegative and totally positive matrices, and investigate the necessary and
sufficient conditions for equality to hold.

A real n n matrix A is called totally nonnegative (positive), if all subdeterminants
of A of all orders are nonnegative (positive). Following [1] we use Qk,n to denote all
() increasing sequences w (Wl, Wn) <= w < W2 < < Wk n. IfA aij)
is an n n matrix, a,/3 e Qk,n, then A[ c1/3] denotes the k k submatrix ofA whose
(i, j) entry is a,;e. For a principal submatrix A[ a a] we use the more abbreviated nota-
tion A[ a].

We need the following results, which can be found in [5].
THEOREM (Fischer’s inequality). IfA is an n n totally nonnegative matrix and

k<-n- 1, then

det A _-< det (A[1,..., k]) det (A[k + n]).

THEOREM 2 (Sylvester’s identity). For an n n matrix B (bi) and <= k <=
n define the(n k) (n k) matrix D (di) by

di det (B[1,..., k, k + i[1,..., k, k +j]), =< i,j_-< n k;
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then D is totally nonnegative (positive) ifB is totally nonnegative (positive), and

det D (det B[1,..., k])n-k-1 det B.

2. Improvement of Hadamard’s inequality. In the sequel, we use notation (n) for
{1 n}, Sn for the symmetric group on (n), and for the unit of Sn. To avoid
triviality we.always assume n > 1.

THEOREM 3. IfA is an n n totally nonnegative matrix with some akk > O, then

det A <= akk aii
akk

i4k

Furthermore, is a strict inequality when A is totally positive and n >= 3.
Proof. Consider the (n (n matrix D (dij) defined by

dij det (A[ckil ckj]) i,j (n {k},
where ah Qz,n consists ofk and h. Since A is totally nonnegative (positive), D is totally
nonnegative (positive). Let Ei denote the n n (0, matrix whose only is at position
(i, k), and

Mik In ai__. Eik,
_

< n > {k}.
akk

Then det Mik and M,k Mk- ,,kMk + ,,k MnkA W (wij) has its entries as
follows:

wij aij-
ajai___.__ (n > { k }
akk

wj aj

It is easily seen that

w0. sgn (i k) sgn (j- k) d--L
akk

where sgn (x) if x > 0, and -1 if x < 0. Let

jr(n).

Therefore,

for i,j e <n> {k},

Jh=In-2Ehh, then J, Jk- WJ, Jk-
akk

(2)
det A ak det (W[ ( n > { k l)

a(a)-(n-’) det D (akk) -n+2 det D.

In general, for any two sequences a,/3 in Qh,n, so that 2 =< h =< n and k c fq/3.
We can similarly prove

det (A[cl/3]) (a)-h+2 det (D[a {k} I/3 {k)]),

akiaikakk )det A <= ak)-n + 2 1 dii ak aii
i=1 i=1
i4k i4:k

whence D is totally nonnegative (positive) when A is totally nonnegative (positive). Now
apply Hadamard’s inequality for det D in (2) to obtain
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If A is totally positive and n >= 3 then D is a totally positive matrix of order at least 2,
n_whence det D < I-Ii dig, and is a strict inequality.

LEMMA 1. lfA aij) is an n n totally nonnegative matrix, then

I ]1/23 1] aii >= ai(i)a(i)i
i=1 i=1

for each a Sn, where in the sequel, (x)1/2 denotes the arithmetic square root ofx -> O.
Furthermore, ifA is totally positive, then (3) is a strict inequalityfor any 4 a Sn.

Proof. Since each 2 2 principal minor of the totally nonnegative matrix A is
nonnegative, we have

(4) aiia(i)(i) >= ai(i)a(i)i, 1, 2, n.

Multiplying the n inequalities in (4) yields

aii >= H ai(i)a(i)i,
i=1 i=1

whence inequality (3) follows.
IfA is totally positive, then all the inequalities in (4) are strict. In this case, inequality

3 is strict.
LEMMA 2. IfA is an n n totally nonnegative matrix, then

n-1

(5) det A <= (alan a,an) l-I aii,
i=2

and the inequality is strict when A is totally positive and n >= 3.
Proof. Ifdet (A[1,..., n 2]) 0, then detA det (A[1 n 2]) det (A

[n 1, n]) 0 and (5) clearly holds. Thus we can assume det (All n 2]) > 0.
We prove (5) by induction on n. Since (5) holds with equality when n 2, we

consider n > 2 and assume (5) holds for all totally nonnegative matrices of orders
rn < n. Consider the 2 2 matrix D (d;j), where

dij det (A[1, n 2, n 2 + i[1, n 2, n 2 + j]), < i,j <= 2.

Then D is totally nonnegative by Theorem 2;

(6) d det (A[1 n + 1]) =< a_,n_ det (A[1,..., n 2])

by Fischer’s inequality; and

n-2

(7) d22 det (A[1,..., n 2, n]) =< (aan a,a) I-I aii
i=2

by the induction hypothesis, since A[ n 2, n] is totally nonnegative. Now it
follows from Sylvester’s identity that

det D d d22
det A <

det (A[1 n 2]) det (A[1,..., n 2])

by Hadamard’s inequality for D. Finally, use (6) and (7) to yield the desired result (5).
Observe that when A is totally positive, so is D, whence

det D dd22 d2d2 < dd2.
In this case, inequality (5) is strict.
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(8)

THEOREM 4. IfA is an n n totally nonnegative matrix, then

det A =< l-I.= au i=1

ai(i)a(i)i

for each r 4:1 in Sn. Furthermore, (8) is a strict inequality when A is totally positive
and n >= 3.

Proof. Since (8) becomes Hadamard’s inequality if I-I’- ai(i)a(i)i O, we as-
sume

(9) fi a)ai)i > O.
i=1

First, we assert that for any 4: a e Sn satisfying (9), there exists k 4: r(k) such that

/(10) aia(i)a(i)i <- ak(k)a(k)k aii.
i=1

4 k,a(k)

If it is not the case, then

11 ai(i)a(i)i > ak(k)a(k)k aii
i=1 i=1

4 k,tr(k)

for any k T a(i) 4 i, _-< _-< n }. Let S n } T, the complementaw
set of T. Multiplying all the possible inequalities in 11 yields

a(a( > a(a( a,
i=1 keT i=1

where IT] denotes the cardinal number of T. Now it follows that

(12) 1-I aia(i)aa(i)i aii > H ai.(i)a.(i)i aii aii
ieT ieT

If UieS aii 0, then I-iin= ai,(i)a,(i)i 0 by Lemma 1, and since this contradicts
our assumption (9), we must have I-Iis a, > 0. Cancelling this positive factor from
inequality (12) yields

H ai.(i)a.(i)i > aii
ieT

whence

)I/2(13) I-[ ai(i)a(i)i > I-I age.
ieT ieT

On the other hand, since the principal submatrix A[ T] ofA is totally nonnegative,
applying Lemma to A[ T] yields

ai(i)a( i)i aii
ieT ieT

which is a contradiction to 13 ). Therefore, (10) holds.
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Without loss of generality, suppose k < (k) h satisfies (10). Then by Fischer’s
inequality, Hadamard’s inequality, and Lemma 2, we have

(14)
detA=<detA[1,...,k- 1]detA[k,...,h]detA[h+ n]

aii aii det A[ k, h ],
i=I i=h+l

and

(15) det A[ k,..., h _-< (a/lahh alhahl)
h-1

i=k+l

aii;

thus

(16)

det A <= akkahh akhahk) H aii
i k,h

fi aii- a(a()
4: k,a(k)

aii <= iI-l.= aii
i=1

ai,(i)a,(i)i

by (10).
IfA is totally positive, then each aii > 0. When T >- 3, instead of(10), we similarly

prove

ai,r(i)a,r(i)i < ak,r(k)a,r(k)k H
i4: k,a(k)

aii

by Lemma 2, whence inequality (16) is strict. In this case (8) is also strict. When
TI 2 and n >_- 3, we have a(k) h, (h) k, and a(i) for 4: k, tr(k). Assume,

without loss of generality, that k < h. If h > k + 1, then (15) is strict by Lemma 2,
whence (8) is strict.

When h k + 1, consider the 3 3 totally positive matrix A[p, p + 1, p + 2 ],
where -< p =< k < p + 2 -< n, and define the 2 2 positive matrix D (d) the same
way as in the proof of Theorem 3, by

dq=det(A[ai[a]), i,j {p,p+ 1, p+ 2} {k},
where

Olki (k, i) if k < i; Olki (i, k) if k > i.

Then D is totally positive and det (A[p, p + 1, p + 2 ]) (det D)/akk, by equality (2).
Furthermore,

det D < dd22 < (akcahh alhahzc)alkarr,
whererisk- lorh+ 1, and

det (A[p, p + 1, p + 2]) < arr(akgahh akhah).
Finally,

det A aii aii det (A[p, p + 1, p + 2])
i=p+3

fi fi (fi)1/2< (a,ahh- a,hahk) a, a,- aii)ai)i
i4 k,a(k)
i=1

Combining Theorems 3 and 4 yields our main result, which is Theorem 5.
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THEOREM 5. IrA is an n n totally nonnegative matrix with a ann > 0, then

( (I)1/2 - ( aciaic)}det A =< min aii- max ai(i)a(i)i min akk aii-
i= 4=crSn k(n) k4i= akk

and this inequality is a strict one when A is totally positive and n >= 3.

3. When does equality in Hadamard’s inequality hold? The last halfofHadamard’s
Theorem, stated in 1, is no longer true for totally nonnegative matrices. As a counter-
example, observe that the totally nonnegative matrix

satisfies det A a a2:, and it is neither diagonal nor does it have a zero row or column.
But when does equality in Hadamard’s inequality hold? The next theorem offers a com-
plete answer to this question.

THEOREM 6. Let A be an n n totally nonnegative matrix, then

(17) detA=al.., ann

ifand only ifeach diagonal product, except the main diagonal, ofA has a zero on it.

Proof. "If" is immediate. "Only if": Assume (17) holds for the totally nonnegative
matrix A.

Case 1. all a,, > 0. We prove it by induction on n. It is trivially true when
n 2. Suppose that any diagonal product, except possibly the main one, of each
(n (n 1) totally nonnegative matrix, which satisfies (17), has a zero on it.
We proceed to show that n n matrix A shares the same property. Since det A
all ann > 0, we have

18 alciaic 0 for any 4: k in (n
by (8). Assume, without loss of generality, that a2 0. Since

0 _-< det (A[2,jl 1, 2]) -a22aj, j 3,..., n.

we have

a31 an1 0 and al det (A[2,..., n]) det A aa22 ann,

whence det (A[2,..., n]) a22 an,. Thus each diagonal product except the main
one ofA[ 2 n has a zero by the induction hypothesis. So each diagonal product of
A has a zero.

Case 2. a 0 for some k (n). Assume, to the contrary, that there exists some
4: 6 Sn, so that

(19) a) and(n) O,

with r(u) k and a(k) v; then, since

a 0 and det (A[ c, Cv]) >- 0,

we have

v>k ifu<k;v<k ifu>k.

Assume, without loss of generality, u < k, and hence v > k, since ak 0, a > 0, and
av > 0. Thus we have al a,k_ 0 a + , a by the similar
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argument, and furthermore,

ao 0 for any _>- k, j -< k,

or A[k nil, k] 0, a contradiction to (19).
Observe that (17) holds trivially for any n n totally nonnegative matrix A with

all ann 0. For the remaining case, we have the following theorem.
THEOREM 7. For each n n totally nonnegative matrix A with all ann > O, A

satisfies (17) ifand only if
(20) ai,i+lai+l,i=O fori= ,n- 1.

Proof. Since 17 (18) (20), we only need to show that (20) 17 ). We
prove it by induction on n. It is obviously true when n 2. Let n > 2 and assume that
it is proved for n 1. Since al2a21 0, we have al2 0 or azl 0. When a21 0, we
have shown in the proof of Theorem 6 that

detA all det (A[2,..., n]),

det (A[ 2,..., n ]) a22 ann.
Thus ai,i + ai + 1,i 0 for 2 n 1, by the induction hypothesis, whence
det A all ann, i.e., (17) holds. We can similarly prove it when al2 0.

COROLLARY 1. Ifan n n totally nonnegative matrixA with all ann > 0 satisfies
"a0 0 aji 0 for any i, j ( n )," then A satisfies (17) ifand only ifA is diagonal.
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NECESSARY AND SUFFICIENT CONDITIONS FOR
BOUNDED-INPUT/BOUNDED-STATE STABILITY
OF DISCRETE-TIME, BILINEAR SYSTEMS*

G. O. CORRIAf

Abstract. In this note, bounded-input/bounded state (BIBS) stability is studied for discrete-time multi-
input, bilinear systems. The main result gives generic necessary and sufficient conditions for BIBS stability of
such systems. These conditions comprise the existence ofa single similarity transformation that takes to triangular
form all the matrices defining a multi-input bilinear system, as well as constraints on their spectral radiuses.

Key words, bilinear systems, discrete-time systems, bounded-input/bounded-state stability

AMS subject classification. 93D05

NOTATION.
r--the set of nonnegative integers
Z+--the set of positive integers
lmthe set of real numbers
I+--the set of positive reals
I--the set of real n-tuples
lo m__the set of real n X m matrices
Cmthe set of complex numbers
C--the set of complex n-tuples
C m--the set of complex n m matrices
Ilvl]--Euclidean norm of v E C
HAil--corresponding induced operator norm (on C) ofA E C
_(A)--smallest singular value ofA
o[A ]--spectral radius ofA

1. Introduction. Bilinear systems have been considered in the survey papers by
Bruni, DiPillo, and Koch [1] and Mohler and Kolodziej [2 ], which concentrated on
continuous-time systems, whereas Goka, Tarn, and Zabersky 3 addressed some struc-
tural aspects ofdiscrete-time, bilinear systems; the latter have also attracted some attention
in the recent time-series and system identification literature (cf. Stensholt and Tjostheim
[4], Subba Rao [5], and Fnaiech and Ljung [6]). More specifically, the stability of
stochastic, discrete-time, bilinear systems has been addressed in Kubrusly and Costa [7],
and the asymptotic stability ofthe origin ofa (purely multiplicative) bilinear system with
constant, scalar input has been investigated by Gounaridis-Minadis and Kalouptsidis
8 (again, for the discrete-time case).

In this note, bounded-input/bounded-state (BIBS) stability is studied for discrete-
time, multi-input bilinear systems. Following the introduction ofthe required definition,
a set of necessary conditions for BIBS stability is derived (Prop. ). Then two lemmas
are presented on the basis ofwhich more explicit necessary conditions are obtained from
Proposition 1. This leads to Theorem 1, which gives genetic necessary and sufficient
conditions for BIBS stability, with the proofofsufficiency being based on another lemma.
Introducing an additional (genetic) assumption on the bilinear systems considered, one
of the conditions of Theorem is made tighter (this is Theorem 2). Finally, necessary
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INPUT-TO-STATE STABILITY OF BILINEAR SYSTEMS 713

and sufficient conditions are presented for the asymptotic stability of the family ofbilinear
systems defined by bounded input sequences.

2. BIBS stability. Consider discrete-time, finite-dimensional, bilinear systems de-
fined by

(1) x(t + 1)= Ao + , Wk(t)Ak x(t) + Bw(t) + Bu(t), teN,
k=l

where

x(t) e ", Ai e .x. B e nXm J e nrh

w(t) [w(t) w.(t)] e ’, u(t) e

State trajectories can be explicitly written as functions ofinitial conditions and input
sequences as follows:

x(t)-- {[w(/- 1)] [w(0)]}x(0)
’-’ [w(,- 1) 12) + Z {/[w(t- 1)] [w(l)]}[ 91__

u(l- 1)

+[B’B]
u(t- )

where

w /( w) Ao + , wkAk, WT= W Wk].
k=l

DEFINITION (input-state stability). The system 2; { Ak: k 0,..., m }, B, B)
given by is said to be BIBS-stable from x(0) x E" if and only if for any pair of
bounded sequences w(t) }, u(t) }" N) the corresponding state-sequence x(t) }"

N) is also bounded.
Necessary conditions for BIBS stability are now investigated. To cater to strictly

bilinear systems (i.e., systems as in without the term in u), all necessary conditions
will be obtained with u(t) 0, or equivalently, with B 0.

PROPOSITION 1. Let Z ({A: 0, rn }, B, 0) denote a bilinear system as
in ). Ifeither

(i) 2; is BIBS-stablefrom all x in a set ofnonempty interior, or
(ii) is BIBS-stablefrom some x S(E,), where

S(Z) {x e E’: rank [M(x) + qf(A0, B)] n}, with

M(x) [Ag- Ax Ag-1AMY Ag-iA Aio x Ag iAmA-lx.

(Ao, B) [Ag-B B]},
then

where p [A] denotes the spectral radius ofA.
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The proof of Proposition is given in Corra [10]. Note that whenever (A0, B) is
controllable, S(2) is open and dense in R" and contains the origin. Note also that (i) is
satisfied whenever is BIBS-stable from some such that the set of states reachable
from has nonempty interior.

The basic idea for the proofofProposition is to look at the state trajectories { x(t):
>- to, e N ) obtained with periodic input sequences with period k, say, observing

that such sequences are bounded if and only if the subsequences { X(to + kq): q [ }
are bounded. These subsequences, in turn, are bounded only if the matrices
{ (uk) (Ul) ) are power-bounded, the latter implying that the spectral radiuses
of these matrices are not greater than 1. The proof given in Corra [10] assumes the
existence of (Ul, uk) (R m)k such that 0 1(u) (u > and defines an
input sequence of period k such that, for initial conditions satisfying (i) or (ii), the
resulting state-sequence goes unbounded.

The following lemma enables the derivation ofnecessary conditions for BIBS stability
(from Prop. ), which are directly stated in terms of {A: k O, 1,..., m }.

LEMMA 1. Let {Aze R"x": l=0,...,m}.If,foreR,

Vk Z+ V(p Pk) (Rm) k, P[(Pk) (Pl)] ,
then

(a) p[Ao] =< andfor all # and { 1,..., m}, x(.; Ao + #A) x(.; Ao),
where x(.; A) denotes the characteristic polynomial ofA, and

(b) The semigroup generated by {AA: 1, m, q N} consists (solely) of
nilpotent elements.

Proof. (a) To show that p[Ao] =< just take k and u 0. The equality of the
characteristic polynomials follows from Proposition II of Corra [9 ], taking k and
u #e, where el is the/th vector in the canonical basis for R.

(b) The basic idea for this part of the proof is to associate to AAI the finite input
sequence u,l of length q / given by u, (#el, 0, 0). Then to each element

0 Alr AgAII of the semigroup generated by {AgAt: 1, m, q e } we can
associate the input sequence (Vl, v) (uql,6 Uqr,tr), thereby relating this
semigroup element and the matrix 1(v) /(Vl }. Let r e Z+, 11 lr, ql

qr be given where li { 1,..., m }, qi - 1, and define k E = (qi + ),

Ul #ell, P2 Pql+l 0 Vq+2 #el2 Pq+3

pql+q2+ 2 0, PEri-(qi + 1)+1 IXelr, V -i=l(qi + 1)+2

Pk--0

for some # e R+. Thus

.(Vk) .;1(V1)= A"(Ao + #Air)’’" A’(Ao + ]2AI,

qrA )1+1[m)r+l + #(Ao t,)] [A + #(A A/l)]

r-1

.(vk) .(u,)= Aok + E M#; + [(A u" g,OAlr) (A A6)]#,
i=1

where Mi e R" x ,.
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Now, for all u R+,

0 _-< p[(,,) (,)1

p 1, 1/r)A + Mi( 1/r-i) + (Aqo Al)’’" (AglAl) <
i=I

r-1

qA l ]0 p 1/Ur)A + mi( 1/Ur-i) + (Ao lr) (A A,) /Ur.
i=1

As p(. is continuous, taking limits as u , it follows that

0 < o[(A qr gl0A) (A Al) N 0 p[(ArAr) (Ag’Al) 0.

It is perhaps woh noting that the condition on the characteristic polynomials of
Ao and (Ao + wA) given in (a) above is equivalent, in the case of n 2, to the existence
of a basis change, which makes both Ao and Al triangular. For n 3, this equivalence
does not hold, but with the addition of the requirement that A gAz is nilpotent for q 0,
1, 2, it also follows that A0 and A can be jointly made triangular by a single basis change
[9]. In general, a link between the conditions on {A" k 0,..., m } given in Lemma
and the existence of a basis change, which makes them all triangular, is established in

the following lemma.
LEMMA 2. Let {A" k O, m}, A N,xn. If the semigroup generated by

{AgA" 1,..., m, q N } consists ofnilpotent matrices, then there exists T C" x,,
nonsingular, such that for all k 1, m, TAT-1 is strictly upper triangular and
TAoT- is upper triangular.

Proof. An overall plan for this proof can be sketched as follows. A theorem due to
Levitzky asses the existence of a (single) similarity transformation that takes eve
member ofthe nilpotent semigroup generated by {AA: q , l 1,..., m to triangular
form. This is then used to show that there exists a nontfivial subspace that is invafiant
under Ao, A, Am. Thus, with an appropriate basis change the problem can be
reduced to an equivalent one of smaller dimension, and the proof is carried out by
induction on n. Consider first the case of n 2. If, for all 1, m, A 0, the
proposition is trivially true (as any T that makes Ao upper triangular will do). Assume,
therefore, that there exists e m } such that A 0. For T2 2 X 2, which takes

A to Schur form (recall that A is nilpotent), let TzAk T] k O,..., m. Then,

a0, = =0 0 n 0 a
which is nilpotent. Thus a 0 0 (since a 0). Hence, for all k 0,..., m,

is upper triangular. Since, for each k e { 1,..., m }, is nilpotent, it is also strictly
upper triangular.

Assume now that the lemma is valid for n N no and consider A e N(+ x(o+ 1.
As the semigroup generated by AA" 1,..., m, q e } consists of nilpotent matrices,
it follows from a theorem due to Levitzki (see Kaplansky 11, Thm. 3.5, p. 135 ]) that
there exists e N (+ x(o+ such that

AA-1 is strictly upper triangular for all q e Vl e { 1, m },

where A-1. Now write

o [g" 1, e (+ 1.
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As A’o(AAI) is strictly upper triangular, it follows that for all 1, m,

yr[A AOAl A-Az] o =
yT[Al,m AoA,,. Ag-1A,,] 0,

where

If y :/: 0, rank [Al,m
N(o+ )x, of rank whose columns form a basis for the column space of [A,
Ag-’A,,]. Thus, if y 0, let -l [ @], where - e N(+ )x(+ ) is nonsingular,
and define

dk= Ak-l(-ldk=Ak-l) Vk= O, m.

As the column space of is invafiant under Ao and contains the column space of each
Al, A can be written as

A
0 o 0 0

If, on the other hand, y 0, let I and A Ak. Clearly, in this case A also has the
block-triangular structure shown above for the case of y 0.

Now, as the semigroup generated by {AA: q a , 1, m} consists of
nilpotent matrices, so does the semigroup generated by {A: q a , l, m }.
But as

292
0

this implies that the semigroup generated by {" q , 1,..., m } consists also
of nilpotent matrices. Thus, it follows from the fact that Akl Nnx n( no), and from
the induction hypothesis that there exists T e Cxn which makes all { TnATl" k 1,

m } strictly uper triangular and rnA T upper triangular. As a result, defining

0

where is nonsingular and no is upper triangular, and T , it follows
that for all 1, m, TAT- is stctly upper tangular and TAoT- is upper tri-
angular.

The conditions above on {A" k 0 m } can be combined in such a way as
to yield necessa and sucient conditions for BIBS stability as stated in the following
theorem.

THEOREM 1. Let
equation ), where o [Ao] 1. is BIBS-stable in the sense that either (i) or (ii) of
Proposition holds ifand only if

(1) 0[A0] < andfor all m, o[A] 0; and
(2) There exists T Cx, nonsingular, such that for all k O, m, TAT-is upper triangular.
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Proof. The fact that and (2) are necessary conditions follows from Proposition
and Lemma 1, and from Proposition and Lemma 2, respectively. To show that

and (2) are sufficient for BIBS stability an additional lemma is required.
LEMMA 3. Let { q/k e Cnn: k e Z+ } be a sequence of strictly upper triangular

matrices such that for all k Z+, Ilq/k]l < I’ +. Let h C"" be a diagonal matrix
such that p(A < and define

IIk, A -[- lk) A -[- .ll) k Z+, e Z+, k >= 1.

Then there exists a sequence { ’lr +: r } such that

Vl VkZ+, k> 1, IlII,,,z+,ll _-<,_z
and

k=l

A proof for Lemma 3 is given below. This lemma is now used to show sufficiency.
To this effect write, from (2),

x(t) T-’{aTl[w(t- 1)] aTI[w(O)]}Tx(O)

+ r-1 {[w(t- 1)]... [w(/)]}T[B’/] w(l- 1)

= u(l- 1)

w(t- 1)]
+ [B" B]

u(t- 1)J’
where T is as in (2) (in the statement of Theorem ), .3 TA T-l and

(W)=Ao+ E WlAl.
/=1

Thus

IIx(t)ll =< IIT-’II ,,ollTIIIIx(O)ll + t,l IITIIIl[g" BIll max {rw, I’u}
l=1

+ II[B 1 max { r r },
where,, II[w(t- 1)1 [w(l)]ll vt, IIw(t)ll rw, Ilu(t)ll

Defining A diag ([Ao],..., [Ao],,,), og (Ao A) + = Wl(k )Al, Lemma
3 is applicable and leads to

t,lt_l t,l l < VtEZ+, t> 1.
/=I /=1

Thus x(’) is bounded.
ProofofLemma 3. The basic idea of the proof is to look at the diagonal blocks of

increasing dimension of the given upper triangular product matrix H<l and to obtain
bounds on the norm of one block, which depend solely on a bound on the norm of its
preceding block and on p(A). Since the norm of the top X block is bounded by
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o(A)k-l, this iteration leads to the desired summable bounds on I[IIk,z[[. For n 1,
q/k 0 and it suffices to make rk-l Ak-l. Suppose then that n > and, for q 1,

n, define

[’q]Aq . [Iq "0]A..’.
0

where Iq is the q q identity matrix and

ou= [iqOlOU
0

q
Ilk,l+ Jq -- O qk Jxq -- 0[ + 1).

Note that II I-Ik +k,l+ I,

q
q+ :.

0

U A.q
Aq+l

o o

Yk,l+IIkj+
q+l

IIk,l+
o

0]kq+

where
(k-l)-

q
Yk,l+

i=1

i-1II,l+ i+ b/+ ikq +1 -- ’(qk+-ll)-

It then follows that

iinZ+ q q
,l/,

< IIn / y,+ / Xq k-l
k,l + +

q+l q )k-I )k-l-1IIn,.z+. Ilnk.Z+l + p(A + rp(A + r
k-l-I

i=1

P(A)i-1 II,,+ i+l I[.

Assume, for a moment, that there exists a sequence { rrq e +: r e N } such that for all
e and k e Z+ k > [lII qk,l + < n qk and E= r/ < oo Then,

q+llink.,+. II--< ,Z-z+ [p(A)k-l+ rO(A)k-l-ll + rag_l,

where

so that defining

t-1

Oqt E P(A)i-lqt-i,
i=1

r/
q+l

=r/tq+[p(A)’+I’p(A),-l]+Fag, eZ+,

it follows that n / /

,t + --< r/_ and E ?L r/t
q + < , since E = a f < (this, in turn,

is due to E= r/ < p(A) < 1; compare Dunford and Schwartz [12, p. 529]) As
the existence of {:" k e } has been asserted above (i.e., r/ o(A)*), this argument
can be repeatedly applied for q n 1, which concludes the proof. K]

Remark. Lemma 3 remains valid ifA is replaced by a sequence ofdiagonal matrices
A, such that O(A,) < X < and II,,l is defined as

II, (A + ,) (A +
The proof, in this case, follows exactly the same argument as presented above. The
simpler version was proven here to avoid more involved notation.
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For a given bilinear system Z Ak" k 0,..., m ), B, B), which is BIBS-stable
in the sense of (i) or (ii) of Proposition 1, Theorem says nothing about which specific
basis change takes all {A" k 0 m } simultaneously to triangular form. In fact, it
is possible to be more specific about such basis changes by introducing an assumption
on the matrices {Al: 1, m }, as done in the following theorem.

THEOREM 2. Let , A" k O,..., m }, B, B) denote a bilinear system as in
equation ), where p( Ao :/: 1. Assume that there exists { 1, m} such that rank
(Ai) >: n 1. Then, Z, is BIBS-stable in the sense that either (i) or (ii) holds if and
only if

(1) p[Ao] < andfor all 1,..., m, o[AI] 0;
(2’) If T Cnn is a nonsingular matrix such that TAiT-1 is in (upper triangular)

Jordan form, then TAT- is upper triangularfor all k O, 1,..., m.
Proof. It suffices to show that (2’) is a necessary condition for BIBS stability. To

this effect recall that, as a consequence of Proposition and Lemma 1, the semigroup
generated by {A)AI" 1, m, q } consists of nilpotent matrices. Hence, for all
k 0, m and r Z+ AA is nilpotent. Now let TAT- k O, m
As p[Ai] O, rank (Ai) n and Ai is in upper triangular Jordan form,

Let A (dr,). Notice now that

0 0

an-t+ 1,1 n-l+ 1,n 1 ’/=1 ,n-1.lIc
an,1 an,n
0 0

Clearly, the conditions- nilpotent, -2 nilpotent i nilpotent imply,
respectively, that dn, 0; d_ , and dn,2 0; dn-+ , 0, d,, 0;
a, 0,..., ,n- 0. Thus, A is upper triangular.

Finally, it may be wohwhile to comment on the asymptotic stability of the state
affine systems defined by equation for each pair ofbounded sequences w, u), which
is denoted by Z(w, u). To this effect consider the standard definition below.

DZFNTON 2. Z( W, U) is said to be asymptotically stable ifand only if eveff solution
x(., x0) given by equation (2) is asymptotically stable, i.e., for all x0 n, there exists a
neighborhood of x0, say V(xo), such that for all Y V(xo), [Ix(t, ) x(t, Xo)[] 0
ast .

The following theorem is a simple consequence of the lemmas given above.
THEOREM 3. Let {A" k 0 m } ,A be given. Thefollowingpropositions

are equivalent.
(I) For any pair ofbounded sequences w, u ( w, u) (as given by equation

is asymptotically stable.
(II) Conditions and (2) of Theorem hoM.
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Proof. Note first that (I) holds if and only if, for all in a neighborhood of O,
t(w)[I -- 0 as -- , where

d,(w) = d[w(t- )] d[w(0)].

It is now shown that (I) implies (II). To this effect, note first that using essentially
the same argument as in the proof of Proposition 1, it can be shown that

(I) Vk Z+, V(,..., )m, p[() ()] < 1,

from which it follows that p [A0] < 1, and that (through Lemma for all 1,
m, O[Al] 0. And, using Lemmas and 2, it follows that (I) implies that condition (2)
of Theorem also holds.

It is now shown that (II) implies (I). Proceeding along the same lines as in the proof
of Theorem 1, Lemma 3 can be used to show that ]](w) < , where o= /k < oe
Thus /k "- 0, from which it follows that

v n, (W)ll 0 as - c. rq

3. Concluding remarks. Bounded-input/bounded-state stability of discrete-time,
multi-input bilinear systems was addressed in this article. First, a necessary condition for
a system ; ({ Ak" k 0 m }, B) to be BIBS-stable was stated in terms of the
spectral radiuses of all matrices in the range of a function from E k to being smaller
or equal to one, for any positive integer k. Then two lemmas established the equivalence
of this condition and the joint triangularizability (via similarity transformation) of
A" k 0, m } together with the following constraints on their spectral radiuses:

p(Ao) <= 1, p(Ak) O, k m.

On the basis of another lemma it was then shown that, whenever o [A0 4 1, these
conditions are indeed sufficient.
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APPROXIMATION BY A HERMITIAN POSITIVE
SEMIDEFINITE TOEPLITZ MATRIX*

T. J. SUFFRIDGEf AND T. L. HAYDEN"

Abstract. The problem of finding the nearest Hermitian positive semidefinite Toeplitz matrix (in the
Frobenius norm) of a given rank to an arbitrary matrix is considered. A special orthogonal basis and equally
spaced frequencies allow good initial approximations. A second method using alternating projections solves the
case of unrestricted rank. Some interesting numerical results suggest possible applications to signal processing
problems.

Key words. Toeplitz matrices, positive definite Hermitian Toeplitz approximation, self-inversive polynomials
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1. Introduction. This paper addresses the problem ofbest approximation ofa given
matrix by a positive semidefinite Hermitian Toeplitz matrix. Related problems occur in
many engineering and statistical applications 3 ], especially in the area ofsignal processing.
Cybenko 4] considered problems in this area and related his results to moment problems.
For example, he showed how one may embed an n n Toeplitz matrix of rank r into
the family of n / n + Toeplitz matrices of rank r using the Levinson-Durbin
algorithm. Other Toeplitz approximation problems are discussed by Cybenko [4] and
Kung 13 ].

We consider the following problem. Let- denote the set of n n positive semi-
definite Hermitian Toeplitz matrices of rank =< r. Let D be a given complex n n (data)
matrix.

PROBLEM 1.

min lID- T[[.
T-

Here []. is the Frobenius matrix norm given by A 2 (A, A) and the inner
product (A, B) trace (B’A) ;, aijbij, where the bar denotes complex conjugation,
and B* =/v.

This problem and other approximation problems were studied by Shaw and Ku-
maresan [15] in relation to signal processing problems. We do not attempt to directly
relate our results to signal processing; however, we will make a partial connection through
the following factorization.

If T is a Hermitian positive semidefinite Toeplitz matrix, then there exists a facto-
rization

T VDV*,

where V is an n q Vandermonde matrix (q =< n) and D is a diagonal matrix with
positive numbers on the diagonal. This decomposition follows from Caratheodory’s
theorem on trigonometric moment problems [10, Thm. 12, p. 24 ]. Since the factorization
is a key component of our results, we wish to make the connection clear with Cara-
theodory’s theorem, which is proved by the classical techniques of moments.

Received by the editors February 13, 1991; accepted for publication (in revised form) October 21, 1991.
This work was supported in part by National Science Foundation grant CHE-9005960.

? Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506 (ted@ms.uky.edu
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THEOREM (CARATHEODORY). Ifo, Cl Cn-1 is a nonnegative definite sequence
with rank q < n, then there exists a unique canonical representation

q

j=l

k= 0, +l, +(n 1)

in which each p > O, ]al for all j, <= j <-_ q, and the are distinct. In this
representation, q rank ofthe Toeplitzform , 7, 5

o Ck-Zk.
To obtain the factorization we make the following observation. The statement

that Co, Cl,..., Cn-l is a nonnegative definite sequence ofrank q means that the Hermitian
Toeplitz matrix T (c_ k), C-t , 0 <- --< n is positive semidefinite of rank q.
Further, if D is the q q diagonal matrix with diagonal o > 0, _-< j _-< q, and the jth
column of V is [1, 3j, &j2., -1] T, where [aj[ 1, _-< j <- q, then T (Cj_k)
where Ck

q= pga. Hence T has the factorization (1) with positive entries on the
q q diagonal matrix D and distinct ei forming the columns of the Yandermonde
matrix V if and only if T is a Hermitian positive semidefinite Toeplitz matrix. The
representation is unique if q’< n.

The columns of V are of the form [1, eik, e2iOk, e(n--1)iOk] r, k 1, 2,..., q,
and each 0k can represent a frequency one may associate with a signal processing problem.
The 0 values in V turn out to yield the roots of Szeg6 polynomials. The theory for a
computational solution of was developed by Gragg [9 ]. Basically one first computes
the Schur parameters (reflection coefficients, partial correlation coefficients). From the
Schur parameters a certain Hessenberg matrix is formed. The eigenvalues of this matrix
give the frequencies Ok, while the values of the matrix D are obtained from the first
component of their eigenvectors. The basis of these steps lies in the relationship of the
Szeg6 polynomials and an analogue of the Christoffel-Darboux formula to the devel-
opment of a transliteration of the Levinson algorithm from the space of polynomials to
an isometric operator on a Hilbert space, yielding an isometric analogue ofthe Hermitian
Lanczos process. Based on this theory, a number ofpapers by Ammar, Gragg, and Reichel
have developed fast algorithms for solving facets of this theory associated with signal
processing. See, for example, [1] and [14] and references therein.

In this paper we introduce two new methods to solve Problem 1. For low rank
approximations, we first develop a useful orthogonal basis for the space ’n of n n
Hermitian Toeplitz matrices. Using this basis, we find that the inner product ofa member
of-n and an element ofthe basis can be expressed in terms ofa self-inversive polynomial
P(z). Finding the roots of the derivative of P(z)/z enables one to approximate the
dominant frequency in the data matrix. The basic theory and orthogonal basis are de-
veloped in 2. The rank-1 approximation occurs in 3, while extensions of the ideas
developed for the rank-1 case are given in 4 for higher rank cases. Section 5 contains
numerical results using this approach.

The second method uses the ideas of a modified alternating projection algorithm
which was successful in solving similar approximation problems for distance matrices
7 ]. This method only solves the case of unrestricted rank, that is, the case where the

"-1 The method depends on expressingminimization in Problem is over the set -n
the convex set- as the intersection ofthe convex set ofthe cone ofpositive semidefinite
matrices and the subspace of Hermitian Toeplitz matrices. Since - is the boundary
of-, Problem has a unique solution when D is not positive semidefinite, which the
modified alternating projection algorithm computes. For r < n 1, - is only a subset
of the boundary of the convex set ", and this drastically increases the difficulty of the
lower rank problems. There is a unique minimum for r n 1, but many local maxima,
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minima, and saddle points when r < n 1. However, approximations in r n can
sometimes be useful for lower rank approximations. This approach has been fruitful in
the distance matrix approximation problem (see, for example, 8 ]), and we plan to
pursue the idea in a future work.

2. Basic results. The existence and uniqueness of solutions to Problem are given
in Theorem 1.

THEORFM 1. Problem has a unique solution for r n and has a unique solution
for r n provided the data matrix is not positive semidefinite. In all other cases there
exists a solution, which may not be unique.

Proof. Since is the intersection of the closed convex set of positive semidefinite
matrices and the subspace of Hermitian Toeplitz matrices, - is a closed convex cone.
If D -n then the solution is D Otherwise the solution is the near point in - to D
which is unique by convexity. Since ’-- is the boundary of-, if D is not positive
semidefinite, the unique near point to D in- will lie in -- and provide the unique

is closed, but is not convex if r < n Intersect -f,solution. In all other cases ’n
with a closed sphere S with center 0 and radius DI[. Then - f) S is a closed compact
set, and the continuous function I[D TII clearly has a minimum on this set.

After we develop a basis for the Hermitian Toeplitz matrices, it is easy to construct
examples where the solution is not unique for r < n 1. See Example in 3.

In order to solve Problem 1, we establish a preliminary result that allows the arbitrary
n n data matrix D to be replaced by a certain Hermitian Toeplitz matrix A with the
same resulting solution. Hence it will suffice to only consider data matrices which are
Hermitian and Toeplitz. Let 2g denote the family of n n Hermitian matrices, and let
A * denote the complex conjugate ofA T, so A o’g, implies A A *. In Lemma 1, 1].
is the Frobenius norm and (,) is the inner product generating the norm as given in the
introduction.

LEMMA 1. Let A be a n n matrix and let H 2/g, B (A + A *)/2 . Then

A H[I 2 [IA B[] 2 -1- ]]B- HI[ 2.

Proof. The proof follows from the fact that Re (A B, B H) 0.
Now let A [aij] be an arbitrary n n matrix and T [tij] be an n n Toeplitz

matrix. Then

n-1 n-I n-1 n-I

j=l l=1 j=l l=1 j=l

Now let (ck) be the average of the diagonals ofA, that is,
n-j n-j

al, + and Ol.q +j,q

_
aj + l,l(2) Ol.q,q + j

El--j l= El--J /=1

for 0 =< j =< n q. Then it is clear that
(a) is Toeplitz;
(b) (A, T) (A, T) for all Toeplitz matrices T.

Furthermore, for S -P,

(c) IIA all 2 IIA 112 / 2 Re (A A, A S) + [[A 5112

because S is Toeplitz. These observations prove the following lemma.
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LEMMA 2. Let A [ajk] be a given n n matr& and define d by (2). For all
Toeplitz matrices T, (A, T) (d, T) and [IA TI[ 2 I[A All 2 + lid T[I 2. Hence
min {[IA- T[l’Tis Toeplitz} ][A- All.

Lemmas and 2 combine to show that one can reduce Problem to the case of
Hermitian Toeplitz data matrices; see also [5 ].

THEOREM 2. Let A aij] be an arbitrary n n matrix, and let d be given by (2).
Then T -P satisfies

A T][ min A all
S TPn

ifand only if
II(A + A*)/2 T min I[(A + A* )/2 SII.

We next find a basis for the n n Hermitian Toeplitz matrices n. Now the
members of ’n have complex entries, but we view -n as a vector space over the reals
in order that ’. be closed under scalar multiplication. Hence we write -n n +
where each R 9f. is a real symmetric Toeplitz matrix and each S 9% is a real skew-
symmetric Toeplitz matrix. Hence each A -n can be written as A R. and S 6.. Then dim (.) n, dim (Sn) n 1, and dim (-n) 2n 1. The
following lemma is helpful in finding an orthogonal basis for -..

LEMMA 3. Let T [tk] and S [sg] be n n matrices with tjg te(-) and
sj se(-k)*. Then

cos n(O 4)
(= n 2 st if 0 ).(T,S)=st 1-cos(0-)

Proof. Let a 0 and note that (T, S) st Ej.,k= ei(-)". The proof is by
induction. The result is clear for n 1, so we assume it is true for n 1. Then

cos (n )a, ei( ), + ei(J n)a _.[_ ei(n- k)o

j,k COS O/
j k

cos (n ) + . eij
cos o/

j= 1-n

The last sum is

e-i(n- )a eina
eia

e-i(n- 1) eino)( e-i)
ei)( e-m)

2cos(n- 1)a-2cosna
2 2 cos a

Hence the lemma follows. [3

Now set 3’ e2i/n so that 3" and, furthermore, 3"l if and only if is an
integer multiple of n.

LEMMA 4. For 0 <= <= n 1, set

(3) Tl 3’t(- )]j", .
Then { Tt: 0 <= l <= n 1} is an orthonormal subset of-, and TlTq 0 for 4: q and
TT= Tl.
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Proof. The orthogonality follows from Lemma 3. The other assertions follow from
direct computations using the fact that

{0Z ,)j__
j=l ///

if is not a multiple of n,

if is a multiple of n.

Now define Rt, =< < n/2, and St, -< l =< n/2, as follows:

0 -lln_
+Rl c (n- l)Ii 0 --lln-I 0

(4)

_1 0 -illn- + 4: -2Sl
c i(n- l)Ii 0 illn-I 0

(0 -ilt)ifl=n/2,ill 0

where c [2nl(n-/)]1/2.
It is easy to see that (R1, Rq) 0 and (S1, Sq) 0 if/4: q. Further, since each of

Rt and Sq is Hermitian, (Rl, Sq) is real. But since the entries of Rl are real and those of
Sq are pure imaginary, (Rl, Sq) is pure imaginary. Thus (Rz, Sq) must be zero. The
factor c is chosen to make Rzll [ISl 1. Now observe that

nc( Tt, Rq) q(n q)[-V q -t- ,.y q ,.y q _}_ ,)[
q

Since 3’
t, 3’-ln 1, we see that ( Tl, eq) 0 and similarly ( Tl, Sq) 0 for each and

q. This gives the basis for ’n.
THFOREM 3. If { Tl }, { Rl }, and { Sl } are given by (3) and (4), then { Tt: 0 <= -<

n } tO Rt: <- l < n/2 } tO Sl" l <- n/2 } is an orthonormal basisfor -.
Note that irA [ajk] and B [bj.k] and for a fixed 0,

(5) A(O) [aei(-)] and B(O) [bei(-)],

then (A, B) (A (0), B(0)). This observation gives the following corollary.
COROLLARY 1. Forfixed O,

{ Tt(O)" 0 <= l <= n 1} tO {Rt(0)" -< l < n/2} t.J {Sl(O)" <- l <- n/2}

is an orthonormal basis for "n.
3. Rank-I case. We now consider Problem for r 1, that is,

min lID- TI[.
T Tn

must be of the form TBy Theorem 2 we may assume D e -, and we see T e "n
t[ e i(j k)O] for some 0 and >- 0, that is, T ntTo(0), where To(0) is given by 3 ). Using
the fact that -n is an inner product space and the fact that To(0)II 1, we know that
for fixed O, D T will be smallest when n (D, To(0)) (which is real) and in that
case D TII 2 IIDII 2 I(D, To(0))l 2 IIDII = n2t2. Thus the problem is to find
max0 (D, To(O)). If D is merely Hermitian and Toeplitz (not positive semidefinite),
then the above maximum may be negative. In that case, the O matrix is nearer to D
than every T e -. However, we show in Theorem 4 below that if D is positive semi-
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definite, then (D, To(0)) >_- 0 for ever 0. For motivation we first consider the case n
2. So

ve u

where u is real and v >_- 0. Then (A, To(0)) v cos (0 q5) + u, which is greatest when
0 b. From the basic properties of inner product spaces the following results are easily
obtained.

(i) Ifu + v _-< 0, then ][D[] _-< ][D- TI] for all T-, so 0 isthe best approximation
to A in -.

(ii) Ifu+v>0then

2 e* 2 e;*

In this case, if rank D (so u v > 0), then D T.
(iii) If D is positive semidefinite (u >_ v), then

(u + v)To(ck) + (u- v)T(b),

where To and T1 are given by (3) with n 2.
In general, to find the best rank-1 approximation to A 6 -n, A [a(j k)],

a(j k) a(k -j), we require 0 so that (A, To(O)) is a maximum. Now (A, To(O))
is a trigonometric polynomial of degree n in 0, which can be expressed in terms of
the following self-inversive polynomial. Let

(6)
P(z) a(n- 1)z2n-2 q- 2a(n- 2)Z2n- + + (n- 1)a(1)z

+ na(O)z + (n 1)a(1)z 2 + + 2a(n 2)z + a(n 1).

Then P(z) z2(n-1)p(1/z) (i.e., P is self-inversive) and (A, T0(b))
/n )e-i(n -)Op(e;0), which is real. We wish to maximize the real valued function P(z)/

z 1, z ei. Differentiating, we see that the maximum occurs when zP’(z) (n
)P(z) 0, z] 1. Using these results, the following theorem gives a theoretical solution

to the rank-1 problem. However, the computation of the roots of a polynomial is ill
conditioned (with perturbation of the coefficients) and not practical for polynomials of
large degree. In 4, we propose a method based on equally spaced approximations, which
in all our numerical examples yielded excellent initial starting values, so that a solution
near the optimum value was obtained with minimal computation. This approach avoids
the problem of computing all of the roots of the polynomial, and the method is also
useful to find higher rank approximations.

THEOREM 4. Let A [a(j k)], a(l) a(-l), be a given matrix in -, A >= O,
and let P( z) be given by (6). Then e-g(n- )Op( egO) >= 0 for 0 <= 0 <-_ 2r and

!
A T[[ 2 min A 3[[ 2 [[A 2 P(z)[2,

n-

where z ei is chosen to maximize e-i(n- )p(ei) and T (A, To(O))To(O)
/ n)e-g( )Op(egO) To(O).
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Proof. From the previous discussion, everything is clear except the fact that
e-i(n- 1)p(ei) n(A, To(O)) is nonnegative. To see that this is true, we use the ortho-
normal basis given by Corollary 1. Write

n-1

(7) A Z atTt(O) + Z bR(O) + Z CKSk(O).
1=0 <=j<n/2 _k<=n/2

Let Ube the first row of T0(0). Since A is positive semidefinite, 0 =< UAU. However,
To(0) n U* U so using the orthogonality properties,

0 < UAU* (A, U’U) (A, To(O)) aoo

Example 1. The problem of finding the best rank-1 approximation to a matrix A
in - may not have a unique solution. Suppose A has the form

n-1

A c.TA0).
j=0

As we have just noted, to find the best rank-1 approximation to A, we need to find

n--1

max (A, T(0) ) max c(T(0), T(0) )
j=0

n- cos n 0
=max cj.-

j=o n cos (0 2jTr/n)

However, from the proof of Lemma 3, we see that

COS n 0

_
Z e-i(l-k)(O-2jrr/n)

=o cos (0 2jr/n) =0 l,k=

n-1

_
e-i(l-k)(-2jr/n).

l,k=l j=o

If 1 4: k, the summation on j is zero. So the sum has the value Z = Z 2
y=o =n Thus

we have shown (A, T(O)) ,’] c,j/n where each j. >_- 0 and _--01 X n2.
Therefore, [(A, T(0))I =< max9 cgn and equality clearly holds when 0 2lr/n,

maxj. c cl. The number of solutions to the minimum problem will therefore be the
number of such that cl max cj-.

4. Higher rank approximations. Suppose B 6 -, so that B VDV* where V is
an n r Vandermonde matrix and D is an r r diagonal matrix with positive elements
on the diagonal. Thus B is Hermitian, Toeplitz, and positive semidefinite of rank r. Now
assume B and the rank r are unknown but measurements can be obtained to form an
n n matrix A that is a perturbation of B. We wish to use A to approximate r and B.
IfA is not Hermitian and Toeplitz, we replace A by ( + *)/2 (given by Theorem ),
and we rename this matrix A. Our goal is to find r, t, t2, tr and 0, 02,..., Or SO

that Z= tiT(01) is B, where T(0I) n To(01) (ei(j-lOt). One serious problem in
attempting to optimize A = tiT(01)1[ 2 over the variables tl, 01, < 1 _-< r for fixed
r, is that there are many local maxima, minima, and saddle points. Thus any numerical
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procedure for carrying out this optimization procedure requires that good starting values
be obtained. Note that

(8)

A , trT(
/=1

I]AII 2-2 tr(A, T(Or))
/=1

r-1

+2 , , trtp(T(Or), T(Op)) + t]llT(Or)
/=1 p--/+l /=1

I[A[I 2 2 tie -i(n- 1)’p(ei’)
/=1

r-1 cos n(Or- Op) 2+2 trtp +n , t].
=1 p=l+l COS (0l- Op) l=

We proceed as follows. First approximate A by using n rank-1 matrices T(Ol) with 01 0,
02 0 + 2r/n,..., 0n 0 + 2(n )r/n (equally spaced values). Actually, we find the
projection of A on the space spanned by { Tr(0): <- _-< n }, where Tr(0) is defined by
(3) and (5), and then we optimize over 0. This turns out to be surprisingly easy to do in
closed form. Thus in (8) the terms involving (T(Ol), T(Op)) are zero when 4 p and tl
/ l"l

2A, T(Ol)) / n2e-i(n 1)Otp(eiOt / yl 2 e-i(n- 1)(0+ 2(/- 1)/n)p( ei(o+ 2(/- 1)w/n)), where
P is given by (6). Then 8 becomes

2 n

(9) A- , tiT(Or) I[AII 2- n2 Z t],
/=1 /=1

where each t/depends on 0 as above. Let Q(z) n-le4ij/np2 ij/n),
j o ze2 and note that

n-1

Q(zeiZ/n) , e4ij/np2(zei2(j+
j=0

n--1

e-4i,r/n e4i(j+ 1)/npZ(zeiZ(j+ 1)/n)
j=0

e-4i/nQ(z).

Since deg Q(z) <- 2(2n 2) 4(n- 1), we have

4(n-1)

Q(z) X qkzk.
k=0

However,
4(n- 1) 4(n- 1)

Q( zeiZr/n) qkeiZk /nzk e-4i /n qkzk;
k=0 k=0

thus qkei2/n qe-4i/n and q qe2i(+ 2)win. Hence qk 0 except when k + 2 nl
for some positive integer and so qn 2, qzn 2, and q3n 2 are the only nonzero coefficients
of Q(z).

So Q(z) z 2(qn_ 2 -1- qzn_2Zn zt- q3n_2zZn), and from the definition ofPit follows
that e-2i(n- 1)Q(ei) is real. Hence q2n-2 is real and q3n-2 t]n-2. Thus we want to
maximize

einO inOqzn 2 -j- n 2 "+ qn 2 e
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Clearly, we want nO arg (qn_ 2) (if qn- 2 0, then (9) is a constant). Thus we have
found 0 to minimize (9). From the definition of Q, it is easy to check that qn-2

Z ,1 l(n l)c(l)c(n l).
Now denote the right-hand side of (8) by F(OI, 02,..., Or, t, t2,..., tr). A

necessary condition that F be a minimum is that OF/OOj 0 and OF/Otj O, <= j <= r.
We obtain starting values by using the r largest values of the tl and the corresponding 0l
obtained above. Newton’s method for 2r variables is then used to solve the 2r equations
OF/00j. 0 and OF/Ot O, <= j < r. In practice, to obtain convergence to the best rank-
r approximation, unless r is quite small, it is necessary to obtain the result in steps. In
other words, find the best rank-r approximation T) where r is small, and set A)

A T1). Find new starting values as described above for approximating A), and use
these together with the values that give T) to obtain a rank-r2 approximation T2) where
r2 > r. Continue this process until the rank-r approximation is obtained.

5. Numerical results. Some numerical results are given in Tables 1-5. As yet, we
do not have a proof of convergence to the desired optimum rank-r matrix, but the method
has succeede in determining the correct rank and closely approximates the weights and
frequencies in a perturbed matrix as described below in all cases when we have increased
the rank by at each stage.

The results were obtained by applying the method of 3 as follows. A matrix was
formed from by randomly choosing r weights dj. in matrix D, 0 =< dj- < 4, and r
values 0;, 0 =< 0 =< 27r, to determine the Vandermonde matrix V. Typically n was chosen
to be 60 and r 10, although some other results are given. The matrix thus obtained by
(1) was perturbed by adding random noise of the form a + bi, where -1 =< a =< 1,
-1 =< b =< to each entry of the matrix. The Hermitian Toeplitz matrix A is the matrix
obtained by (2) from the matrix described above. The problem is to recover the r fre-
quencies and weights that determine the matrix before the noise is added. The convergence
criterion is that the maximum change ofany ofthe variables be less than 5 10 -5 (using
Newton’s method). The integer M is the number of iterations required for convergence.
The method works best for relatively large n, as is to be expected. For example, with
n 3, r 2, the noise seems to be too large to recover the original weights and frequencies,
while with larger n, forming the Hermitian Toeplitz matrix using (2) tends to make the
noise less significant.

Table illustrates an example of the approximation described in 3. The first two
columns give the weights d and frequencies 0 used to generate the matrix A before the
noise is added (using the representation (1)). The matrix is 60 60 and of rank 10
before the perturbation. In the last five columns, the approximations are obtained, in-
creasing the rank of the approximation by at each step. L is the rank of the approxi-
mation, M is the number of iterations required to get convergence, and t and j. are the
weights and frequencies in the approximating matrix. The last column gives the square
ofthe norm ofA Twhere T is the approximating matrix. The weights and frequencies
are not listed for some ofthe approximations (i.e., ranks 3, 4, 6-9, 11 because the values
do not change very much in successive approximations. Note that the norm of A T
decreases rather dramatically as the rank ofthe approximation increases until the correct
rank (10) is reached. Also, the additional weights beyond the rank-10 approximations
are an order of magnitude smaller. Of course, the norm ofA T is not zero when T has
rank 10 because of the "noise" that remains.

In Table 2 we show the results of beginning with a higher rank approximation in
the first step and increasing the rank by more than in succeeding steps. In this particular
case, we begin with a rank-4 approximation using initial values obtained from the ap-
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TABLE

N 60 r=10

0 L M tj 4j

3.66180
3.29453
2.73838
2.35246
1.98142
1.85204
1.16184
0.59352
0.34123
0.29295

2.65965 4
5.40062
0.84639 2 3
5.61409
1.95922
5.91687 3 4

3.33427 4 4

3.05046
5.08016 5 3

1.25646

IIAII 1-- 166699

3.65707 2.65974 118550

3.65683 2.65976
3.28388 5.40025

3.65251 2.65981
3.28231 5.40051
2.34579 5.61464
2.72215 0.84623
1.98100 1.95921

79730

59917
33254

19127

6 3 6976
7 3 2059
8 3 759
9 3 321

2 3.64690 2.65976 29
3.28143 5.40042
2.34243 5.61429
2.72032 0.84623
1.97954 1.95924
1.83690 5.91673
1.16349 3.33485
0.60104 3.05017
0.34874 5.07902
0.28682 1.25872

10

11 4 28

12 3 3.64686 2.65976 26
3.28142 5.40042
2.34242 5.61429
2.72032 0.84623
1.97907 1.95926
1.83689 5.91673
1.16348 3.33485
0.60104 3.05017
0.34874 5.07902
0.28648 1.25907
0.02215 1.77852
0.01843 1.16700

proximation by equally spaced frequencies as discussed in 3. Subsequently, we increase
the rank by 2 in successive steps. The matrix A is the same as in Table 1.

Our attempts to start with higher rank approximations in the first step indicate that
for 60 60 matrices ofrank 10 perturbed with random noise, ifthe initial approximation
is by a matrix of rank 5 or more, then we get convergence to some critical value that is
not the best approximation of that rank. However, in every case with various sizes of
matrices, if we start with rank and increase the rank by at each step, there is a point
at which the weight associated with the last frequency decreases dramatically as compared
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TABLE 2

N 60 r=10

0 L M tj 4j IIA- Zll

3.66180
3.29453
2.73838
2.35426
1.98142
1.85204
1.16184
0.59352
0.34123
0.29295

2.65965
5.40062
0.84639
5.61409
1.95922
5.91687
3.33427
3.05046
5.08016
1.25646

IIAII 2-- 166699

4 4 3.65652 2.65977 47733
3.28248 5.40043
2.34327 5.61429
1.83975 5.91674

6 5 3.65247 2.65982 6976
3.28209 5.40044
2.34299 5.61430
1.83945 5.91675
2.72204 0.84624
1.98087 1.95921

8 5 3.64707 2.65976 759
3.28164 5.40042
2.34265 5.61431
1.83904 5.91675
2.72188 0.84623
1.98014 1.95923
1.16365 3.33485
0.60117 3.05017

10 6 3.64706 2.65976 320
3.28147 5.40042
2.34247 5.61429
1.83905 5.91675
2.72173 0.84623
1.98009 1.95923
1.16352 3.33485
0.60105 3.05018
0.34880 5.07902
0.01684 1.14863

12 3 3.64687 2.65976 27
3.28142 5.40042
2.34243 5.61429
1.83902 5.91675
2.72168 0.84622
1.97951 1.95925
1.16349 3.33485
0.60104 3.05017
0.34874 5.07902
0.01838 1.16658
0.28650 1.25904
0.02270 1.56761

to the other weights, and the change in the norm ofA T is quite small. This seems to
be a clear indication that the appropriate rank has been found. These conclusions are
based purely on experimental evidence and not on theoretical conclusions at this time.

Table 3 gives an example that shows that even though two of the frequencies are
quite close, 03 and 09, our method eventually identified the existence of these two fre-
quencies. Starting with a rank-4 approximation and increasing the rank by 2 at each
step, up through the rank-8 approximation, a frequency intermediate between the two
near frequencies was obtained with a weight significantly larger than either ofthe associated
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TABLE 3

N 60 r=10

o L M tj bj IIA- TII

3.51524
3.46610
3.38017
3.31638
3.03087
2.93608
2.84050
2.53801
2.16784
1.50798

6.19195
5.15524
5.87692
1.71590
5.36127
0.04048
3.57764
1.34266
5.92609
1.88239

IIAll z= 340389

4 4 4.66183 5.89391 129217
3.47806 5.15559
3.62805 6.19065
3.39946 1.71666

6 3 4.66093 5.89382 66693
3.47721 5.15534
3.62788 6.19068
3.39863 1.71663
3.04486 5.36160
2.84550 3.57755

5 4.66062 5.89382 12148
3.47668 5.15534
3.62770 6.19068
3.37924 1.71682
3.04440 5.36159
2.84447 3.57755
3.08523 0.04323
2.56000 1.34226

10 13 3.35669 5.87631 384
3.47218 5.15525
3.60788 6.19015
3.32175 1.71603
3.03762 5.36137
2.84378 3.57751
3.08042 0.04344
2.55852 1.34236
1.51771 1.88250
2.19744 5.92577

weights. The rank-10 approximation then successfully identified the existence of these
two frequencies. As has been typical in our computations, the fact that these frequencies
were so close forced more iterations than usual 13 to obtain convergence.

TABLE 4

N=10 r=3

d 0j L M tj 4 [[A- T[[

3.68290 4.24646 4
2.79552 3.76466
1.56956 0.64161 3 5

IIAII 1= 2572

5 3

4.12979 4.13429 867

3.70186 4.25141
2.83512 3.77076
1.48886 0.64123

3.67682 4.25378
2.82468 3.77694
1.48593 0.64177
0.13880 2.17547
0.07060 3.41188
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TABLE 5

N=4 r-2

d/ 0j L M tj bj IIA- TII

2.39610 5.15882 2 3.52520 5.04331
1.28269 4.75756

2 5 3.52517 5.04346 0.6

IIAII2= 200 0.16967 0.37015

Since the process of averaging the diagonals to obtain a Toeplitz matrix tends to
minimize the effect ofthe noise, it is to be expected that the noise would be more significant
in smaller matrices. That is indeed the case. Our computations have shown that for
matrices as small as 10 X 10, the results remain quite good (especially for identifying
frequencies). The results are not as good in the 4 4 case. See Tables 4 and 5.

6. Unrestricted rank case. In this section we consider the special case of Problem
when r n and D has a negative eigenvalue, and solve

(10) min liD Z
T-g-

The basic idea is to view - as the intersection of the convex cone K of positive semi-
definite n n Hermitian matrices and the subspace "n of all n n Hermitian Toeplitz
matrices. Hence -n- is a boundary of -nn and the unique solution to (10) can be
obtained by a modified alternating projection algorithm. Von Neuman showed that if
S1 and S_ are subspaces and D is a given point, then the nearest point to D in S1 fq $2
could be obtained by the following algorithm.

ALTERNATING PROJECTION ALGORITHM.
Let Xz D

For k 1, 2,
X + P(P(X)).

X converges to the near point D in S S where P andP are the orthogonal projections
on S and S_, respectively. The necessary modification of von Neumann’s algorithm
when S and S are replaced by convex sets was first given by Boyle and Dykstra 2 ].
Other proofs and connections to duality along with applications were given by Han 11
and Gattke and Mathar [6]. These modifications were applied in [6] and [7] to find the
nearest distance matrix to a given data matrix. Since the constraint set for the distance
matrix problem consists of the intersection of a convex cone and a subspace, the ideas
of[7] carry over directly to the solution of (10). The necessary modification of von
Neumann’s algorithm, as given in [2], [7], and [11] when applied to our setting, yields
the following modified alternating projection algorithm MAPT (see [7, eq. (4.4)]). Given
a Hermitian data matrix D, which is not positive semidefinite, we get the following
algorithm.

ALGORITHM MAPT.
Let F D

Forj= 1,2,3...
F/+, F/+ [P.P(Fj) PK(F.)].

Then { P(F) ) and { PrPK(F) } converge in a Frobenius norm to the solution of 8 ).
Here P(F) is the projection (proximity map) ofF onto the convex cone K of positive
semidefinite Hermitian matrices. One finds PK(F) (see [12]) by finding a spectral de-
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composition of F and setting the negative eigenvalues to zero. Finding the spectral de-
composition is O(n 3) work, and hence PI(F) is the major computational work of the
algorithm. PT(F) is the projection onto the subspace ofHermitian Toeplitz matrices n.
Here one thinks of ’n as complex matrices, but scalar multiplication is only over the
reals. Pr(F) is easy to compute using Lemma 2. Simply set each diagonal in Pr(F) to
be the average of the corresponding diagonal of F.

An application of Algorithm MAPT may be used to solve the following matrix
minimization problem.

PROBLEM S. Given a positive definite Hermitian matrix D, find the nearest positive
semidefinite (positive definite) Hermitian Toeplitz matrix Tto D in the Frobenius norm.

Solution. Step 1. Find the nearest Toeplitz matrix 7 to D by averaging the diagonals.
If 7 is positive definite (or positive semidefinite), then one is finished.

Step 2. If 7 is not positive semidefinite, then use Algorithm MAPT to find the
nearest positive semidefinite Toeplitz matrix T to 7.

Now T is the solution by an argument similar to the proof of Theorem 2 because
7 was obtained by a projection, and hence for every Toeplitz matrix S, D sII 2

liD 11 / 7 all . Since our Algorithm MAPT minimized the last term, we are
done. The rate of convergence of Algorithm MAPT is linear, and numerical results for
the related case of approximation of distance matrices by modified alternating projections
may be found in [7].
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A WEAKLY STABLE ALGORITHM FOR PAD] APPROXIMANTS
AND THE INVERSION OF HANKEL MATRICES*

STAN CABAYt AND RON MELESHKO$

Abstract. A new algorithm, Algorithm NPADE, is presented for numerically computing Padd
approximants in a weakly stable fashion. By this, it is meant that if the problem is well conditioned,
then Algorithm NPADE produces a good solution. No restrictions are imposed on the problem
being solved. Except in certain pathological cases, the cost of the algorithm is O(n2), where n is the
maximum degree of the polynomials comprising the Padd approximant.

The operation of Algorithm NPADE is controlled by a single parameter. Bounds are obtained
for the computed solution and it is seen that they are a function of this parameter. Experimental
results show that the bounds, while crude, reflect the actual behavior of the error. In addition, it is
shown how better bounds can easily be obtained a posteriori. As another application of Algorithm
NPADE, it is shown that it can be used to compute stably, in a weak sense, the inverse of a Hankel
or Toeplitz matrix.

Key words. Padd approximants, numerical computation, Hankel inverses, Toeplitz inverses,
numerical stability

AMS subject classifications. 41A21, 65F05, 65G05

1. Introduction. Let

A(z) a,z’ and B(z) b,z’
i=0 i=0

be formal power series, where ai, bier. We consider the problem of approximating
A(z)/B(z) and assume, without loss of generality, that bo 0.1 One way to approx-
imate such a power series quotient is to use rational functions and a method dating
back to the last century (Pad [49], Frobenius [27]).

DEFINITION 1.1. Let
m n

U(z) u,z’ and V(z) v,z’
i=o i=o

be polynomials of degrees m and n, respectively. (U(z), V(z)) is said to be a Padd
form of type (m, n) for the power series quotient A(z)/B(z) if Y(z) is nonzero and

(1) A(z)V(z) + B(z)U(z) zm+n+lW(z).

W(z) is called the residual for the (m, n) Pad form.
This definition is more general than that which normally is used (cf. Gragg [31]).

In practice, the case where B(z) -1 is most often considered. For the moment, we
let B(z) =_ -1, but later we will often revert to the more general formulation.2
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31, 1991.
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If b0 0 and a0 0, then A(z) and B(z) can be interchanged. If both are zero, then if bA (or
a) is the first nonzero coefficient, we can work with z-A(z) and z-B(z).

2 This more general formulation simplifies the notation used in this paper and is also in keeping
with the formulation of Pad6-Hermite approximants.
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A common way to organize the Pad6 approximants for a fixed A/B is given by
the following.

DEFINITION 1.2. The Padd table for A(z)/B(z) is the doubly infinite array whose
(m, n) entry is a Pad6 form of type (m, n) for A/B.

Pad6 approximants are useful in many diverse fields of science. For example,
Baker and Graves-Morris [4], [5] survey both the theory and applications of Pad6
approximants, while Bultheel and Van Barel [12] provide an extensive survey of Pad6
techniques in system theory. Gragg [31] gives an introduction to the Pad6 fraction in
the context of the algorithms of numerical analysis.

Pad6 approximants can also be viewed as a matrix problem. From (1), with
B(z) -1, we obtain

ao 0 -1

am+n

". 0

ao

0 Vo

Vn
--1 UO

0 Um ]

This homogeneous system is underdetermined and so has a nontrivial solution. Letting
v0 be arbitrary, we can decouple the system to get

(2) -v0

am+n-- am Vn am+n

and

(3)

ao

ao

am-n

Ivl
V(z) can be obtained from (2) and then U(z) is easily obtained from (3). The matrix
on the left-hand side of equation (2) is a Toeplitz matrix. Now the order of the
variables in (2) is arbitrary; we. could write it as

(4) -Vo

am am+n--1 Vl am+n

In this case, the matrix on the left-hand side is a Hankel matrix. We shall denote it
by Hm,n.

It is clear that finding a solution to the Toeplitz or Hankel system defined by
equations (2) or (4) is equivalent to solving the Pad6 approximant problem. If the
Toeplitz system in (2) is symmetric, then (2) is known as the Yule-Walker equation.
Such systems arise in the analysis of sunspot data (Yule [63]) and in time series
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analysis (Walker [581). Similar series arise in signal processing (Levinson [40]), linear
prediction (Makhoul [44]), and linear filtering (Kailath [37]).

The general case with an arbitrary A(z) and B(z) has a similar formulation.
Letting v0 be arbitrary, (1) gives us

( 0 0 bo

ao

\ am/n-1 am bm+n

Vl

Vn
UO

Um

( ao

--Vo

\ am+n j

Again, the system has a nontrivial solution with V(z) : O. The matrix on the left-
hand side of (5) is known as a Sylvester matrix; we will denote it by Sm,n.

2. Numerical considerations and stability. Due to the regular structure of
systems (2) and (4), it is possible to solve them with methods that use less than
O(n3) operations (as would be required if Gaussian elimination were used). One of
the earliest such methods is that of Levinson [40], which dates back to 1947. He
solved the problem for symmetric Toeplitz systems, though he was not explicit in his
use of matrix methods. His algorithm has a cost complexity of O(n2). Algorithms
for solving Toeplitz or Hankel systems with this time complexity are referred to as

fast algorithms (Ammar and Gragg [1]). Levinson’s algorithm was subsequently ex-
tended to the nonsymmetric case (Trench [55], Zohar [64], [65]); however, all these
methods required the Toeplitz matrix and its principal minors to be nonsingular. Ris-
sanen [50] developed an algorithm for Hankel matrices that overcame the restriction
of nonsingularity of the principal submatrices. Other fast methods have appeared
(Bareiss [6], Jain [36], Gragg et al. [32], Delsarte and Genin [25], Cabay and Choi
[16], Bultheel [11]). Recently, superfast O(n log2 n) algorithms have appeared (Bit-
mead and Anderson [9], Brent, Gustavson, and Yun [10], Cabay and Choi [16], de
Hoog [24], Ammar and Gragg [1]). Both the fast and superfast algorithms rely upon
the solution of smaller subproblems. They are expressed in terms of submatrices or
bordering techniques and are equivalent to Gaussian elimination without pivoting.

Most of these algorithms, especially those dealing with singular principal subma-
trices, are posed in an algebraic setting, in the sense that they either explicitly assume
exact arithmetic or implicitly do so by not considering the effects of rounding errors.
While there exist algebraic programming systems such as Maple, Mathematica, and
Macsyma that enable the easy coding of these methods (Geddes [28], Cabay and
Kossowski [18]), these algebraic algorithms are expensive and so they are limited, in
practice, to small problems.3 For large problems, which can arise in many areas (Jain
[36]), the only recourse is to use numerical methods. In this case, the algebraic algo-
rithms can be shown to be unstable for the general problem (Bultheel and Wuytack
[13]). Some work has been done on the numerical aspects of their computation, but
either it concentrates on numerical experiments (Luke [42], [43]) or else the analysis is
only valid for restricted classes of problems (Wynn [62], Cybenko [23]). (For example,

3 See, for example, the timings reported in Geddes [28].
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Ammar and Gragg [2] present experimental results for a superfast solver applied to
positive-definite symmetric Toeplitz matrices.) Some algorithms fail if singular sub-
problems are encountered (Claessens [21]), while other algorithms handle the singular
cases by recognizing them and then using special rules (Rissanen [50], Claessens and
Wuytack [22], and Bultheel [11]). But problems arise if the near-singular case is en-
countered. For example, Rissanen’s algorithm requires the detection of a zero value,
but if the value is nonzero but small, then, in the context of Gaussian elimination,
what the algorithm does is equivalent to performing a column reduction with an ex-
tremely small pivot. This is known to be an unstable operation and poor solutions
can result. Other algorithms fail for the same sort of reasons. (See, for example,
Bultheel and Wuytack [13], Bunch [14], Luk and Qiao [41].)

The same problem of numerical instability also arises in the algorithms for scalar,
vector, and matrix rational interpolation recently proposed by Antoulas et al. (see [3]
and the references given there), by Beckermann [7], and by Van Barel and Bultheel
(see [56], [57] for the scalar case). The approach of Van Barel and Bultheel (for
the special case that all the interpolation points are at the origin) can be seen to
be similar to the one of Cabay and Choi [16], for which we give a stabilized form
here. Also in the case that the interpolation points are all at the origin (which is
the Pad approximation problem), Beckermann, Cabay, and Labahn (see [38], [20],
and [19]) generalize the Cabay and Choi algorithm to the vector and matrix case.
These generalized algorithms appear also to have similar stable versions (see Cabay
and Jones [17]). In addition, there appears to be a certain relationship [33] of these
algorithms to those of Antoulas and Beckermann.

Bunch [14], [15] gives the best overview of the state of the art in a numerical
setting; he provides an extensive survey of the limitations and shortcomings of many
of the available methods for solving Toeplitz systems. If the matrix is positive-definite
symmetric, the methods perform well numerically, but in the general case they can
perform poorly. (Similar observations are made by Bultheel and Wuytack [13].) The
observation that is made is that the positive-definite symmetric matrices are a class
of matrices that can be solved stably using Gaussian elimination without pivoting.
Bunch suggests that in order to make the algorithms stable for the general problem
some pivoting must be introduced, but then this would result in the loss of the regular
structure of the matrices that enables the algorithms to perform in a fast manner.

Sweet [53] takes a different approach using orthogonal transformations to produce
a fast QR factorization of a Toeplitz matrix. Again, the regular structure of the
Toeplitz matrix is exploited, but even this more stable technique has its problems.
Luk and Qiao [41] give an example of a matrix for which Sweet’s factorization produces
poor results.

To be more precise, we need to define what we mean by stable. The following is
a common definition of algorithmic stability (Bunch [15], Wilkinson [60]).

DEFINITION 2.1. An algorithm for solving linear equations is stable for a class
of matrices A/ if for each M in j and for each b the computed solution x to Mx b
satisfies//x =/, where/ is close to M and/ is close to b.

However, for our purposes, we will use a weaker type of stability. Users often want
to obtain solutions that are close to the true solution; they may not need (or want)
to know that their solution is the exact solution of a nearby problem (as in Definition
2.1). As is well known, the final solution is dependent not only on the algorithm,
but also upon the condition of the problem being solved. If the problem is poorly

4 This type of stability is sometimes referred to as backward stability.
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conditioned, then we cannot expect the computed solution to be good because just
formulating the problem numerically can introduce perturbations. But if the problem
is well conditioned, then we would like an accurate solution. To describe this, the
following was introduced by Bunch [15].

DEFINITION 2.2. An algorithm for solving linear equations is weakly stable5 for a
class of matrices A if for each well-conditioned M in A/ and for each b, the computed
solution xc to Mx b is such that x xc II/11 x is small.

This type of algorithmic stability is not as strong as the commonly used type
of stability. Stability implies weak stability, but not vice versa. In particular, weak
stability says nothing about the behavior of the algorithm for ill-conditioned problems.
On the other hand, it can be easier to show weak stability as the effects of the
numerical operations do not need to be reflected back into the problem being solved.

The purpose for which Bunch introduced weak stability was to address the confu-
sion about the stability of Toeplitz solvers. What he showed was that the algorithms
he considered required that various submatrices be well conditioned. A submatrix
can be ill conditioned even though the matrix itself is well conditioned. The well-
conditioning of principal submatrices, however, can be guaranteed if the matrix is
positive-definite symmetric. Thus, he concluded, the algorithms were weakly sta-
ble for the class of positive-definite symmetric matrices, but were not weakly stable
for more general classes. For example, Cybenko [23], considered the stability of the
Levinson-Durbin algorithm for the solution of Toeplitz systems. Cybenko showed
that for the class of well-conditioned, positive-definite symmetric Toeplitz matrices
the algorithm produced a solution with a small residual. Though he did not use the
terminology, he had shown the weak stability of the algorithm for this class of Toeplitz
matrices.6

This paper introduces a new algorithm, Algorithm NPADE, for the computation
of Pad6 approximants. We will show that it is weakly stable for the general class
of power series. Moreover, it is robust in the sense that it is capable of recognizing
problems as they arise. In 3 some notation, basic definitions, and fundamental results
are presented. These results in 3 are not new; rather, they are used to justify the
validity of Algorithm NPADE which is presented in 4. The analysis of Algorithm
NPADE follows, starting in 5 with a summary of the principal results. The details of
the analysis are contained in 6 and 7; these two sections contain a round-off analysis
of the algorithm and are quite technical. The paper concludes with a brief discussion
in 8 of some experimental results and in 9 with comments on further research.

However, before proceeding with this material, we complete this preliminary dis-
cussion of numerical matters, by now briefly reviewing, without proof, some standard
results from the field of floating point error analysis. Lemmas 2.3, 2.6, 2.7, and 2.8
all refer to floating point numbers. We use # to denote the unit round-off and assume
that the degrees of all polynomials and the orders of all matrices are bounded by some
M, where M# _< 0.01 (this restriction comes from Forsythe and Moler [26]). After
Wilkinson [59], we denote a floating point operation by fl(.).

LEMMA 2.3. If n# <_ 0.01, then

n +
k--1

where I/kl <_ 1.01n#.
5 This type of stability is sometimes referred to as forward stability.
6 Bunch [15] first observed that Cybenko’s stability result was actually a proof of weak stability.
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In our analysis, we almost always use polynomials; the following definition gives
a polynomial norm that is defined in terms of vector norms. We also use power series,
so the infinity norm for a power series is likewise defined.

DEFINITION 2.4. If U(z) Yin__o uiz, then define the infinity norm for U(z) to
be

II u IIo -II (uo, ux,..., u)T IIo.
If A(z) -]=o aiz’, then define the infinity norm for A(z) to be

A II sup{Jail" 0 _< i < cx3}.

DEFINITION 2.5. If A(z) Y]=0 az, then A (mod Zk) Ei=0k-1 aiz,..
LEMMA 2.6. Let A(z) be a power series and let V(z) be a polynomial of degree

n. Then

I] (AV) (mod z"+) II < (min{m,n} + 1)11 A IIo11 v IIo.
LEMMA 2.7. Let A(z) be a power series and let V(z) be a polynomial of degree

n. Then

fl((AV) (mod zm+l)) (AV) (mod zre+l) -4- lI/,

where

II _< 1.01(min{m, n} + 1)2l[ A IIll v I1.
LEMMA 2.8. Let U and V be polynomials of degree n. Then

](u + v) u + v + ,
where

Iloo <- II u / v
Proofs of these lemmas can be found in Meleshko [46], [47]. As we use only the infinity
norm in the following analysis, we simply use I1" instead of the more explicit

3. Some basic definitions and notation. Cabay and Choi [16] present a poly-
nomial algorithm that iteratively computes Pad6 forms along a fixed, but arbitrary,
diagonal of the Pad6 table in an algebraic setting.7 This computation along a fixed
diagonal corresponds to solving Hankel systems of increasing order. It is equivalent to
Rissanen’s algorithm, but it has a lower operation count as it is better able to exploit
the structure of the problem through the use of polynomial operations. Some of the
results that form the basis of their algorithm are necessary to understand Algorithm
NPADE as well. We present these results in a considerably different fashion; proofs
can be found in Meleshko [46], [47] and the original proofs in [16]. We also assume that
m n 1. It is easy to show that if we can obtain the (n 1, n) Pad6 approximant,
then the general (m, n) Pad6 approximant can also be obtained.

7 Their algorithm is similar to ones described in Berlekamp [8] and Massey [45]. Moreover, in
the case of a normal power series and computation along the superdiagonal of the Pad6 table, it is
equivalent to the algorithm described in Gragg et al. [32].



PADI APPROXIMANTS AND INVERSES OF HANKEL MATRICES 741

With A(z) and B(z) fixed, we define a sequence of integers

no, nl, n2,...,

by setting no 0 and ni ni_l / si_l, where si- > 1 is selected so that the
Sylvester matrix Sn Sn,-, is nonsingular. Because Sn, is nonsingular, both
the (n- 2,n- 1) and (ni- 1, n) Pad forms can be made unique by imposing
appropriate conditions (Gragg [31], Labahn and Cabay [38]). We use the following
definition.

DEFINITION 3.1. The normalized Padg approximant of type (m, n) for the power
series quotient A(z)/B(z) is the (m, n) Pad form for which V(z) / Y(z) 1.

With no, n,..., as above, define P(i) to be

and

P()=( 10 0)1
p(i)= ( p(i) Q(i) )U(i) V(i) i 1,2,...,

where (U(i), V(i)) is the (hi 1, ni) normalized Pad approximant for A(z)/B(z) and
(P(), Q()) is the (hi 2, ni- 1) normalized Pad approximant, multiplied by z2, for
A(z)/B(z). Let

v4 (B(z)A(z) )
and denote the residual sequence associated with these Pad6 forms by

{7(i) } W(i) i 0, 1,

Then p(i) satisfies

(6) p(i)A z’T(i)

We refer to p(i) as the nith Pad6 approximant pair for Jr. (We could also define
the Pad6 approximant pair for the case where S= is singular; in this case, the Pad6
approximant pair would be nonunique.)

An important result is the following.
THEOREM 3.2.

Sn, is nonsingular ri)vi) O,

where ri) and vi) are the constant tes in R(i) and V(i), respectively.
The product (i) (i) determines the algebraic property of nonsingularity of ther0 v0

Sylvester matrix; we will see shortly that the size of this quantity is also an indicator
of the condition number of the matrix Sn.

We can view Wi(z)/Ri(z) a power series quotient and compute its normalized
Pad6 approximants well. Let S be the Sylvester system sociated with the
(si- 1, si) Pad6 form for Wi/Ri. We define (i) for Wi/Ri to be

/,(,) (o z )D(i) (i) if si 1,
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and

for si > 1,

where ((i),(i)) is an (si- 1, si) normalized Pad6 approximant for Wi/Ri and
(/5(i), Q(i)) is an (si- 2, si- 1) normalized ead( approximant, multiplied by z2, for
Wi/Ri. We refer to 75(i) as the sith Pad6 approximant pair for 7(i). Note that

O(z

From (6) and (7), it is easy to prove the following lemma.
LEMMA 3.3. If Snis nonsingular, then

is an ni+lth Padd approximant pair for ,4.
Thus, by solving the associated residual system for a given Pad( approximant,

we can obtain a higher-order Pad form. However, if the residuals satisfy certain
conditions, we can say more than this.

THEOREM 3.4. If S, is nonsingular, then

8 is nonsingular Sn+l is nonsingular.

Now Lemma 3.3 and Theorem 3.4 allow us to generate/)() iteratively.
COROLLARY 3.5. If Sn is nonsingular, then, with ( and appropriately chosen

nonzero scalar values,

(i+1)-- ( cO 0 )
gives us the (hi - 8i 1, ni W 8i) normalized Padd approximant pair for .4.

These results define a three-term recurrence relation among the distinct entries
along the superdiagonal of the Pad( table. They are actually valid for any (m, n)
and so define a three-term recurrence relation among the distinct entries along any
diagonal of the Pad( table.

The algorithm of Cabay and Choi selects si so that it is the first stepsize si for
which s is nonsingular; this is easily determined if exact arithmetic is assumed.
(From a matrix perspective, equivalently, Rissanen’s algorithm selects the smallest
si for which Sn+s is nonsingular.) However, by using a different criteria for the
selection of the stepsize, a numerical algorithm that is weakly stable is derived; it
is given below in 4 with an analysis in the succeeding sections. This criteria will
turn out to be a measure of the conditioning of the Hankel system corresponding to
the currently computed Pad approximant. We see that by only using Pad approx-
imants corresponding to well-conditioned Hankel systems, a weakly stable algorithm
is obtained.

4. Algorithm NPADE. Once again, we assume that B(z) -1.s We also
assume that the norm of A(z) (mod z2N) is 1, since we only need the first 2N terms

8 This is no restriction in a theoretical sense, as the general problem can be converted to this form
by multiplying both power series by -B-l(z); that this inverse exists follows from the assumption
that B(0) = 0.
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of A(z) to calculate the (N- 1, N) Pad approximant. This normalization simplifies
the presentation of the analysis. With these assumptions, we are now ready to state
the algorithm.

ALGORITHM NPADE.
Input: A(z), N, , where

N is a positive integer, N _> 1,
A(z) is a real power series with A [[- 1 (only A (mod z2N) is needed),

and
is a real value, 0 _< < 1.

Output: The (nk- 1, nk) normalized Pad approximant for A(z), where nk <_ N is
the largest nk for which the normalized Pad approximant can be computed
stably. If nk < N, then an (N- 1, N) normalized Pad approximant is also
output.

Program:
/* Initialization */-- 0;
n - 0;
s -- 1;

P() *-- 0 1
/* Compute ghe Pad action */
While (n + s N N) do

Compute () such that (())mod(z) z();
Assemble the 2s x 2s Sylvester matrix
Solve the Sylveser system, using Gaussian elimination with partial pivoting,

to obtain ();
(/+i) (1)(1);
Rescale p(+l) and () so that

p(l+l)] + Q(/+I)] 1 and U(/+1) + V(/+1) I;
Compute r+1) such that (Q(+l)A-P(+l))mod(z2n+2s+)= z2n+2Sr+l);
If rl+l)vl+l) > then

nl+l nl 81;

//+I;
s I;

else
sl +- s + 1;

End while;
Output (U(0, V());
/* Check the Order of (U(0, V(0) */
If (n < N) then

/* Output an (N- 1, N) Pad approximant */
nl+l -- N;
Output (U(+1), V(+I));

The algorithm successively computes Pad approximants of type (n 1, n),
1, 2, 3, The goal is to select n so that the computations are performed accurately.
This, as we show in the following sections, is accomplished by means of the stability
parameter . Assuming that Sn is a well-conditioned matrix, at the/th step increasing
values of s are tried until one is found such that, for the Pad approximant pair
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(/-l-1) (//1).(//1) (//1) (/-{-1)
Ir0 v0 > . We see shortly that r0 v0 is inversely related to the

condition number of Sn+, where n+l n / s. Indeed, if -o o O, then
and Snl.}_l are numerically singular (cf. Theorems 3.2 and 3.4). Thus, the stability
parameter insists on a certain level of stability of the Sylvester system at the node
(n/+l 1, El+l) before the solution there is accepted. For nodes (st-t- s- 1, nt + s),
0 < s < st, in between (st- 1,st) and (nt+l- 1,St+l) the condition numbers of
Sn+8, 0 < s < st, are too large and the solutions there are rejected. We refer to this
set of rejected nodes as being in an unstable block of the Pad table (in analogy with
a singular block in the c-table (Gragg [31])).

During step l, the algorithm requires the solution of a sequence of Sylvester sys-
tems; this is done using Gaussian elimination. If the Sylvester system is singular, the
solver is assumed to generate some solution for which (t) and ((t) are nonzero. In
this case, Ir(ol+l)v(ol+l)l is zero (Theorem 3.2) and the solution is rejected. Increasing

values of st are successively tried until one is found that results in an
which is greater than . We note that this process succeeds in giving a weakly stable
algorithm, but it becomes costly if the stepsize st, for any l, becomes large. By tak-
ing a larger stepsize, we are obtaining greater numerical stability by sacrificing some
efficiency. This tradeoff occurs because, in effect, the algorithm is allowing the loss
of some of the regular structure of the system by performing limited partial pivoting
in Sn+l (pivoting is performed only within unstable blocks of the Pad table). It
remains an open question to find a mechanism which more efficiently determines the
smallest st for which Sn+8 is well conditioned using only information contained in

Sn and ;s.
If the While loop exits with nt N, then we show that the normalized Pad

approximant will have a small residual and be close to the true normalized Pad( ap-
proximant. If the While loop exits with nt < N, then an (N 1, N) normalized Pad
approximant is computed outside the loop anyway. If the final system that is solved
is nonsingular, then the computed normalized Pad approximant has a small residual,
but we make no claims that it is close to the exact normalized Pad approximant. If
the last system that is solved is singular, then no claims are made about the computed
normalized Pad( approximant or its residual.

By assuming exact arithmetic and using e 0 for the stability parameter, Al-
gorithm NPADE is equivalent to the method of Cabay and Choi in which the alge-
braically singular subsystems are skipped over. In this case,/5(k) and ((k) are simply
monomials of degree s and s+ 1, respectively, and () and (k) are obtained from the
polynomial division of R(k) by W(k). This also analogously describes the algorithms
of Rissanen [50], Berlekamp [8], and Massey [a51.

5. Summary of results. The principal result of this paper is the following.
THEOREM 5.1. Algorithm NPADE is weakly stable over the general class ofpower

series.

To prove this, we need to show that for a well-conditioned problem (i.e., for
a problem that has a corresponding Hankel matrix that is well conditioned), the
computed solution (U, V) is close to the exact solution (Us, VE). To do this, we
derive a bound for the error introduced by one iteration of the algorithm and then
apply it iteratively to obtain an expression describing the total error in the computed
solution. A forward analysis type of proof is used. Often the problem with this sort
of analysis is that the bounds can grow very rapidly (Wilkinson [61]). This is not the
case here. Certain relationships that are derived from the order condition (1) allow
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us to obtain a constant bound on multiplicative terms that would otherwise have led
to an exponential growth in the error bounds.

Define

(8) (SP(), 5Q()) (p(), Q()) (p(), Q())

and

(9) (SU() 5V()) (U() V()) (U() E, V()

Now, rather than satisfying the order condition (1) exactly, instead p(k) satisfies

(10) P()A () + O(z’’),

where

)(k)-- (5R(k) )6W(k)

In :D(k), 5R(k) and 5W(k) are polynomials of degree 2nk 1, where the constant and
linear terms of 5R(k) are zero. They describe the error in the order condition for the
currently computed Pad approximant pair. With these definitions, then the error
bound obtained is the following.

THEOREM 5.2. If

(II) 22(n + 1)2(11 5nq) II + II 5Wq)II-}- 5(n + 1)#) -<lro(OVo()
holds for 0 <_ <_ k, then the approximants computed by Algorithm NPADE satisfy

(12)

where

(13)
F(o0 4.04(st + 1)(nt + 1)3 + 512spt(nt + 1)2

--8.08(n/+1 -- 1)(nt + 1)(st + 1)2,

(14) rt) 32.32st(st + 1)(nt + 1)3(nt+l + 1) + 4096spt(nt + 1)2(nt+1 + 1)
+ 32.32(/t/+ + 1)3(8/ "" 1)2(nt + 1),

is the stability parameter used by Algorithm NPADE, and pt is the growth factor
associated with the Gaussian elimination method performed at the th step.

Condition (11) in Theorem 5.2 is a requirement that the error in the order condi-
tion not be large. In the derivation of this result, it will be seen that if (11) is satisfied

at the/th step and st is chosen so that Ir(ot+l)V(ot+l)l > e, then the error in the condition
will not grow by much at the (1 + 1)st step. Since initially, II 5R() II + 5W() II O,
this bound (11) is satisfied in practice.
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The Fl have large constants and powers of nl and s in them. We believe that
these large values are a consequence of the method of analysis and are not a feature of
the actual problem being solved.9 Thus, the bound is crude, but we believe that it still
reflects the behavior of the error. Experimental results, summarized later, support
this contention. It is also felt that one of the ’s is due to the analysis and is not a
feature of the problem itself. This is discussed later. As Wilkinson points out [61,
p. 567], "The main object of such an analysis is to expose the potential instabilities,
if any, of an algorithm so that hopefully from the insight thus obtained one might be
led to improved algorithms. Usually the bound itself is weaker than it might have
been because of the necessity of restricting the mass of detail to a reasonable level
and because of the limitations imposed by expressing the errors in terms of matrix
norms."

What we see in this theorem is that the error grows by a constant amount at
each step, so long as Ir(ol)V(o)l are chosen so that they are large. Moreover, due to
the normalization used, the left-hand side in (12) actually describes the relative error.

We will see shortly that (k) (k)
r0 v0 will be large if the associated Hankel system is well

conditioned. Hence, Theorem 5.1 is a consequence of Theorem 5.2.

We now present the analysis that leads to these results. In the next section, we
derive bounds for the error 5R(k) and 5W(k) in the order condition. In the section
following this, we combine these bounds on the error in the order condition with an
expression for the inverse of the associated Hankel matrix to obtain bounds on the
relative error in the computed solutions.

6. Bounds on the error in the order condition. We first consider what hap-
pens during one iteration of Algorithm NPADE. At the kth iteration, the (nk 1, nk)
Pad( approximant pair 7() is available and the algorithm proceeds to compute
p(k+l). For the rest of this paper, the quantities :P(k), 75(k), 7(k), etc., are now
taken to be the computed quantities that result from the use of floating point oper-
ations in Algorithm NPADE. Where an exact quantity is used, it shall be explicitly
indicated.

We consider the problem of obtaining bounds for the residual error T)(k) defined
in (10). Since we never need to calculate :D(k) explicitly, we actually use the exact
relation

T)(k) (:P(k)A) (mod z2nk).

An iterative step in the algorithm consists of three parts. First, the first 2sk terms of
T(k) are computed. This yields an T(k) that satisfies

(15) :P(k)jt (mod z2nk+2s) :D(k) -- z2n(n(k) ck)),

where Ck) is the error in the computed residual introduced by the floating point

operations. Note that in (15), 7() and ik) are polynomials of degree 2sk 1.

9 Most of these are due to the use of the infinity norm and the inequality given by Lemma 2.6 (e.g.,
if U and V are polynomials of degree n, then UV <- (n + 1)11U IIII V II). While this inequality
can be strict, in practice it is not usually so.
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Second, W(k) and R(k) are used to construct a Sylvester matrix

(16)

o o o r(o’: 0 0 ’(o’) 0 "’.

O(o

\ (k) W(k) ,,.(k)
’z2sk --2 sk--1 "2su --1 -s

an associated system is then solved by Gaussian elimination with partial pivoting to
obtain 75(k). If we let

Vsk

W2sk --1

(sk+l
0

where the components of the above vectors are the coefficients of/5(k),
(k), and W(k)(z), then 75(k) is obtained by solving

O(k)

(17) k oes
and

(18)

where -3o and Go are parameters (keeping in mind that/30 1 (o (1 0) .10 If
k is nonsingular, then -3o and o are set to 1 and (17) and (18) are solved. If k
is singular, then a nontrivial solution is obtained for which -o and Go are 0. (The

.k+l k+lsolution that results from a singular system yields I-o o 0, and so is only used
if this is the last system solved by the algorithm.) This computed 75(k) is not the
exact solution of the equivalent problem 75(k)T(k) O(z2). Rather, 75(k) satisfies

(19) 75()n() () + O(z ).

Third, (k+l) is obtained from fl(75(k):P(k)), or, equivalently,

(20) p(+) 75()p() + Ca(),

where C3(k) is the error introduced by the floating point operations.
7(k+l) and 75(k) are scaled so that

At this point,

p(k+l)II-t-II Q(k+l)II 1

10 The case sk 1 is covered as well, as then/5(k) 0 and ((k) z2/wo.
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and

U(k+l) [[-+-[[ V(k+l) [[-- 1.

We assume that this introduces no additional error. This is a reasonable assumption
because in our analysis, we only actually require 1 to be an upper bound for the above
quantities. We could modify the normalizations and rescaling so that they could be
done exactly. However, since we are dealing with the infinity norm and the errors that
result from this normalization are small, we have made this assumption for the sake
of simplicity. Now, this scaling will have no effect on the error analysis as P0 and
are just parameters in the solution of (17) and (18). In other words, we could resolve
the system using the new values of 0 and 0 instead of 1; the error bounds will be
the same.

A straightforward error analysis of these three parts produces bounds on the

C}k) in (15), (19), and (20). As a notational convenience, we use [. [to denote the
componentwise application of the infinity norm to vectors and matrices. For example,

i()1_ ( II/u() II
()II

We also rely on certain normalizations that have been applied to various quantities,
namely,

(21)
()
(.a)

II p(k)II / II Q(k)II- 1,
u() II + II v() II- 1,
A II (rood zv) 1.

We state the results for all three parts, but only give the details of the proof for one
lemma. The remaining proofs are similar and can be found in Meleshko [46], [47].

LEMMA 6.1. The computed T(k) satisfies

(24) z2nT(k) 7(k)A (mod z2n+2s) :D(k) + Z2nck)
where

Proof. This follows from the fact that

z2,kT(k) ( fl((AQ(k))
fl((AV(k))

(mod z2"+28)))(fl((AQ(k))
(mod z2n*+28 )) fl((AV(k))

(mod z2n)) )(mod z2n ))

using (21), (22), (23), and Lemma 2.7.
LEMMA 6.2. If Sk is nonsingular11 and 75(k) is obtained by solving (17) and (18)

using Gaussian elimination with partial pivoting, then

(26) ()n() C() + O(z),
11 We believe that this result is true even if k is singular as the singular case can be handled by

setting 0 90 0 and then solving an underdetermined homogeneous system of equations.
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where

(27) max{ll ()II, II 0() II} )IC)l _< (128sp(n + 1)# + O(#)) max{ll gr()II, II ()II}
and Pk is a constant of order unity in practice.

Proof. When (17) and (18) are solved using Gaussian elimination with partial
pivoting, the solutions obtained are exact solutions of

(28)

and

(29) (k + Ev)r -boW,

where

E(.)II _< 8(2s)pll I1 / 0()

and pk is the growth factor associated with the LU decomposition of k (Golub and
Van Loan [30, p. 67]). With partial pivoting, pk is of order unity in practice. 12 Now
from (28) and (29), we have

(30) 0 0e2s -EQO
and

(31) : + oW Evff

where

EvQ II
It is eily shown, from Lemm 2.6 and 6.1, that

Using this and absorbing the terms that are nonlinear in into the O(2) term, the
expression on the right-hand side of (27) is obtained. Now, since a (k) which satisfies
(k)(k) O(z2S) can be found by solving (17) and (18) exactly, it is ey to see
the correspondence between (26) and the linear systems given by (28) and (29), and
the result follows.

LEMMA 6.3. if(k+l) f/(()()), then

where

(33) Ic3(k)l _< (2.02(sk + 1)2#
12 Examples can be constructed where the growth factor p grows exponentially if partial pivoting

is used, but in practice p is usually comparable to the modest growth that results when complete
pivoting is used (which is approximately 10 in practice)(Golub and Van Loan [30, p. 69]). Further
discussion and new results regarding the growth factor p can be found in Higham and Higham [34]
and Trefethen and Schreiber [54].
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Proof. This follows from Lemmas 2.7 and 2.8 and the definition of 7(k+l).
Use of the above expressions enables us to express :D(k+l) in terms of Z)(k) and

the errors introduced in one iteration.
LEMMA 6.4. Let the residual error Z)(k) in the solution 7(k) at the start of the

kth iteration satisfy

(34) /(k),A D(k) + O(z2n ).

Then the residual error D(k+) after k complete iterations satisfies

(35) T)(+) :f’():D() + (),

where

and

(36)
(37)

Proof. We have using, in order, (32), (38), (24), (36), (26), and (37),

Thus the residual :D(k+l) is composed of the error (k) introduced by the kth
iteration plus the residual error Z)(k) from the previous step propagated by 75(). Now
if the relationship (35) is applied recursively, we get the following.

THEOREM 6.5.

k+l

1--1

where

) (1 O)+1 0 1

O <_ <_ k, and
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Proof. This follows from Lemma 6.4 by induction. D
From (39), we see that 6k) describes the way that an error introduced at the

(1- 1)th iteration in the algorithm is propagated through to the kth iteration.
We can also take (39) and rewrite it so that the errors associated with each part

of an iteration are given separately. This gives us the following.
COROLLARY 6.6.

(40)

where

k

(41) k)= Z--z2n’n(k):’t+(75(’)C) (mod z2’)),
/-1

k

(42) g(2k) z2nl(k):lh-1 c(1)2 and
/=0

k

(43) ea)= (k)((C3(,)A (mod z2nl+’)):lq-1
/--1

In (41) and (43), we have used some results that are implicit from the statement
of Algorithm NPADE, namely, C) 3() 0. To see this, we briefly consider the
first pass through the While loop in the algorithm. In the first pass,

7:,(o)=(1 0)0 1

so that 7() ,4 (mod z) exactly and there is no error in computing this first

residual; i.e., 7) 0. Once the algorithm has computed 75(), it then computes
f/(75()P()). Again, since 79(0) is the identity matrix, we have no error in this step,
so C3() 0. Also, if so n, then the error is given by (42) above, which is just the
error that results from Gaussian elimination.

Returning to our primary goal of obtaining a bound for the total error, we observe
that the key expression to bound is k). A concern here is that the 75(J)’s making up

Gk) will cause exponential growth with k in Gk). However, this is not the case. It will

be seen that the bound on Gk) is independent of k. Hence, the error as described by
(39) will be the sum of the errors introduced in each iteration I. Thus, in this sense,
the error grows additively; that is, the error/:(1) at iteration that is propagated to
iteration k by () does not grow with k.:I--1

To obtain this bound on Gk), we first observe that (10) can be rewritten as

(44) AQ(,) p(k) 5R(,) + z2,-, R(k,)

and

(45) AV(k) U(k) 5W(k) + z2nW(k),

where V(ok) 0 and r(0k) 0. Multiplying (45) by Q(k) and (44) by V(k) and then
subtracting (45) from (44) gives us

(46) Q(k)u(k) v(k)P(k) v(k)bR(k) Q(k)bw(k) + z2nk(v(k)R(k) Q(k)w(k)).
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Now the degree of (Q(k)U(k) -V()P()) is less than or equal to 2nk so all higher-order
terms on the right-hand side of (46) must cancel. Since q(ok) 0, what we have is

(47) Q(k)U(k) V(k)p(k) O(k)(Z) + voroz2,

where

(48) zO(k)(z) (V(k)SR() -Q(k)SW(k)) mod (z2n+l).

Letting

(ik) lV(k)--Q(k) I_U(k) p(k)

and using (47), we obtain

(49) .p(k)7(ik) ( 1
0

0 ) (r(o). ()0 + ())1

With this, we are now able to prove the following lemma.
LEMMA 6.7. Assuming that r(o) and V(o) are large and II 5R(k) II and II 5w(k) II

are small so that

(50) 22(nk + 1)2(11 5R(k) II / II w(> II + 5(nk + 1)#) <_

then

(51) ,(k),(1)< 4(nk+l) (1)1 -ir(ok)v(ok)l 1

Proof. From (32), we have that

(52)

Now, using (21) and (22),

(53) 1 2 2

so that the left-hand side of (52) is bounded by

(54)

1 1’T(k+l)/(k)’ (1)--< (nk+ 1)’(k+l)I’/(k) (1)
--<2(nk+l)( 1)1

On the other hand, using (49), Lemma 2.7, and (33), the right-hand side of (52)
is bounded below by

I()P()() + a 1
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(55)

Now, using the same argument as used in (53), (55) gives us

(56)
1

ro o 1 -(sk + 1)(n/ + )(11 R II + W II)11

-(4.04(nk + 1)(sk + 1)=, + o(.=))1()1 1

(l)v)l- [(, + )(n + )(11 aR() II + II aW() II

+ 4.04(s + 1). + 0(.))])(1 1

r0 v0(k) 1 2

1

The last inequality follows from the application of (50), if we assume that sk <_ nk.
But the above argument also holds, with minor modifications, if sk > nk; for example,
the first occurrence of (Sk + 1) in (55) can be replaced by (2nk + 1) and the second
by (nk + 1). Thus (56) is valid in general. 13

Since {(kk) 75(k), it follows from (54), (56), and (52), that

To simplify our notation, let

(57) a() () ()r0 v0

COROLLARY 6.8. Given that (50) holds,

(1)< (8.08(sk+l)2(nk+l) ) (1)(58) ICa() 1 i()1 # + 0(#) 1

Proof. This result is immediate from (33) and Lemma 6.7. [

These two results now enable us to obtain a bound for the general G[k). This

bound essentially says that IG[k)l is independent of k. In other words, when the error

13 The application of (50) only requires a constant factor of 2 (or 4 if sk > nk) instead of 22.
However, the larger factor is required later in Lemma 7.5.
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is introduced, it does not grow significantly after its introduction. A consequence of
this is that the errors that occur in each step are additive.

THEOREM 6.9. If the conditions of Lemma 6.7 hold for each <_ k, then

(59) (1) < 4(nl+l)+0(#) (1)
Proof. By repeated application of the recurrence relation (32), we have

k

(60) + /Tl3
l--i

The result is then proved by induction on i, starting with i k. For i k, (59)
reduces to (51).

Assume that (59) holds for 7(k), k-1,v’() Gk)" From (60), it follows that

(1)
k

l=i--1

As in the proof of Lemma 6.7, we can show that

1) < 2(Hi_IP(+I)’Pi-) 1 (1)1+1) 1

On the other hand, using

(61)
/ 1p(i-l)i-l) | 0\

0 ) (r(oi-l) ,(i-l)z2ni_
i 0 + 0(i-1)(z)),

(21), (22), (58), the fact that the degree of z(-i) is bounded by 2Hi_l, and the
inductive hypothesis,

l=i--1
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n(k) (1) 4(n_l=,-ll 1 -< 1+ 1)+0(/*)(1)la(i-1)l 1

and the result follows by induction. E]

In the above theorem, we have taken the liberty of replacing a summation involv-
ing terms linear in # with an O(#) expression. We could have left the summation in
explicitly, but, as we shall see, this summation becomes quadratic in # when it is used
to obtain a bound on D(k).

LEMMA 6.10. If the assumptions of Theorem 6.9 hold, then

(62)

(63)

(64)

Proof. These results follow from the bounds obtained for the CZ) and Theorem
6.9. We derive the bound for E2(k) only (defined explicitly in (42)); the other two
follow by even simpler arguments. From (42), Lemma 2.7, (19), (27), (59), in that
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order, and the fact that

(65)

k-1 k-1

/
/=0 /=0

< (128spk(nk + 1)# + 0(#2)) max{ll
k-1

+ E(256spt(nt + 1)# + O(#2))l:,t+ll max{ll O(t) II II 9(0 II}
/=o

(1)< (128sp(n + 1)+0())1(1 1
k-1

+ E(256sot(nt + 1)# + O(#2)),m+. 1
/=o

< 512Spk(nk+l)21z+O(lz2) (1)
k_l

)+ E(256spt(nt + 1)# + 0(#2)) 16(nt + 1)(n+1 + 1) + 0(#2) ( 1

t=o la(Oa(+l) 1

and the result follows.
In the above lemma, the bounds obtained involve the products a(Oa(l+). These

(k) iiG{l)l which in turn resultedresult from inequalities involving the expression Im+
from the application of (65). However, it is seen that (k){{l) G{k)m+l so it is felt that
the inequalities are crude and the bounds should just involve a single a(0. Experi-
mental results (Meleshko and Cabay [48]) support this conjecture.

Finally, we have the following theorem.
THEOREM 6.11. If the conditions of Lemma 6.7 hold .for each G k, then

(66)

+0(,2) (1)1
where F(o0 and F) are as defined in (13) and (14).

Proof. Since T)(k+) g}k) + g2(k) + g3(k), application of Lemma 6.10 yields
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)(1+ + + 1)) 1

1

and the result follows.
Observe that each term in the summation in (66) is independent of k. Also,

Theorem 6.11 assures us that if [T)(k)[ is small and [r(0k)[ and [v0(k)[ are large, then

[:D(k+l)[ will also be small. Moreover, if sk is chosen so that [r(0k+l)[ and [v0(k+l)[ are
large as well, then Theorem 6.11 can be applied again at the next iteration. Thus,
[:D(k)[ will remain small for all k, as long as sk can be chosen in such a fashion. In
experiments with power series whose coefficients were randomly generated (Meleshko
and Cabay [48]), it was seen that for these power series sk could be chosen so that

> 10-.
7. Bounds on the relative error in the computed Pad approximants

and inverses of Hankel matrices. We now consider the problem of obtaining
bounds on (U(k), V(k)) and (p(k), Q(k)). For the moment, we dispense with the
superscripts on the quantities being discussed in order to simplify the notation. The
superscripts will reappear when they are needed again for clarity. Thus, from (10),
assume that Algorithm NPADE (after k iterations) gives :P such that

(67) PA 7) + O(z2n).

Then from (4) and (67), we have

-vo +
an-1 32n-2 Vl a2n-1 W2n--1

The matrix on the left-hand side is the Hankel matrix Hn-l,n. Since rovo 7 0 at
this step, the Hankel matrix is invertible (Labahn and Cabay [38]) and we can easily
obtain an expression for tiV in terms of iW. Then (3), which defines U(z) in terms
of V(z), can be used to obtain iU. In a like fashion, we can obtain expressions for
(iP, iQ) in terms of 5R. Thus, we can express the error in the computed solutions if
we have an expression for H-1

n--l,n"
Now, dropping the superscripts, (47) can be rewritten as

(68) QU vP tg(z) + voroz2,

where

(69) O(z) (VSR- QSW) (mod Z2n+l).

With these relations, we can prove the following.
THEOREM 7.1. Let 7) be given by (67). Then

( ) 1
(70) Un-l,n 1-n-l,n I + E,

rovo r0v0
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where

(71)

and

(72)

Vn_I

/n--l,n ."

VO

qT

q2 ""

q2 0

0 n

E [2n-2+i-j] + [Wn--l+i--j][qn+l+i--j]- [rn+i--j][Vn+i--j].

In the above theorem and the proof that now follows, we have used If(i, j)] to
denote the matrix whose (i, j) entry is f(i,j). Moreover, an entry is taken to be zero
if the resulting subscript is negativela or else exceeds the degree of the corresponding
polynomial.

Proof. We provide an outline of the proof of this theorem. The details for the
case where R(k) W(k) 0 can be found in Labahn, Choi, and Cabay [39] and
the general case in Meleshko [47].

From (47), letting 1 _< i,j <_ n, we have

[Un--l+i--j][qn+l+i--j] gn+i--j][Vn+i--j] rOvoI + [O2n+i-j].

Similarly,

[V2n+l--i--j][qn+l+i--j] --[q2n+2--i--j][Vn+i--j] O.

Then, by equating the coefficients of zn-+i-j in (45), it can be shown that

Hn-x,n[vn+l-i-j] [u,+i-j-1]- H-l,n[V2n+-i-j] + [hwn+i-j-1].

Likewise, equating the coefficients of z+i-j in (44), yields

Hn-l,n[qn+2-i-j] gn+i--j] H-l,n[q2n+2-i-j] + [Srn+i-j].

The result then follows by applying the above relationships to the product
Hn-l,nf-In-l,n. D

Equation (71) provides a formula for the inverse of (rovo)-lH_,n. Moreover,
by reordering the unknowns (see (_2)), a similar formula for the inverse of a Woeplitz
matrix can be obtained. Since Hn-i,nb, for any vector b, can be obtained by a

sequence of polynomial multiplications, the ability to compute n-l,n in time O(n2)
using Algorithm NPADE also provides a fast method for solving Hankel and Toeplitz
systems. For the exact case, the formula for expressing the inverses of Toeplitz and
Hankel matrices in terms of Pad6 approximants can be found in Labahn, Choi, and
Cabay [39]. Also, for the exact case formula (71) can be derived from formulae given

14 Also recall that q0 ql --P0 pl --0.
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by Gohberg and Semencul [29] and Iohvidov [35] which express the inverse of Hn-l,n
entirely in terms of the first and last columns of the inverse.

Intuitively, if II (1/rovo)E is small, then (1/rovo)Hn-l,n is close to the inverse
of Hn-l,n in a certain sense. We make this idea more precise now.

LEMMA 7.2. If (1/rovo)E < 1, then

(73) H_ ( 1 1
E)n-- ,n rOvo

-1

and

(74) I+--E <
rovo 1-II o-E

Proof. Since

rovo
1

< 1, then I + E
rovo

is invertible (Stewart [52, p. 187]), so that (73) follows from (70). A proof of (74) can
be found in Stewart [52, p. 187].

Letting

0 ao /ao an

the order conditions (44) and (45) give us

(75) Hn-l,n -vo q-

Vl a2n-1 W2n-1

/ / /(76) Jn-1 --vo Un-- (Wn--

qn+l

(77) Hn-l,n roen +
5r2-i

q2 0

I qn I I P2 I I 6r2 I(78) Jn-2 +
q2 Pn rn

keeping in mind that the constant and linear terms in P, Q, and 5R are zero. From
(75), (76), (77), and (78), and the algebraic formulation for the exact quantities, it is
easy to see that the following is true.
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LEMMA 7.3.

w_vo 0

5rn+l

Hg-1, and

5q2 5r2n-1
0

IP21 Iqnln 2 rn
Immediately, from the preceding lemma, we have the following corollary.
COROLLARY 7.4.

(79)

and

H-1

(80)

We have bounds for II 5R II and II 5W [[; the following gives us a bound for

LEMMA 7.5. If

(81) 22(n + 1)2(]1 6R + II 6W II + 5(n + 1)#) _< Irovol,

then

2.2n2
(82) H--,n [I-< Ir0vol"

Proof. From (70), we have that

H_I, (1/r0v0

where, using (71), (21), and (22),

1
=I+ E,

rovo

(83) II/W II 2n,
and, from (72),

rovo
(84) 2n(n + x)(ll 6R II + II ew

Irool
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Applying (81), which is the same assumption as used in Lemma 6.7, we have that

(85)
rovo

Since (85) holds, Lemma 7.2 and (83) give

n-- 1,n r-- I +
1 El

-1

rovo

and

II n’ll,n < II n II 1+E
I-ovol ’oo

(2n2)(1.1)-< I,’ovol

-1

and the result follows.
With this last lemma, we can now state our principal theorem.
THEOREM 7.6. If

(86) (0 (t)22(nt + 1)2(1i 5R(t) II / ,w(z)II / 5(m / 1)#) < IVo vo

holds for 0 <_ <_ k, then

(87)

diP(k) + II diQ(k) II
5u(k) II / II v(k) II

2.2(nk + 1)3 ( F(ok-)<- i(k)l la(k-1)
/ /0 Igr(/) O.(/+1)

1

where F0 and FI are as defined in (13) and (14).
Proof. This is immediate from Theorem 6.11, Corollary 7.4, and Lemma 7.5, with

the relaxation of some of the inequalities even further.
Using the fact that 1/la() < l/e, we obtain the stability Theorem 5.1 of 5.
Since II p(k) II + II Q(k) II- II U(k) II q-II V(k) l}-- 1, Theorem 7.6 gives a bound on

the relative error in the computed Pad6 approximants. In Theorem 7.6, a(k) appears
in just the first factor of the term linear in # in (87); this factor comes from the
condition number of the Hankel matrix that corresponds to the Pad6 approximant
that is finally output by Algorithm NPADE. The second factor in the linear term in
(87) comes from the bound on T(k) and does not involve a(k). Thus, if the algorithm
computes its last Pad6 approximant using an unstable block (i.e., for I((k) small),
the residual of the final Pad6 approximant will still be small as la()l,..., la(k-1)l will
all exceed . The relative error in (U(k), V(k)) may be large, though, as this quantity
does involve la(k) 1.

8. Experimental results. Numerical experiments have been performed to com-
pare the analysis of the algorithm with its practice. We present a summary of the
conclusions here; details appear in Meleshko and Cabay [48]. Table 1 gives the results
of one typical experiment for a power series A(z) whose coefficients are random and
uniformly distributed between -1 and 1. In this table, the error in the order conditions



762 STAN CABAY AND RON MELESHKO

TABLE 1
Experimental results for the error in the computed Padd approximants.

nk
2 4.223e--01
3 1.440e--01
4 1.240e--01
5 3.099e--02
6 8.118e--02
7 1.894e--01
8 2.628e--01
9 5.165e--08
10 3.172e--01
11 1.951e--09
12 2.927e-01
13 3.095e--06
14 2.447e-01
15 6.627e-04
16 2.396e--07
17 2.975e-02
18 2.145e-01
19 1.293e-01
20 6.928e-03
21 6.825e-06
22 4.860e-03
23 1.030e-01
24 1.492e--01
25 7.601e-02
26 2.801e--02
27 1.222e--01
28 1.724e--01
29 4.828e--02
30 5.095e--02

(r(k) e- 10-2
5.898e--17
1.110e-16
1.665e- 16
1.943e- 16
6.939e--16
1.776e--15
2.998e-15
Unstable
4.111e-15
Unstable
4.954e-15
Unstable
5.931e-15
Unstable
Unstable
4.732e-15
5.039e-15
6.773e-15
Unstable
Unstable
Unstable
7.979e- 15
7.310e-15
7.690e- 15
9.094e-15
8.558e-15
7.265e- 15
7.105e-15
7.272e- 15

e 10-12
5.898e-17
1.110e-16
1.665e- 16
1.943e- 16
6.939e-16
1.776e-15
2.998e-15
3.646e-15
7.231e-10
1.446e-09
2.628e-08
5.114e-08
6.7887e-08
8.571e-08
8.682e-08
9.160e-08
8.370e-08
6.949e-08
7.003e-08
7.200e-08
7.274e-08
8.379e-08
1.291e-07
1.656e-07
1.493e-07
1.305e-07
1.241e-07
1.166e-07
1.321e-07

10-2
5.5511e--17
8.3267e--17
1.9082e-- 16
2.2204e-- 16
4.7184e-16
1.1796e-15
2.3176e--15
Unstable

3.8580e-15
Unstable

8.0908e-15
Unstable

6.8556e- 15
Unstable
Unstable

4.1078e-15
5.8703e- 15
1.1754e-14
Unstable
Unstable
Unstable

6.8279e- 15
5.3291e-15
7.7716e-15
6.0785e-15
4.3923e-15
5.5789e-15
2.9657e-14
6.4115e-15

10-12
5.5511e-17
8.3267e-17
1.9082e-16
2.2204e-16
4.7184e-16
1.1796e-15
2.3176e-15
4.2466e-15
1.1035e-09
9.1274e-10
3.1795e-08
4.1980e-08
6.0450e-08
4.2025e-07
1.0281e-07
6.1857e-08
5.2384e-08
4.5629e-08
1.9954e-07
2.4984e-07
1.4915e-07
7.0215e-08
3.1958e-07
1.5034e-07
1.3825e-07
7.5392e-08
6.5606e-08
1.1872e-07
1.8561e-07

and the computed Pad6 approximants are given for two values of the stability param-
eter e. The value e 10-2 indicates a willingness to accept only Sylvester matrices
Sn, with condition numbers less than 1/ 102, approximately. Sylvester matrices
not satisfying this criterion are assumed to lie in an unstable block and are skipped
over. The value e 10-12 permits a much greater tolerance for ill-conditioning and
results in an expected deterioration in the accuracy.

It was observed that the large constants and powers of nl and sl that occur in
the bounds derived above were not manifested in the experiments. Also :D depends
on la()l and not la(0a(+l) and the overall error was inversely proportional to the
smallest la()l encountered. An operational bound on the error in the order condition
would be

(88) (nlMp) (1) (1)Ivl _< , +
\=0 la()l 1 1

where M is a moderate (approximately O(10)) constant.
Then, in terms of the Pad approximant, (88) yields

(89) +0(#2) 1
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As an a posteriori estimate, we have

(90)
KII U + V II-< V(II R + II W II),

where K is a modest (approximately O(10)) constant.

9. Conclusion. Algorithm NPADE is a weakly stable algorithm for computing
Pad6 approximants for the general class of power series. Except in exceptionally
degenerate cases, Algorithm NPADE is an O(n2) fast algorithm. (By this we mean
that si is bounded by some modest constant; in a series of experiments with random
power series and 10-2 reported in Meleshko and Cabay [48], the stepsize never
exceeded eight and was usually less than four.) Also, once the Pad6 approximants are
obtained, one can use Q and V to obtain the inverse of the Hankel matrix Hn-l,n.

The relation that enabled so strong a conclusion to be drawn was (47), namely,

QU VP O(z) + rovoz"+’-,

where (z) depends on R and tW, the errors in the order conditions. This relation
also permitted the derivation of the inverse of a Hankel matrix in terms of a Pad6
approximant.

An important question is how should be chosen. By replacing the a by the
stability parameter , equation (89) suggests that the loss of accuracy in the computed
(n 1, n) Pad6 approximant is approximately log0(n-2) digits. This provides a rule
of thumb for choosing , but it is based on an a priori estimate of the error and so
may be somewhat pessimistic in the it suggests.

As remarked at the end of 4, Algorithm NPADE is equivalent to the algorithm
of Cabay and Choi [16] if exact arithmetic is used and is 0. In [16], Cabay and Choi
give a superfast O(n log2 n) version of their algorithm. It is an open question as to
whether or not a larger stepsize and fast polynomial multiplication can be exploited
by Algorithm NPADE to produce a stable superfast variant. Also in [16], Cabay
and Choi exhibit a duality between their algorithm and the Euclidean algorithm. An
interesting question is what this duality may mean in a numerical setting. (See, for
example, the discussion in [51].)

One last question is whether or not the stability result can be strengthened. In
the worst case, Algorithm NPADE is numerically equivalent to Gaussian elimination
with partial pivoting, which is a stable algorithm.
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Abstract. The authors propose a nested dissection approach to finding a fundamental cycle
basis in a planar graph. The cycle basis corresponds to a fundamental nullspace basis of the adjacency
matrix. This problem is meant to model sparse nullspace basis computations occurring in a variety
of settings. An O(n3/2) bound is achieved on the nullspace basis size (i.e., the number of nonzero
entries in the basis), and an O(n log n) bound on the size in the special case of grid graphs.
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1. Fundamental nullspace bases and graphs. Let A be an n x m matrix
with m _> n, and let its rank be r. An important problem in scientific computation
is to produce a basis for the nullspace of A. In other words, we want to compute an
m (m- r) matrix V of rank m- r such that AV O. The columns of V satisfy the
equation Av 0; such a vector v is usually called a null vector.

The nullspace basis problem arises in the following context, as explained further
by Strang [15]. Solving the square nonsingular linear system

(1) A 0 y g

is the key step for structural analysis, the finite element method, optimization prob-
lems, and electrical network analysis. In these applications, H is diagonal or block
diagonal and symmetric positive definite, and A has full row rank. Usually, H encodes
element stiffnesses or resistances, and A encodes geometry and connectivity among
elements. Two common methods to solve this include the "displacement" method
and the "force" method (see Kaneko, Lawo, and Whierauf [8]), terminology arising in
the structural analysis application. The displacement method involves substituting
the first block of equations x H-I(ATy + f) into the second formula Ax g,
arriving at a symmetric positive definite linear system with y as the only unknown.
The resulting coefficient matrix AH-IAT is called the "assembled stiffness matrix"
in the context of finite elements.

The force method instead attempts to eliminate y and to solve for x. Let V
be a nullspace basis for A. Let x0 be any solution for Axo g (typically there
is a simple application-dependent method for finding some solution to the under-
determined system Ax g). Then we know that the vector x, which is the first
solution component to (1), satisfies A(x Xo) O, i.e., x xo Vq for some vector
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q. Then we can substitute x Vq + xo in the equation Hx ATy f to obtain
H(Vq+xo)-ATy f. Now multiply on the left by VT, using the fact that VTAT O,
obtaining VTH(Vq- xo) vTf. This is a linear system that may be solved for q,
hence obtaining x. The force method can be advantageous in circumstances involving
fixed geometry but changing structural properties.

If A is sparse (as usually happens in applications), then we might hope to compute
a nullspace basis V that is itself sparse. This has been a topic of recent interest in the
literature; it has been addressed by Coleman and Pothen [3], Gilbert and Heath [6],
and Plemmons and White [11]. In general there is no reason to believe that sparsity
in A implies sparsity in V: it is necessary that A have some additional structure.

None of these earlier works are able to establish bounds on the number of nonzero
entries in V. In this report we propose an algorithm that computes a nullspace basis
with an asymptotic bound on the number of nonzero entries in V. In order to establish
bounds, we focus attention on a simple model problem that captures the features of
many real problems.

If V contains an embedded (m r) x (m r) identity matrix, the basis is said to
be fundamental. In other words, there exist permutation matrices P and Q such that

Fundamental nullspace bases are especially useful in certain applications because they
lead to simplified algorithms. In particular, the rows of V not in the identity matrix
correspond to columns of A forming a basis of the span of A, and the null vectors give
equations that express each nonbasic column of A in terms of the basis columns. In
this report we focus on the fundamental nullspace basis problem.

D. Rose, in a private communication, has observed that the problem of finding
a fundamental nullspace basis of A corresponds to a certain symmetric elimination
order applied to (1). This implies that both the force method (in the context of a fun-
damental basis) and displacement method can be put into a more general framework
of elimination orderings. We do not pursue this generalization here.

The particular model problem we have selected is the case that A is the node-edge
incidence matrix of an undirected graph. This is a matrix with n rows, one for each
vertex of the graph, and m columns, one for each edge. Each column has two nonzero
entries in the positions corresponding to the endpoints of the edge. These two entries
are one +1 and one -1 in each column in arbitrary order. (In some applications,
the graph is actually directed, in which case the signs of the entries indicate edge
orientation. However, the choice of orientation has no effect on the construction of
the nullspace basis since multiplying a column by -1 does not change its span.)

A nullspace basis for such a matrix has a natural combinatorial interpretation.
In particular, the nonzero entries of a particular column of V corresponds to a closed
walk in the graph. A fundamental nullspace basis for a connected graph corresponds
to the identification of a spanning tree T of the graph. A null vector corresponds to
the unique cycle formed by edges of T in conjunction with a single edge of G- T. See
Welsh [17] for more information.

Thus, the problem of finding a fundamental nullspace basis with suitable proper-
ties is reduced to the problem of finding the right spanning tree T of G. We propose
an algorithm reminiscent of nested dissection for finding this tree T. Nested dissec-
tion, a technique due to George [5], finds a separator of the graph and then recursively
works with subgraphs. Here, a separator refers to a small set of nodes whose removal



768 JULIO M. STERN AND STEPHEN A. VAVASIS

disconnects the graph into pieces of size at most 2n/3 nodes. The exact definition is
contained in the next section. Unlike traditional nested dissection, which requires no
further properties of the separator, we will also need the separator nodes to form a
cycle.

Such separators are found in planar graphs that have a bound on the maximum
face size, a result due to Miller [9]. See the next section for the theorem.

The existence of any kind of separator automatically means that A can be par-
titioned in row block angular .form (RBAF) if the rows corresponding to separator
vertices are numbered last. An example of block angular form is

B
B2

B3
(2) ..

Bk
S1 82 $3 Sk Sk-t-1

In this regard, our approach is most reminiscent of Plemmons and White. They work
with column block angular form (CBAF) and do not attempt to derive bounds on the
number of nonzero entries in the basis.

It may seem that we are speaking of a very restricted class of matrices by limiting
attention to node-edge adjacency matrices of planar graphs, but this is a model for
the kind of matrices that occur in practice. For example, optimization problems with
flow constraints have constraint equations in the form of a graph, and the graph is
typically planar or nearly planar. As another example, Pothen [12] shows that for
certain kinds of structural problems, the nullspace basis of the structural equilibrium
matrix A can be entirely deduced from a cycle basis for the underlying graph.

The remainder of this paper is organized as follows. In 2 we give an algorithm
that achieves an O(n3/2) bound on the size of the nullspace. An added bonus of
our algorithm is that the resulting basis has structure useful for parallelism. In 3 we
specialize our algorithm to the case of a grid graph, achieving an O(n log n) algorithm.
Finally, in 4 we discuss how to generalize our ideas to other kinds of matrices.

In many applications where A is not explicitly given in RBAF, we can permute
rows and columns to put PAQ in RBAF. Finding the permutation matrices P and
Q that minimize the number of residual rows or columns, while producing diagonal
blocks of approximately the same size, is in general a very difficult combinatorial
problem to be solved exactly. See work by Stern [14].

2. A tree from nested simple cycle separators. In a graph G (V, E) with
IV]- n, a set S c Y is called an (, )-separator if and only if

1. Set S contains at most /- vertices, and
2. Graph G- S has no connected component with more than cn vertices.

For this section we need the following theorem from Miller [9].
THEOREM 2.1. Let G be a biconnected planar graph with n vertices, rn edges, and

maximal face size . Then there is an (c,)-SCS (simple cycle separator) S, with
c-- 2/3 and 2V/2[/2 Moreover, S can be found in linear time.

Recall that biconnected means that the graph is connected, and remains connected
even after the deletion of any single vertex. If a graph is connected but not bicon-
nected, then it has an articulation point, that is, a vertex whose removal disconnects
the graph into more than one component. The maximal face size of a planar graph
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FIG. 1. Contracting a cycle to a single node.

refers to the maximum number of edges around any face. Finally, the term simple
cycle separator refers to a set of vertices S that form a separator in the sense of the
previous definition, and that are the vertex set of a simple cycle in G.

For the remainder of this section we restrict attention to biconnected planar
graphs with face size bounded by qo. We remark that a strengthening of the foregoing
theorem appears in Gazit and Miller [4], which allows G to have a constant number
of faces with, say, v/ vertices without disturbing the bound.

The assumption that G is biconnected is not actually a restriction. First, if G
is disconnected, then each component can be treated separately. Second, if G is
connected but not biconnected, then the biconnected components can be identified
in linear time (see Aho, Hopcroft, and Cllman [1]). It suffices to work with bicon-
nected components, since any particular cycle (null vector) is contained in a unique
biconnected component of G.

Our main goal for this section is to analyze a procedure T that finds a spanning
tree. A basic building block for T is Algorithm P that decomposes the graph using
the previous theorem. The first two steps of Algorithm P are as follows:

P-1. Find in (7 an (, )-SCS, say S.
P-2. Transform G into G’ by contracting S into a single vertex a.
These steps are illustrated in Fig. 1.
LEMMA 2.2. Vertex a is the only articulation point of G’.
Proof. Suppose T a is an articulation point (a.p.) in G’. Let G, G,...,G be

the biconnected components of G’ articulated by a. Since a is an a.p. in G’, T belongs
to exactly one G, say G. Let G,I, G,2 be two of the biconnected components of

G articulated by T. Since T is an a.p., a belongs to exactly one G’ say G,I1,i
Now (,2 is a subgraph of G, because it has not been affected by the contraction

of S. But then T is an articulation point in G between (,2 and S, which contradicts
the hypothesis that G is biconnected. D

By virtue of Lemma 2.2 we can define the final step of procedure P.
P-3. Separate the biconnected components of G’ into disconnected subgraphs,

with every subgraph receiving its own copy of a, the a.p. in G’. The final graph, G1,
is the disjoint union of the subgraphs G (see Fig. 2).

LEMMA 2.3. The maximal face size of G, a connected subgraph of G1, does not
exceed the maximal face size of the original graph G.

Proof. Observe that, given an embedding of G, there is an embedding of G
that corresponds to topologically contracting the embedded edges of S. Focus on this
embedding of G1.
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FIG. 2. Graph Gt based on Fig. 1.

FIG. 3. Finding a tree recursively.

Let Vl, v2,..., v be the vertices in a face of G. If vk a for k 1,..., l, then the
face was not changed by the contraction of S, and the lemma follows. Now say vz a.
The list of vertices vl,..., v in the embedding of G have no edges adjacent to them
in the interior of the face. Since no edge adjacent to these vertices was deleted by the
contraction process, this means that vertices Vl,..., v_l form a path in G such that
there are no edges adjacent to these vertices that are embedded on one "side" (either
left or right) of the path. Thus this path is part of a face in G of size at least 1. D

By virtue of Lemma 2.3 we can recursively apply procedure P to each of the
connected subgraphs in G. That will be the basis for procedure T to construct the
spanning tree. The parameter below is a constant depending on that we will
specify later.

Iv(v)l <
T-l: Return an arbitrary spanning tree T in G.

Else
T-2: Apply procedure P to G (using the SCS S).

In each subgraph G, recursively use procedure T to get a tree Ti.
T-3: Construct in G the spanning tree T, joining:

(a) Forests i, the uncontracted versions of Ti, and
(b) The SCS S with an arbitrary edge deleted.

This procedure is illustrated in Fig. 3 for the graph used in Figs. 1 and 2.
LEMMA 2.4. The graph returned by procedure T is a spanning tree.
Proof. We will prove the theorem by induction on the number of levels we re-

cursively called procedure T. At the last recursive call, T-1 returns a spanning tree.
This is the basis for our inductive argument. Now assume that the recursive calls to
T return spanning trees Ti at each subgraph G. To complete our induction we must
prove that T is a spanning tree for G.
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Let C be cycle S with an arbitrary edge deleted, so that C is a simple path
spanning the vertices of S. We argue by contradiction that T cannot have cycles.
Suppose T has a cycle. Since each Ti is a forest and the various i’s have no common
vertices, the cycle must be formed by edges of C and a particular . But this is not
possible because then the same cycle could be contracted to form a cycle in T.

Also, we claim that T is connected. This is because the forests T and C span all
the vertices, and each tree in the forest made up of ’s contains a vertex of C. D

We have now demonstrated that procedure T constructs a spanning tree. We now
put an upper bound on the length of the cycle formed by adding any edge of G-T to
T. We use the term co-tree edge to refer to such edges, and the term co-tree cycle to
refer to the unique cycle induced by a co-tree edge. The co-tree cycles correspond to
the null vectors in the basis, and the number of edges in the co-tree cycles correspond
to the number of nonzero entries of the nullspace basis.

THEOREM 2.5. A co-tree cycle of T has length at most 5v/- + , where

Proof. Let f(n) be the maximum number of edges in a co-tree cycle. We will prove
the theorem by induction on the number of levels we recursively called procedure T.

If n <_ a, the theorem is trivial.
Otherwise, let S denote the SCS constructed at the top level of T, and observe

that a co-tree cycle must lie interior to one of the subgraphs G, plus S. Now we can
use Theorem 2.1 to get the recursion

f(n) <_ f(n + 1) + x/-.

The first term accounts for the edges in G, a graph that has at most cn vertices
plus the copy of a, and the second term accounts for the edges in S. Our induction
hypothesis states that

I(n + ) < /n + + .
So to prove our theorem it suffices to establish, for all a <_ m <_ n, that

Since c < 1, we can choose a 30 to ensure that the last denominator is positive,
and given a and we can choose 5 to satisfy the inequality for m a. For example,
if the graph is triangulated, then Theorem 2.1 gives us yr, and taking t 30
we can take 5 20. [:]

As a corollary to Theorem 2.5, we can easily put a bound on g(n), the total length
of the all co-tree cycles, i.e., the number of nonzeros in the nullspace basis. Theorem
2.5 gives us a bound for f(n), the length of the longest co-tree cycle. A planar graph
with n vertices has at most 3n- 6 edges [7]. Thus there are at most (3n- 6)- (n- 1)
co-tree cycles, so the total co-tree length g(n) is bounded by (2n-5)f(n), i.e., O(nv/-d).

Finally, let T be the tree in G constructed by algorithm T. Now we can see that
the incidence matrix of the cycles in the cycle basis can be written in RBAF. In
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FIG. 4. The grid graph in the k 16 case.

particular, we number the edges of G according to the biconnected components of G,
with the edges of S numbered last. Then each cycle in the nullspace basis has nonzeros
in rows of V corresponding to edges of one particular biconnected component, plus
edges from S. We can also nest the RBAF structure in V according to the recursive
levels of procedure T.

3. The grid graph. For the (k- 1) (k- 1) grid graph G(k), with n (k- 1)2
vertices and m (k- 1)(k- 2) edges, we can define a spanning tree T(k) that gives
us a better bound on the total length of the co-tree cycle basis.

For this section we consider only the case that k 2J, although our results can
be generalized. The k 16 graph is illustrated in Fig. 4.

Tree T(k) is constructed recursively. In the case that k 2, i.e., a 1 1 grid
graph, the spanning tree is the unique node of the graph. This is the basis of the
recursion. In order to construct T(k) for k > 2, we need the following basic building
blocks:

a(k): The central vertex of G(k), i.e., the vertex at position (k/2, k/2).
/(k): The vertex of G(k) at position (k/2, k/4).
(k): The vertex of G(k) at position (k/2, 3k/4).
X(k): The edges of G(k) of the central row and column.
H(k): The edges in X(k) plus the edges incident to/(k) or (k).

Graph H(k) is illustrated in Fig. 5; vertices (k) and "(k) are shown as squares, and
vertex a(k) is shown as a bullseye.

Notice that G(k)- X(k) has four connected components, each of which is iso-
morphic to G(k/2). We can recursively define T(k) as H(k), plus a copy of T(k/2)
for each component. We omit the proof that T(k) is indeed a spanning tree of G(k).
An example of T(k) in the case k 16 is illustrated in Fig. 6. This tree is similar to
a graph that has occurred in the very large scale integration (VLSI) literature known
as the H-tree [16].

We consider the tree T(k) to be rooted at a(k), and define dk(w) as the distance
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F,G. 5. The graph H(k) with a(k),fl(k), (k) illustrated.

Ill

!

FIG. 6. The graph T(k) in the case k 16.

of a vertex w in T(k) to the root, i.e., d(w,((k)). We denote by r(k) the radius of
T(k), i.e., the maximal distance dk(w).

LEMMA 3.1. The radius r(k) ofT(k) is bounded by k.
Proof. Recall k 2J. We will prove the lemma by induction on j. If j 1, then

T(2) H(2) and r(2) 0. This is the basis for our induction.
For k > 1 let us consider dk(w) for an arbitrary vertex w e T(k). If w e X(k)

then dk(w) <_ k/2, because each of the four branches of X(k) has diameter k/2. If
w X(k), then w belongs to one of the four copies of T(k/2) rooted at ((k/2), and
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connected to H(k) through/(k) or f(k). Let us say that it is in the upper left copy of
T(k/2), so that it is rooted through/(k). Let a(k/2) denote the root of the particular
copy of T(k/2) under consideration. Then we have the chain of equations

dk(w) d(w,
d(w,
dk/2(w) + /

dk/2(w) + k/4 + k/4
<

Hence r(k) <_ r(k/2)+ k/2, and that gives the induction step for our hypothesis,
r(k) <_ k. D

THEOREM 3.2. The total length g(k) of the co-tree cycle basis for the tree T(k)
in the (k- 1) x (k- 1) square grid G(k) is asymptotically bounded by 6k2 log k.

Proof. Let us first look at the co-tree cycles that have edges in X(k). We observe
that the only co-tree cycles with edges in X(k) are those generated by co-tree edges
incident to vertices of X(k). Also, there are only 4k of those edges. Let f(k) be
length of a given co-tree cycle, S, intersecting X(k). Observe that the edges of S not
in X(k) must lie in one of the four copies of T(k/2). The number of such edges, as in
the previous lemma, is at most r(k/2) / k/4. The number of edges of S in X(k) is at
most 3k/4, because they must be in the border of one of the quadrant regions, and
cannot cross fl(k). Therefore, the total number of edges in S is bounded as follows:

f(k) <_ (r(k/2) -t- k/4) / 3k/4 <_ 3k/2.

Now, all the remaining co-tree cycles lie in one of the copies of T(k/2), and we
can write

g(k) <_ 4g(k/2)-t-(4k)f(k) <_ 4g(k/2) -}-6k2.

But a recursion in the form g(k) <_ 4g(k/2)+ ck2 is known to be bounded by
ck2 log(k) + O(k2). Indeed, George’s original [5] derivation of nested dissection on
grids came up with the same expression for the fill during Gaussian elimination. So
we can limit the total length of the T(k) co-tree cycle basis for G(k) by

g(k) <_ 6k2 log k + O(k2) 6n log n + O(n).

4. Generalizing the construction. In this section we discuss how to generalize
the results of 2 to matrices other than adjacency matrices of planar graphs. We first
note that the planarity assumption is necessary only to obtain simple cycle separators.
We see that the necessary property of the separator is not that it be a simple cycle,
but rather that the subgraph induced by the separator nodes be connected. Indeed,
the separators in 3 are not cycles. With this weaker hypothesis all of the results of 2
go through. Recent results by Miller, Teng, and Vavasis [10] suggest that very broad
classes of graphs could have connected separators.

If we want to generalize beyond adjacency matrices of graphs, we see that the
first crucial property in our analysis was that matrix A can be written in the form
of (2). This is not enough to carry out our algorithm; this form is analogous to a
graph G having a node separator but not necessarily a connected node separator. The
generalization of the "connected" property is that matrix Sk+l have full row rank.
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If this happens, then it can be shown using linear^algebra that it suffices to find a
nullspace basis for Sk+l and for/1,... ,Bk, where B denotes the matrix

In this formulation w is a row vector with a "don’t care" entry for each column in
which Si has at least one nonero entry. Prom fundamental nullspace bases for/)i and
for Si we can assemble a fundamental nullspace basis for .4. This construction works
only under the usual noncancellation assumption that the nullspace basis of .4 can be
predicted entirely from the positions of the nonero entries in .4. See, for example,
Pothen [la].

Note added in proof. After this paper was written and accepted, we learned
of recent work [2] that improves on some of the results in this paper.
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LINEAR QUADRATIC PROBLEMS WITH INDEFINITE COST FOR
DISCRETE TIME SYSTEMS*

A. C. M. RANt AND H. L. TI:tENTELMAN$

Abstract. This paper deals with the discrete-time, infinite-horizon linear quadratic problem
with indefinite cost criterion. Given a discrete-time linear system, an indefinite cost-functional
and a linear subspace of the state space, the problem of minimizing the cost-functional over all
inputs that force the state trajectory to converge to the given subspace is considered. A geometric
characterization of the set of all Hermitian solutions of the discrete-time algebraic Riccati equation
is given. This characterization forms the discrete-time counterpart of the well-known geometric
characterization of the set of all real symmetric solutions of the continuous-time algebraic Riccati
equation as developed by Willems [IEEE Trans. Automat. Control, 16 (1971), pp. 621-634] and
Coppel [Bull. Austral. Math. Soc., 10 (1974), pp. 377-401]. In the set of all Hermitian solutions
of the Riccati equation the solution that leads to the optimal cost for the above-mentioned linear
quadratic problem is identified. Finally, necessary and sufficient conditions for the existence of
optimal controls are given.

Key words, linear quadratic optimal control, indefinite cost functional, discrete-time, Riccati
equation

AMS subject classifications. 93C05, 93C35, 93C60

1. Introduction. This paper has two main goals. First, we want to establish the
discrete-time counterpart of the by now "classical" geometric characterization of the
lattice of real symmetric solutions of the continuous-time algebraic Riccati equation
as given in [1] and [8]. Subsequently, we want to apply these results to the discrete-
time linear quadratic optimization problem with linear endpoint constraints. Given
a discrete-time linear system, the latter problem consists of minimizing a general
indefinite quadratic cost-functional over the class of input functions that force the
state trajectory to converge to an a priori given subspace of the state space (or,
equivalently, that force a given linear function of the state to converge to zero). A
complete treatment of this optimization problem for the continuous-time case was
given only very recently in [5] and [6].

With respect to our first goal, it will be shown that, as in the continuous-time
case, if the algebraic Riccati equation has at least one Hermitian solution, then it
has a smallest one and a largest one. Furthermore, any Hermitian solution of the
algebraic Riccati equation can be written as a "linear combination" of these extremal
solutions. In order to derive these results we will make use of the characterization
of all Hermitian solutions of the discrete-time Riccati equation in terms of certain
invariant Lagrangian subspaces, as established in [4] (see also [2]).

With respect to our second goal, we want to note that compared to the usual
discrete-time linear quadratic optimal control problems, our problem formulation in-
troduces generalizations into two independent directions. First, in contrast to the
existing literature on this subject, we do not require the quadratic form in the cost-
functional to be positive semidefinite (the "linear quadratic regulator problem"). In-
stead, the quadratic form is allowed to be indefinite. Second, our problem formula-
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tion includes a fixed, but arbitrary, linear endpoint constraint, in the sense that the
optimization is performed over the class of all input functions that force the state
trajectory to converge to an a priori given subspace. A solution to the usual zero
endpoint problem (in which the optimal state trajectory is required to converge to
the origin) can thus be obtained from our results by setting this subspace to be equal
to the zero subspace. On the other hand, a solution to the free endpoint problem (no
constraint on the optimal state trajectory) can be obtained from our results by taking
the subspace to be equal to the entire state space.

The outline of this paper is as follows. In 2 we shall formulate the optimization
problem that we want to consider. This section also contains a statement of the main
result of this paper, that is, a characterization of the optimal cost, necessary and
sufficient conditions for the existence of optimal controls, and an expression for the
optimal state feedback control law. In 3 we shall establish the characterization of
the set of all Hermitian solutions of the discrete-time algebraic Riccati equation as
announced above. Finally, in 4 we shall give a proof of the main result as stated
in 2.

2. Problem statement and main results. In this paper, we will consider the
discrete-time system

(2.1) xk+l Axk + Buk,

where the state variable xk takes its values in (n and the input variable Uk takes its
values in cm. In (2.1) we have A E Cn n and B E n m. As a standing assumption,
we take (A, B) to be a controllable pair. We will consider optimization problems of
the type

(2.2) inf Z xk Q C* xk
u C R u

k--O

Here, R, Q, and C are complex matrices of appropriate dimensions, and R R*,
Q Q*. In this paper, a standing assumption will be that R is nonsingular. The
expression (2.2) of course needs some explanation. For any x0 :n and any control
sequence u- {uk}=0, we define

T

uk C R uk
k--O

Let

U(xo) := (u Tli_moJT(XO, u) exists in Tt2 {-x), +cx)}},
and for any control sequence u U(x0), define the associated cost by

(2.4) J(xo, u) := lim JT(xO, u).
T---oo

The optimization problem of minimizing the cost functional (2.4) over the class of
inputs U(xo) is called the free endpoint linear quadratic problem. The optimal cost
associated with this problem is equal to

(2.5) Vl(xo :- inf J(xo, u).
uV(o)
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Compare this problem with the usual zero endpoint problem, where instead of U(x0),
the cost-functional is minimized over the class of all inputs that force the correspond-
ing state trajectory to converge to the origin, i.e., over

(2.6) Us(xo) :- {u E U(xo), k--.olim X(Xo, U)k O}
The associated optimal cost is given by

V+(xo):-- inf J(xo, u).
ueu,(xo)

In the present paper, we will study a generalization of the above two linear quadratic
problems, the linear quadratic problem with linear endpoint constraints. Given a linear
subspace : of the state space Cn, the latter problem consists of minimizing the cost
functional (2.4) over all inputs u that force the state trajectory to converge to the
subspace

(2.7) U:(xo) "= (uE U(xo)] lim d(x(xo,

In the above, for a given point x Cn, d(x, ) denotes the usual distance from the
point x to the subspace :. The optimal cost for the latter problem is given by

(2.8) V(xo) := inf g(xo, u).
ueu(xo)

Obviously, both the free endpoint problem and the fixed endpoint problem are special
cases of the latter problem formulation: take : Cn and : 0, respectively.

An important role will be played by the set of Hermitian solutions of the discrete-
time algebraic Riccati equation

(2.9) P A*PA / Q (C / B*PA)*(R / B*PB)-I(C / B*PA).

P is called a solution of the algebraic Riccati equation if R / B*PB is nonsingular
and if P satisfies (2.9). Besides controllability of (A, B) and nonsingularity of R, we
shall assume throughout that A- BR-IC is nonsingular and that () > 0 for some
r T, where

C R I

Here, T denotes the unit circle. Let us comment on these assumptions. The non-
singularity of R and A- BR-1C is mainly assumed for technical reasons. These
assumptions allow us to give a description of the set of Hermitian solutions of (2.9)
in terms of invariant subspaces of a certain matrix (see 3) rather than in terms of a
pencil of matrices (compare, e.g., [12]). Note that, in contrast to most literature on
the continuous-time case, we do not assume R > 0, but only R nonsingular. (If in the
continuous-time case the condition R >_ 0 is violated, then we have V+(xo) -oc for
every initial state x0. In the discrete-time case the condition R >_ 0 is not necessary for
boundedness from below of the cost-functional J(xo, u).) The positivity of V() for
some r] T should be contrasted with the continuous-time case. The corresponding
matrix-valued function for the continuous-time case is given by

C R I
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Taking the limit as z goes to infinity, this function is seen to have value R at infin-
ity. So, under the usual assumption of the continuous-time case, R > 0, a similar
assumption is automatically satisfied: there is an r/on the imaginary axis such that

> 0.
Under the assumptions outlined in the previous paragraph, the set of Hermitian

solutions of (2.9) will turn out to have a maximal element P+ and a minimal element
P_ (see (3.5) below). (For the existence of both a maximal and a minimal Hermitian
solution, the controllability of (A, B) is a natural sufficient condition. Assuming only
stabilizability of (A, B) would only guarantee the existence of a maximal solution.)
Put A p+ P_. Let us denote by A+ and A_ the matrices

A+ "= A- B(R + B*P+B)-I(C + B*P+A),

A_ :- A- B(R + B*P_B)-I(C + B*P_A).

It will be seen that a(A+) c ) and a(A_) C Te (here :D denotes the open unit disk,
:De denotes the exterior of the closed unit disc, and for any matrix A, a(A) denotes
the set of eigenvalues of A). Given a subspace of Cn we introduce the subspeme

’(:) := ( ker P_ IA_) X+(A_).

(Here, for a matrix A, X+(A) denotes the spectral subspace of A corresponding to
its eigenvalues in :De; likewise, we shall denote Xo(A), X_(A) the spectral subspaces
of A corresponding to its eigenvalues in T, respectively, :D.) As usual, the notation
(1/VIA), where )/Y is a subspace of Ca and A an n x n matrix, denotes the largest
A-invariant subspace in l/Y. If H is a matrix such that ker H Nker P_, then
is the undetectable subspace of the pair (H, A_) with respect to the stability set
Now, let

(2.11) P :--P_rv() + P+(I- r]2())
where r)() is the projection onto V() along (A])()) +/-. It will turn out that Pc is a

solution of (2.9). Finally, if is a subspace of Cn and if P is a Hermitian n x n matrix,
then we will say that P is negative semidefinite on . if the following conditions hold:

for all xo E ’xPxo <_ 0,
for allx0E’xPx0=0vvPx0=0.

According to this definition, a Hermitian matrix P is negative semidefinite on Cn if
and only if it is negative semidefinite in the usual sense. Furthermore, any Hermitian
matrix is negative semidefinite on the zero subspace {0}. The main result of this
paper can now be formulated as follows.

THEOREM 2.1. Suppose (A,B) is controllable, R is nonsingular, A- BR-C is
nonsingular, and (rl) > 0 for some 1 7". Assume .further that (2.9) has at least
one Hermitian solution and assume P_ is negative semidefinite on . Then we have

(i) V(xo) is finite for all xo, and V(xo) x)Pxo,
(ii) for all xo there is an input u+ such that V(xo) J(xo, u+) if and only

if ker A C_ N ker P_; in that case u+ is unique and is given by the state feedback
control law

+ -(R + B* (C + PcA)xk.uk PB)- B*
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This result is the discrete-time analogue of [6, Thm. 4.1]. We stress that the
above theorem also provides information on the free endpoint problem and on the
zero endpoint problem. Indeed, for the free endpoint problem we set Cn. The
corresponding subspace 1)() is then equal to 1) (ker P_ A_) fq &’+(A_). Define

P/, := P_TrV + P+(I- 7rv)
where, again, 7r]) is the projection onto V along (AI;) +/-. PI is a solution of (2.9) and
we find the following corollary.

COROLLARY 2.2. Suppose (A,B) is controllable, R is nonsingular, A- BR-1C
is nonsingular, and (rl) > 0 for some rl E T. Assume further that (2.9) has at least
one Hermitian solution and assume that P_ < O. Then we have

(i)
(ii) for all xo there is an input u+ such that Vl(xo g(xo, u+) if and only if

ker A C_ ker P_; in that case u+ is unique and is given by the state feedback control
law

uk+ -(R / B*PIB)-I(C + B*PA)xk.

The above corollary is the discrete-time analogue of [5, Thm. 5.1]. In order to
get the corresponding result on the zero endpoint problem, we set (0}. The
corresponding subspace ];() is then equal to ]; (0} and we find that the relevant
solution of (2.9) is equal to P+. Thus we find the following discrete-time version of
[8, Whm. 7].

COROLLARY 2.3. Suppose (A,B) is controllable, R is nonsingular, A- BR-IC
is nonsingular, and (7) > 0 .for some r T. Assume .further that (2.9) has at least
one Hermitian solution. Then we have

(i) V+(xo) is finite for all xo, and V+(xo) x;P+xo,
(ii) for all Xo there is an input u+ such that V+(xo) g(xo, u+) if and only if

A > 0; in that case u+ is unique and is given by the state feedback control law

uk+ -(R + B*P+B)-(C + B*P+A)xk.

In this paper, we shall give a proof of Theorem 2.1. The proof that we shall
give basically follows the line of [6]; the details will be provided in 4. In 3 we give
a description of all solutions of (2.9) in terms of P_ and P+. The continuous-time
analogue of this description is due to Coppel [1]. The argument here is somewhat
more complicated and uses ideas from [2] and [4].

3. Description of solutions of the algebraic Riccati equation. Consider
the discrete-time algebraic Riccati equation (2.9). In addition to the controllability
of (A,B) and the assumption that R is nonsingular, we assume throughout that
A- BR-C is nonsingular and (r/) > 0 for some r/on the unit circle. We are then
in a position to apply [4, Whm. 4.1] (see also [2, Whm. 4.4]), which gives a description
of solutions of the algebraic Riccati equation in terms of certain invariant subspaces.
To be precise, put

(3.1)

T ( A BR,-1C-Jr BR-1B*(A Blrl-Ic)’-I(Q C*/:/-1C) -BR-1B’(A BR-IC)"-
-(A- BR-XC)*-x(Q- C*R-C) (A- B/:-Ic)*-1 ]\
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The next theorem provides necessary and sufficient conditions for the existence of a
Hermitian solution of (2.9), and two different descriptions of the set of all Hermitian
solutions. Both descriptions are in terms of certain invariant subspaces of T.

THEOREM 3.1. Assume (A,B) is controllable, R is nonsingular, A- BR-1C
is nonsingular, and (l) > 0 for some rl E T. Then the following statements are
equivalent:

(i) There exists a Hermitian solution of (2.9),
(ii) T has an invariant subspace Az[ such that

-I 0 .M

(iii) the partial multiplicities of T (i.e., the sizes of the Jordan blocks in the
Jordan form of T) corresponding to its eigenvalues on the unit circle T are all even,

> o on
DESCRIPTION 1. Assume that one of the above equivalent conditions hold. Then

any T-invariant subspace J4 for which (3.2) holds is of the form

(3.3) M im p

.for some Hermitian solution P of (2.9), and, conversely, if P P* solves (2.9), then
Jl ’given by (3.3) is T-invariant and satisfies (3.2).

DESCRIPTION 2. Assume that one of the above equivalent conditions hold. Then
for every T-invariant subspace iV" with the property that a(T Af) c T)e there is a
unique solution P P* of (2.9) with

im p V) X’+(T) Af.

Conversely, for every Hermitian solution P of (2.9) the subspace Af given by (3.4) is
T-invariant and has the property that a(T Af c T)e. Here X’+ (T) denotes the sum
of the generalized eigenspaces of T with respect to its eigenvalues in T)e.

Now let P be any Hermitian solution of (2.9). Then it is a straightforward calcu-
lation to see that

where

(z) .=.(2-1)*(R + B*PB)..(z),

=.(z) I + (R + B*PB)-(C + B*PA)(Iz- A)-B
(see, e.g., [2]). Consequently, for any Hermitian solution P of (2.9) we have R +
B*PB >_ O. Combined with the fact that R / B*PB is also nonsingular, we find that
if (i)-(iv) in Theorem 3.1 hold then we have R + B*PB > 0 for any solution P P*
of (2.9) (see also [2, Whm. 2.5]).

Let P+ and P_ be the unique solutions for which

(’)im p+ N X’+(T)= {0}, im p_ V X+(T) X+ (T),

respectively. We shall show that P+ is the maximal solution and P_ the minimal
solution of the equation (2.9). First we prove a lemma.
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LEMMA 3.1. Let P_ be the solution defined by (3.5) and suppose P is an arbitrary
Hermitian solution. Introduce

A_ A- B(R / B*P_B)-(C / B*P_A),
S_ R+B*P_B.

Then X "= P- P_ satisfies the algebraic Riccati equation

(3.6) X A*XA_ A*XB(S_ / B*XB)-B*XA_.

Conversely, any Hermitian solution X of (3.6) gives a solution of (2.9) via P
X/P_.

Proof. Introduce the following matrices:

S_ := R / B*P_B,
E_ := C + B*P_A,
L_ "= S-E_,

To prove (3.6), compute

(3.7)

S .= R + B*PB,
E :- C / B*PA,
L:=S-E.

and

Furthermore,

Since P and P_ solve (2.9), we have

X A*XA E*SZE_ E*S-E.

A*(P- P_)BL_ (A*PB- A*P_B)L_
(E* E*)L_
(E* E*)S=E_

L*B*(P- P_)BL_ E*S-1B*(P- P_)BS-_IE_.

Using these equalities and (3.8) in (3.7), we obtain

X A*XA_ E*S:IE_ E*S-1E / (E* E*)S-1E_
+ E*S:I(E- E_) E*S-IB*(P- P_)BS-1E_
_E*S:IE_ E*S-1E + E*S:IE_ + E*S:IE

E* S-1B*(P- P_)BS-1E_
(3.9)

E*S-I(S_ / B*(P- P_)B)S-_IE_ E*S-1E
+ E*SZ1E_ + E*S-1E
_E*S-_IsS-1E_ E*S-1E + E*S-_IE_ + E*SZ1E
-(S* E*S:IS)S-I(E-

X- A*XA_ X- (A- BL_)*X(A- BL_)
(P- P_) A*(P- P_)A / A*(P- P_)BL_
/ L*_B*(P- P_)A- i*S*(P- P_)BL_.
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Here we used the fact that S_ + B*XB S. Moreover,

SSZ1 (R + B*PB)(R + B*P_B)-1 I + B*XBSZ,
so

E- SSZ1E_ E- E_ B*XBSZE_
B*XA- B*XBSZE_

B*X(A- BS-E_)
B*XA_.

Hence, from (3.9), we see

X- A*XA_ -A*XB(S_ / B*XB)-B*XA_,

which proves (3.6). The converse follows by a similar computation. [:l

With a similar argument one shows that the following lemma is true.
LEMMA 3.2. Let P+ be the solution introduced above; suppose P is an arbitrary

Hermitian solution. Introduce

A+ A- B(R + B*P+B)-I(C + B*P+A),
S+ R + B*P+B.

Then X P- P+ satisfies the algebraic Riccati equation

X A*+XA+ A*+XB(S+ + B*XB)-B*XA+.

Conversely, any solution of (3.10) gives a solution of (2.9) via P X + P+.
According to Theorem 3.1, the subspaces

and im (p/_)
are T-invariant. The following lemma states that the restrictions of T to these sub-
spaces are semistable and semi-antistable, respectively.

LEMMA 3.3.

a (T im (p/+))C, a(Tlim(p/_)) C7be.

Proof. The first statement is an immediate consequence of (3.5). To prove the
second statement, define

(0I)J :- -I 0

Note that T is J-unitary, i.e., T*JT J. This implies that T is invertible and that
T- JT*J. Now assume that

x E im (p/_), Tx Ax and A
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Then T-ix A-Ix, from which T*Jx A-Jx. This implies that Jx E X+(T*),
since A- E :De. We also have

JxJim(:_)
Using (3.5) the latter implies Jx X+(T)+/-.
obtain Jx 0, so x--0. [l

Since X+(T)+/- Xo(T*)@ X_(T*) we

It is a straightforward but tedious calculation to show that

are similar to A+ and A_, respectively (see, e.g., [10] and [11]). Consequently,
a(A+) c :D and a(A_) c :De. Introduce

(3.11) Ap A- B(R / B*PB)-(C / B*PA).

The following theorem states that P_ is the smallest Hermitian solution of (2.9).
Likewise, P+ is the largest Hermitian solution of (2.9). Furthermore, P P_ is the
only Hermitian solution with the property that a(Ap) c )e and P P+ is the only
Hermitian solution with the property that a(Ap) c .

THEOREM 3.2. Assume (A,B) is controllable, R is nonsingular, A- BR-1C
is nonsingular, and (rl) > 0 .for some ? T. Assume that (2.9) has at least one
Hermitian solution. Let P_ and P+ be the solutions determined by (3.5). Then
a(A+) C :D and a(A_) C :De. Furthermore, for any Hermitian solution of (2.9), we
have

P_K_PK_P+.

In addition, if P is a Hermitian solution with the property that a(Ap) C )e, then
P P_. If P is a Hermitian solution with the property that a(Ap) c :D, then
P-P+.

Proof. Let P be a Hermitian solution. Then X P- P_ solves (3.6) and
S_ + B*XB R + B*PB > 0. We shall prove that X _> 0. First we shall prove
that X0(A_) c_ ker X. In order to prove this, choose a basis of X0(A_) consisting of
eigenvectors and generalized eigenvectors. Such a basis consists of chains of vectors
x,..., xk with the property that

A_xl )x,
A_x ,x. + Xl

A-xk AXk + Xk-1,

where I1 1. We will show by induction that Xxl Xxk O. Assume
A_xl AXl. Using (3.6) we obtain

xXx I)12xXx -1AI2xXB(S_ + B*XB)-IB*Xx.
This yields xXB(S_ + B*XB)-IB*Xxl O, from which we obtain xXB O.
Again using (3.6), this implies xX AxXA_, from which

xX(A_ -II B) O.
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By controllability of (A,B), the latter implies that Xxl O. Now, assume that
A_xr xr-1 + )xr and Xxr-1 O. Using (3.6) we find

+ +
+ Xx )XB(S_ + B*XB)-IB*X(xr_I +

The latter implies that (x_ / x)XB 0 and hence xXB O. Also, xX
AxXA_. Again, by controllability of (A, B), this yields Xx O. This proves our
claim that 2do(A_) C_ ker X.

To proceed, let U be a unitary matrix such that

U*A_U
0 A22

with a(A11) c T and a(A22) c/). Let Y U*XU. Obviously, since Xo(A_) c_
ker X, we have

0 Y22

Furthermore, it follows from (3.6) that Y22- A2Y22A22
_

O. Since the eigenvalues of
A22 lie strictly outside the unit disc, the latter can be shown to imply Y22

_
0 (see,

e.g., [9, Thm. 13.2.3]). Thus we have proven X _> 0.
A completely similar argument can be used to show that any Hermitian solution

P satisfies P <_ P+. Finally, note that in the above proof we only used the facts
that a(A_) c ) and a(A+) c ). Hence, if P is a Hermitian solution with the
property that a(Ap) c Oe, then we must have P _< Q for any Hermitian solution Q,
in particular, for Q P_. This shows that P P_. The statement on P+ is proven
similarly.

Next we prove an analogue for the discrete-time case of a theorem first proved by
Coppel [1] for the continuous-time case.

THEOREM 3.3. Assume that (A, B) is controllable, R is nonsingular, A-BR-1C
is nonsingular, and (l) > 0 for some on the unit circle. Let P_ and P+ be the
minimal and maximal Hermitian solutions of (2.9), respectively. Put A .= P+ P_
and

A_ :- A- B(R / B*P_B)-I(C / B*P_A).

Then, for every A_-invariant subspace ) of A’+ (A_), we have

(3.12) c +/-.

Let rv denote the projection onto ]) along (AY) +/-. For every A_-invariant subspace
V c_ X+ (A_) the matrix P defined by

(3.13) P P-Try + P+(I- 7rv)

is a Hermitian solution of (2.9). Conversely, .for every Hermitian solution P of (2.9)
there exists a unique A_-invariant subspace V of X+(A_) such that (3.13) holds. This
subspace ]) is equal to V X+(Ap), where Ap is defined by

Ap A- B(R + B*PB)-I(C / B*PA).
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In addition, Xo(Ap) ker A and X_(Ap) (AV) +/- f X_(A+).
It will become clear in the proof that this result is actually little more than a

reformulation of the last part of Theorem 3.1.
Proof. First we show that it suffices to prove the theorem for equation (3.6).

Note that X_ 0 is the minimal solution of (3.6) and X+ P+ -P_ is the maximal
solution. Moreover, by straightforward computation,

(3.14)
(A_)x "= A_ B(S_ / B*XB)-IB*XA_

Ax+p_.

In particular, this means that (A-)x_ A_ and (A-)x+ A+, i.e., the A_ and A+
matrices remain the same. Because of Lemma 3.1, P is a solution of (2.9) if and only if
P X +P_ for some solution of (3.6). Now assume the theorem is true for (3.6). Let
V be an A_-invariant subspace of X+(A_). As the A_ matrix remains the same, we
conclude that (3.12) holds. Furthermore, the matrix X :-- X+(I-r))) is a Hermitian
solution of (3.6). This implies that P :-- P_ /X P_rv/P+(I-rV) is a Hermitian
solution of (2.9). Conversely, let P be a solution of (2.9). Define X :- P- P_.

There exists an A_-invariant subspace of X+(A_) such that X X+(I- r]2). This,
however, yields P P-V- P+(I-’l;)" Finally, since (A-)x Ap and (A-)x+
A+, we also find ])-- X+(Ap), ker A-- Xo(Ap), and X_(A+)N (AV)+/- X_(Ap).

It remains to prove the statements of the theorem for equation (3.6). The matrix
T given by (3.1) looks particularly simple in the case of equation (3.6):

T=IA-o -BSZtB*A*-- )A*_- t

with S_ > 0. Note that A_ has all its eigenvalues on or outside the unit circle. Hence
Iwe have X+(T) C_ im (0); more precisely,

X+(T) X+(A_) (0}.

So, T-invariant subspaces Af with a(T Af) c :De are precisely the subspaces of the
form

v {0},

where V is A_-invariant and c_ X+(A_).
Now, let V be an A_-invariant subspaee of X+(A_). We will prove (3.12) and

the fact that X+(I- 7r.i) is a Hermitian solution of (3.6). According to Theorem 3.1,
there is a unique solution X of (3.6) such that

im () f3 (X+(A_) {0}) V {0}.

From [3, 2, 7] and Theorem 3.1 we have

im =(Vx{0}) im 1"3 Xo(T) @ X_(T) f3 -I 0

Iand moreover im (x) Xo(T) is the same subspace for any Hermitian solution X
(here we also use the fact that the signs in the sign characteristic of

(
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are all the same; see [4, Thm. 1.2]). Then

(i)im n Xo(T) im X+
=im X_ nX0(T)

--im ()3 X0(T)

C ker X+ x {0}.

Conversely, for x E ker X+, we have from (3.6)

0 A*_X+(A_ B(S_ + B*X+B)-IB*X+A_)x A*_X+A+x O.

So X+A+x 0, i.e., ker X+ is A+-invariant. Consider the equality

(i)(i)x A+x,T X+ X+
which holds by Theorem 3.1, in particular, the first description of the set of solutions.
For x E ker X+ this gives

However,

It follows that for x ker X+ we have A+x A_x, and hence ker X+ is also
A_-invariant. We claim that

(3.15) ker X+ C X’0(A_).

Indeed, assume x e ker X+ x 0, and A_x Ax. Then T( 0)= 0)" Since

(;) (i)e im X+
by Lemma 3.3 we have A e . On the other hand, since A E a(A_), A /be. Thus
A e T, which proves the claim. It follows from (3.15) that

im (X/) gXo(T)=kerX+x{O}.

Next,

so

X_ (T) X’_ (T) V im X+

I) r (Cn x_Cim X+
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Now

x ) Cnxy+/-

X+x
implies X+x E ])+/-, i.e., x (X+V)+/-. So

0 I
+/-

(( _i

Since obviously ker X+ C_ (X+12) +/- also, we find

(3.16) im() C_(V x {o})+

Using the previous inclusion, it is easy to see that fjn= V + (X+’l)) +/-. We claim that
the latter is, in fact, a direct sum. Indeed, x V N (X+I)) +/- implies (x,X+x) 0,
from which X+x O. Thus 1) g (X+])) +/- C ker X+ g V 0 (recall that V c 7g+(A_)
while ker X+ c 7go(A-)). Now, if r]) is the projection onto V along (X+V) +/-, it can
be seen that (3.16) implies

X X+(I-

Next, conversely, let X be a Hermitian solution of (3.10). Define

Af:-im(x/) NX+(T).

Then Af is a T-invariant subspace and a(T N’) C T)e. Thus Af has the form Af
)) x {0} for some A_-invariant subspace ]) of 7g+(A_). By repeating the argument
in the first part of this proof, it is then shown that we must have X X+(I rv).

Finally, we will show that if 1) c 7g+ (A_) is A_-invariant and X X+(I- rV),
then V 7g+((A-)x), ker X+ 7go((A-)x), and (A1)) +/- X_(A+) 7g-((A-)x).

As in the proof of Theorem 3.2, we show that 7go(A_) C ker X+. Combined with
(3.15) this yields ker X+ 7g0(A-). Since 0 _< X _< X+, ker X+ c ker X. Hence
(A-)x ker X+ A_ ker X+. This yields

ker X+ 7go((A-)x),

as desired. We will now show that

(3.17) V C_ 7g+((A-)x).

Indeed, note that ) C_ ker X. Hence (A-)x IV A_ IV, which yields (3.17). Next,
we show that

(3.18) (X+V) +/- c_ 7go((A-)x) @ 7g-((A-)x).

In order to prove this, first note that A_V ]), since ]) is A_-invariant and since
A_ is invertible. Now, the Riccati equation (3.6) with X X+ can be written as

X+ A*X+A+. We claim that (X+])) +/- is A+-invariant. Let w (X+])) +/-. Then
for all v V,

0 v*X+w v*A*X+A+w.
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Hence A+w E (X+A_])) +/- (X+])) +/-. Next, by straightforward calculation, we show
that

(3.19) (A-)x A+ B(R / B*(X / P_)B)-IB*(X X+)A+.

Since X (X+V)+/- X+ (X+V)+/- (3.19) yields (A_)xI(X+V)+/- A+ (X+V)+/-.
Since a(A+) c 7), this implies a((A_)x (X+])) +/-) c 7), which yields (3.18).

By combining (3.7), (3.s), and the fact that ])@ (X+])) +/- (:n, we find that the
inclusions (3.17) and (3.1s) are, in fact, equalities. Finally, since (A_)xI(X+’I))
A+ (X+V)+/-, we find (X+V)+/-

4. A proof of Theorem 2.1. The proof is split up into several lemmas, which
are all discrete-time counterparts of results in [6]. In this section, let be an arbi-
tratry but fixed subspaee of C. We will first study the finiteness of the optimal cost
V(xo). Note that our assumption that (A, B) is controllable is sufficient to guarantee
that V(x0) < -boo for all x0. In the sequel we shall establish a sufficient condition to
guarantee V(x0) > -oo for all x0. From 2 recall the definition of negative semidefi-
niteness on of a given Hermitian matrix P. It turns out that if the smallest solution
P_ of the Riccati equation (2.9) is negative semidefinite on , then the optimal cost
is finite.

LEMMA 4.1. Assume that (A, B) is controllable, R is nonsingular, A BR-IC
is nonsingular, and (l) > 0 .for some l T. Furthermore, assume that (2.9) has
at least one Hermitian solution. Then we have: if P_ is negative semidefinite on
then V(xo) T .for all xo n.

Our proof of Lemma 4.1 uses the following two lemmas.
LEMMA 4.2. Let be a subspace ofCn and let H be a matrix such that ker H.

Let P nn be Hermitian. Then P is negative semidefinite on if and only if there
exists ) T such that P- )H*H is negative semidefinite.

For a proof of the above lemma, we refer to [6].
LEMMA 4.3. For any xo ’, any sequence u and any Hermitian solution P of

(2.9) we have

JT(xo, u) x)Pxo x.+PxT+l
T

+ Iluk + (R + B*PB)-I(C + B*PA)xkI[2
R+B* PB"

k=0

Here, IIv]l := v*Sv.
Proving this lemma is just a matter of standard computation.
Proof of Lemma 4.1. Let x0 (:n. Since (A, B) is controllable, there is an input

sequence u e U(xo) such that J(xo, u) < +oo (in fact, one can steer from x0 to the
origin in finite time). Thus V(xo) e n U {-oo}. Now let u e U(xo) be arbitrary.
Let H be such that ker H and let E T be such that P_ )H*H is negative
semidefinite. According to Lemma 4.3, for all T we have

JT(xO, u) x)P_xo -Xr+(P- AU*U)xT+
T

-b Z Iluk -b (R -b B*PB)-(C -b S*PA)xkll 2
R+B*PB"

k--O

Thus, for all T >_ 0,

JT(XO, u) > x)P-xo AIIHxT/xlI 2.
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Since XT converges to as T --. oo, we have HXT+I --+ O. It follows that

J(xo, u) lim JT(xO, u) > xP_xo.
T--.oo

Since the latter holds for all u 6 U(xo) this proves our claim. D
The next few lemmas give some general properties of linear systems.
LEMMA 4.4. Consider the system

Yk Cxk,

and suppose that (C,A) is observable. Then if {vk}=0 e 2 and {yk}=0 e oo,
necessarily {x

Proof. Since (C, A) is observable, there exists a matrix L such that a(A + LC) c
Z). Obviously, {xk}=O satisfies the difference equation

Xk+l (A + LC)xk Lyk + v}.

Using some straightforward estimates we see that v 6 2 and y 6 oo imply
x E o. D

In the followin lemma, if Cg is a subset of C, then 2g(A) will denote the spec-
tral subspace of A associated with its eigenvalues in Cg i.e., the largest A-invariant
subspace l; with the property that a(A l;) c Cg. Using the previous lemma we can
now prove the following.

LEMMA 4.5. Consider the system

x+l Axk + v, yk Cxk.

Assume that (C, A) is detectable (relative to Cg). Let the state space Cn be decomposed
into Ca , @ X2, where 2 is A-invariant. In this decomposition, let

Assume that a(A X) c Ca and a(A Cn/X1) C C/Cg. Then for every initial
condition xo we have: if {vk}=0 6 g2 and {yk}=0 e goo, then {x2,k}C=o 6 oo.

Proof. We claim that A’l Xg(A). Indeed, by assumption, we have A’ c_ A’a(A).
Denote ao := a(AIXg(A)/X1). Then we have a0 C Ca. Also, ao c a(AICn/X) C

C/Ca. This implies that a0 q) or, equivalently, A’ Xa(A). By the fact that
(C, A) is detectable with respect to Ca, we may now conclude that (ker C A) c_ A’.
Decompose A’ X’l @A’n, with A’ := (ker C A) and X12 arbitrary. Accordingly,
partition

Xl
\X12/

We then have Cn X’l 63 X’2 63 ,t’2 with x (xTI,xT12, xT2)T. In this decomposition
let

A= 0 A22 A23 C=(0 C2 C3 ), v= v2
0 0 A33 v2
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Obviously, the system

( C2 C3 ), (A22 A23

is observable. Moreover,

X2,k+l 0

=( c:

)A33 X2,k V2,k

It now follows from the previous lemma that

X2 ,]

which implies that x2
The next lemma tells us that a semistable controllable system has the property

that all initial states can be steered to the origin with arbitrary small controls (in
t2-sense).

LEMMA 4.6. Considerthe controllable system

Xk+l Axk 4- Buk, xo given.

Assume that a(A) c 1:). Then for all e > 0 there exists a u 2 such that Ilul12 <
and x(x0, u)k 0 as k --. oo.

Proof. We will first show that it suffices to prove the statement of the lemma
with 1) replaced by T. Indeed, we can always choose a basis in Cn such that A and
B have the form

0)0 A2 B2
x

x2

with a(A1) c 1) and a(A2) c T. Consider the subsystem xl,k+l Alxl,k + Buk,
with xl,0 given. Obviously, for any input sequence u t2, we automatically have that
xl t2 and hence Xl,k ---* 0 as k oo.

Assume, therefore, that a(A) c T. For any 5 > 0, any initial state x0 and any
input sequence u, define the quadratic cost

and consider the optimization problem

(4.2) inf J(x0, u).

Note that (4.2) can be considered as a "standard" discrete-time linear quadratic prob-
lem of minimizing Y]a__0 uRuk+xD*Dxa, with R I and D 61 (see, for example,
[7]). Since (A, B) is controllable and (6I, A) is observable, the infimum (4.2) is equal to
x)P(6)xo, with P(6) the unique positive semidefinite solution of the Riccati equation

P A*PA + 52I A*PB(I + B*PB)-IB*PA.
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(In fact, P(di) > 0.) Furthermore, for any x0 there exists a unique optimal input u+
which is given by the state feedback control law

u+ -(1-4- B*P(5)B)-IB*P(5)Ax+,
and the corresponding optimal closed loop matrix

A- B(I 4- B*P(5)B)-IB*P(5)A
is stable, i.e., has all its eigenvalues in 7). Now, we shall analyze what happens if 5 0.
We claim that P(i) 0. Indeed, P(5) > 0 and P(5) is monotonically decreasing as
i 0. Hence there exists a Hermitian matrix P > 0 such that P(5) P. Clearly, P
satisfies the Riccati equation

(4.3) P A*PA- A*PB(I 4- B*PB)-B*PA.

Now, by applying Theorem 3.2 we find that the latter Riccati equation has a largest
Hermitian solution, say, P+. We contend that P+ 0. Indeed, P 0 is a solution of
(4.3) and it has the property that a(Ap) c 7) (since Ap A and a(A) c T). Thus
we must have/5 < 0. Our conclusion is that/5 0.

In order to complete the proof, let e > 0. Choose i > 0 such that xP(5)xo < e.
Choose the input sequence given by u+ -(I 4- B*P(5)B)B*P(5)Ax+. Then we
have

Ilu+ II 2 _< J (xo, u+ x )P(5)xo < e.

Since the corresponding closed loop matrix is stable, the corresponding state trajec-
tory converges to zero as k - x3. r3

We proceed by decomposing (n as follows. Let

Xx := ( r3 ker P_ IA-)rn X+(A_)

and let Pc be the solution corresponding to 12(/2) according to Theorem 3.3. Put

A := A- B(R + B*PB)-I(C + B*PA).

According to Theorem 3.3, we have X+(A) A’I. In addition, we define

A’2 := Xo(A) Xo(A_) ker A,
Xa := X_(At:) (AV()) +/- Cl X_(A+).

With respect to the decomposition n X1 @ X2 ’’3, we have

A_ 0 A22 A23 At: 0 A22 0
0 0 A33 0 0 A3

Here, we have used that A_ A’I At: X and that A_ [A’2 At: IX2. This
follows most easily by combining (3.14) and the facts that
and Pt: (AI)(:))+/- P+ (AI)(Z:)) +/-. We also have

o o o o
0 V-* V3 0 0 A33
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All 0
p+ p_ + A- 0 P2

0 P*
Pc= o

P3+3 OP3*P3+3
where P3+3 := P3 + A33"

The next lemma states that Pc yields a lower bound for the linear quadratic
problem (2.8) under consideration.

LEMMA 4.7. Suppose (A,B) is controllable, R is nonsingular, A- BR-1C is
nonsingular, and t(1) > 0 or some 1 E T. Assume further that (2.9) has at least
one Hermitian solution and assume that P_ is negative semidefinite on E. Then for
all xo and for all u U(xo) we have

J(xo u) > xPxo + Iluk + (R + B*PcB)-I(c + B*PcA)xkIIRA-B*P=B"
k=0

Proof. Let H be a matrix such that L ker H. Let 7 be such that
P_ XH*H < 0 (see Lemma 4.2). Take an arbitrary u e U(xo). It follows from
Lemma 4.1 that J(xo, u) T U {+oc}. If it is equal to +oo, then the inequality
trivially holds. Assume therefore that J(xo, u) is finite. Put

Vk Uk + (R + B*P_B)-I(C + B*P_A)xk.

From Lemma 4.3 we have

(4.4)

.a+B’P_B JT(xO, u) x)P_xo + XT+I(P- AH*H)xT+i + AI]HXT+III 2

k=O

< JT(xo, u) xP_xo + AIIHxT+II.
Since JT(xO, u) - J(xo, u) and HXT --+ O, we find that {vk} e 2. Again, using (4.4),
this implies that

lim x(P_ XH*H)xT
T

exists and is finite. Thus limT xP_xT exists and is finite. Also, since P_ -XH*H
is semidefinite, (P_ H*H)xk and hence P-xk are bounded functions of k. Denote

Yk H xk.

Then {Yk} . Since xk+i Axk + Buk, we have that {xk}, {Yk}, and {vk} are
related by

+ A_ + Bv, H "
Now decompose above: X X Xa. Since

X1 C ker H
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we have

H ( 0 D2 D3 )

for given matrices D2 and D3. With respect to the given decomposition, let

B= Bg.

B3

Since ’ is he undetectable subspace (relative o :P) of the system

it is easily verified that the pair

is detectable (relative to ). Since a(A_) c 0e
and X2 Xo(A_), we have a(A22) c

T and

Hence a(Aaa) c :D. Also we have

X3,k+1 0

Yk ( D2

A13

x3, B3

Since {vk} E t2 and {Yk} e to, by Lemma 4.5 (applied with Ca T)), we have
{x3,k} o. Now consider Lemma 4.3. We have

where

Then

T

Jr(o, u) SPco +Pcr+ + I111R+B*PB
k--O

wt: u + (n + B*PB)-I(C + B*P:A)x.
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Now x+IP_XT+I, JT(xO, u) are bounded as T -, x), and likewise X3,T+I is bounded
as T - cx). It follows that

k-O

and as R + B*PB >_ R + B*P_B > 0 we have (wk} g2. Now considering

Xk+l Axk q- Buk Axk + Bwk,

we see that x3,k+l A’33x3,k + B3wk. As a(A3 c 7) (because of the fact that
X3 X_(A)) we obtain {x3,k} e g2. Hence limk--,ooX3,k --O. Now from (4.6) we
have

JT(Xo, u) x)Pxo x+(P_ AH*H)xT+
T

AIIHxT+II 2 + IlWklI2+B*P:B X,T+1A33X3,T+1
k--O

T

> xPxo AIIHxT+II u + IIw l] 2RTB*PB
k=O

X3,TT133X3,TTl"
The desired result then follows by taking the limit T in the above
inequality.

Our next lemma states that V(xo) xPnxo, taking into account the previous
lemma.

LEMMA 4.8. Suppose (A,B) is controllable, R is nonsingular, A- BR-C is
nonsingular, and () > 0 for some T. Assume fuher that (2.9) has at least
one Heitian solution and assume that P_ is negative semidefinite on . Then for
all xo and for all

Proof. Put wk uk + (R + B*PB)-(C + B*PA)xk. om (4.6) we have for
all u 6 U(xo)

T

J (z0
k=O

Moreover xk+ Axk T Bwk so

x,+ Ae 0 x2,k + w.
X3,k+ 0 A3 x3,k B3

Now a(A22) C T, a(A3 C . By Lemma 4.6 there is w g2 such that

R+B*PB <
X3

k=0

Introduce

Uk Wk (R + B*PB)-I(c + B*PA)xk.
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Then

We now turn to the proof of Theorem 2.1.

Proof of Theorem 2.1. Part (i) is proved in Lemmas 4.1, 4.7, and 4.8. It remains
to prove (ii).

(ii) First assume that for all x0 there is an optimal control, i.e., u+ E U(x0),
for which V(xo) J(xo, u+). Choose x0 and let u+ be the corresponding optimal

+ x(xo, u+)k. By Lemma 4.7control. Put xk

xPxo J(xo, u+) > x)Pz,xo + E IlwkllR+B*PB
k=O

+ (R B*PzB)-t(C B*PA)x+. Hence wkwhere wk uk + + + 0, i.e.,

+ -(R + B*PB)-t(C + B*PA)x-uk

Since xk+ Axk + Bwk, this yields xk+ Ax+ in particular,

X2,k+l
/ 0X3,k+l

2,k

A33 X
/
3,k

As a(A3 C T we have x+3,k --* 0 as k - oc. From (4.6) we see that

JT(Xo, U+) x)Pz,xo +* + +* (P- AH*H)X+T+ $IIHXT++lll 2.X3,TT1A33X3,T+l XT+1

As JT(XO, U+) x)Pxo O, HXT+I --* 0 and -+* A x+ ---. 0 as T ---. cx:), weV3,T+ 33 3,T+l

get XT++* (P_-AH*H)X+T+t O. As P_-AH*H < 0 this gives (P_-AH*H)X+T+I --, 0
and hence P-XT -- O. In turn this implies that D2x+2,k + D3x+3, --’ 0 (see (4.5)). As
x3, --, 0 we obtain D2x+2,k -- O. Using x+2,k+l A22X2,k+ together with the fact that
a(A22) C T, this yields D2 0 (note that xo, and therefore x2,0, is arbitrary). We
conclude that

P-) =:NkerP_ker A X2 C_ ker H

Conversely, suppose that ker A C_ :Nker P_. Then we have P2 0 and P2 0.
Also D2 0. Put u {uk}, where uk is given by

uk -(R + B*PB)-(C + B*PA)xk.

Then by (4.6)
, +JT(xO, u) xoPxo X3,T+lP33X3,T+l.
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Since x3,k+l A33X3,k and if(A33)’ C :), we have X3,T+I -- O. Hence JT(Xo, u) -xPxo, so J(xo, u) xPxo. Also note that

()Xk D3x3,k --+ 0

and hence Hx3,k --+ O. Thus u E U(xo) and we can conclude that u is optimal.
The second part of (ii) was already proved (cf. (4.7)) D

REFERENCES

[1] W. A. COPPEL, Matrix quadratic equations, Bull. Austral. Math. Soc., 10 (1974), pp. 377-401.
[2] P. LANCASTER, L. RODMAN, AND A. C. M. RAN, Hermitian solutions of the discrete algebraic

Riccati equation, Internat. J. Control, 44 (1986), pp. 777-802.
[3] A. C. M. RAN AND L. RODMAN, Stability of invariant maximal semi-definite subspaces I, Linear

Algebra Appl., 62 (1984), pp. 51-86.
[4] ., Stable Hermitian solutions o] discrete algebraic Riccati equation, Math. Control Signals

Systems, 5 (1992), pp. 165-193.
[5] H. L. TRENTELMAN, The regular free-endpoint linear quadratic problem with indefinite cost,

SIAM J. Control Optim., 27 (1989), pp. 27-42.
[6] J. M. SOETHOUDT AND n. L. TRENTELMAN, The regular indefinite linear-quadratic problem

with linear endpoint constraints, Systems Control Lett., 12 (1989), pp. 23-31.
[7] H. KWAKERNAAK AND R. SIVAN, Linear Optimal Control Systems, Wiley-Interscience, New

York, 1972.
[8] J. C. WILLEMS, Least squares stationary optimal control and the algebraic Riccati equation,

IEEE Trans. Automat. Control, 16 (1971), pp. 621-634.
[9] P. LANCASTER AND M. TISMENETSKY, The Theory of Matrices, Academic Press, San Diego,

CA, 1985.
[10] W. W. LIN, A new method for computing the closed loop eigenvalues o] a discrete time algebraic

Riccati equation, Linear Algebra Appl., 96 (1987), pp. 157-180.
[11] V. MEHRMANN, Existence, uniqueness and stability of solutions to singular linear quadratic

optimal control problems, Linear Algebra Appl., 121 (1989), pp. 291-321.
[12] T. PAPAS, A. J. LAUB, AND N. R. SANDELL, On the numerical solution of the discrete time

algebraic Riccati equation, IEEE Trans. Automat. Control, Vol. AC-25 (1980), pp. 631-641.



SIAM J. MATRIX ANAL. APPL.
Vol. 14, No. 3, pp. 798-812, July 1993

() 1993 Society for Industrial and Applied Mathematics
014
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Abstract. This paper considers the solution of the homogeneous system of linear equations
Ap 0 subject to clip 1 where A E Cnxn is a singular matrix of rank n- 1, c,p Cn, and
cHA 0. It is assumed that the vector c is known. An important applications context for this
problem is that of finding the stationary distribution of a Markov chain. In that context, A is a real
singular M-matrix of the form A I QT where Q is row stochastic. In previous work by Barlow
[SIAM J. Algebraic Discrete Methods, 7(1986), pp. 414-424], it was shown that, for A an M-matrix,
this problem could be solved by solving a nonsingular linear system B of degree n- 1 that was a
principal submatrix of A. Moreover, this matrix B could always be chosen so that lIB-1112 A? 112.
Thus a stable algorithm to solve this problem could be developed for the Markov modeling problem
using LU decomposition without pivoting and an update step that identified the correct submatrix.

In this paper, that result is improved in several ways. First, it is shown that many of the results
can be generalized to the case where A is any complex matrix of degree n with rank n- 1; thus they
can be generalized to the case where A AI- QH and A is a simple eigenvalue of QH. Second, it is
shown that the update step is not necessary for the Markov modeling problem. For that problem, LU
decomposition is used without pivoting. Finally, it is shown that a more elegant characterization and
sharper error bounds are obtained for this algorithm in terms of the group inverse A#. In fact, the
error is shown to be bounded in terms of [[A#[[I [[[A[[p[[[1, which is smaller than the more traditional
condition number [[A# [[A[[1. These bounds show that the procedure is unconditionally stable.

Key words, group inverse, eigenvectors, condition numbers

AMS subject classifications. 65F05, 65F15, 65F20, 65G05

1. Introduction. We consider the problem of solving the homogeneous system
of linear equations

Ap=O

subject to the constraint

(2) clip 1,

where A E Cnxn is a singular matrix of rank n- 1, c, p E C, and

(3) CHA O.

This problem arises naturally if A AI QH where A C is a simple eigenvalue of
QH. Thus p is a right eigenvector of QH and c is a left eigenvector.

An important applications context for (1)-(2) is that of finding the stationary
distribution of a Markov chain for which we have the following definition.

DEFINITION 1.1. The Markov chain problem is that of finding the vector p in
(1)-(2) where A I- QT, c (1,1,...,1)T, and Q is row stochastic. For this
problem A, c, p, and Q are assumed to be real.

If the chain is ergodic, then Q is irreducible. Also, A will be a singular M-matrix,
thus according to the eerron-Frobenius theorem [30, p. 30] or [4, p. 27], p is unique
and positive. For practical Markov chain problems, A will be large and sparse [24].
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We consider a simple algorithm to solve (1)-(2) for p. Let A have the form

(4) A P: zH a,n

where Pj exchanges rows j and n, and P" exchanges columns k and n. It is well
known that there is always a choice of j and k such that B is nonsingular. Moreover,
if A is an irreducible M-matrix or merely irreducible and diagonally dominant, any
choice of j and k will make B nonsingular. Also, if j k, then B is a nonsingulax
M-matrix.

If we know j and k a priori, we can solve for p using the following procedure
discussed by Harrod and Plemmons [21], [20] and Barlow [1].

ALGORITHM 1.1.
1. Find the permutation matrices Pj and P’.
2. Solve B& -y by LU decomposition (or QR decomposition).
3. Let x-- Pk(&, 1)T.
4. Set p x/cHx.

In [1], it was shown that if A is an M-matrix, then there is always a choice of j
and k such that

(5) IIAtll _< IIB- II < + 1) llAtll ,
where At is the Moore-Penrose inverse of A [16, p. 243]. Thus, from the well-known
fact that [[B[12 _< [JAIl2 we have that

(6) a2(B) <_ (x/ + 1)2a2(A),

2(B)--IIBIIIIB-II, a2(A) IIAIIIIAtlI.
This result explained experiments in Harrod and Plemmons [21]. Chu [8] points out
that the factor n can be large, but, in 3, we show that, contrary to statements in
that paper, this does not adversely affect the stability of Algorithm 1.1.

In 2, we generalize this result to an arbitrary problem of the form (1)-(2) and
to any generalized inverse A- satisfying

(7) A-- AA-A.

A particularly important matrix from the class (7) is the group inverse, denoted
A#. It is the unique matrix such that

(8) 1. AA#A A, 2. A#AA# A#, 3. AA# A#A.

The group inverse exists if and only if rank(A) rank(A2) and the latter condition
holds since zero is a simple eigenvalue of A. As shown by Meyer [25], it yields a more
elegant characterization of the problem (1)-(2) than does the Moore-Penrose inverse.
From Meyer [25], we note that At A# if and only if c- p.

In [1], we showed that for the Markov modeling problem, it is easy to choose j
and k (with j k), and Algorithm 1.1 would just have to be followed by an update
step such as in [13] after choosing the value of k. We show here that the update step
can be avoided. The results in 2 are proven using different side conditions for (1).
General side conditions for (1) are discussed by Meyer and Stewart [26].

In 3, we show that, with a slight modification, Algorithm 1.1 is stable for the
Markov chain problem and for any problem of the form (1)-(2) as long as
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1. The left eigenvector c is known;
2. The right eigenvector p is simple.

These results are characterized in terms of the group inverse and two measures
of the condition in the 1-norm. The first is the "group" condition number

(9) (A) IIAIIIIA#11t,
and the second is the "effective" condition number

Throughout the paper IAI denotes the matrix IAI (la  l) and IPl is the vector

IPl (IPtl, IP21,..., IPI)T. Since IIPlI 1 for the Markov modeling problem, we have

(A) (A). om our tests in 4, (A) seems to be a more reliable estimate

of the condition of the problem (1)-(2). Good estimates of (A) and (A) can be
obtained using the Hager-Higham [19], [22] method. A condition number of this form
for the problem (1)-(2) w introduced by Geurts [15].

The term "effective" condition number is similar to a term used by Chan and
Fousler [7] and h similar implications here, but our definition is slightly different
from theirs.

As shown by Harrod and Plemmons [21], we can use Gaussian elimination without
pivoting [12], which w first advocated for this problem by nderlic and Mankin

[10]. Golub and Meyer [17] discuss the use of orthogonal factorization for dense
matrices. It is ey to use standard sparse matrix software such SPARSPAK-A or
the Harwell code MA28 when A is lrge and sparse. Static storage allocation can be
used throughout the computation.

Contrary to statements by Chu [8], who advocates a more expensive bordering
strate along with a rank revealing orthogonal decomposition [3], [9], [6], [5] for this
problem, the fact that we can use Gaussian elimination without pivoting represents
significant savings in storage. For large sparse systems, orthogonal decomposition
involves considerably more storage and operations [14].

Section 5 gives the conclusions to our paper.

2. Perturbation results for the problem. Suppose that we have obtained an
approximate solution p to (1)-(2) by some numerical method. Using the techniques
of backward error analysis, we have that stisfies

(11) A=r,

(12) cH 1 + e,

where r and e are the residual errors in computation. Although A is singular, (13) is
clearly consistent. Thus, if we let Ap-/- p, then

(13) AAp r,

(14) C
HAB

is consistent.
All solutions of (13) can be written

(15) Ap A-r + p,
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where a is a scalar. This scalar is determined by side conditions of the form (14).
However, if A- A#, and if we use the condition (14), then

cHAp cHA#r + ocHp e.

Since r A/5 and clip-- 1, we have

cHA#Ap + acHp
cHAA#p + a a

since cHA O. Therefore,

(16) Ap A#r + ep.

Thus the solution to (13)-(14) is quite elegant in terms of the group inverse. We now
give a lemma that uses (15) and (16) to relate the Moore-Penrose inverse and the
group inverse. We present them without proof; their proofs are simple and contained
in [2].

LEMMA 2.1. For every r E Range(A)

(17) A#r =Atr- (cgAtr)p,

(18) Ar A#r (pHA#r)
P.pHp

For the Markov chain problem, we have that

Since c e (1, 1,..., 1)T and p >_ 0. Hence we have the following corollaries
bounding the norm of Atr and A#r.

COROLLARY 2.2. If clip IlCll IIPlI1 1 then for each r e Range(A), we
have

1
(19)

1 + x/-d IIArlll <- IIA#rlll <- 2Ar"

In the next section, we use a similar technique to analyze Algorithm 1.1 and to
generalize results in [1].

3. Analysis of the algorithm to compute the null vector. In this section,
we will show that Algorithm 1.1 obtains a solution to (1)-(2) that is as good as can
be expected. We begin our analysis of the algorithm with a technical lemma that will
shorten many of our arguments.

LEMMA 3.1. Let Cn-1 be a vector that satisfies

(20) B -y + rB.

Let A have the form (4). Let c (cl,..., c,_1, cn)T satisfy (3), assume cn O,
and define d -cgl(cl,...,cn_l)T. Let I1" 118 and I1" IIq be Hhlder norms. Then
2. (gT, 1)T satisfies

(21) A2=rA,
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where

Thus

Proof. The hypothesis implies that

Since cHA -0, we have

so that

(B y)2 rB.

A= (rB)PB

(23) PB dHrB
Thus by Hhlder’s inequality

IIAII -< IIrB I1 / IPB
<_ IIrB II / dH’BI

We now give a 1emma on the perturbation theory of the system (1).
LEMMA 3.2. Assume the hypothesis and notation of Lemma 3.1 and let Ax

(5c , O)T where & solves B2c -y. Assume also p, 0 where p (pl,... ,p,)T is
the solution to (1)-(2). Then

(24) IIAxll-IIB-rBII <_ 1+ Ip,l q / q- ’
where A- is any matrix satisfying (7).

Proof. We have that (, 1)T solves

A rAy eHn 1,

where en (0,..., 1)T, and from Lemma 3.1, rA satisfies (22). Clearly, x (&, 1)T
solves

Ax O, eH x 1,

so that Ax 2 x (5c- x, O)T (B-lr, O)T solves

AAx rA, eHn Ax O.

Thus

(eH A-rA)Ax A-rA eH p p,
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where A- is any matrix satisfying (7). Thus

(26) _< 1 + Ipl s

The use of norm inequalities and equation (22) establishes the lemma. D
There is an immediate corollary to this result that is relevant to the Markov chain

problem.
COROLLARY 3.3. Let Pj be the permutation matrix that exchanges rows j and n

of A. Then there exist j and k such that if

B y )p,A=Pj zH a,.

then

(27) 2(1

(28) IIB-II (1 + v/)(1 + v/n- 1)IIA-II,

.for any matrix A- satisfying (7).
Proof. Simply choose j such that Icjl--Ilcll and k such that IPkl ]lP]]o and

apply Lemma 3.2.
If we take A- At, then (28) is a generalization of the bound (5) from [1].
For the Markov chain problem, IIPlI1 1 and c e (1, 1,..., 1)T, so these

conditions are always met. In general, this gives us

(29) [IB-11[1 _< 2 1 + IIA-[[.

Algorithm 1.1 actually solves (1)-(2) more accurately than Lemma 3.2 would
suggest. The following analysis indicates this. First, we begin with a technical lemma.

LEMMA 3.4. Let E Cn be the floating point computation of

(30) /5 fl

where c, 2 C. Then

1 + el D’,(31) /5= ell,2

where

(32) lell (n + 2x/- 1)llellllplllU + O(u2),

(33) liD- 1111 <_ 5/u + O(ue).
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Proof. From [33, p. 447], for two complex numbers 1 and 2, we have

(34) fl(l + 2) (1 + 2)(1 + 61), 1611 <_ u,

(35) I() (1 + ),

(36) fI(i/2)- ((1/(2)(1 -I-63),

Here 5i, i 1, 2, 3, are complex numbers.
Clearly, (34) and (35), plus standard results for inner products, yield the bound

(37)

If we divide by cH’, we obtain

(38) lfl(c",) c",l
I"I -< ( /2- 1)llllllpll / o().

Thus

The complex division yields the result

where liD- 11 < 5v/u + O(u).
We can now prove the theorem that establishes the stability of Algorithm 1.1.
THEOREM 3.5. Let be the solution to (20) and let be the computed result of

Algorithm 1.1 .from (30) with (&T, 1)T. Assume the hypothesis and notation of
Lemma 3.1 and that rB in (20) satisfies

(39) Ilrsll _< (n)llAIlllllu + O(u:),

where (n) is a modestly growing function of n. Let p be the exact solution of (1)-(2),
then

(40) II/Xpll
I1:11

(41)

<_ [(1 + Ildll)(n) + 5x/]:(A)

/( / 2)llllllpll / O(u),

where al#(A)= IIAIIIIAII is the "group" condition number. If IIrBII1 satisfies

(42)

then

(43)
()

IIApll _< ([1 / Ildll](n)/ 5v/)E(A)u
/(n / 2/:)llcllllplllu / O(u),
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where E(A) is as defined in (10).
Proof. From the hypothesis, we have that

From Lemma 3.4, we have

(45) cH 1 + e2

and

where

and D is a diagonal matrix such that

liD 1111 < 5"/u + O(u2).

Thus

l+elIIrAIl icHl
[tJAelll + IIA(D- I)ll].

The first term is bounded using Lemma 3.1, and by standard norm inequalities, we
have

(46) IIrAlll <_ [(1 + Ildll)O(n) + liD III]IIAII1 L IcHel I1111 + 0().

We note that, because of the bound on D and the fact that u is the machine unit,
then D is nonsingular and IID-1111 _< 1 + 5x/u + O(u2). Thus

(47)
1 + el -lp < Ilpll +IHI I111 liD I1 -< liD- IIIIPlI1

Combining (46) and (47)yields

IIrAlll _< [(1 + Ildll)O(n)+ 5x/-]llAIIlllPlllu + O(ue).

Now to bound the error in p. Using (15), and taking norms, we have that

IIP-plI < IIA#IIIlIrAII / IIIIplll.

Using the bound for IIrA ll and 121 and dividing by IIPlI1 yields (40).
A similar derivation with the assumption (42) for IIrBII1 allows one to substitute

to obtain (43). r
Remark 1. Meyer and Stewart [26] describe a strong relationship between IIA# 112

and the sep(.) function that is commonly used to bound the error in eigenvectors [28].
All of the bounds given in this paper can be easily reworked in terms of sep(.), but
they are somewhat less elegant.
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Remark 2. Funderlic and Meyer [11] use the condition number max(,,j)lal. The
result here can be made consistent with theirs from the observation that

where IIAllo, max,,,: llAxlloo maxl<i,d<n lal. Thus we can obtain bounds

on IIApll instead of IIAplll and define condition numbers n,(A)- IIA#11,lllAIli
and nE,(A) --IIAIIo,lllAIIpllll. The comparisons between these two condition num-

bers will be identical to those between n(A) and aE(A). We choose the latter
because known software [19], [23] can be used to estimate them [2]. Also, this keeps
as many of the bounds as possible in the same family of norms.

A similar line of analysis can obtain the componentwise bound

I(Ap)il < ([1 + Ildllc](n)+ 5v) max

+ (n + 2/)l]clllpi + O(u2), i 1, 2,..., n

under the assumption (42).
Since c (1, 1,..., 1)T for the Markov chain problem, the bound in Theorem 3.5

simplifies. The corollary below summarizes a simple version of this bound.
COROLLARY 3.6. Assume the hypothesis of Theorem 3.5. If A arises out of the

Markov chain problem in Definition 1.1, then

IIApll <_ [2(n) + 5x/]a (A)u + (n + 2/)u + O(u2).

Under the assumption (42), we have that

IIApll _< [2(n) + 5x/]aE(A)u + (n + 2V)u + O(u2).

The above results mean that for any problem of the form (1)-(2) where the right
null vector p is simple and the left null vector c is known, we need only be concerned
about the accuracy of solving the nonsingular linear system

(48) -u.

That problem is considered below.
The recommendations in the remainder of this section concern only the Markov

modeling problem where A is real and has the form A I- QT, where Q is row
stochastic and is thus diagonally dominant. In that case

B

where bdd > 0 and bid G 0, j; thus B is a nonsingular M-matrix. Varga and
Cai [31] show that we can perform Gaussian elimination without pivoting and the
diagonal entries bdd should remain positive while the off-diagonal entries bid, i j
remain nonpositive throughout the computation. Thus, if for some k, bkk becomes
negative or zero during the course of the algorithm, then B must be singular to
machine precision.
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Since B is diagonally dominant, combining results of Wilkinson [32] and Reid
[27], we have that Gaussian elimination without pivoting yields an LU decomposition
such that

where

L(U f) (B y) + E, E-

i- 1,2,...,n- i, j 1,2,...,n.

Here mij is the number of operations performed on the entry bij. Thus Gaussian
elimination on B satisfies a bound of the form (39). Neglecting the back substitution
errors which satisfy similar bounds [33], we have

(B y)p rs -Ep.

We can now say that

(49) IIrBII1 --IIEplll <_ 6.020(n)lldiag(a11,...

where

(52)

where

(50) 0(n) max mijnj,
(i,)

(51) n number of nonzeros in column j of L and U.

We can now give a theorem that shows that Algorithm 1.1 obtains answers that
are as good as can be expected for the Markov modeling problem.

THEOREM 3.7. Let A I- QT where Q is an irreducible row stochastic matrix.
Let Ap 0 be solved by Algorithm 1.1 where the system Bx -y is solved by
Gaussian elimination without pivoting. Neglecting the error from back substitution, if
no diagonal entry of B becomes negative or zero, then

IIAplI1 _< [0(n) + 5/]aE(A)u
+ (n + +

0(n) 6.02 max mijnj,
(,)

mij number of operations performed on entry aij,

nj number of nonzeroes in column j of L and U.

Proof. It suffices to show that

(54) IIrBII1 <_ 1/2o(n)lllAtlpllllu.
We then use Theorem 3.5.

The above analysis yields (49). Let/) diag(a11, a22,..., ann). We have that

(55) IAIIpl Ibpl + IA- bllpl.

From Ap 0 and the fact that p >_ 0,/ >_ 0, and A- b <_ 0, we have

(56) bp -(A- b)p >_ 0.
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TABLE 1
Residuals and forward error ]or random matrices.

Quantity Maximum Average
1.663E-13 1.307E-13

IIrAII1 1.S84E-13 1.450E-13
[[Apl] 8.313E-7 2.859E-7

Combining (55) and (56)yields

IAiipl-- 2iDpl.

Thus from (49), we get (52). [3

We consider the implementation of Algorithm 1.1 for the Markov modeling prob-
lem. In the general case, we recommend the use of the orthogonal factorization
approach of Golub and Meyer [17].

The main remaining difficulty in solving (48) is if B turns out to be singular to
machine precision. For the solution of (48), we have that B is a nonsingular M-matrix.
Thus B (bij) where bj > 0 and bij, i j, and moreover, in exact arithmetic, these
entries will not change sign in the course of elimination [31]. However, if B is ill
conditioned, a diagonal entry could become negative or zero because of rounding
errors. If that occurs (if, say, bkk akk <_ 0), then we can use the fact that akk

ni=k/l aik when it is time to eliminate column k. This technique was introduced
by Grassman, Taksar, and Heyman [18]. A special case of that method for nearly
uncoupled problems was analyzed by Stewart and Zhang [29]. We then proceed with
the elimination. Thus breakdown in Gaussian elimination can be completely avoided
and the error bounds given here are unconditional.

4. Tests using the algorithm. The test program was written in FORTRAN
77 and the test runs were done on a SUN 4 in the author’s office at the Pennsylvania
State University. The estimated machine precision was 5.960 10-s. We did one
large random test set plus two particular ill-conditioned problems.

Example 4.1. We tested Algorithm 4.1 with 500 randomly generated dense 50 50
matrices. These matrices were of the form

ajj 0.8e(j-1), w In(10-7)/49, j 1, 2, n,

aij --ij ajj/j,

where f -]iCj i and aij are random numbers between 0 and 1. This method
gives a random matrix A such that A is a singular irreducible M-matrix. This always
insured that IIAII1 1.6.

Using the Hager-Sigham [19], [22] method as discussed in [2], our estimates of
IIA#111 ranged from 3.309 106 to 1.136 107. In the traditional sense, these matrices
are very ill conditioned. According to the a(A) bound, one should expect IIAplll to
be about 10-1 or 10-2 However, the aE(A) estimates are much smaller. They ranged
from 7.431 to 25.30; thus Algorithm 4.1 should obtain accurate answers, which it did.
This is demonstrated in Tables 1 and 2.

Here

(57) est.A lirA I[1 * cond.est.,
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TABLE 2
Ratios of residuals and estimates to actual errors.

Quantity Maximum Average Minimum

rA[ll 1.392 1.112 1.001

IIAplI1 1.415 5.343E-1 5.524E-2est.A

IIAPlI1 1.970 6.239E--1 5.585E-2est.B

IIAPlI1 1.880 6.094E--1 6.354E-2est.Z

(58) est.B IIrB II1 * cond.est.,

(59) est.Z IIIAIIpllll cond.est. u,

where cond.est, is the Hager [19] estimate of IIA#111 and u is the estimated machine
precision. Thus we note that both est. A and est. B are good estimates of IIAplll.
None of the 500 linear systems were determined to have a rank deficiency of greater
than one.

The remaining two examples are taken from Harrod and Plemmons [21]. For both
examples, est. A, est. B, and est. Z are as defined in (57), (58), and (59).

Example 4.2.

1.0E- 06 -0.4 -5.0E- 07 -5.0E- 07 -2.0E- 07
-1.0E 07 0.7 0 0 -3.0E 07
-2.0E 07 0 1.0E 06 0 -1.0E 07
-3.0E 07 0 0 1.0E 06 -4.0E 07
-4.0E- 07 -0.3 -5.0E- 07 -5.0E- 07 1.0E- 06

We obtained the following computational results.

IIAII1-- 1.4, IIAII 1.007E 06.

The value for IIAtll is from [21].
The Hager estimate or IIA#II 4.444E d-05. Thus, from the a#(A) estimate

one should expect IIAplll to be about 10-2 or 10-3. However, the Hager estimate of
aE(A) is only 1.011; thus we should expect, and do obtain, good answers.

IlApll 2.061E 08;

IIrBIl 4.441E- 14, IIrAIl 6.561E- 14;

IIrAll/llrBIl 1.489;

IlAPll/est.A 0.7068, IIAPll/est.B 1.052;

IIApll/est.Z 0.4952.

The 8olution p is

p (0.315217, 1.95652E 07, 9.81884E 02, 0.235145, 0.351449)T.
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Example 4.3. Let

(1 ( QO
where

0)Q +(+),

0.1 0.3 0.1 0.2 0.3
0.2 0.1 0.1 0.2 0.4
0.1 0.2 0.2 0.4 0.1
0.4 0.2 0.1 0.2 0.1
0.6 0.3 0.0 0.0 0.1

0.1 0.2 0.2 0.4 0.1
0.2 0.2 0.1 0.3 0.2
0.1 0.5 0.0 0.2 0.2
0.5 0.2 0.1 0.0 0.2
0.1 0.2 0.2 0.3 0.2

Then A I-QT where Q DQ(e) and D diag(dl, d2,..., dl0) is chosen so that Q
satisfies Qc c, c (1,1,..., 1)T. This is a very ill conditioned problem of a Markov
chain with two loosely coupled sets of states. We chose e 1.0E 06.

The Hager estimate of IIA#111 2.278E / 06. Thus, according to the a(A)
estimate, one should expect IIAp}ll to be about 10-1 or 10-2. In this case, that is

accurate, but that is because the aE(A) is estimated to be 4.032E + 06, so it is not
much more optimistic.

[IAplll 8.423E 01;

[Ir- [11 4.504E 08,

IIrAII/IIBII- 1.530;
IIApii/est.A 0.5365;
I{Apll/est.B 0.8210;

IIAIIIt.Z o.5o.

IlrAll 6.891E 08;

The solution p is

p (0.124286, 9.87915E 02, 3.71796E 02, 7.43592E 02, 9.772923E 02,

0.124286, 0.135159, 7.20948E 02, 0.135012, 0.101102)T.

The above tests confirm that this algorithm will always yield a small residual for
the problem (1)-(2). Note that although al#(A)is large for all of the above problems,
only the last example obtains poor results. That is because it is the only one for
which al

E (A) is large.
We note that the last example is a loosely coupled Markov chain. Stewart and

Zhang [29] describe a variant of Gaussian elimination that obtains better error bounds
for this particular class of problems. That procedure has a more restrictive pivoting
strategy.

5. Conclusion. The partition algorithm described by Harrod and Plemmons
[21] is stable provided that we use the diagonal adjustment technique of Grassman,
Taksar, and Heyman [18]. Thus for the large sparse problem that normally arises in
questing models, we can fully exploit the nonzero structure.

Error bounds in terms of IIA#11i}llAIIpllll seem to give very accurate estimates of
the error in computing the null vector p.
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CHOOSING THE INERTIAS FOR COMPLETIONS
OF CERTAIN PARTIALLY SPECIFIED MATRICES*

JEROME DANCISt

Abstract. This paper classifies the ranks and inertias of Hermitian completions of certain
band matrices and other partially specified Hermitian matrices with chordal graphs and specified
main diagonals. Some results are also presented on positivity- and negativity-preserving Hermitian
completions. To complete partially specified Hermitian matrices with chordal graphs the inductive
scheme presented by Grone, Johnson, Sa, and Wolkowicz [Linear Algebra Appl., 58 (1984), pp. 109-
124] is used. To complete Hermitian band matrices the inductive scheme presented by Dym and
Gohberg [Linear Algebra Appl., 36 (1981), pp. 1-24] is used. In both schemes, each inductive step is
a one-step completion problem. At each inductive step, the classification of the kernels of one-step
completions is used [Linear Algebra Appl., 128 (1990), pp. 117-132]. This allows one to choose both
the rank and the inertia of Hermitian completions of certain partial specified Hermitian matrices,
while in Johnson and Rodman [Linear and Multilinear Algebra, 16 (1984), pp. 179-195], the rank
cannot be chosen and the inertia can be chosen only for maximal rank completions.

Key words, matrix, Hermitian, rank, inertia, completion, minimal rank

AMS subject classification. 15A57

1. Introduction.
DEFINITION. We say that an n n matrix R (rjk) is an m-band matrix with

bandwidth m if rjk 0 for all Ik-jl > m, and an n n Hermitian matrix F (fjk) is
a completion of such a matrix R if fjk rjk for all ]k j] <_ m. A partial Hermitian
matrix A is one in which some entries are specified and others are left as free variables
(and aij ai among the specified entries). A Hermitian matrix F (fjk) is a
completion of such a matrix if F A at the specified entries.

DEFINITIONS. The inertia of a Hermitian matrix H is a triple In H (r, , )
consisting of the numbers of positive, negative, and zero eigenvalues of H. We let
(H), (H), and 5(H) denote the three coordinates of In H. The r(H), (H), and
5(H) are called the positivity, negativity, and nullity of H. The positivity of a partial
specified Hermitian matrix A is the maximum number of positive eigenvalues for all
the principal submatrices of A. The negativity of a partial specified Hermitian matrix
A is the maximum number of negative eigenvalues for all the principal submatrices
of A. The positivity and negativity of a partial specified Hermitian matrix A are
denoted by *(A) and *(A). A Hermitian completion F (fjk) of a partial specified
Hermitian matrix A is positivity (and negativity) preserving if (F) r*(A) (and
u(F)- u*(A), respectively).

This paper presents our results on completing certain types of Hermitian band
matrices and partial Hermitian matrices (with chordal graphs and specified main di-
agonals) to

(i) Hermitian matrices with prechosen inertia, or
(ii) Hermitian matrices with the same positivity and negativity.
In a companion paper [6] we will present our results on positive semidefinite

completions. (See Theorem 1.13 at the end of this section.)

*Received by the editors March 5, 1990; accepted for publication (in revised form) October 17,
1991.
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These results are consequences of our classification in [4] of the kernels of "bor-
dered" Hermitian matrices (defined in 2). This classification was a consequence of
our generalized Poincar inequalities.

DEFINITION. A maximal submatrix within a partial Hermitian matrix is a (Her-
mitian) principal submatrix that is maximal among the specified Hermitian principal
submatrices. For an m-band n n matrix R there are n- m maximal Hermitian sub-
matrices, each an (m -k 1) (m + 1) submatrix; we denote them by R1, R2,..., Rn-m
when ordered from the upper left corner.

Dym and Gohberg [7] started this type of work by showing that, when all the
maximal submatrices of a Hermitian band matrix R are positive definite, then R has a
Hermitian completion F that is also positive definite, and F-1 is also a band matrix.
They report that this result has connections with signal processing and system theory.

Grone, Johnson, Sa, and Wolkowicz [10] generalized the concept of a band matrix
and a block-band matrix to that of a G-partial Hermitian matrix when G is a chordal
graph. A G-partial Hermitian matrix is a partially specified Hermitian matrix whose
associated undirected graph is (7. This undirected graph G is chordal if it has no
minimal simple circuit with four or more edges. (Equivalently, every polygonal simple
closed curve with four or more edges has a chord.) The relevant properties of chordal
graphs are listed early in 5. In [10], the chordal graph structure was used to organize
the proof therein that there is a positive definite completion (positive semidefinite
completion, respectively) of any G-partial Hermitian matrix R when G is a chordal
graph and all the principal maximal submatrices of R are positive definite (positive
semidefinite and the main diagonal of R is specified, respectively).

Of course, the inertia of a Hermitian completion F of a partial Hermitian n n
matrix A must be consistent with Poincare’s inequalities and Cauchy’s interlacing
theorem.

Poincard’s inequalities. For each principal submatrix K of a Hermitian matrix
F,

(1.1) r(F) >_ rr(K) and (F)>_ (K),

r(F) + 5(F) >_ r(K) + 5(K) and (F) + 5(F) > (K) + 5(K).

We now state two special cases in which Poincar’s inequalities played an impor-
tant role in the inertias of possible completions.

THEOREM 1.1 [11, Cor. 6]. Let A be a partial Hermitian n n matrix with a
chordal graph whose maximal specified principal submatrices are all invertible. Given
nonnegative integers and with r + n, such that

r > r*(A) and >_ *(A),

there is an invertible Hermitian completion F of A with In F (rr, , 0).
Johnson and Rodman’s main result is the following.
THEOREM 1.2 [11]. Each partial Hermitian matrix A with a chordal graph has

a Hermitian completion F such that

u(F) + 6(F) Max{u(Ki) + 6(Ki)},

and hence
5(F) <_ Max{5(K)}



CHOOSING THE INERTIAS FOR COMPLETIONS 815

.for the maximal specified principal submatrices (Ki} of A.
Johnson and Rodman [11] leave open the question of choosing the ranks of Her-

mitian completions of partial and banded Hermitian matrices. They also leave open
the question of choosing inertias for singular Hermitian completions of partial and
banded Hermitian matrices even when all the specified principal matrices are invert-
ible. This paper will address these two questions.

We have extended Poincar’s inequalities to Theorem 1.2 of [4] on bounded self-
adjoint operators. We restate part of this theorem as Theorem 1.3 below. The symbols
P, PS, r, rl, , and 1 of Theorem 1.2 of [4] become H, Ho, r(H), r(Ho), (H), and
(Ho), respectively of Theorem 1.3 here; A remains as A.

THEOREM 1.3 (generalized Poincar inequalities). Let

be a 2 x 2 block Hermitian matrix with B an r r submatrix. We set

A rank(Ho, A)* rank(Ho) Dim KerHo Dim Ker(Ho, A)*.

Then (a) r(H) > r(H0)-k A and (b) (H) > (H0)-k A.
Remark. The inertia of every Hermitian completion of a partial specified matrix

must be consistent with Theorem 1.3 in addition to being consistent with Poincar’s
inequalities.

The following constrained Hermitian completion result is a special case of Ex-
tension Theorem 1.3 of [2]. It is an example of being able to build a Hermitian
completion (of a partial matrix) with any given inertia, which is consistent with The-
orem 1.3. Here, in addition to being able to choose the inertia of the completion, we
can choose the ranks of a column decomposition as well. The ri and Ai of Theorem
1.4 below were the (rr -k -+-i- d) and (i- d) of Extension Theorem 1.3 of [2].

THEOREM 1.4. Given s Hermitian matrices Hll,H22,... ,Hss, with inertias

InH (rr, , ), let each n r q- -+- and let n P.n. Let S be the block
diagonal matrix with H,H22,... Hss as the blocks on the main diagonal. Choose
any nonnegative integers r r2, rs such that

RankHii<ri<ni for each i= l,2,... ,s.

Set
Ai=ri-RankHii for each l, 2, s.

Choose any nonnegative integers r, , and 5 such that n r + + 5 and

r>Max{rr+Ai}, v>_Max{a+A}, and >_ E A.

Then there is a block column Hermitian completion H (M1, M2,... Ms) of S, with
each Mi, an n x ni non-Hermitian completion of Hii such that In H (rr, , i) and,
in addition, each Mi satisfies the constraint equation Rank Mi ri.

Additional results on Hermitian completions of band matrices or partial Hermit-
ian matrices appear in [5]-[11].

The next example demonstrates the importance of Theorem 1.3 when one is trying
to determine the possible ranks of Hermitian completions of partial specified matrices.
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Here,

Example 1.5. Let us examine this 2-band Hermitian matrix

S(a,b,c)

4 0 0 a* b*
0 0 0 1 c*
0 0 0 0 2
a 1 0 0 0
b c 2 0 0

R1-- 0 0 0 R2- 0 0 0 and R3 0 0 0
0 0 0 1 0 0 2 0 0

(1.3) In Rl (1, 0, 2) and InR2-(1,1,1)-InR3.
10The submatrix c 2) ensures that

(1.4) [Ker (R1 I2)] N Ker S(a, b, c) 0_

for all a, b, and c. Therefore (1.3), (1.4), and Theorem 1.3 with A 2 imply that In
S(a, b, c) >_ (3, 2, 0). We note that S(a, b, c) is a 5 x 5 matrix. Thus, consistency with
Theorem 1.3 implies that

In S(a, b, c) (3, 2, 0).
In contrast, the Poincar6 inequalities alone only imply that

InS(a,b,c) >_ (1, 1,0),

r(S(a, b, c)) q- 5(S(a, b, c)) >_ 2,

and
(S(a, b, c)) -b 5(S(a, b, c)) >_ 2.

Hence, the Poincar(i inequalities alone do not rule out various impossible inertia
such as (1,1,3), (2,3,0), or (1,3,1), which are ruled out by Theorem 1.3.

In the last example, we saw the role Theorem 1.3 plays as it is applied directly
to a partial Hermitian matrix. The next example is more subtle.

EXAMPLE 1.6. Let

Z 0

Then Rank F(0) 0 and Rank F(z) 2 for all z 0.
Remark. In this example, it is possible to obtain both low-rank and high-rank

completions. It is not possible to obtain an intermediary-rank completion, that is,
Rank F(z) is never one. Here, when one introduces a positive eigenvalue, the ker-
nel of a maximal specified submatrix will not appear in the kernel of the Hermitian
completion, and this (by Theorem 1.3) forces the existence of a (possibly unwanted)
negative eigenvalue as well.

These last two examples and Example 1.12 as well demonstrate that it is not
always possible to build Hermitian completions with all the inertias that are consistent
with Poincar6’s inequalities.

In Theorems 1.7 and 1.11, we present situations in which Hermitian completions
that have all the possible inertias consistent with Poincar6’s inequalities may be con-
structed.
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THEOREM 1.7. Given a Hermitian m-band n n matrix R, suppose that each of
the n- m maximal submatrices R1, R2,... Rn-m of R is an invertible matrix. For
any potential inertia (, , ), r - - n, such that

Max{r(Ri),i=l,2,...,n-m} and _>Max{(Ri),i=l,2,...,n-m},

there is a Hermitian completion F of R such that

InF (r, , ti).

The proof of this theorem is presented in 4.
As noted in Theorem 1.1, the case when the Hermitian completion F of Theorem

1.7 is invertible (and hence 5 0), was established by Johnson and aodman [11].
DEFINITION. The maximal Hermitian m m submatrices of the m- 1-band n n

matrix made from an m-band matrix R by setting the outside pair of diagonals to zeros
shall be called the almost-maximal Hermitian submatrices. We denote these n-m+ 1
submatrices by R, R,... R_m+ when ordered from the upper-left corner.

In our earlier paper [4], we found it useful to describe the connections between
the kernels of submatrices of a given matrix in the following manner.

Notation for identified subspaces. Given submatrices

Sk (aij, Lk <_ <_ Nk and Jk

of an n m matrix M, there are the natural injection maps

Domain of Sk -- Domain of M C",

where k(v) (0, 0,..., 0, v, 0,..., 0) and there are Jk- 1 zeros placed before the
vector v and m Kk 1 zeros placed after the v, for each k. Thus each k(Ker Sk) C
Cm, and we identify KerSk with tk(KerSk), for each k. More generally, for any
submatrix S of M, there is the orthoprojection

P" Domain of M Domain of S

and the natural (coordinate by coordinate) injection map

Domain of S --. Domain of M C"

such that P is the right inverse of . We identify each Ker S with (Ker S). Therefore,
we will write

Ker $1 + Ker $2 +... + Ker Sr

as a shorthand notation for the nondirect sum of the subspaces

(Ker S) q- 2(Ker $2) +..-+ es(Ker St).

We now present our main results on positivity- and negativity-preserving Hermit-
ian completions as Theorems 1.8 and 1.10 below.
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THEOREM 1.8 (positivity- and negativity-preserving completions). Given a Her-
mitian m-band matrix R, let R1,R2,... ,Rn-m and R,R,... ,Rn_m+ be the max-
imal and almost-maximal Hermitian submatrices of R (all ordered from the upper-left
corner). Suppose that

5(Ri) >_ 5(R) and ((ii/l) >_ ((R) for each i- 1,2,... ,n-m.

Then there is a Hermitian completion F of R, such that

r(F) Max {r(Ri), i 1, 2,..., n-m} and (F) Max {(Ri), i 1, 2,..., n-m}.

Also,
Ker F D KerR + Ker R2 -... T Ker R-m,

where each Ker Ri is considered as a subspace of (n in the manner of the notation

for identified subspaces.
The proof of this theorem is presented in 3.
Remark. We note that the band matrix in Example 1.5 shows that the conclusions

of Theorem 1.8 need not be achieved when the hypotheses are not satisfied.
The next example shows that a minimal rank Hermitian completion may be

unique even when the minimal rank non-Hermitian completions are plentiful.
EXAMPLE 1.9. Let R be the 0-band matrix

R= ? 0 ?
? ? 1

We observe that R has an infinite number of completions with rank one, but that

F= 0 0 0
0 0 1

is the unique minimal rank Hermitian completion with rank one.
THEOREM 1.10 (positivity- and negativity-preserving completions). Let R be a

G-partial Hermitian n x n matrix where G is a chordal graph and the main diagonal
of R is specified. Let R1, R2,... Rs be the maximal specified principal submatrices of
R. For each principal submatrix Sj of a specified maximal principal submatrix R of
R, we suppose that

Ker Ri D Ker Sj.

Then there is a Hermitian completion F of R, such that

(F) Max {r(Ri), i 1, 2,..., s} and (F) Max {(Ri), i 1, 2,..., s}.

Also,
Ker F D Ker R1 T Ker R2 T’" - Ker R8

(where each Ker Ri is considered as a subspace of Cn in the manner of the notation

.for identified subspaces).
Remark. Because of Poincar’s inequalities (1.1), we observe that the matrix F

supplied by Theorems 1.8 and 1.10 must have the minimum possible rank among all
Hermitian completions of the given matrix R.
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The proofs of Theorems 1.10 and 1.11 are presented in 5.
We admit that the condition Ker Ri Ker Sj in Theorem 1.10 is quite strong

and unnatural. Nevertheless, Theorem 1.10 is crucial for our proof of Theorem 1.11.
Remark. For band matrices we only required that the maximal principal sub-

matrices be invertible (in Theorem 1.7), but for partial matrices with chordal graphs
our proof will require that all (including the nonmaximal) principal submatrices be
invertible in order that we may freely choose the inertia (Theorem 1.11).

THEOREM 1.11. Let R be a G-partial Hermitian n x n matrix where G is a
chordal graph and the main diagonal of R is specified. Suppose that all the specified
principal submatrices R1, R2,... Rs of R are invertible. For all nonnegative integers
(r, ,, 5), r + + 5 n, such that

Max{r(Ri),i 1,2,...,s} and >_ Max{(Ri),i 1,2,...,s},
there is a Hermitian completion F of R such that

In F

Remark. All the results stated in this paper are also valid for real symmetric
completions when the partial Hermitian n )< n matrix is a real symmetric matrix.

EXAMPLE 1.12. Let

R= 2 x 1
? 1 1

where x R(2, 2) is unspecified.
We note that the graph is chordal and that each of the two specified principal

submatrices of R is invertible, and has rank one and inertia (1,0,0). But as soon as x
is specified there will be a 2 x 2 specified principal submatrix with rank two and inertia
not equal to (1,0,1) (since x cannot be both 1 and 2). Hence, there is no Hermitian
completion with inertia (1,0,2).

Remark. This matrix R satisfies all the hypotheses of Theorems 1.10 and 1.11
except that the main diagonal is not specified and there is no positivity- and negativity-
preserving Hermitian completion of R with inertia (1,0,2). Thus Example 1.12 demon-
strates the necessity of the condition that the main diagonal be specified in the state-
ment of these two theorems.

Remark. Here we announce the next theorem, which shows that there are no
gaps in the possible ranks for the positive semidefinite Hermitian completions of a
partial Hermitian matrix with a chordal graph and a specified main diagonal. This is
in contrast to the situation in Example 1.6 and in Lemma 2.4 (when InH1 InH3),
where there is a gap in the possible ranks for the (one-step) Hermitian completions of
the band matrices listed there.

THEOREM 1.13 (possible ranks for positive semidefinite completions). Let R be
a G-partial Hermitian n x n matrix where G is a chordal graph and the main diagonal
of R is specified. Suppose that each of the maximal submatrices R,R2,... Rs is a
positive semidefinite matrix. Then there is a positive semidefinite completion F of R
with Rank F r if and only if

Max {Rank Ri, i 1, 2,..., s}
and

r _< n- Dim(Ker R1 + Ker R2 +... + Ker Rs).
This theorem will be established in a companion paper [6].
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2. Kernels of bordered matrices. The basis for this and many papers on
completing band matrices is an examination of the situation for bordered matrices.

Bordered matrix hypotheses. Let H2 be an (r- 2) (r- 2) Hermitian matrix.
Let v and w be vectors in Cr-2 and let a and b be real numbers. Set

v H2
and H3- w* b

and let H(z) be the bordered matrix

H(z)-- v H2 w
z w* b

DEFINITION. H(z) is called a one-step completion of H(0).
Remark. In [4], we classified the kernels of bordered matrices. Using Claim 3.10

of [4], one may easily check that the seven Lemmas 3.3-3.9 of [4] cover all the possible
cases for bordered matrices. Therefore, we are able to use this classification together
with the usual method for constructing Hermitian completions of band matrices in
order to establish a variety of results about Hermitian completion of band matrices.
In fact, this is exactly what we did both in this paper and in our other papers [5], [6].
Ellis and Lay use a similar approach in [9].

The lemmas in this section are largely restatements of lemmas in [4], together
with small extensions. The theorems in this section are largely common threads of
these lemmas. These theorems, in turn, will be used in each inductive step in the
proofs of the theorems of 1.

The next result, which was a simple consequence of the generalized Poincar(!

inequalities (Theorem 1.3) was established as Corollary 3.2 on semi-bordered matrices

LEMMA 2.1 (semi-bordered matrices). Let H1 and H2 be as in the bordered
matrix hypotheses.

< 1,
(b) 5(H1) 5(H2) KerH Ker (1 @ H2),
(c) 5(H) 5(H2) + 1 Ker H1 D Ker (1 @ H2) - InH InH2 + (0, 0, 1),
(d) 5(H) 5(H2) 1 +-. Ker (1 H2) D Ker H1 InH InH2 + (1, 1,-1).
Thus the connection between the dimensions of the kernels determines the con-

nection between the kernels. We will use this to show, in the lemmas and theorems of
this section, that the connections between 5(H), 5(H2), and 5(H3) almost determine
5(H(z)).

OBSERVATION 2.2. All the results of Lemma 2.1 about {H1, H2} are applicable
to the ordered pair of matrices {g(z),H}, also to each pair {H(z), H3} and {H3, H2}
with the obvious modifications like Ker H3 Ker (H2 @ 1) in (b).

We will implicitly use this observation often in the proofs in this section. We
do this when we establish the following corollary to Lemma 2.1 on semi-bordered
matrices.

COROLLARY 2.3. Let the submatrices H1,H2, and H3 overlap in H(z) in the
manner described in the bordered matrix hypotheses. Suppose, for some number zo,
that

5(H(zo)) >_ 5(H) and 5(H(zo))

_
ti(H3),

then

(2.1) Ker H(zo) Ker (H1 ( 1) + Ker (1 @ H3).
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LEMMA 2.4. Let the submatrices H1, H2, and H3 overlap in H(z) in the manner
described in the bordered matrix hypotheses. Suppose that

5(H1) 5(H2) + 1 and 5(H3) 5(H2) or 5(H1)

(or, equivalently, Rank H1 Rank H2 and Rank H3 _< 1 + Rank H1).
Then there is a unique number zo such that
(i) InH(z) InH1 + (1, 1,-1) .for all z zo, and
(ii) In H(zo) In H3 + (0, 0, 1); also (2.1) is satisfied.
Furthermore, when H1 and H3 are real matrices, then the number zo is a real

number.
Remark. The hypotheses of this lemma are equivalent to the hypotheses of Lemma

3.3 of [4]. In [4], we presented our results in terms of the nullities 5 5(H), i 1, 2,
and 3, and (zo) (H(zo)) of the matrices that make up the bordered matrix. There
is a related result in [9].

Proof. The number z0 is supplied by Lemma 3.3(b) of [4]. That zo is a real
number when H and H3 are real matrices follows from the formula defining zo in the
proof of Lemma 3.3 of [4].

Lemma 2.4(i) and InH(z0) InH3 + (0,0, 1) of part (ii) were established in
Lemma 3.3 of [4]. Thus, only (2.1) remains to be proven. The equation In H(z0)
InH3 + (0, 0, 1) implies that (H(zo)) 1 + (H3). This and Rank H3 _< 1 + Rank
H1 implies that (H(zo)) >_ 5(H1). Corollary 2.3, together with these conditions on
the nullities, implies (2.1).

We restate Lemma 3.5 of [4] in the following way.
LEMMA 2.5. Let the submatrices H1, H2, and H3 overlap in H(z) in the manner

described in the bordered matrix hypotheses. Suppose that

5(H) 5(H2) 5(H3) and u(H1) u(H2) + 1 u(H3) + 1.

Then

and

.for all z.

In H(z) InH1 + (1, 0, 0) InH2 + (1, 1, 0) + InH3 + (0, 1, 0),

Ker H(z) Ker (H1 (9 1) Ker (1 (9 H2 (9 1) Ker (1 (9 H3),

LEMMA 2.6 [4], [8]. Let the submatrices H, H2, and H3 overlap in H(z) in the
manner described in the bordered matrix hypotheses. Suppose that

6(H) 6(H2) 6(H3) and InH1 InH3;

then there is a circle C in the complex plane such that
(a) InH(z) InH1 + (1, 0, 0), Ker H(z) ger (H1 (9 1) Ker (1 (9 H2 (9 1)

Ker (1 (9 H3) .for all complex numbers z outside of this circle C;
(b) InH(z) InH1 + (0,1,0), KerH(z) Ker(H1 (9 1) Ker(1 (9 H2 (9 1)

Ker (1 (9 H3) .for all complex numbers z inside of this circle C;
(c) Equation (2.1) holds, and In H(z)-(0, 0, 1) In H1 In H3, .for all complex

numbers z on this circle C.
Remark. For real symmetric matrices, there are real numbers Xl, x2, and xo, such

that the three cases of this lemma are satisfied; that is, InH(x) InH1 / (1, 0, 0),
In H(x2) In H1 + (0, 1, 0), and In H(xo) InH + (0, 0, 1).
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Proof. Lemma 2.6 is largely a restatement of Lemma 3.6 of [4], which in turn was
a consequence of Theorem 1.1 of [8]; the new result is that (2.1) holds in part (c), and
this follows from Corollary 2.3 and the inertia equation in part (c).

Proof of Remark. The circle of Lemma 2.6 is supplied by the statement of Theo-
rem 1.1 of [8]. For real symmetric matrices, (1.1) of [8] implies that the center of the
circle is a real number. This implies that the real numbers xl,x2, and x0 exist and
satisfy the inertial equations listed in the remark. El

Remark 2.7. For a bordered matrix, U(z), all the cases when ti(Ul) i(H2)
5(H3) are covered by Lemma 2.6 or by Lemma 2.5, either by itself or by interchanging
Hi and H3.

Proof. Let the submatrices H, H2, and H3 overlap in H(z) in the manner
described in the bordered matrix hypotheses. We note that Poincar’s inequalities
imply that v(H)- )(H2)e(0, 1 and z(H3)- (H2)e(0, 1, which together imply that
lu(H)- u(H3)l <_ 1. Therefore, there are only these three possibilities:

(i) u(H) u(H3) 1, which is the case of Lemma 2.5;
(ii) u(H)- u(H3) 0, which implies that In H1 In H3, hence this is the case

of Lemma 2.6;
(iii) u(H1) v(H3) -1, which is the case of Lemma 2.5 with H and H3

interchanged.
THEOREM 2.8. Let the submatrices H1, H2, and H3 overlap in H(z) in the man-

ner described in the bordered matrix hypotheses. If

5(H2) <_ 5(H) and 5(H2)

(or, equivalently, if 2 + Rank H2 Rank H or Rank H3), then there is a number zo,
such that (2.1) holds and

(2.3) r(zo) Max{rr(H1),r(H3)} and (zo) Max{(H),(H3)},

and

(2.4) 5(HI) <_ 5(H(zo)) and 5(H3) _< 5(H(zo)).

Also, when H1 and H3 are real matrices, then the number zo may be chosen to be a
real number.

Remark. This theorem is the common thread of Lemmas 2.4-2.6; with the excep-
tion of (2.1), this theorem was established as Theorem 1.2 in [4].

LEMMA 2.9. Let vectors v and w and submatrices H1, H2, and H3 overlap in
H(z) in the manner described in the bordered matrix hypotheses. Suppose that both v
and w miss the image space H2(Cr-2), and that the span {v, w} meets H2(Cr-2) in
a line. Then

InH1 InH2 / (1, 1,-1) InH3 and Ker (H @ 1) Ker (1 H3)

and (2.1) holds .for all z.
Also, there are two open half-planes P+ and P_ whose closures meet in a line l,

such that:
(a) InH(z) InH 4- (1,0,0) InH2 4- (2, 1,-1), and KerH(z) Ker (H

1) Ker (1 ff H3) .for all complex numbers z in P+;
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(b) InH(z) InH1 + (0, 1,0), andKerH(z) Ker (H1 @1) Ker (l@H3) for
all complex numbers z in P_;

(c) InH(z) (0, .0,1) InH InH3 for all complex numbers z on the line 1.
Furthermore, when H(O) is a real matrix, then this line 1 will meet the real axis

at a unique real number.
Proof. The hypotheses of Lemma 3.9 of [4] are the same as the hypotheses of

Lemma 2.9 here. The hypotheses are symmetric with respect to H and H3. Therefore,
Lemma 3.9 of [4] itself and again with H and H3 interchanged will establish this
lemma except for (2.1) in part (c). Corollary 2.3 here and Lemma 3.9 of [4] will
establish (2.1)in part (c).

THEOREM 2.10. Let the submatrices H, H2, and H3 overlap in H(z) in the
manner described in the bordered matrix hypotheses. Suppose that Ker (H1
Ker (1 @ H3). Then there is a number z, such that (2.1) holds. Also, either case (a) or
(b) exists:

(a) InH InH3. In this case, InH- InH3 +(1,-1,0) and v(H(z))
Max {u(gl), u(H3)} and r(H(z)) Max {Tr(H1), r(H3)} .for all complex numbers z;
or

(b) InH InH3. In this case, there are complex numbers zo, z, and z2, such
that (2.1) is valid, and InH(z0)- (0,0, 1) InH1 InH3 InH(zl)- (1,0,0)
In H(z2) (0, 1, 0). IfH and H3 are real matrices then zo, z, and z2 may be chosen
as real numbers.

Proof. Using Claim 3.10 of [4], one sees that Lemmas 3.3-3.9 of [4] cover all the
possible cases for bordered matrices.

Claim (i). The hypotheses of this theorem are not consistent with Lemmas 3.4
and 3.8 of [4].

Proof. Because of the overlapping of the matrices H and H3 in the bordered
matrix H(z), the condition Ker (H @ 1) ger (1 @ H3) implies that

Ker (1 @ H2) Ker H1 and Ker (H2 ( 1) Ker H3.
Now these conditions are not consistent with the hypotheses of Lemmas 3.4 and

.S of [4].
Claim (ii). The hypotheses of this theorem are not consistent with Lemma 3.3 of

[4].
Proof. The hypothesis of Lemma 3.3 of [4] is the same as the hypothesis of Lemma

2.4 here. They say that 5(H1) 5(H2) + 1, which implies that there is a vector in
Ker H1 with a nonzero first coordinate. This is not consistent with the equation
Ker (H1 @ 1) Ker (1 @ Ha) in this theorem.

Claim (iii). The hypotheses of this theorem are not consistent with Lemma 3.7

Proof. We assume the bordered matrix hypotheses. The hypothesis of Lemma
3.7 of [4] states that the pair of vectors (v, w} (in the bordered matrix) is a linearly
independent set whose span meets the image space H2(Cr-2) only at 0. This is not
consistent with the equation Ker (H @ 1) Ker (1 @ H3) in this theorem.

We have eliminated all but Lemmas 3.5, 3.6, and 3.9 of [4] from the classifying
list of Lemmas 3.3-3.9 of [4], which, as noted, cover all the possible cases for bordered
matrices. Therefore, by the process of elimination, the hypotheses of this theorem
must be included in the hypotheses of Lemmas 3.5, 3.6, and 3.9 of [4], which have
been restated here as the hypotheses of Lemmas 2.5, 2.6, and 2.9. Hence, part (a) of
this theorem is determined by Lemma 2.5, and part (b) is determined by Lemmas 2.6
and 2.9. [:]
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3. Positivity- and negativity-preserving completions. The problem of this
section is to find conditions on a band matrix R that will enable us to build positivity-
and negativity-preserving Hermitian completion of R.

EXAMPLE 3.1. Let

H(z)= 0 0 0 and a(z)= 0 0 0
z* 0 -7 z* 0 7

Then Rank U(z) 2 for all z, and Rank G(z) 2 for all z # 7, but Rank
G(7) 1. Thus the minimal rank of U(z) is 2, and the minimal rank of G(z) is 1 even
though the ranks of any pair of corresponding submatrices of H(z) and G(z) (without
z and z*) are equal.

Remark. This example demonstrates that the minimal rank of a Hermitian com-
pletion of a bordered Hermitian matrix is not always a function of just the ranks of
its submatrices as it is for the non-Hermitian completions of triangular matrices [1].

DEFINITION. A simple diagonal completion R of an m-band Hermitian matrix
R is an m + 1-band Hermitian completion of R. An Nth (successive) simple diagonal
completion of an m-band Hermitian matrix R is a simple diagonal completion of an
(N- 1)st (successive) simple diagonal completion of R. (The original matrix R is the
zeroth simple diagonal completion of itself.)

OBSERVATION 3.2 (Dym and Gohberg [7]). For a band matrix the two maximal
and the almost maximal submatrices Ri, Ri+I, and R* always overlap precisely as the
H1, H3, and H2 of the bordered matrix hypotheses.

The standard method for constructing Hermitian completions of band matrices.
Construct successive simple diagonal completions; namely, complete R to R, then
complete R to R" (RP)’,..., to F, where F is the (n m + 1)st simple diagonal
completion of R. Using Observation 3.2, each successive simple diagonal completion
is achieved by a set of independent one-step completions.

This method was pioneered by Dym and Gohberg in [7]; it was also used in [5],
[8], and [9].

Theorem 1.8 will be established largely as a consequence of the standard method
for constructing Hermitian completions of band matrices using Theorem 2.8 at each
one-step completion.

Proof of Theorem 1.8 on positivity- and negativity-preserving completions. Let
R1, R2,... Rn-m and R, R,... R_m+1 be the maximal and almost-maximal Her-
mitian submatrices (all ordered from the upper-left corner) of a Hermitian m-band
matrix R. Then,

r*(R) Max {r(Ri), i 1, 2,... ,n m} and

v (R) Max {v(R), i 1, 2,... ,n m}.
Set

K Ker R1 + Ker R2 +... + Ker Rn-m.
Using Observation 3.2, we will complete R to a simple diagonal completion R by

a series of n m 1 one-step completions HJ (zj), j 1, 2,... n m 1 (numbered
from the upper-left corner).

We let U, H, and H denote the overlapping submatrices H1, H2, and H3 of
the jth bordered matrix H(zj). With this notation, we note that

H Rj and H3 Rj+I--- H+1 and H3+- Rj+2.
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Also,

H-R+ and H+I-R+2.

Therefore, (1.5) says that (2.2) is satisfied for these bordered matrices, and hence
we may and do use Theorem 2.8 as we do each one-step completion as we complete R
to a simple diagonal completion R’. Let R, i 1, 2,... n m 1, be the maximal
submatrices of this simple diagonal completion R’ (the R are ordered from the upper-
left corner). Now Theorem 2.8 provides (2.4), which for the jth one-step completion
UJ (zj) R, states that

(3.1) i(R) _< i(R) and i(R+l) _< i(R),
and for the j + 1st one-step completion HJ+l(zj+), it states that

(3.2) 5(Rj+l) < 5(R+l) and 5(Rj+2) < 5(R+),
Using Observation 3.2, we will complete R to a simple diagonal completion R" by

a series of (n m 2) one-step completions H’J (zj), j 1, 2,... ,n m 2 (numbered
from the upper-left corner).

We let H’Iy, H2, and H3 denote the overlapping submatrices H1, H2, and H3 of
the jth bordered matrix H’J(zj). With this notation, we note that

H’I=R and R+-H3 and H2=R+I.
Therefore, the two underlined nullity inequalities in (3.1) and (3.2) are condition (2.2)
for the jth bordered matrix H’J(zj) and condition (1.5) for the simple diagonal com-
pletion R’. Thus Theorem 2.8 is used in this manner to propagate condition (1.5) for
a band matrix R to condition (1.5) for a simple diagonal completion R of R.

Also, (2.3) will imply that

r*(R’) r*(R) and v*(R’) v*(R).
Now we simply do induction on the bandwidth. This will result in

7r(F) 7r*(F) 7r*(R) and (F) *(F) *(R).
Also, (2.4) and Observation 2.3 will result in

i(k)KerSk) + Ker S(2k) +... + Ker ’(n-m-k) K,

where the Sk) are the maximal submatrices of the kth simple diagonal completion of
R. Hence, by induction, Ker F K, as desired.

COROLLARY 3.3. Given a Hermitian m-band matrix R. Suppose that each of the
(n-m+ 1) almost-maximal submatrices R, R,... R_m_ (when ordered from the
upper-left corner) of R is an invertible matrix. Let R, R2,... Rn-m be the maximal
submatrices of R. Then there is a Hermitian completion F of R such that

r(F) Max {r(Ri), i 1, 2,... n m} and

(F) Max {v(Ri), i 1, 2,... ,n m}.
Also,

Ker F Ker R1 + Ker R2 +... + Ker Rn-m.
Proof. Since the almost-maximal submatrices of R are invertible matrices, they

have no kernels and therefore the dimension of the kernels cannot decrease when going
from an almost-maximal submatrix to a maximal submatrix. Thus this corollary is a
special case of Theorem 1.8.
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LEMMA 3.4. Given a Hermitian m-band matrix R, suppose that each of the n-m
maximal submatrices R1, R2,... Rn-m of R is an invertible matrix. Then there is a
Hermitian completion F of H, such that

r(F) Max (r(Ri), i 1, 2,... n m} and

v(F) Max (v(Ri), i 1, 2,... n m}.

Proof. When going from the invertible maximal submatrices of R to the simple
diagonal completion R, Theorem 2.10 is applicable. Therefore, we can construct R
without increasing the maximum numbers of positive or negative eigenvalues, and R
must satisfy the hypotheses of Corollary 3.3. Therefore, we can use Corollary 3.3 to
complete R (and R) to the desired matrix F.

We now combine the ideas of Theorems 1.8 and 2.10.
THEOREM 3.5. Given a Hermitian m-band matrix R. Let RI,R2,... ,RE-m, and

R, R,... R_m+ be the maximal and almost-maximal Hermitian submatrices of R
(all ordered from the upper-left corner). Suppose, .for each i 1, 2,... n m 1, that
one of these conditions is satisfied:

(a) 5(Ri) _> ti(n) and 5(Ri+) >_ 5(R), or
(b) Ker (R @ 1) Ker (1 R+).

Then there is a simple diagonal completion R of R that satisfies the hypotheses of
Theorem 1.8, and there is a Hermitian completion F of R and R, such that

(f) Max (r(R), 1, 2,... n m} and

(f) Max ((Ri), 1, 2,... n m}.

Also,
Ker F Ker R1 + Ker R2 - W Ker Rn-m.

Proof. We use Theorems 2.8 and 2.10 (whichever is appropriate in the one-
step completions) as we build a simple diagonal completion R, which will satisfy the
hypotheses of Theorem 1.8.

4. Hermitian completions of band matrices with invertible maximal
submatrices. In this section, we will establish Theorem 1.7, which says that a band
matrix, with all its maximal submatrices being invertible, may be completed to a
Hermitian matrix with any inertia that is consistent with Poincar’s inequalities.

The proof of Theorem 1.7 will begin by using the standard method for construct-
ing Hermitian completions of band matrices using Theorem 2.10 at each one-step
completion until the desired positivity and negativity are attained. Then we will
quote Corollary 3.3.

Remark. In part (b) of Theorem 2.10, choosing z or z2 to complete H(z) results
in an increase in the positivity or negativity by only one and it is our choice as to
which one increases. In part (a), the positivity (and negativity) of H(z) is the same
as the larger of the positivities (and negativities, respectively) of H and H3. This will
enable us to "fine tune" the inertias as we do the sequence of one-step completions in
the proofs of Theorems 1.7 and 1.11.

Proof of Theorem 1.7. Let R be a Hermitian m-band n n matrix with invertible
maximal submatrices RI I2, Rn-m and positivity and negativity:

r*(R) Max (r(R), i 1, 2,... ,n m} and

*(R) Max ((Ri), 1, 2,... ,n m}.
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Let (r, v, ti), r + v + 5 n and r*(R) <_ r and *(R) <_ be given.
In the case, (r*(R), *(R)) (r, ), Lemma 3.4 establishes this theorem.
We may now assume that (r*(R), v*(R)) - (r, ).
We may construct successive simple diagonal completions, R to R to R"

(R’)’... to R(k) using Theorem 2.10 (with Ker H1 -0-- Ker H3 therein) repeatedly,
at each one-step completion. Theorem 2.10 permits us to do this while having all the
newly created maximal submatrices being invertible.

Furthermore, since Theorem 2.10 permits us to choose whether we want the
positivity or the negativity to increase, and, in addition, since the increase is by at
most one at each step, we can easily arrange it so that there is a successive simple
diagonal completion R(k) with two maximal submatrices Rk) and Rk), such that

r*(Rk)) r and *(Rk)) , and In Rk) <_ (r, , 0), for each maximal submatrix

Rk) of R(k). (Note: Rk) and Rk) may be the same submatrix.)
We may then complete this band matrix R(k) to the desired completion F using

Lemma 3.4.

5. Hermitian completions of G-partial matrices, where G is a chordal
graph. In this section, we will establish Theorems 1.10 and 1.11, which are our results
on Hermitian completions of G-partial Hermitian matrices, when G is a chordal graph
and the main diagonal is given.

OBSERVATION 5.1. Let H2 be a submatrix of H1, which in turn is a submatrix
of a matrix H0. Using the notation for identified subspaces listed in 1, we observe
that if

Ker H0 D Ker H2, then KerH D Ker H2.
Remark. The standard method for constructing Hermitian completions of a G-

partial Hermitian matrix, when G is a chordal graph and the main diagonal is specified,
was presented in [10] and repeated in [11]. According to Lemma 4 of [10], ,the chordal
graph structure provides a sequence of chordal graphs (G Go, G,..., Gt} such
that going from each Gi to Gi+ corresponds to a one-step completion, i.e., if (R
F0, F,... Ft F} are the (to be specified) partial Hermitian matrices whose graphs
will be {G Go, G1,... Gt}, then the unique new vertex vi of Gi that is not in Gi_l
will correspond to the unique pair of new off-diagonal entries, z rjk and z* rkj,
which are specified in Fi but not in Fi_;z and z* together complete a bordered matrix
H(z) such that H(z) is the unique maximal principal submatrix of F that is not also
a principal submatrix of Fi_.

In order to implement this induction process, it is sufficient that the set of proper-
ties that are to be transferred from the principal submatrices to the completed matrix
are propagated by the one-step completions. For Theorem 1.10, the desired propa-
gation properties, which are to be transferred from the principal submatrices to the
newly completed matrices, are listed in Theorem 2.8.

Proof of Theorem 1.10. Let R be a G-partial Hermitian n n matrix where
G is a chordal graph and the hypotheses of this theorem are satisfied. Lemma 4
of [10] provides a sequence of chordal graphs {G G0, G1,... ,Gt}. Let (R
F0, F,... Ft} be the (to be specified) partial Hermitian matrices whose graphs will
be (G Go, G,..., Gt}. Then going from each Fk_l to Fi is a one-step comple-
tion. Let H(z) be the unique maximal principal submatrix of Fk-1 that is not also a
principal submatrix of Fk.

Induction hypotheses. We assume that r*(Fk_) r*(R) and v*(Fk-) *(R)
for the positivity and negativity of the (k- 1)st partial Hermitian matrix Fk_ with
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chordal graph Gk-1. Also, for each principal submatrix Sj of a specified maximal
principal submatrix Mi of Fk-1, we suppose that

(5.1) Ker Mi D Ker Sj.

Let H(z) be the the bordered matrix, which is the unique maximal principal
submatrix of Fk-1 that is not also a principal submatrix of Fk, and let H, H2, and
H3 be the principal submatrices of H(z) and Fk-1, which overlap in the manner
described by the bordered matrix hypotheses. Hence

71"*(Fi_l) _> Max{r(H),r(H3)} and *(F_) > Max((H1),(H3)}.

We note that (5.1) and Observation 5.1 imply that

KerH Ker H2 and Ker H3 Ker H2.

Hence, Lemma 2.1(b) and (c), applied to both inclusions, yield

5(H2) <_ 5(HI) and 5(H2) _< 5(H3),

and therefore Theorem 2.8 is applicable. Theorem 2.8 says that there is a number z0
such that

(5.3) KerH(z0) D Ker (H 1) / Ker (1 H3).

Also, using (5.2), we note that

r* (F) Max {r* (F_), r(H(z0))} Max {71"* (Fi_I), r(H), r(H3)} r* (F_),
,*(F) Max {,*(Fi-),,(H(zo))} Max {,*(Fi_),,(H),,(H3)} u*(Fi-1).

Since H(zo) is the unique maximal principal submatrix of Fi that is not also a
maximal principal submatrix of Fi-1, condition (5.1) for all the specified maximal
principal submatrices of F_, together with (5.3), implies that (5.1) is also valid for
all the specified maximal principal submatrices of Fi. This and (2.3) show that the
induction hypotheses will be satisfied for Fi.

We note that the final matrix Ft will be a full matrix with ,(Ft) ,*(Ft)
*(R) and r(Ft) r*(Ft) r*(R). Therefore, we set F Ft, and this theorem is
established.

Remark. In the proof of Theorem 1.11, we will again use the standard method
for constructing Hermitian completions of a G-partial Hermitian matrix when G is
a chordal graph and the main diagonal is specified. For Theorem 1.11, the desired
propagation property is that the newly created specified matrices be invertible; this
will be achieved by Theorem 2.10. But this time we will only use this method until
the specified values r and for the positivity and negativity are achieved. Then we
will use Theorem 1.10 to complete the proof.

Proof of Theorem 1.11. Let R be a G-partial Hermitian n n matrix, where G
is a chordal graph, and the main diagonal of R is specified. We assume that all the
specified principal submatrices of R are invertible. Let (r, 9, 5) be any nonnegative
integers, such that r + + ti n and r _> r*(R) and _> *(R).
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Again, according to Lemma 4 of [10], the chordal graph structure provides a se-
quence of chordal graphs {G Go, G1,... Gt}, such that going from each Gi to Gi+l
corresponds to a one-step completion; i.e., if {R Fo, F,..., Ft F} are the (to
be specified) partial Hermitian matrices whose graphs will be {G Go, Gi,... Gt},
then the unique new vertex vi of Gi that is not in Gi_l will correspond to the unique
pair of new off-diagonal entries z rjk and z* rkj, which are specified in Fi but
not in Fi_; z and z* together complete a bordered matrix H(z), such that H(z) is
the unique maximal principal submatrix of Fi that is not also a principal submatrix
of F_I.

Using Theorem 2.10 repeatedly at each one-step completion (with KerH
0 KerH3 therein), we may construct the partial Hermitian completions (R
F0, F1,... Ft } of R, such that each principal submatrix of each Fi is invertible.

Furthermore, since Theorem 2.10 permits us to choose whether the positivity or
the negativity increases, and, in addition, the increase is by at most one at each one-
step completion, we can easily arrange it so that there will be a first partial Hermitian
completion F with two principal submatrices A and B, such that (A) r and
(B) and InS <_ (r, , 0), for each maximal principal submatrix S of Fk. (Note:
A and B may be the same submatrix.)

Therefore, since Fk has the chordal graph Gk, and its main diagonal was specified,
F may be completed to the desired Hermitian completion F with In F (r, , 5) by
Theorem 1.10.
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1. Introduction. There are several interesting, important, and difficult prob-
lems concerning the eigenvalues and eigenvectors of a certain sequence of Hermitian
matrices that arise in the quantum-mechanical study of antiferromagnetic Heisenberg
chains.

Let ) be the three-dimensional inner-product space C3. The spin-1 operators
(see, e.g., [8]) are the operators on 1) defined by

1 0 1 Sy= -1 0 1 Sz= 0 0 0Sx
0 1 0 0 -1 0 0 0 1

with respect to an orthonormal basis, which we denote by {V-l, v0, Vl}. The choice of
subscripts on the vj is such that Sz(vj) j vj for j -1, 0, 1. (Physicists write v-1
as I-1>, v0 as I0), and Vl as I1>.)

For each positive integer N, denote the N-fold tensor product of 12 with itself by
]deN. For each linear operator F 12 --, 12, let F(J) "I2(R)N -- peN be the operator

F(J) FI (R) F2 (R) (R) FN

with Fj F and Fk I for k # j.
The operator we are concerned with is defined on )(R)N (for N >_ 2) by

N-1

/-/N Y ((J)(dq-1) q (j)(j+l) q_ z(j)(2q-1))
j=l
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The operator HN is the Hamiltonian of the spin-l, antiferromagnetic, Heisenberg
(--isotropic), one-dimensional (-linear) spin chain with N sites. This Hamiltonian
is of great importance in interpreting certain results in experimental physics (see [5]
and [12]). Physically, such a Hamiltonian describes a crystal lattice of atoms of spin
1, in which all interactions take place along a preferred direction and are given by the
dot-product of the spin vectors of all nearest neighbour pairs.

The operator HN has been widely studied by solid state physicists (see [1], [3],
[7], and references therein). There have also been numerical [4], [11] and experimental
[5], [12] investigations of the eigenvalues and eigenvectors of HN. Much of the recent
work has been motivated by a conjecture of Haldane [9], [10]. Let Av and Av be
the smallest and the second smallest eigenvalues of HN. Haldane’s conjecture may
be stated as saying that limN-.o (AV Av) > 0. While numerical and experimental
work appears to support this statement, the conjecture remains unproven. Even the
precise mathematical formulation of the conjecture is controversial; in [1] it is argued
that the conjecture should be studied in an (inequivalent) "infinite chain" context.

We study HN by direct, linear-algebraic methods in the present paper. We obtain
a number of results that may provide insight into its underlying structure. Results
presented here include alternative representations of HN (Corollary 2.2 and Proposi-
tion 2.4), families of operators commuting with HN (Theorems 3.3 and 3.5), properties
of the spin-0 subspace (Propositions 4.3 and 4.5), a complete description of this sub-
space (Theorems 5.4 and 5.8), and a new proof that HN must have an eigenvalue

a (N 1) is reasonablysmaller than a (N- 1) for all N (Theorem 6.7). The value
close to the estimate of -1.40(N- 1) for the smallest eigenvalue of HN, which has
been extrapolated from certain numerical approximations [11]. The spin-0 subspace
is important in relation to Haldane’s conjecture since it contains all one-dimensional
(and two-dimensional) eigenspaces of HN (see Corollary 4.2 and Proposition 6.8 be-
low), and since it is shown in [1] that the eigenspace of HN corresponding to Av is
one dimensional for even N. Our paper also includes simple, direct proofs of certain
well-known facts about HN, to make the presentation self-contained.

One way that physicists have varied the problem is by replacing HN by the
"periodic Hamiltonian,"

.q(N) .,(1) ,!N) Sz(1)PN HNS(xN)(xl)+,..,y ,..,y +

It is expected, on physical grounds, that the Haldane conjectures should be decided in
the same way for PN as for HN. There are, however, no definitive results concerning
PN, either. We consider below both PN and HN. We often find it more natural (see
2) to study operators KN and QN, which are equal to the negatives of HN and PN,
respectively.

This paper is organized as follows. In 2, we derive several representations of HN
and PN. In 3, we list a number of operators on ")(R)N which commute with HN and
PN. In 4, we use some of these operators to present the standard decomposition of
HN and PN into direct sums, and in 5 we investigate in detail the spin-0 subspace
of ];(R)N. Some bounds on the eigenvalues of HN and PN are obtained in 6. In 7,
we describe the corresponding problems for spins other than 1 and state the more
general Haldane conjecture, which remains one of most important open mathematical
problems in solid state physics.

2. Other representations of the operators. The following theorem leads to
new representations of HN and PN that we have found useful.
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THEOREM 2.1. There exists an orthonormal basis (el, e2, e3} of 1) with respect
to which the triple (Sx, Sy, Sz) has matrix representation (iR, iS, iT), where

0 0 -1 S 0 0 0 T 1 0 0
0 1 0 -1 0 0 0 0 0

Proof. Define the basis (el, e2, e3} by

i
(v_ vl)el= 1--

-l(v_ +v)e2--
e3 =i v0.

Then the stated matrix representations are easily checked, rl

COROLLARY 2.2. The operators HN and Pr are equal, respectively, to the nega-
tives of the operators KN and QN defined (in the basis of V(R)r induced by {el, e2, e3})
by

N

KN R(J)R(j+l) + S(J)S(j+l) + T(J)T(J+I)
j=l

and
QN KN + R(N)R(1) 2t- S(N)S(1) n(- T(N)T(1).

Proof. This follows immediately from the preceding theorem. [:]

The representations given in Corollary 2.2 will be used throughout the rest of
this paper. It should be observed that R, S, and T are skew-symmetric matrices,
with RS- SR T, ST- TS R, TR- RT S, and R2+S2+T2 -2I.
Also, it is clear that the triple (R, S, T) is simultaneously unitarily equivalent to the
triples (S, T,R) and (T, R,S). A possible interpretation of the matrices R, S, and T
is suggested by the fact that for v E R3, Rv el x v, Sv e2 x v, and Tv e3 x v,
where x indicates the ordinary cross-product (vector-product) on N3. We also have
the following uniqueness property of the matrices R, S, and T.

PROPOSITION 2.3. Let A, B, and C be three skew-Hermitian operators on 3,
with AB-BA C, BC-CB A, and CA-AC B. Then either A B C O,
or there is an orthonormal basis {fl, f2, f3} ofN3 such that in this basis A, B, and C
have the matrix representations of R, S, and T above.

Proof. Since det A det A* det A, there is a vector fl E N3 with Ilflll 1
and All O. If Cfl O, then Bfl (CA- AC)fl 0, so with respect to any
orthonormal basis containing fl, each of A, B, and C are of the form

0 0 O)0 0 -k
0 k 0

Hence, A, B, and C all commute, and thus are all zero.

Cfl cf2, with Ill211 1 and c > 0. Since
If Cfl :/: 0, then write

(c/i, c.l ) -(c/’1,
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we have fl _l_ f2. Extend (fl, f2} to an orthonormal basis (f, f2, f3} of R3. With
respect to this basis, we have

A= 0 0 -a B= 0 C- c 0
0 a 0 0 0 0

for some a E R. Direct computation then shows that

A-- 0 0 -a B- 0 0 0 C-- c 0 0
0 a 0 -b 0 0 0 0 0

for some b E R, with ab c, bc a, and ca b. Replacing f3 by -f3, if necessary, we
may assume a > 0. It then follows that a b c 1, completing the proof. D

An interesting representation of the operator K2 R (R) R+ S (R) S /T (R) T can be
obtained by considering the space M3(C) of 3 3 complex matrices with inner product
(A, B) trace AB*. We identify ei (R)ej with the matrix unit Eij, where {e, e2, e3} is
the orthonormal basis of Theorem 2.1; this induces a unitary equivalence of V(R)2 with
M3(C). Under this equivalence, an operator on )(R)2 of the form F (R) G corresponds to
the operator on M3(C) given by A -. FAGt, where F and G are written as matrices
in the basis {e, e2, e3 }.

PROPOSITION 2.4. Under the above unitary equivalence oral(R)2 with M3((), the
operator K2 corresponds to the operator F defined on M3(C) by

r(A) -A + (tr A)I,

where A is the transpose of A, tr A is the trace of A, and I is the identity matrix.

Proof. We have

F(Eij) -Eii + 5I -Eji + 5(E1 + E22 + E33),

where 5 is the Kronecker delta. On the other hand,

K2(Ej) RE,jR / SEijS q- TEijT

(E E:)E(E E) + (EI E)E(E E)- (E21 E2)E(E2 E2),

and the two expressions are easily seen to be equal. [:]

The spectrum of K2 is very well known. It is not hard to compute this spectrum
in any representation, but Proposition 2.4 makes it particularly easy.

COROLLARY 2.5. The eigenvalues of K2 are 2, 1, and -1 with multiplicities 1, 3,
and 5, respectively. The corresponding eigenspaces of F are the subspaces, respectively,
spanned by the identity matrix, the skew-symmetric matrices, and the symmetric ma-
trices with trace O.

Proof. This follows immediately .from the observation that r(I) 21, r(A) A
if A -At, and F(A) -A if A A and tr A

3. Operators commuting with the Hamiltonian. As mentioned in the in-
troduction, it is shown in [1] that the eigenspaces of HN and PN corresponding to
the smallest eigenvalue Av have dimension 1 for N even. It is therefore important to
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study one-dimensional eigenspaces of HN and PN or, equivalently, of KN and QN.
Clearly, any such eigenspace is invariant under all operators commuting with Klv or

QN. Hence, each operator A commuting with HN or PN puts a constraint on any
eigenvector w of HN or PN corresponding to an eigenvalue of multiplicity 1, namely,
that Aw must be a scalar multiple of w. This section describes two families of such
operators. These families include operators which are known to physicists.

LEMMA 3.1. Let F be a linear operator on )2. Then F (R) F commutes with K2
if and only if, in the basis (el,e2,e3} of Theorem 2.1, FF FF )I, for some
complex number ), where I is the 3 x 3 identity matrix.

Proof. We use Proposition 2.4. Under the equivalence given there, the operator
F (R) F corresponds to multiplying an element of M3(C) on the left by F and on the
right by Ft, where F is written as a matrix in the basis (el,e2, e3}. Hence F (R) F
commutes with K2 if and only if, for each J E M3(C),

F(FJF) FF(J)F,
-FJF + tr(FJFt) I F (-Jt + tr(J) I)Ft,

which is true if and only if

(t) tr(FJFt) I tr(J) FFt.

If FF FF )I, then (t) clearly holds. Conversely, if (t) holds, then setting
J I shows that FF 1/2 tr(FF) I, a multiple of the identity. If FF t 0, we

clearly have FF RE. If RE O, then setting J (FtF) in () shows that
(FF, FF) tr (FFJ) tr (FJR) 0, so that FF O.

Remark. The condition FF FF AI is not unitarily invariant, since in
general F t F*.

LEMMA 3.2. Let F be a linear operator on . Let 0(j) R(i) R(J) -t- S(i) S() +
T(i)T(J), where i,j (1,2, N}, i t j. Let F(R)N denote the N-fold tensor product

ofF with itself. Then F(R)N commutes with 0() if and only if, in the basis (el, e2, e3}
of Theorem 2.1, FF FtF )I for some complex number .

Proof. Let Z be the operator on ])(R)N defined by

Z(v (R) v (R) (R) vN) v() (R) v() (R) (R) V(N),

extended by linearity, where a is any fixed element of SN (the symmetric group on
N letters) with a(i) 1 and a(j) 2. Then Z clearly commutes with EGg, and

O(j) Z-10(2) Z. Hence, F(R)N commutes with O(j) if and only if it commutes with

O()"
We can write "-N K2 (R) I (R) I (R) (R) I. The lemma now follows easily from

Lemma 3.1 by noting that [F(R)N (12)
"N IF (R) F, g2] (R) F(R)N-2.

THEOREM 3.3. Let F(R)g be a linear operator on ). Then F(R)N commutes with

KN and with QN (and hence also with HN and PN) if and only if, in the basis
{el,e2, e3}, FF FtF AI for some complex number ).

Proof. Since each of gN and QN are sums of O(J)s, it follows immediately from
Lemma 3.2 that KN and QN commute with operators of the given form.

For the converse, let F be any operator on V such that F(R)N commutes with KN
(1,2)or QN. We shall show that F(R)N must commute with "N the result will then follow

from Lemma 3.2.
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(12)Write the commutator of F(R)N and "N as

[F(R)N, (12)"’N A (R) B:i (R) I@N-2

for some finite collection of operators Aj and Bj on ]). (In fact, it is easily seen that
we only need three of each.) Now, recalling the definitions of KN and QN, the only
way we could possibly have

[F(R)N, KN] :0 or [F(R)N, QN] O

would be if for each j, either Aj I or Bj I, and furthermore j Bj -’j Aj.
This would imply that

[F(R)N, (12)"N (I ( C C I) (R) I(R)N-2

for some operator C on ). But by symmetry, we must also have

[F(R)N f(12)
"N (C (R) I I (R) C) (R) I(R)N-2.

L’(12)It follows that C 0, so that F(R)N commutes with "’N Theorem 3.3 follows. [:]

LEMMA 3.4. Let F be a linear operator on . Then F (R) I-i-I (R) F commutes with
K2 if and only if, in the basis (el,e2, e3}, F + F )I .for some complex number ).

Proof. We again use Proposition 2.4. We have that

(F (R) I / I (R) F)F(A) -FA AtF / (tr A)F / (tr A)F
-FA AtF

and that

F (F (R) I + I (R) F)(A) -FA AtF + (tr FA)I + (tr AFt)I
-FA AtE + (tr A(F + Ft) )I.

The two operators commute if and only if the above two expressions are equal for
every matrix A, and this is easily seen to be true if and only if F + F is a multiple
of the identity matrix. [:]

N jTHEOREM 3.5. Let F be a linear operator on ]2. Then -= F( commutes wzth
KN and with QN if and only if, in the basis (e, e2, e3}, F+F )I for some complex
number .

Proof. This follows easily from Lemma 3.4, by techniques very similar to the
proof of Lemma 3.2 and Theorem 3.3. [:]

Two other operators, both well known to physicists, deserve mention. Another
operator in the commutant of KN and of QN is the left-right symmetry L, of order 2,
defined by

L(v (R) v2 (R)... (R) VN-1 ( VN) VN VN-1 ( V2 Vl,

extended by linearity. The commutant of QN also contains the rotation operator H,
of order N, defined by

II(vl (R) v2 (R)"" (R) VN-1 ( VN) VN ( Vl V2 VN-1,
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extended by linearity. Since KN and QN, and also H and L, are real in the basis
{el,e2,(R)3}, an element w of an eigenspace of KN or QN of dimension 1 must satisfy
i(w) :l:w, and in the case of QN must also satisfy II(w) +w.

4. A decomposition of KN and QN. Let k be an integer with -N <_ k <_ N.
Let fld be the eigenspace of }-7= Sz(j) corresponding to the eigenvalue k. Similarly,

v’N -(J) on v’N -(J), respectively, cor-let Ad and 3d be the eigenspaces of z-d=1
responding to the eigenvalue k. Recall that in the basis {el,e2,(R)3}, the operators
S:r,, Sv, Sz have matrix representations R, S, T, respectively.

Using the orthonormal basis {v-i, vo, Vl} of 1), note that

so that Ad is the span of

{Vr @ Vr @’’" @ Vrr rl,... ,rN {--1, O, 1}, rl-I-r2-I-...-I-rN--k}.
This shows that ])(R)N N Ntk=-N JM, and by symmetry we have that ])(R)N k=_N
and I)(R)N N j.

The following proposition and its corollary are well known to physicists.
PROPOSITION 4.1. Let q be one of x, y, or z. Then each JMqk is invariant under

gN and under QN. Furthermore, every one-dimensional eigenspace of gN or of QN
is contained in

Proof. By symmetry, it suffices to consider the case q x. The invariance of
the Ad follows from the fact that Y;=l R() commutes with KN and with QN, by
Theorem 3.5. For the second statement, note that if is a one-dimensional eigenspace,
then since gg and QN are real in the basis generated by (el,e2,(R)3}, we can choose
w E with w 7 0 and with w real in this basis. Suppose w E fld. Then w is an

eigenvector of -V=l R(J) with eigenvalue -ik. But since -];=l R(J) and w are real in
the same basis, the eigenvalue must be real, so we must have k 0.

COROLLARY 4.2. Any eigenspace of gg or QN of dimension 1 is contained in
the subspace 2rio defined by

3/1o .M n ,/M n ./M

Furthermore, Ado is invariant under KN and QN.
Physically, JM0 corresponds to the subspace of V(R)N with spin 0. If we had

340 {0}, then KN and QN would have no eigenspaces of multiplicity 1, contradicting
[1]. However, it is known (see, e.g., [7]) that A/[0 is in fact fairly large. In the next
section, we describe JM0 precisely. We first present alternative characterizations of
some of the subspaces considered in this section.

PROPOSITION 4.3. The subspace JMo is equal to the intersection of the kernels of
all operators on ])(R)N of the form Z7:1F(J), where F is a linear operator on 12 with
F -F in the basis {el, e2, e3}.

Proof. Since each of the matrices R, S, and T of Theorem 2.1 are skew-symmetric,
it is clear that 3do contains the given intersection. On the other hand, since every
skew-symmetric matrix F is a linear combination of R, S, and T, it follows that

Y7=l F(J) for such an F must annihilate every element in the kernels of each of

-=1 R(J), -=1 S(J), and ";=1 T(J), and hence the given intersection must contain

Yo. 13
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PROPOSITION 4.4. The subspaces JI, JIA, and JI are equal to the set
of vectors in V(R)N left fixed by all operators of the form F(R)N, where F is a linear
operator on 1) corresponding to a rotation about the el-axis, the e2-axis, and the e3-
axis, respectively.

Proof. We prove only the J4g part; the other statements then follow by permuting
the roles of the eis. It is easily checked that a rotation through an angle 0 about the e3-
axis has eigenvectors v-l, v0, and Vl, with eigenvalues e-i, 1, and ei, respectively.
Hence, any element of A/I is fixed by any N-fold tensor product of such a rotation.

Conversely, if a vector w is left invariant by all such N-fold products of rotations,
choose any 0 with 0/r irrational. Then the only way w can be fixed by the N-fold
product of a rotation about the e3-axis through that 0 is if, in the basis generated by
(v-l, v0, Vl}, each nonzero term in the expression for w has an equal number of v-is

and vls. Hence w E JI. Cl

PROPOSITION 4.5. The subspace JIo is equal to the set of vectors in V(R)N which
are left fixed by all operators of the form F(R)N, where F is a linear operator on 1; with
FtF I in the basis (el,e2, e3}, and with detF 1.

Proof. If an element of I)(R)N is left fixed by all such F(R)N, then by Proposition
4.5 it must be in each of jI/I, JI, and 2Ig, and hence in JI0.

For the converse, note that it follows by direct computation (by writing F
A+iB and using the polar decomposition of A) that, in the basis (el, e2, e3}, we must
have

( x/i + b2 ib O)F 01 -ib x/l + b2 0 02
0 0 1

for some real number b and some real, orthogonal matrices O1 and 02. Furthermore,
since det F 1, we can assume (by multiplying O1 and 02 by -1 if necessary) that
det O1 det 02 1. Now, every real, orthogonal matrix of determinant 1 can be
written as a product of rotations about the el-axis and e2-axis, so by Proposition 4.4
every element of 2/I0 is fixed by every such matrix. As for the matrix

x/1 +b2 ib
-ib v/l+b2 0
0 0 1

it has eigenvectors v-l, v0, and vl, with eigenvalues % 1, and .y-l, respectively, where
"y v/1 -+- b2 b, so it clearly fixes every element of

Remarks. (1) The proof above also shows that in fact 2A0 A/[ f A/Ig, etc. In
other words, we can omit any one of the three sets being intersected in the definition
of JA0. However, we do not make use of this fact here.

(2) Part of Proposition 4.5 can be generalized to the statement that if FF
FF I, then F(R)N multiplies each element of JA0 by (det F)N. For 0, this
follows immediately by considering F/(det F). For A 0, direct computation shows
that up to real orthogonal matrices

1 i 0 /-i 1 0
0 0 0

so that F(v-1) 2v-1 and F(vo) F(vl) 0, from which it follows that F(R)N
annihilates each element of JI.
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5. The structure of JI0. In this section, we examine the subspaces fl/l, AzI,
J4, and JPt0 described above. Our main result (Theorems 5.4 and 5.8) is an explicit
description of /I0. Other, alternative descriptions have been obtained by the valence-
bond basis approach; see [7].

We require some notation. For a E SN (the symmetric group on N letters), we
define the linear operator 12 on ])(R)N by

a(Ul ( UN) Ua(1) ( ()Ua(N),

extended by linearity.
DEFINITION. Given a set Y VN, the peutation set of Y is P(Y) (a(y)

a SN,y Y}, and the peutation-span of Y, written P-sp(Y), is the linear span
of P(Y).

In this notation, we may write

where, given a vector u, uk denotes the k-fold tensor product of u with itself.
In the bis (el, e2, e3} of Theorem 2.1, this becomes

P-sp(((-iel 2) (iel e2))@a b 2a + b N).
Now note that this is the same

P-sp( ((ie -e2) (-ie e2)) ((-ie e2) (ie e2))a-eb 2a T b N).
By taking sums and differences of corresponding vectors in these two expressions, we
obtain the "real" and "imaginary" parts of two tensor positions of these vectors (in
the bis (ei @... @ ei ji e (1, 2, 3} }), so we conclude that

P-sp({(el 1 + 2 e2) ((-i1 2) (/1 2))a-1

+ N}
U{(e @ e2 e2 @ e) @ ((-ie, e2) @ (ie e2))-+

Continuing in this way, we obtain, finally, that

(t) =P-sp{@ax@b@ec 2aT2bTc=N},
where=e@e2-e2@e andx=e@e+e2@e2.

Now, note that @ a(X @ X) a(X @ X), where a and a2 are the
transpositions a (2 3) and a2 (2 4) (this can be checked simply by expanding
both sides). This implies that we may sume in (tt) that a 0 or 1. Also, we can
clearly replace X by

X + e3 (R) e3 el (R) el + e2 (R) e2 + e3 (R) e3,

so we have

(.) 9I P-sp({(R)a () e3
@b 2a + b N} U { (R) (R)a () (3b 2 - 2a -}- b N}).
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Let R, S, and T be as in Theorem 2.1. We can obtain -S from T by interchanging
the vectors e2 and e3 in the basis (el, e2, e3}. Similarly, we obtain -R from T by
interchanging el and e3. Since

we have immediately from (,) that

Jd P-sp(((R)a (R) {1b 2a + b N}
tA((e2(R)e3--e3(R)e2)(R)(R)a(R)eb 2 + 2a + b

and

J4 P-sp(((R)a (R) e2 b 2a + b N}

Since the vector will be important in what follows, we pause to note that will
be seen to be the unique (up to scalar multiple) element of A/[0 for N 2, and that
K2 2.

Having derived these expressions for AA, /[, and A/[, we now consider their
intersection, 0. We sometimes write A/[,N for JA, J4V0,N for A/[, fl/i0,Nz for
and A/I0,N for J40, to emphasize the value of N under consideration.

LEMMA 5 1 (1) Let q be one of x, y, and z Let ul E /[q and u2 JIqO,N O,N"
Then ul (R) u2 J/Iq The same result holds if we replace J/[ byO,N+N.

(2) Let w J/iO,N. Then P-sp(w} C_ A/IO,N.
Proof. For Lemma 5.1 (1), we have

NI+N2 N1 N1+N2
S(qJ)(?I(R)U2)--S(qJ)(ul(R)U2)-[-

j=l j=l j=N1+I

Sq() (u (R) u).

qSince Ul J0,NI’ the first of these two sums is zero Since U2 ( Jg,N2’ the second
is also zero. Hence

0,N1+N2
\ i=1

The statement for A/[0 follows immediately. Lemma 5.1 (2) is obvious.
LEMMA 5.2. Let N > 2 be even. Then

fl/[0,N--P-sP{(R)a(R)elb 2a W b N} N P_sp{(R)a(R)e2b 2a W b N}
N P-sp{(R)a(R)e3b 2a+b-N}.

Proof. We use equations (,), (**), and (, ,). Equation (,) shows that

.AA),N C span(ejl (R) (R) ejN e3 appears in an even number of positions}.
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Combining this with equations (**) and (, ,) shows that

fl40,N C_ span((R)j1 (R) (R) ejN each of el, e2, and e3 appears in an

even number of positions}.

Now, an examination of equation (,) shows that the only elements of j%4,N in
this span are those in

P-sp((R)a (R) ee3 b 2a + b N).

Similarly, the only elements of J,N and fl/[Y0,N in this span are, respectively, those
in

P-up{(R)a (R) e@l b 2a + b N}
and in

P-sp((R)a (R) e@2 b 2a + b N}.
Y A/[z this completes the proof. DSince Ado,N A/J0,N N lA0,N C 0,N,

COROLLARY 5.3. Let N >_ 2 be even and let F be a linear operator on which
permutes the basis (el, e2, e3}. Then F(R)N fixes J%40,N.

Proof. Since every element of P-sp((R)a (R) ee3 b 2a + b N} is unchanged upon
interchanging e and e2, the corollary is true when F arises from the transposition (1
2). Similarly, the corollary is true when F arises from the transposition (2 3). Since
(1 2) and (2 3) generate $3, we are done. (This corollary also follows from Proposition
4.5.) D

THEOREM 5.4. Let N >_ 2 be even, and let el (R) e + e2 (R) e2 + e3 (R) e3.
Then

AA0,N P-sp{(R)N/2 }.
Proof. Equations (,), (**), and (,, ,)show JiA0,N _D P_sp{(R)N/2}. Conversely,

given w E Ji//0,N, we proceed to show that w P_sp{(R)N/2 }.
By Lemma 5.2,

w P-sp{(R)a(R)ee3bl2a+b=N},

so we can write

N/2

b=o aESN

where the coefficients Ob,a are complex numbers. Let bmax be the largest value of
b for which some ab,a 0, and let us suppose our expression for w is such that
bmx is as small as possible. We wish to show that this minimal bmax is 0, for then
w P-sp{(R)N/2}, as desired.

Suppose bma > 0, so bmx _> 2. By Corollary 5.3, w is invariant upon interchang-
ing e and e3, so we have

N

b=0 a6SN
Cb,a (d?(R)(N-b)12 (R) e.l b)
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Define the operator I’N on )(R)N to be the orthogonal projection onto J,N" Thinking
in the basis {v-i, v0, vl } and using Lemma 5.1(1), it is clear that if wl E fl4,gl, and
if w2 E V(R)N2, then NI+N.(wl (R)w2) wl (R) I’N(W2). Now, CN(W) W, so we have

N

,o ( a (->/(R)
b=O

N

,=a ( (-/ 1)

N

b=O aSN

the last equality following from the fact that )(R)(N-b)/2 6 jz Now,O,N-b"

((bl)) a6.Sb

1 (1)((b/2)!) 7
o’ESb

b/2
’a ((V--l(R)Vl -I-V1 (R)V--l) (R)b/2)

a((d/)--e3(R)e3)(R)b/2)((/)! s
(-1)512 b! e3 b 2t-

25 ((b/21!)

where the "..." indicates terms involving at least one , and hence no more than b- 2
e3’s. Hence

N

w Z b," 11, ((R)(N-b)/2(R) (be3 b +’")), where fTb
b=0 o’6SN

(- 1)b12 b!

2b ((b/2)!)"

Note that for any b >_ 2, Jb is not 1. Subtracting this expression for w from bmetx
times (0) yields

Olb,a er ((R)(N-b)12 (R) ((bmlix rib)e3@b -I-’" ")).
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Dividing this last expression by (bmax 1) yields an expression for w which has
terms corresponding only to values of b strictly less than bmax. This contradicts the
assumption that our bmax in (0) was minimal. Hence, it must have been that the true
minimal bmax was 0, and therefore that w E P-sp{(R)N/2 }. [J

Remark. Note that the vector a ((R)N/2) depends on a only through the us-
ordered, indistinguishable pairs {a(1), a(2)}, {a(3), a(4)},..., {a(N-1), a(N)}. Hence,
when considering a vector of the form ((R)N/2), we can assume without loss of gen-
erality that a is canonical in the sense that a(2j 1) < a(2j) for 1 <_ j <_ N/2, and
that a(2) < a(4) <... < a(g).

To determine the structure of 3d0,g for N odd, we require two additional linear
operators. For N _> 1, for any w E 1)(R)N-l, and (i,j,k) any cyclic permutation of
(1, 2, 3), we define )(R)N

_
)(R)Nd-1 by

(R) 1/2 (R) (R)

and define A )(R)Nd-1 ._ )(R)N by

A(w (R) e (R) ei) 0,

A(w (R) ei (R) ej) w (R) ek,

A(w (R) ej (R) ei) -w (R) ek.

We extend and A by linearity.
LEMMA 5.5. (1) A o is the identity on

(2) c_
(3) A (J0,N+I)

__
-A/[0,N"

Proof. Lemma 5.5(1) is obvious. For Lemma 5.5(2), note that it suffices to show
that

j=l j=l

where X R, S, and T, defined in Theorem 2.1. By symmetry, it suffices to
consider the ce X R, and clearly we need only show

(R(N) d- R(N+I)) ff ff R(N)

This follows by direct computation on elements of the form w (R) ei, where i 1, 2, 3.
Similarly, for Lemma 5.5(3), it suffices to show

R(N) A A (R(N) d- R(N+I)),

and this follows by direct computation on elements of the form w (R) ei (R) ej, where
i,j 1,2,a.

PROPOSITION 5.6. For any N >_ 2,

A40,N A (AA0,N+).

Proof. By Lemma 5.5(3), it suffices to show A (240,N+t)

_
A40,N. Using (2) and

(1) of Lemma 5.5, we have

A (3A0,N+) _D A ( (2td0,N)) 3d0,g,
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completing the proof. [:]

LEMMA 5.7. Let A -aes3 (sgn a) Ha(l) (ea(2) (R)Ha(3) where $3 is the symmet-
ric group on three letters, ands a is the sign of the peutation a. Then A o,3.

Proof. We first show that (= R())(A) 0. Note that

2

Hence (= R(J))(e @e2@e3-el @e3@e2) 0. The other terms in (=1
ccel similarly. Hence a . Similly, A and g.

THEOREM 5.8. Let N > 3 be odd. Then

o,. P-, {("-)/ },
with A aesa (sgn a) ea() @ Ha(2) @ e(3).

Proof. Theorem 5.4 and Lemm 5.1 and 5.7 show

o, P-sp ((-3)/2 @
Conversely, Proposition 5.6 and Theorem 5.4 show that

0.. A (0..+)
A (P-, {(-+)/}),

so it suffices to show

A( ((-+)/)) e P-s, {(.-3)/ },
for any a SN+. By the remark following Theorem 5.4, we can sume that a
is canonical, and, in particular, that a(N + 1) N + 1, and either a(N) N or
a(g- 1) N. In the first ce, A( (@(N+)/2)) is zero, while in the second ce

A( ((-+)/:)) {(--) },
where T equals a restricted to (1, 2,..., N}. This completes the proof.

Remark. The proof above actually shows that

P-s, {(--) } s,a { (("-)/ a) e S., (N ) g}.

In other words, we need only consider those a with a(N- 1) N. Since A is skew-
symmetric upon interchanging its lt two tensor positions, we may instead sume
a(N) N. Combining this with reoning in the remark following Theorem 5.4, we
see that we can sume a is canonical in the sense that a(N) N, a(2j- 1) < a(2j)
for 1 j (N- 1)/2, and a(2) < a(4) <... a(g- 3). (Note that we cannot sume
a(N- 3) < a(g- 1), since the unordered pair (a(g- 2), a(g- 1)} is special and
must be allowed to occur anhere.)

We now turn our attention to the dimension of 0,N. By Proposition 5.6, this
dimension is an increing function of g. It is shown in [6] (see [7]) that for N even,

N/2 N (N/2)- Nim0,.= : - (+l)(g 2 )"=0 () (N- 2)’. =o
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This expression, while exact, is difficult to work with. Furthermore, it holds for even
N only.

We present here some upper bounds on dim A/I0,N in closed form, which follow
directly from the results of this section.

PROPOSITION 5.9. Let N > 4 be even. Then

dimjV/0,N

_
(N- 1) dimfl/10,N-2.

Proof. Recall that
/[0,g span {12 ((R)N/2) }.

Furthermore, by the remark following Theorem 5.4, we need only consider canonical
a, so that a(N) N. There are then (N- 1) possible values of a(N- 1). If we
"delete" tensor positions N and a(N- 1), we are left with an element of AA0,N-2, so
that

dim span {f (()(R)N/2) [a(N) N, a(N- 1) j} dimfl/lO,N-2

for j 1, 2,..., N- 1. The result follows.
COROLLARY 5.10. Let N > 2 be even. Then

dim A/I0,N _< (N- 1)(N- 3)-.. x 3.1
N

Furthermore, equality holds for N 2, 4, or 6.
Proof. For N 2, clearly dim A/I0,2 dim {} 1. The inequality now follows

from Proposition 5.9 by induction. For N 6, to show equality it suffices to show
that the set

{ gta ((R)3) a E $6, cr canonical}
is linearly independent. This follows from the observation that for or1 and or2 canonical,

((R)3)

is 1 or 0 as crl or2 or Crl r2. The proof of equality for N 4 is similar, involving
el (R) el (R) e2 (R) e2 in place of el (R) el (R) e2 (R) e2 (R) e3 (R) e3.

PROPOSITION 5.11. Let N > 3 be odd. Then

dimA/[0,N < /[N- 1|\ (N- 2)(N-4)...x3. 1.
/

Furthermore, equality holds for N 3 and N 5.
Proof. The inequality follows immediately from the fact that the number of canon-

ical elements of SN, in the sense of the remark following Theorem 5.8, is precisely
((N- 1)/2)(N- 2)(N- 4)... x 3.1. For N 3, clearly dimj40,3 dim {A} 1.
For equality when N 5, note that if al and or2 are two canonical elements of $5,
then

is 1 or 0 as al a2 or a a2. Hence the set

{f ( (R) A) la e $5, a canonical}

is linearly independent.
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6. Some special vectors: bounds on eigenvalues of KN and QN. As men-
tioned in the introduction, Haldane’s conjecture [91, [10] involves the lowest eigenvalues
of HN and PN, or equivalently the highest eigenvalues of KN --HN and QN --PN.
Numerical work by physicists (see, e.g., [11]) suggests that for large N the lowest eigen-
values of PN are approximately --1.4015 N, with a difference (or "gap") of about 0.41
between the two lowest ones, and it is believed that the corresponding values for HN
are similar. In this section, we present a few bounds on eigenvalues of KN and QN,
and show (Theorem 6.7) that HN and PN have eigenvalues lower than -(N- 1) and

4_N respectively.about -3
A similar result is obtained by a valence-bond approach in [2]. There, vectors

f(, E (1,2}) are constructed, and the expected values of HN are considered.
(The vectors a are defined more explicitly in [3].) Our approach will be somewhat
similar, in that we will construct vectors Wj,N and consider expressions like (HN(Wj,N),
Wj,N). Our vectors Wj,N are different than the vectors a,, and are defined in a quite
different way. However, there are certain strong connections. For example, the identity
12 + (--1)N21 2W0,N appears to hold in general.

We begin with an obvious bound.
PROPOSITION 6.1. The spectrum ofKN is contained in [-(N-1), 2(N-1)], and

that of QN is contained in I-N, 2N].
Proof. Recall from Corollary 2.5 that the spectrum of K2 is (-1, 1, 2}. This is

clearly the same as the spectrum of O(j) as defined in Lemma 3.2. Proposition 6.1

follows from the fact that KN is the sum of N- 1 operators of the form O(), and

QN is the sum of N operators of the form O(j).
The smallest eigenvalues above are not relevant to Haldane’s conjecture, but they

are important in the study of ferromagnets, where the Hamiltonian is the negative of
the operator HN presented here. To examine these, we require the following defini-
tions, also to be used elsewhere in this section.

DEFINITIONS. A vector u E )(R)N is

(a) symmetric,
(b) skew-symmetric,
(c) scalar, or

(d) of trace 0,
in tensor positions 1 and 2, if

(a) (12) (u) t,

(b) Ft(12) (u) -u,
(c) u (R) uo for some uo )(R)N-2, where el (R) e + e2 (R) e2 + e3 (R) e3, or

(d) u -ij ei (R) ej (R) uij, with u + u22 + u33 0.
(Here gt permutes the tensor positions, and is defined in the beginning of 5.) The
vector u has one of the above properties in tensor positions k and (k < l) if
has the corresponding property in tensor positions 1 and 2. We say u is scalar plus
skew-symmetric in tensor positions k and if u + (kt)(u) is scalar in tensor positions
k and l, or equivalently if u ul + u2 with u scalar and u2 skew-symmetric in tensor
positions k and 1.

By Corollary 2.5, u is scalar in tensor positions k and if and only if (kt)"g (U) 2U,
U is skew-symmetric in tensor positions k and if and only if (k)"N (U) U, and u is

symmetric and of trace 0 in tensor positions k and if and only if ((k)

The following proposition, important in the study of ferromagnets, is well known
to physicists.
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PROPOSITION 6.2. The eigenspace ofKN corresponding to the eigenvalue -(N-
1) is the same as the eigenspace of QN corresponding to the eigenvalue -N. This
common eigenspace has dimension 2N - 1.

Proof. For a vector w E )(R)g to be in the eigenspace for KN, it must be that
+)

N (w) --w for all adjacent positions i and i+ 1. From the above discussion, this
happens precisely when w is symmetric and of trace 0 in each two adjacent positions.
This condition translates into the following. If we write

W-- Z Oh eh(1) (R) eh(2) (R)’’" (R) eh(N),
h

where the sum is taken over all functions h (1, 2,..., N} - (1, 2, 3} and the coeffi-
cients h are complex numbers, then we must have:

(A) hl h. whenever hi h2 o T for some T (i i/1) E SN, and
(S) ahl -t-(h. / (h3 0 whenever for some i, h(i) h(i + 1) 1, h2(i)

h2(i -t- 1) 2, h3(i) h3(i + 1) 3, and h(k) h2(k) h3(k) for k - i, i + 1.
In the case of QN, we require the same conditions, but must also allow the pair

(N, 1) in place of (i, i + 1). In either case, conditions (A) and (B) are easily seen to
be equivalent to

(A) Ch (h2 whenever h h2 o T for any e SN, and
(B’) h + ah2 + ah3 0 whenever, for some i j, h(i) h(j) 1, h2(i)

h2(j) 2, h3(i) h3(j) 3, and h(k) h2(k) h3(k) for k i,j.
Conditions (A’) and (B’) make it clear that we can choose arbitrarily the coef-

ficients Oh for "primitive" functions h, i.e., functions h with at most one element in

h-1(3}, and with h(1) _< h(2) <_ <_ h(N). The coefficients (h with at most one
element in h-(3}, but with arbitrary ordering, are then forced by condition (A’).
The coefficients Oh with h having more and more elements in h-(3} are then forced
in turn by condition (B’). Under such a procedure, condition (A’) is satisfied auto-
matically. Since there are 2N / 1 "primitive" functions h, this is the dimension in
question.

As a simple example of vectors in the eigenspace described above, note that
if u v_ or vl, then g2(u (R) u) -u (R) u, so gN(u(R)N) -(N 1)u(R)N and

QN(u(R)N) -Nu(R)g.

To investigate the largest eigenvalues of KN and Q, we make the following
definitions. For even N, let

0,N span(ej (R) ej: (R)... (R) ejN each of el,e2, and e3 appears in an

even number of positions},
,N span(ejl (R) ej: (R)... (R) ejN each of e2 and e3 appears in an odd number

of positions, and el appears in an even number of positions},
2,N span(ejl (R) ej (R)... (R) ej leach of e and e3 appears in an odd number

of positions, and e2 appears in an even number of positions},
3,N span(ej (R) ej (R)... (R) ej leach of el and e2 appears in an odd number

of positions, and e3 appears in an even number of positions}.
For odd N, make the same definitions, except write "odd" for "even" and "even"

for "odd."
Clearly, )(R)g 0,N (l,N (2,g ( 3,g. Each of these four subspaces is easily

seen to be invariant under an operator of the form X(i)X(), where X is one of R, S,
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and T, and hence to be invariant under KN and QN. Furthermore, by Theorems 5.4
and 5.8, we have JA0,g C_ 0,N.

For a function h (1, 2,..., N} -- (1, 2, 3}, define

eh eh(1) eh(2) (R)’’" eh(N) E )(R)N,

and
_=

where
#(h) _-- number of pairs (i, j) with i < j and h(i) > h(j).

Define Wj,N E ,N, for j 0, 1, 2, 3, by

0)jN E (-1)h eh,
h

eh 6,.q’j,N

where the sum is taken over all functions h (1, 2,..., N} --, (1, 2, 3} with eh in the
given subspace.

It is easily seen that II(wo,N) WO,N, where H is the rotation operator defined at
the end of 3. Furthermore, w0,1 0, w0,2 , w0,3 A,

(M0,N (M1,N-1 () el -" (--1)N (-d2,N-1 () e2 -- d3,N-1 ( e3,

and
W0,N W0,N-2 ( ( "" (--1)N-1 IX/(W0,N-1)

It follows immediately that with A and as defined in 5,

A (WO,N) (--1)N-1 WO,N-1

and
WO,N WO,N-2 (R) + (--1)N-1 ((M0,N--1)

this second equation shows Wo,g ]/[o,g for all N. More generally, it follows by
similar reasoning that for j 0, 1, 2, 3,

A (wj,g) (--1)J+N-10.)j,N--1

and
Odj,N O.)j,N--2 ( + (--1)j+N-1 II/(aJj,N--1)

It is easily seen from the definitions that each of d0,N (M1,N, d2,N, and (.d3,N is
scalar plus skew-symmetric in each two adjacent tensor positions. It follows immedi-
ately that (O(k,k+) (Wj,N), Wj,N) >_ (Wj,N, Wj,N) for any k and for j 0, 1, 2, 3. We
improve this result in Lemma 6.6 below.

The vector wO,N has the following uniqueness property.
LEMMA 6.3. Let N >_ 2 be even. Let y 0,N be scalar plus skew-symmetric in

each of the two adjacent tensor positions. Then y is a scalar multiple of wO,N.
Proof. Note that (w0,g, e@lN) 1, so there is a complex number A such that if

z y + AwO,N, then (z,e@lN) O. We wish to show that z 0. We proceed by
induction on even N, the induction hypothesis being that if z 0,N is such that z
satisfies the hypothesis of y in Lemma 6.3, and if furthermore z is perpendicular to
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e@lN, then z 0. For N 2, the hypothesis is clearly true. Assuming it is true for
N- 2, with N _> 4, write

Z ((0 -- (el ()e2 2 ()1) ()3 + (2 (R) {3 e3 (R) e2) ()Ul -- (3 () 1 1 (R)e3) (R)u2,

for some vectors u0, ul, u2, U3 E )(R)N-2. Note that u0 satisfies the same properties as
does z, so by the induction hypothesis, u0 0. This means that z is skew-symmetric
in tensor positions 1 and 2. Similarly, z is skew-symmetric in tensor positions k and
k + 1 for each k. Since N _> 4, and z must be built out of only the three vectors el,

e2, and e3, this implies that z 0. This completes the induction step and proves the
lemma.

PROPOSITION 6.4. Let N be even. Then

ESN
canonical

with canonical defined as in the remark following Theorem 5.4. Hence O.)O,N ]O,N.
Proof. Let

Y= (sgn a) aa (@N/2)
aSN
canonical

Then sagisfies ghe hypothesis of Lemma 6.3 so that is a scalar multiple of 0,.
o show he scalar is 1, noe ha {0,,e} 1, while

(y,e@lN) y (sgn or),
canonical

and this last expression is easily seen to be 1 by induction. 0
Remarks. (1) The analogous statements to Lemma 6.3 for wj,N, for j 0, 1, 2, 3,

and for N even or odd, are also true.
(2) In addition to Proposition 6.4, we also have the following. For odd N,

030,N

canonical

(sgn a)i2a ((R)(N-3)/2 (R) A),

with canonical as defined in the remark following Theorem 5.8. Also, for j 1, 2, 3,

Wj,N Z(sgn a)a ((R)(N-)/2 (R)

with the sum taken over all a e SN with a(2i- 1) < a(2i) for i 1, 2,..., (N- 1)/2,
and with a(2) < a(4) <... < a(N- 1). For even N, and for j 1,2, 3,

Oj,N Z(sgn a)a ((R)(N-2)/2 (R) (ek (R) el el (R) ek)),

where k < and (j,k,l} {1,2,3} as sets, and with the sum taken over all a e SN
with a(2i- 1) < a(2i) for i-- 1, 2,..., N/2, and with a(2) < a(4) <... < a(N- 2).

LEMMA 6.5. For even N, IIW0,NII 2 1/4 (3N +3) and IIW,NII 2 IIw2,NII 2
(3N 1). For odd N, IIW0,NII 2 1/4 (3g 3) and IIw,gll 2 IIW2,NII 2I1  , 11

+
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Proof. Let N be even. We have that

To evaluate this number, note that it is equal to the number of ways of partitioning the
integers {1, 2,..., N} into three disjoint subsets, each of which has even cardinality.
Hence

[[w, 112 Z N1 N2
N1,N

This last expression is simply the sum of the coefficients of all terms in the expansion
of the polynomial (a + b + c)N corresponding to even powers of each of a, b, and c,
and is thus equal to

1 1
a-:((l+l+l)N+(-I+I+I)N+(l-I+l)N+(I+I-I)N) (3N+3).

The other norms may be similarly evaluated.
LEMMA 6.6. For even N,

and
KN(O)I,N O31,N

<031,N

while .for odd N,

<KN(W2,N), W2,N> <KN(W3,N), W3,N>
<,,,> <,,,>

(N- 1)
3N+l -3

(KN(WO,N),WO,N) _(N_1)(4(WO,N, WO,N) 3 3g 3

(QN(WO,N),WO,N) N (4(W0,N,W0,N) 3 3g 3

and
<KN(Wl,N), lZl,N> <KN(W2,N), W2,N> <KN(W3,N), W3,N>

<(M1,N, (Mi,N <(M2,N, M2,N <Sd3,N,

)(N- 1) + 3g+l + 3

Proof. Recall that

O0,N 0)0,N-2 ) q- (--1)N-I I/((,O0,N__I)
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Now, ov0,N-2(R) is symmetric in tensor positions N-1 and N, while (--1)N-1 I/(0,N-1)
((N-I,N) (/M0,N) 2W0,N-2is skew-symmetric in these tensor positions. Hence "N

(--1)N-1 (W0,N-1) W0,N - d0,N--2 (R) (. It follows that

By symmetry, the same result holds when (N- 1, N) is replaced by (k, k + 1), so

<KN(WO,N),WO,N> (N- 1)(]]WO,NI] 2 + 3]]W0,N_2]]2).

The results for KN(WO,N) now follow from Lemma 6.5 and simple algebraic manipu-
lation. The results for QN(wo,N) follow similarly, using the fact that II(wo,N) WO,N.
The results for Wl,N, (a)2,N, and (M3,N are proved similarly.

THEOREM 6.7. The operators KNlo,, QNIJo,N, KNIjI,N, KNIjY2,, and
KNI#3,n have eigenvalues at least as large as the values, respectively, of

<KN(WO,N),WO,N>
(M0,N, (a)0,N)

<KN(W2,N),W2,N)
032,N, (M2,N

<QN(WO,N), TO,N> <KN(WI,N), W,N>
((M0,N (M0,N> ((MI,N (MI,N)

and <KN (W3,N), W3,N>

as given in Lemma 6.6. In particular, for any N, KN has an eigenvalue larger than
4 (N-1), and has at least four eigenvalues (counting multiplicity) asymptotically larger3
than or equal to N. Also, QN has an eigenvalue asymptotically larger than or equal
to N.

Proof. Since the operators gg and QN are Hermitian, this is immediate. D
The methods of this section also allow us to prove the following generalization

of Corollary 4.2. It is previously known and, in fact, follows from the representation
theory of SU(2).

PROPOSITION 6.8. The subspace JAO,N contains all eigenspaces of HN and PN
of dimension 1 or 2.

Proof. Let : be an eigenspace of HN or PN not contained in fl40,N. Then by
the decomposition of 4, there is a nonzero vector w E AA for some k 0 and
q x, y, or z. Now, it is easily seen that for any k 0, A/I does not intersect ff0,N.
Indeed, Sq(i) (ff0,N) is orthogonal to ff0,g, for each i, so no element of ff0,g can be
an eigenvector of )-N=I Sq(i) corresponding to a nonzero eigenvalue. Hence w ff0,N.
But this means that w has a nonzero projection onto some q,N, j > 0. Since the
7,N are invariant subspaces of HN and PN, this projection is an element of . Then
permuting the basis {e, e2, e3} yields a nonzero element of in each 7,g, j 1, 2, 3.
Since the ,,N are orthogonal, we must have dim t >_ 3, completing the proof. [:]

7. Other spin values. The vector space V and spin operators Sx, Sy, and Sz
discussed in this paper correspond to atoms with spin 1. In general, spin values may
be any element of { 1/2, 1,-32,2,...}. In this section, we discuss the spin operators for all
spin values (see, e.g., [8]), and Haldane’s more general conjecture [9], [10].

For spin s e (1/2, 1,-32,2,...}, the vector space required is 1)8 (2s+l with or-
thonormal basis {v-8, v-8+1,...,Vs-l,Vs}. The operator Sz on V8 is defined by
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Sz(vj) jvj, extended by linearity. The operators S and Sv are defined, for
m, n E (-s,-s+l,... ,s}, by the relations

1
(Vm, Sxv) - r__|/S(S + 1) n(n / 1) 5m,+l / V/s(s + 1) m(m + 1) im+l,|

and

1
(vm, Svvn -, |x/s(s -t- 1) n(n + 1)5re,n+1 V/s(s zt- 1) m(m + 1)5m+l,n|

extended by linearity, where i is the Kronecker delta.
Once we have specified s, )8, Sx, Sy, and Sz, we may define the operators HN and

PN on 2N exactly as before. These operators may be decomposed into operators on

.M, k {-sN,-sN/l,..., sN}, by exact analogy with 4 of this paper (invariance
can be easily checked directly).

We may now state the general form of Haldane’s conjecture [9], [10]. Let
and "’N be the smallest and second-smallest eigenvalues, respectively, of HN (or
PN) with spin value s. Then Haldane’s conjecture may be stated as saying that

(11(8) 10(8limN-o "N --"’N > 0 if and only if s is an integer. (Again, there are other,
inequivalent, mathematical formulations of the conjecture; see [1].) The mathematical
proof or disproof of this conjecture would be of extreme interest in solid state physics.
See [1] for a proof of the noninteger s statement, at least for PN. The integer s

statement, however, is considered to be more surprising, and remains unproven.
The following proposition is known and follows from the representation theory of

sv(2).
1 3 5PROPOSITION 7.1. If s (2’ 2’ 2"’’}’ and if N is odd, then each eigenspace of

HN and PN has even dimension.

Proof. As mentioned above, we decompose the space )s@N into spaces Az[, for k
-sN, -sN+l,..., sN. Note that each of these values of k differs by 1/2 from an integer,
and in particular that k is never 0. It is easily checked that the mapping Vm v-,
induces a unitarily equivalence of HNIj7 with Hylj4._k and of PgljaT with

Let J+ Jk>0 J, and let A/I- Jk<0 AA. Then )sN j-t- ( j--, and we

have HN H+N H and PN P+N P, where H+N HNIj+, etc. The result
now follows from the observation that HN+ is unitarily equivalent to H, and PN+ is
unitarily equivalent to P.

Acknowledgments. The authors are grateful to R. L. Armstrong and W. J. L.
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journal for providing a number of references and several useful suggestions.
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PARALLEL SPARSE LU DECOMPOSITION ON A MESH
NETWORK OF TRANSPUTERS*

A. FRANK VAN DER STAPPENt, ROB H. BISSELINGt, AND

JOHANNES G. G. VAN DE VORST

Abstract. A parallel algorithm is presented for the LU decomposition of a general sparse
matrix on a distributed-memory MIMD multiprocessor with a square mesh communication network.
In the algorithm, matrix elements are assigned to processors according to the grid distribution.
Each processor represents the nonzero elements of its part of the matrix by a local, ordered, two-
dimensional linked-list data structure. The complexity of important operations on this data structure
and on several others is analysed. At each step of the algorithm, a parallel search for a set of m
compatible pivot elements is performed. The Markowitz counts of the pivot elements are close to
minimum, to preserve the sparsity of the matrix. The pivot elements also satisfy a threshold criterion,
to ensure numerical stability. The compatibility of the m pivots enables the simultaneous elimination
ofm pivot rows and m pivot columns in a rank-m update of the reduced matrix. Experimental results
on a network of 400 transputers are presented for a set of test matrices from the Harwell-Boeing
sparse matrix collection.

Key words, sparse matrices, LU decomposition, parallel algorithms, distributed-memory mul-
tiprocessor, transputers

AMS subject classifications. 65F05, 65F50, 65Y05

1. Introduction. Sparse linear systems of equations need to be solved in many
application areas, such as oil reservoir simulation, chemical plant modelling, and linear
programming. A sparse linear system of equations has the form

(1) Ax b,

where A is an n n sparse matrix, and x and b are vectors of length n. Vector b is
given, and x is the unknown solution vector. In this paper we assume that the matrix
A is nonsingular, sparse (i.e., cn of its n2 elements have a nonzero value, with c << n),
and general (i.e., A has an arbitrary, not necessarily symmetric pattern of nonzeros).
The computing time and the amount of memory needed to solve (1) can be reduced
greatly by exploiting the sparsity of A.

Several methods exist for solving the sparse system Ax b [12], [34]. One of
these methods is based on LU decomposition [19], which is closely related to Gaussian
elimination. LU decomposition produces an n n unit lower triangular matrix L, an
n n upper triangular matrix U, and permutations r and p of {0,..., n- 1} such
that

A,,# (LU)ij for all i, j, 0 _< i, j < n.

Permutations r and p appear in this equation because rows and columns may have to
be permuted during the LU decomposition to preserve sparsity and ensure numerical
stability.
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The system Ax b can be solved in five stages:
1. Decompose A to obtain matrices L, U and permutations r, p satisfying (2).
2. Permute b according to d b, 0 <_ i < n, to obtain a vector d.
3. Solve Ly d to obtain a vector y. This unit lower triangular system of

equations is solved by forward substitution.
4. Solve Uz y to obtain a vector z. This upper triangular system of equations

is solved by back-substitution.
5. Permute z according to x z, 0 _< j < n, to obtain the solution vector x.

This paper deals exclusively with the first stage: we present an algorithm for the
LU decomposition of a sparse matrix on a distributed-memory parallel computer. A
suitable algorithm for the parallel solution of sparse triangular systems can be derived
from the parallel dense triangular system solving algorithm in [2]. For a symmetric
positive definite matrix A, it is more efficient to use Cholesky factorisation [19] instead
of LU decomposition; an extensive review of parallel sparse Cholesky factorisation
algorithms is given in [21].

Sequential sparse LU decompositions usually consist of many steps, each of which
contains a search of the reduced matrix for one pivot element, followed by row and
column permutations, and a rank-1 update of the reduced matrix. Sparsity can be
preserved during the LU decomposition by choosing appropriate pivot elements. A
heuristic pivot search strategy that achieves this aim is the Markowitz strategy [24]
(see [14] for an experimental evaluation of its performance). The choice of a pivot
element A leads to the creation of at most M (R- 1)(C 1) new nonzeros,
where Ri (C) is the number of nonzeros in row (column j) of the reduced matrix.
The upper bound Mi is called the Markowitz count of Aii [12, Chap. 7]. A pivot
element that has the lowest Markowitz count, mincount, is chosen. Many variants of
this basic Markowitz strategy exist. Zlatev [33] limits the search for pivot elements to
the sparsest three rows, to prevent long searches; his experiments show that the total
number of new nonzeros created, the fill-in, is not necessarily reduced by searching
more rows.

Numerical stability must be maintained during LU decomposition to obtain an
accurate solution. Sequential general-purpose programs for sparse LU decomposition
such as MA28 [11] and Y12M [35] incorporate a mechanism to prevent small matrix
elements from being chosen as a pivot. One variant is to accept only those pivot
candidates Aiy that are nonzero and that satisfy

(3) IAijl >_ u. max IAjI,

where u, 0 _< u _< 1, is a threshold parameter [12, Chap. 9].
The aim of this paper is to present a parallel general-purpose sparse LU decom-

position algorithm that includes features such as Markowitz pivoting to preserve spar-
sity and threshold pivoting to ensure numerical stability. The algorithm is suitable
for distributed-memory message-passing multiprocessors such as transputer networks
and hypercubes. The functionality of our parallel implementation is comparable to
that of sequential programs such as MA28 and Y12M.

The potential parallelism in sparse LU decomposition is twofold: first, in dense
LU decompositions the operations of each rank-1 update can be done in parallel;
this parallelism is inherited by sparse algorithms. Second, the sparsity of the matrix
allows for the parallel execution of some computations which in the dense case have
to be performed in sequence. In the sparse case, several rank-1 updates of the matrix
can be combined into one multiple-rank update with many potentially simultaneous
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operations, thereby avoiding synchronisation and idling of processors after each rank-1
update.

Both forms of parallelism have been exploited in shared-memory parallel sparse
LU decomposition algorithms of Smart and White [29], Alaghband [1], Davis and
Yew [8], [9], Gallivan, Sameh, and Zlatev [17], and others. In these algorithms the
Markowitz strategy is modified to obtain a set S of pivot elements that can be handled
simultaneously. To make this set as large as possible, pivot elements with a Markowitz
count higher than mincount are accepted. Calahan [5] was the first to exploit the
fact that two pivot elements Aij and Akl can be handled simultaneously if

(4) Ai, Akj O.

Such pivots are called compatible [1] or independent [29]. For a detailed discussion of
compatibility, see [9].

Smart and White [29] investigate the parallel time complexity of sparse LU de-
composition for an unlimited number of processors, by using task graph depths as
a complexity measure. They present an algorithm in which the pivot set S con-
tains compatible diagonal elements with a Markowitz count between mincount and
mincount + a, where a is an input parameter. The set S is constructed by starting
with the empty set and successively adding new compatible pivot elements in order of
increasing Markowitz count. For a 1000 1000 tridiagonal matrix, the algorithm with
a 2 leads to a task graph depth of 27, which is close to the theoretical minimum of
23; in this case, the basic Markowitz strategy leads to a much higher depth of 1998.
For most of the examined electronic circuit matrices, however, the improvement in
depth over the Markowitz strategy was only about 50 percent.

Alaghband [1] presents an algorithm which generates candidate pivot sets and
then chooses a pivot set S of maximum size; ties between sets are decided according
to the minimum total Markowitz sum. The pivot search uses an n n table that rep-
resents the mutual compatibility of diagonal pivot candidates. Pivot elements with a
Markowitz count higher than a user-specified value or with a numerical absolute value
lower than a user-specified threshold are discarded from S. Experimental results on
the Denelcor HEP shared-memory computer show a speedup of 4.8 on eight proces-
sors, for a 144 144 electronic circuit matrix with 616 nonzeros. In this example
many pivots are handled in parallel: the matrix is decomposed in 10 steps, with pivot
sets of sizes m 72, 25, 16, 11, 6, 5, 3, 2, 2, 1, 1.

Davis and Yew [8], [9] present a shared-memory parallel algorithm and a program,
D2, which has the full functionality of programs such as MA28 and Y12M. In this
algorithm, the pivot set S contains compatible elements with a Markowitz count
between mincount and a. mincount, where a is an input parameter (a 4 in the
experiments). All processors search for acceptable pivot candidates, and then try to
add them to the current set S. If a candidate is compatible with all the elements of S,
it is added to S. Conflicts between processors that simultaneously try to add a pivot
are prevented by critical sections in the program. The processor that is the first to
arrive at the entry of a critical section gains access to it. This implies that operating
system factors influence the pivot choice; the program is therefore nondeterministic.
Experiments on an Alliant FX/8 shared-memory computer show that D2 is a median
3.9 times faster on eight processors than on a single processor, and that the sequential
version of D2 is 4.3 times faster than the sequential program MA28.

Gallivan, Sameh, and Zlatev [17] (see also [34, Chap. 10]) present three shared-
memory parallel versions of the sequential program Y12M [35]: Y12M1, which is
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based on rank-1 updates; Y12M2, which is based on rank-m updates; and Y12M3,
which exploits coarse-grain parallelism created by ordering the matrix A to an upper
block-triangular form (see also [16] for alternative ordering techniques). Here, the
enhanced parallelism of Y12M2 compared to Y12M1 is important. In the algorithm
Y12M2, an ordered set S of m pivots is formed with the property that Akj 0 if the
element Aij precedes the element Ak in the ordering of the set. This relaxation of
the compatibility requirement (4) allows for the creation of larger pivot sets, at the
expense of a more complicated matrix update. Experimental results on an Alliant
FX/80 shared-memory parallel computer with eight processors show that Y12M1 is
faster than Y12M2 for matrices that are relatively dense or become so during the LU
decomposition, whereas Y12M2 is faster for matrices that are very sparse and remain
so. The speedup of Y12M1 is between 2.4 and 5.4 and that of Y12M2 is between 2.3
and 5.0, for a set of 27 test matrices from the Harwell-Boeing sparse matrix collection

Sadayappan and Rao [26] analyse the amount of communication in sparse LU de-
composition on a distributed-memory parallel computer. They present the fragmented
distribution which splits rows and columns into parts and distributes these parts over
different processors; this is in contrast to the shared-memory algorithms above that
treat rows or columns as basic indivisible units. Compared to a row/column-wrapped
distribution, the fragmented distribution decreases the communication volume (i.e.,
the total length of the messages) of dense LU decomposition by a factor of Q, for
Q2 processors. Statistics for a number of circuit simulation matrices confirm that the
communication volume for sparse matrices is reduced in the same way as for dense
matrices, showing up to a five-fold decrease for Q 8.

Skjellum [28] presents a distributed-memory parallel algorithm that is valid for a
range of data distributions, including the grid distribution defined below. The gener-
ality of this algorithm enables the user to tune the granularity of the distribution to
the characteristics of a particular computer architecture. In the current implementa-
tion, the partial row pivoting strategy is used, which gives one pivot element per step.
Experimental results on a Symult s2010 for a 2500 x 2500 random sparse matrix with
c 51 nonzeros per row show a speedup of 9.7 on a 96 processor machine, compared
to a 6 processor machine.

Our distributed-memory parallel LU decomposition algorithm for sparse matrices
is based on an algorithm for dense matrices [3]. The dense algorithm allocates matrix
elements to processors according to the grid distribution [32], defined by the mapping

Aij -+ processor (i mod Q, j mod Q) for all i, j, 0 <_ i, j < n,

for Q2 processors (s, t), 0 <_ s, t < Q. This distribution splits each row i into Q row
parts, i.e., sets of the form {Aij 0 <_ j < n A jmodQ t}, and it also splits
each column into Q column parts. The grid distribution is also called scattered square
decomposition [15] and cyclic storage [22]; it is similar to the fragmented distribution

We choose the grid distribution (5) as the distribution scheme for sparse matrices
because it has an optimal load balance and a low communication complexity for LU
decomposition of dense matrices [3]. The optimal load balance in all steps of the dense
LU decomposition algorithm implies that in the sparse algorithm all processors are
responsible for an approximately equal number of (zero or nonzero) elements. If the
statistical assumption holds that every element of the matrix has an equal probability
of being nonzero, it follows that the nonzero elements are spread evenly over the
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processors. If this assumption does not hold because nonzeros cluster at certain
places in the matrix, e.g., in the lower right-hand corner or in dense submatrices,
then these nonzeros are scattered over many processors, still giving a good overall
load balance. Memory use is also efficient, since the scattering effect makes it unlikely
that one processor runs out of memory while the others still have much storage space
available. (For a theoretical analysis of one-dimensional scattering applied to an
irregular computational domain, see [25].)

Figure 1 shows four snapshots of the parallel LU decomposition of the 59 59
sparse matrix IMPCOL B from the Harwell-Boeing collection. At the start (a) of the
LU decomposition, the matrix has 3169 zero elements and 312 nonzero elements, and
at the end (d) it has 3053 zeros and 428 nonzeros. The zero elements are shown in
yellow. The nonzero elements are assigned to the processors of a 2 2 mesh, according
to the grid .distribution. The elements of processor (0, 0) are shown in blue; those of
(0, 1) in red; those of (1, 0) in green; and those of (1, 1) in purple. The matrix is shown
at the start of step k of Algorithm 1, for (a) k 0; (b) k 18; (c) k 38; (d) k 59.
The horizontal lines in (b) and (c) separate the matrix elements (i, j) with i < k
from those with i >_ k, and similarly for the vertical lines. The diagonal blocks of
(d) are formed during the steps of the decomposition. Each block contains the per-
muted pivot elements of one step. These elements are found in a search for at most
mmax 10 compatible pivot elements. The block sizes are m 9, 4, 5, 8, 7, 5, 6, 6, and
nine times 1.

An alternative to the matrix-independent grid distribution is a distribution that
exploits knowledge of the sparsity pattern of the matrix to obtain an optimal load
balance. Unfortunately, at every step of the LU decomposition of a general sparse
matrix the sparsity pattern changes due to permutations and fill-in that are unpre-
dictable, because they depend on the pivot choice and hence on the numerical values
of the matrix elements. Adjustment to the changing sparsity pattern would necessi-
tate frequent redistribution of the matrix, which is undesirable. For this reason, we
do not adopt this approach and instead we rely on statistical expectations.

The low communication complexity of the dense LU decomposition algorithm
implies a low communication complexity for the sparse algorithm, provided that the
same statistical assumption as above holds. This can be seen as follows. In the dense
case, the broadcast of a row of length n is done by simultaneously broadcasting Q row
parts of length n/Q to Q processors each, with a time complexity of O(n/Q/Q). (The
expressions (.0(x), (x), and (x) denote, respectively, at most, at least, and equal
to a constant times x.) Similarly, in the sparse case, the broadcast of a row of length
c is done by simultaneously broadcasting Q row parts of length c/Q to Q processors
each, with a time complexity of ((c/Q + Q). This communication complexity is less
than, for instance, the ((c -Q) complexity of a row broadcast for the row-wrapped
distribution on a square mesh of processors. (The gain can be significant even for small
values of c, where Q dominates c/Q, because in our algorithm m row broadcasts can be
combined into one multiple-row broadcast of complexity O(mc/Q + Q).) Sadayappan
and Rao [26] observed a similar reduction in communication.

The pivot search strategy of a distributed-memory parallel algorithm must be
kept simple, to avoid excessive communication between searching processors. The
chosen data distribution strongly influences the choice of the search heuristic. In our
algorithm, each column (.,t) of Q processors is responsible for about n/Q matrix
columns. Each processor column searches a few of its sparsest matrix columns for
numerically stable pivots with low Markowitz counts. A pivot set S of size m is
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then constructed by starting with the empty set and adding new compatible pivot
candidates in order of increasing Markowitz count, similar to the algorithm of Smart
and White [29]. This is done by a parallel algorithm which uses the distributed
compatibility information supplied by the distributed matrix A. The pivot set is
constructed by a pipeline of Q processors, and then broadcast to all Q2 processors.
After the pivot search, the matrix is permuted according to S and then modified by
a rank-m update.

An important issue in sparse matrix computations is the choice of a data struc-
ture. In this paper, we analyse the theoretical time complexity of important parallel
computations on several data structures. For reasons of simplicity, we decide to rep-
resent the nonzero elements of each processor in a local, ordered, two-dimensional
linked-list data structure. This data structure has been introduced by Knuth [23] for
sequential sparse matrix computations; it has been used by Alaghband [1] and Skjel-
lure [28] for parallel computations. (Davis and Yew [8], [9] use two one-dimensional
doubly linked-list structures, one for rows and one for columns. Each entry in such a
structure represents a block of nonzeros.)

The remainder of this paper is organised as follows. In 2 we present the details of
the parallel sparse LU decomposition algorithm. In 3 we review the possible choices of
a local data structure for the local part of the sparse matrix and we compare their time
complexity and memory use. In 4 we present the results of numerical experiments
on square meshes of up to 400 transputers, for a test set of eleven matrices from the
Harwell-Boeing sparse matrix collection [13]. In 5 we draw the conclusions.

2. Parallel algorithm. In this section we present an algorithm for the parallel
LU decomposition of sparse matrices on a square processor mesh with distributed
memory. The algorithm consists of a number of steps, each of which has three phases:
a pivot search, row and column permutations, and an update of the reduced matrix
and its row and column nonzero counts.

2.1. Outline of the parallel algorithm. We may choose to distribute a matrix
over the processors and then find a local representation for each matrix part. On the
other hand, we may choose to find a representation for the entire matrix and then
distribute this representation. We decide to distribute the matrix first. This choice is
justified by the following arguments:

If distribution is accomplished first, the representation details of a matrix are
always local. This locality eases the implementation of operations that change the
sparsity pattern of the matrix. As an example, the insertion or deletion of an element
in a local representation is an operation performed by a single processor.

If representation is accomplished first, both the matrix itself and its repre-
sentation details have to be distributed. This dual requirement has the consequence
that operations that change the sparsity pattern of the matrix are always of a global
nature. Hence, several processors have to cooperate to perform such operations. This
cooperation makes these operations unnecessarily inefficient and difficult to imple-
ment.

Matrices are distributed over a square mesh of Q2 processors. Each processor is
identified by Cartesian coordinates (s, t), with 0 _< s, t < Q; in what follows we shall
omit these bounds on s and t for the sake of brevity. We define grid(s, t) as the set
of index pairs of an n n matrix assigned to processor (s, t) according to the grid
distribution (5),

(6) grid(s,t) ( (i,j) O <_ i,j < n A mod Q=sAjmodQ=t}.
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We introduce an n x n matrix variable X, and distribute it according to the grid
distribution. The permutation variables r and p of (2) are replicated and distributed:
it turns out to be convenient to maintain a copy of r in all processors (i mod Q, .),
and a copy of pj in all processors (., j mod Q). Initially X A and r p id, the
identity permutation. At the end of the computation the matrix variable X contains
the factor L in its strictly lower triangular part and U in its upper triangular part,
and the permutation variables r and p contain their final values. Row nonzero counts
are maintained in a vector variable R which is replicated and distributed in the same
manner as r. The component R equals the number of nonzero elements of row i in
the reduced matrix, which is defined as the (n- k) x (n- k) submatrix of elements
Xj, k _< i, j < n, at the start of step k of the algorithm below. (For the purpose of
explanation, we assume throughout this paper that there are no accidental zeros in
the computations. Therefore, the number of nonzeros in a row equals the number of
entries in the sparse representation of that row.) Similarly, column nonzero counts
are maintained in a vector variable C which is replicated and distributed in the same
manner as p. The Appendix presents a formal description of the aim of the algorithm
and of the relation between X, r, p, R, and C that is maintained throughout the al-
gorithm. An outline of the algorithm follows.

ALGORITHM 1 (parallel sparse LU decomposition).
X:-A;
r :- id;
p :- id;
initialise R and C;
k 0;
while k < n do begin

find pivot set S- {(it,jr) 0 _< r < m};
permute rowsie{i k<_i<k+m}U(ir 0_<r<m};
permute corresponding ri and Ri;
permute columnsje(j k_<j<k+m}t{jr 0_<r<m};
permute corresponding pj and Ci;
update matrix elements (Xij k -t- m _< i < n A k <_ j < k + m};
update matrix elements (Xi k + m <_ i,j < n};
update row nonzero counts {Ri k -+-m _< i < n};
update column nonzero counts {Cj k + m _< j < n};
k:-k+m

end.

In the notation of this outline, it is implied that each processor (s, t) performs its
part of the computations on its own data. The details of the separate parts of the
algorithm are presented in 2.2-2.4. The algorithm is illustrated in Fig. 1.

2.2. Parallel pivot search. A simple and effective pivot search strategy is to
choose pivot elements from a limited number of the sparsest rows or columns; see

[33]. Since we choose the column-oriented stability criterion (3), it is most convenient
to search columns. The pivot search consists of three parts" searching columns to
find candidate pivot elements; determining mutual compatibility of candidates; and
constructing a pivot set of mutually compatible elements.

2.2.1. Search for candidates. In the first part of the pivot search, columns
are inspected in parallel. Processor (s, t) has one column part of each column j with
k _< j < n and j mod Q t, and it participates in the search of ncol of these columns
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that have lowest nonzero counts Cj. Here, ncol is an input parameter. (If less than
ncol columns remain, these are searched.) The set of columns to be searched by pro-
cessor (s, t) is denoted by SearchCols(t); this set is available in all processors (., t).
Together, the processors (., t) search the complete columns of SearchCols(t). A set
ColCandidates(t) is formed which includes one optimal pivot candidate per searched
column; this set becomes available in all processors (., t). An outline of the program
text for processor column (., t) follows.

ALGORITHM 2 (find candidate pivot elements).
ColCandidates(t) :=
determine SearchCols(t) from C;
for all j e SearchCols(t) do begin

find r, k <_ r < n, such that IXjl max{IXl" k <_ < n A Zi 0};
threshold := u.
find i, k N i < n, such that

Mij min {Mj k <_ < n A IXjI >_ threshold A Xj 7 0};
ColCandidates(t) "= ColCandidates(t) U { (i, j) }

end

The statements of Algorithm 2 are implemented as follows. The set SearchCols(t)
is determined by using a local data structure for column nonzero counts (see [12,
Chap. 9]). The index r of an element with maximum absolute value in column j
is determined by first searching locally in processor (s, t), and then communicating
and comparing these local maxima to obtain the index r of the global maximum.
This maximum IXrjl is broadcast to all processors (.,t). Markowitz counts Mij,
(i, j) E grid(s, t), are computed from locally available nonzero counts Ri, i mod Q s,
and Cj, j mod Q t. The index i is determined in the same fashion as the index r.

After the sets ColCandidates(t) are formed, they are collected into one set
Candidates JQt__-oI ColVandidates(t). The total number of candidates is ncand
min(Q.ncol, n-k). The pivot candidates are sorted according to increasing Markowitz
count, Candidates {(ir,j)" 0 <_ r < ncand}, with M,j <_ M,,, if r < r’.
This ordering is used later on to give preference to candidates with low Markowitz
counts. Now, candidates (i, j) that have an unacceptably high Markowitz count,
Mij > a. Mio,j0, are discarded.

The set Candidates is sorted during its construction by using a pipeline of proces-
sors (0, .) as follows. First, each processor (0, t) sorts its own set ColCandidates(t) by
increasing Markowitz count. After that, processor (0, t) inserts its candidates at the
appropriate places in the ordered stream of candidates that passes by, going from pro-
cessor (0, t- 1) to (0, t + 1). Processor (0, 0) starts the pipeline. Processor (0, Q- 1)
collects the ordered sequence into Candidates and broadcasts this set to all other
processors.

2.2.2. Compatibility of candidates. In the second part of the pivot search,
the compatibility of each pivot candidate with all other candidates is determined.
The second part is separated from the third part, the construction of the pivot set, to
avoid frequent synchronisation of processors, which would occur if these parts were
combined. To determine compatibility, it is sufficient to inspect for each candidate
(i,j) the column j, and to check whether there are nonzeros Xi,j in rows i’ that
contain candidates (i’,j’) (i, j). Pivot candidate (i, j) is marked as incompatible
with these candidates (i’,j’).

The work is distributed by letting each processor search its local part of the sparse
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FIG. 1. Snapshots o] the sparse matrix IMPCOL B at step k o] its parallel LU decomposition.
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matrix for nonzeros that make two candidates mutually incompatible. Processor (s, t)
compares candidates from RowCandidates(s) {(i, j) e Candidates: i mod Q s}
with candidates from ColCandidates(t). The set RowCandidates(s) is available in
all processors (s, .). In this way, the processors build a distributed incompatibility
set. This set is often small, because the original matrix is sparse. Processor (s, t)
stores its incompatibilities in a local set Incompatible(s,t) {(i,j,i’,j’) (i,j) e
CoICandidates(t) A (i,j) E RowCandidates(s) A (i, j) (i,j’) A X,j 0}. An
outline of the program text for processor (s, t) follows.

ALGORITHM 3 (determine compatibility of candidate pivot elements).
RowCandidates(s):= {(i,j) e Candidates: i mod Q s};
Incompatible(s, t) := ;
for all (i, j) e ColCandidates(t) do

for all (i’,j’) e RowCandidates(s) do
if (i, j) (i’, j’) A X,j = 0 then

Incompatible(s, t) :- Incompatible(s, t) J ((i, j, i’, j’)}

2.2.3. Construction of the pivot set. In the third part of the pivot search,
the pivot set S is constructed by starting with the empty set and successively adding
new compatible pivot candidates (it,jr) in order of increasing r. This procedure
gives priority to candidates with lower Markowitz counts. The set S is constructed
by a pipeline of processors which generates pivot elements, similar to a parallel sieve
of Eratosthenes which generates prime numbers. Each processor is responsible for
determining the inclusion in S of several pivot candidates. The length L of the
pipeline can be chosen freely, between 1 <_ L <_ min(ncand, Q2). The choice L 1
implies that all the work is done by one processor, giving an upper bound on the
time complexity of O(Q2. ncol2), for a yield of O(ncand) O(Q. ncol) pivots. This
is because in the worst case each candidate is checked for compatibility with all its
predecessors. The best choice (for ncand <_ Q2) is L ncand, so that each processor
determines the inclusion of exactly one candidate. The time complexity for this choice
is O(Q. ncol). For practical reasons, we choose a length L Q, and implement the
pipeline in processor row (0, .); see Algorithm 4 below. This can easily be modified,
if desired. The time complexity for L Q has an upper bound of O(Q. ncol2), which
is close to optimum for small ncol.

The responsibility for including a candidate (it, jr) in the pivot set S or not is dis-
tributed evenly over the processors of the pipeline: each processor (0, t) is responsible
for at most ncol local candidates, i.e., the set S(t) of candidates (it, jr), 0 _< r < ncand,
with Lr/ncolJ t. This set is needed only by processor (0, t). To decide on inclu-
sion in S, a processor (0,t) needs the set I(t) which contains the incompatibilities
(it, jr, it,, jr’) and (it,, jr’, it, jr) of each of the local candidates (it, jr) with all the pre-
ceding candidates (it,, jr,), r’ < r. To provide this information, each (it, jr, it,, jr’)
Incompatible(s,t) is sent from processor (s,t) to processor (0, [max(r, r’)/ncol]), be-
fore the pipeline starts operating.

The pipeline works as follows: processor (0, t) receives a sequence of pivot ele-
ments from its neighbour (0, t- 1) and sends these elements to its neighbour (0, t + 1).
If a pivot element from the sequence is incompatible with a local candidate, that
local candidate is eliminated. After the pivot elements have passed, processor (0, t)
treats the sequence of remaining local candidates in a similar manner. The pipeline is
started by processor (0, 0), and the m pivot elements of S are collected by processor
(0, Q- 1) and then broadcast to all processors. An outline of the program text for
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processor (0, t) follows.

ALGORITHM 4 (construct pivot set).
ift Q- 1 then S :=
S(t) := {(it,jr)" 0 _< r < ncand A [r/ncolJ t};
while a pivot element (i, j) is received from (0, t- 1) do begin

if t < Q- 1 then send (i, j) to (0, t + 1)
else S :- S U {(i,j)};

S(t) := S(t) \ {(i’,j’) (i,j,i’,j’) e I(t) V (i’,j’,i,j) e I(t)}
end;
while S(t) do begin

(i,j) := (il,jl) with l= min {r (ir,j) e S(t)};
s(t) := s(t) \ {(i,j)};
if t < Q- 1 then send (i, j) to (0, t + 1)

else S S t2 {(i,j)};
S(t) := S(t) \ {(i’,j’) (i,j,i’,j’) e I(t) V (i’,j’,i,j) e I(t)}

end

2.3. Parallel permutations. Rows and columns of the matrix X can be per-
muted implicitly [28], [31] by using the permutations r and p to access the matrix
indirectly, or explicitly [3], [6], [18] by moving rows and columns in the matrix. Chu
and George [6] show that explicit permutation leads to a good load balance for parallel
dense LU decomposition with a row-wrapped distribution. Numerical experiments of
Geist and Romine [18] confirm that the gain in load balance more than offsets the
incurred increase in communication time.

For dense LU decomposition with partial pivoting, the grid distribution with ex-
plicit permutation leads to an optimal load balance [3], irrespective of the choice of
pivots. The load balance for implicit permutation, however, hinges on the randomis-
ing effect of the particular pivot sequence. For sparse LU decomposition with the
grid distribution, explicit permutation guarantees that the row and column parts of
the reduced matrix are evenly distributed over the processors. Therefore, the com-
putational workload is well balanced if the assumption holds that the nonzeros of
the matrix are evenly distributed over the row and column parts. Because of these
considerations, we decide to permute rows and columns explicitly.

The aim of the row and column permutations in the matrix X is to create an
m rn diagonal submatrix of elements X, k _< i, j < k / m, with the m elements of
the pivot set S on the diagonal; see Fig. l(d). Because of the compatibility of the pivot
elements this can be achieved, for instance, by moving the rows it, 0 _< r < m, into
position k - r and moving the rows of (i" k _< i < k + m} \ (i" 0 _< r < m} in some
arbitrary order into the vacated positions i >_ k + m. The columns should be treated
accordingly. Note that there is some freedom in determining the row permutation,
particularly for large m; this may be exploited by a heuristic strategy which keeps
row movements local, or even tries to avoid them (if k _< ir < k + m).

The row permutation involves at most the rows of (i k _< i < k + m} (2 (it 0 <_
r < m}; all the other rows remain in place. Note that the intersection of both sets may
not be empty. The source and destination indices of the rows to be moved are stored
in arrays Src and Dest of length ndest. Source processor (s, t) sends its part of row
Src(r) to destination processor (Dest(r)mod Q, t), for each index r, 0 <_ r < ndest,
with Src(r) mod Q s. These communications are most efficiently implemented by
operating 2Q pipelines in parallel, one upwards and one downwards for each processor
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column (., t). Data are injected into the appropriate pipeline by the source processor;
they flow downstream until they are extracted by the destination processor. After
this communication phase, processor (s, t) performs the following assignments.

ALGORITHM 5 (permute rows and row nonzero counts).
for all r" 0 <_ r < ndest A Dest(r) mod Q s do begin

for all j 0 _< j < n A j mod Q t A (Xsrc(r),j 0 V XDst(r),j O)
do XDest(r),j :- XSrc(r),j

rDst() rsc(r);
RDest(r) RSrc(r)

end

2.4. Parallel updates. An algorithm for processor (s,t), which updates the
matrix, follows.

ALGORITHM 6 (update matrix).
broadcast {X" k _< j < k / m A j mod Q t} from (t, t) to (., t);
for alli, j’k+m<_i<nA k <_ j < k + m A (i,j) E grid(s,t) A Xi O

do X := X/X;
broadcast (Xi k / m <_ i < u A k <_ < k + m A (i,l) E grid(s,t) A

Xi 0} from (s, t) to (s, .);
broadcast {Ztj k <_ < k + m A k + m <_ j < n A (l,j) grid(s,t) A

Xtj : O) from (s, t) to (,, t);
for alli, j,l’k+m<_i,j<n A (i,j) grid(s,t) A k <_ < k + mA
X 0 A X,j 0 do Xj := X XX,

After the matrix update, the row and column nonzero counts must be adjusted
because of the decreasing size of the reduced matrix and the creation of new nonzeros.
It is sufficient to adjust the nonzero counts of those rows i _> k+m that have a nonzero
entry Xi in a column l, k

_
< k + m, and of those columns j >_ k + m that have a

nonzero entry Xtj in a row l, k

_
< k + m. Nonzero counts of the other rows are not

affected (for i >_ k + m) or are not needed any more (for i < k + m), and similarly for
the column counts. The local data structure of column nonzero counts that is used
to produce SearchCols(t) (see 2.2.1) must be adjusted accordingly.

The bulk of the computing work of the LU decomposition is formed by the main
matrix-update loop; see the last statement of Algorithm 6. An efficient implementa-
tion strongly depends on the data structure used to represent the sparse matrix. This
is the main subject of 3.

3. Local data structures. In this section we analyse a number of candidate
data structures for the local representation of a grid part of a sparse matrix. The
candidates we consider are sparse data structures, which store only nonzeros. This
leads to efficient use of computing time and memory. In our efficiency considerations,
computing time is of primary importance, and memory use is of secondary impor-
tance. (Usually there is plenty of memory available on distributed-memory parallel
computers.)

3.1. Description of data structures. Grid parts of sparse matrices are sparse
matrices themselves. Therefore, the data structure for a grid part of a sparse matrix
can be chosen from the large variety of data structures that are used in sequen-
tial sparse matrix algorithms. Here, we consider several simple data structures, and
describe them by Pascal-like type definitions. (A formal treatment of useful data
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structures is given in [30].) All data structures enable easy access to rows as well as
to columns, which is required for sparse LU decomposition.

We examine data structures for the x sparse matrix which represents the
local grid part of the matrix A. Here, n/Q. To simplify the analysis, we assume
that n mod Q 0. Local variables and indices are hatted, to distinguish them from
global ones. For processor (s, t), the relation between and A is given by

A{Q+s,SQ+t for all , , 0 _< , < .
The data structures are:

1. Gustavson’s data structure [20], unordered. The nonzeros of are represented
by array entries. The maximum number of nonzeros that can be stored is bnd. For
each column, the nonzeros are stored in a contiguous block of entries, in arbitrary
order. Between the blocks there can be empty space. For column cj of , col]irst[cj]
gives the start of the block, and lencol[cj] its length. For each nonzero of column cj,
both its row index i and its numerical value a are stored. In addition, there is a row
data structure which is similar to the column data structure, except that numerical
values of nonzeros are not stored.

type matrix- record
rowfirst, colfirst" array [0..- 1] of O..bnd- 1;
lenrow, lencol "array [0..-1] of 0..;

"array [O..bnd- 1] of 0..- 1;
entries array [O..bnd- 1] of entry

end;
entry record

0..- 1;
a real

end;

2. Gustavson’s data structure, ordered. This data structure is the same as data
structure 1, except that the nonzeros within each row and column are ordered by
increasing index.

3. Two-dimensional linked-list structure, unordered. This dynamic data struc-
ture links the nonzeros of a row or column into a list, in arbitrary order. The headers
of the linked lists that correspond to the rows (columns) are represented by array
rows (cols). Each entry has a pointer in its next-field to another nonzero in the
same row, and a pointer in its nexti-field to another nonzero in the same column.

type matrix record
rows, cols" array [0..t- 1] of entrypointer

end;
entrypointer T entry;
entry record

i, 0..- 1;
a "real;
nexti, next) entrypointer

end;

4. Two-dimensional linked-list structure, ordered. This is the same data struc-
ture as the previous one, except that the nonzeros within each row and column list
are ordered by increasing index. This data structure is similar to the orthogonal
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linked list structure of Knuth [23]. The related Curtis-Reid data structure [7] can be
obtained by leaving out the i- and -index of each entry and labelling the end of each
row (column) list with the corresponding row (column) index. The Curtis-Reid data
structure saves memory at the expense of an increase in computing time. We do not
consider this data structure here, because memory use is not our primary concern.

5. Two-dimensional doubly linked-list structure, unordered. The idea of data
structure 3 is carried further by representing the nonzeros of a row or column in a
doubly linked list. This extension facilitates the deletion of an entry. We obtain data
structure 5 by modifying the definition of entry in data structure 3"

type entry record
,) 0..fi- 1;
a "real;
previ, prevj, nexti, nextj entrypointer

end;

6. Two-dimensional doubly linked-list structure, ordered. This is the same data
structure as the previous one, except that the nonzeros within each row and column
list are ordered by increasing index.

3.2. Computing time. We analyse the time complexity of a number of impor-
tant computations for all data structures. Since the matrix is distributed over the
processors, these computations are also distributed. Generally, a distributed compu-
tation includes some computation on the local matrix part by each processor, and
some communication between the processors. Communication of rows and columns
requires retrieval of these rows and columns from the matrix, followed by send and
receive operations. Since the retrieval is similar to a local computation that is dis-
cussed below (multiple-row assignment) and since the send and receive operations are
independent of the data structure, it is sufficient only to consider local computations.
We examine the following local computations:

Multiple-row assignment (see Algorithm 5).
for all r" 0 <_ r < ndest A Dest(r) mod Q s do

for all j" 0 _< j < n A j mod Q t A (Xsrc(r),j 0 V XDest(r),j O)
do XDest(r),j Xsrc(r),j

Multiple-column division (see Algorithm 6).
for alli, j’k+m<_i<n A k <_ j < k + m A (i,j) E grid(s,t) A Xij O

do X := X/X
Rank-m update (see Algorithm 6).
for alli, j,l’k+m<_i,j<n A (i, j) E grid(s, t) A k <_ < k + m A
X 0/ X 0 do X X XX

Each of these local computations is performed once in every step of parallel sparse LU
decomposition. Other local matrix computations that are performed within a single
step, such as multiple-column assignment or multiple-column pivot search, very much
resemble the above computations for all our data structures.

We evaluate the performance of the data structures by counting the number
of operations in a local (sequential) computation by processor (s, t). We present a
worst-case analysis, which gives upper bounds tO(x) on the number of operations. The
operation counts are expressed in global constants m and Q and in local constants
and rh; the maximum number of nonzeros in a row or column part is denoted by , and
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TABLE 1
Operation counts O(x) for computations on local data structures.

Data structure Multiple-row Multiple-column Rank-m
assignment division update

1. Gustavson unordered 52r m/Q 2m
2. Gustavson ordered d2r m/Q 2m(1 + log m)
3. 2D list unordered 2r 5m/Q 2m
4. 2D list ordered 2r m/Q 2m(1 T logm)
5. 2D double list unordered rh m/Q .2m
6. 2D double list ordered 2r7 5m/Q 2m(1 + logm)

the maximum number of row parts Dest(r), 0 <_ r < ndest, with Dest(r) mod Q s,
is denoted by . (It can be shown that <_ m + Vm/Q, although it is more likely
that 2m/Q.) The actual performance in the parallel computation will deteriorate
due to load imbalance, but in a manner which is independent of the data structure
chosen. Therefore, our comparison of data structures remains valid for the parallel
case.

Table 1 displays the orders of the operation counts for the different data struc-
tures. In the following, we shall briefly explain these results. The multiple-row assign-
ment can be done by deleting the nonzeros of the old rows and inserting the nonzeros
of the new rows. This involves at most 2 row parts of at most nonzeros, and hence
the total number of nonzeros involved is O(). The number of operations equals
the number of nonzeros for the unordered data structure 5, since matrix elements can
be assigned new values in (9(1) operations: old elements are deleted by making use
of the double links; new elements are inserted at the headers of the row and column
lists. For the corresponding ordered data structure 6, insertion of a new element into
a row takes O() operations, since its column predecessor must be found. This gives a
total of O(27t) operations. Similar considerations hold for the other data structures.

The multiple-column division takes O(6m/Q) operations, since at most nonzeros
in at most [m/Q column parts are modified. This is the operation count for all the
data structures, because they all allow column-wise access to the numerical values of
the nonzeros.

For data structures 3-6, the rank-m update is a sequence of updates of target
row parts. Each target row part is updated by subtracting from it m update row
parts l, each multiplied by a scalar Xi. This is done by: (i) scattering the nonzeros
of the target row part into an array of length that is known to be zero; (ii) scanning
the update row parts and multiplying them by a scalar, while accumulating numerical
values in the array and building a list of new.nonzeros to be created; and (iii) updating
the matrix data structure by adjusting numerical values and inserting new nonzeros,
while resetting the array to zero. This is the second approach of [12, 2.4]. (In certain
cases, such as updates by one row, it may be cheaper to scatter update rows into
the array, instead of the target row. This is the first approach of [12, 2.4].) For
data structures 1 and 2, the rank-m update is performed by columns, because of the
column-wise access to the numerical values of the matrix.

For data structures 3-6, there are m column parts that contain nonzero multipliers
Xi,. Since each column part has at most 6 nonzeros, the total number of nonzero
multipliers and hence of update row parts to be scanned is at most m. Since each
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TABLE 2
Minimum memory requirement of data structures.

Data structure Memory requirement
per processor

1, 2. Gustavson
3, 4. 2D list
5, 6. 2D double list

an/. + 3cn/
2n/Q - 5cn/Q, 2

2n/Q + 7cn/Q2

update row part has at most nonzeros, the total number of operations of (ii) is
(9(2m). For data structures 1 and 2, the same upper bound holds.

In the unordered case, the total complexity of the rank-m update is (O(2m),
because in (iii) new elements can be inserted in (.9(1) operations. This can be done
at the end of row and column blocks for data structure 1, and at the headers of row
and column lists for data structures 3 and 5.

In the ordered case, the nonzeros of the updated target row part must be obtained
in order of increasing column index. This can be done by a symbolic merge-sort. In
the worst case, rn updates of a single target row part may cause it to grow from to
(m / 1) nonzeros. The corresponding merge-sort takes (9(m log m) operations. (All
logarithms in this paper have base two.) In the worst case, this growth occurs for
target rows, so that the total number of operations in the merge-sorts is (..O(2m log m)
and the total number of operations is d0(2m(1 -t- log m)). (On average the differences
between the data structures will be less pronounced than the last column of Table 1
suggests, because the growth rate of target rows may be less than the worst-case rate
that has been assumed.)

3.3. Memory requirements. Table 2 shows the minimum memory require-
ment per processor for each data structure, i.e., the memory needed when the nonze-
ros are evenly distributed over the processors. We assume that the amount of memory
per integer, real, and pointer is equal to 1. Memory requirements are expressed in
terms of global constants n, c, and Q. The number of rows that appear in a grid part
of the matrix is n/Q. The number of nonzeros in a row is assumed to be c, and the
number of nonzeros in a row part is assumed to be c/Q.

All data structures require (n/Q-cn/Q2) memory. In the case of data structures
3-6, the memory needed for the n row headers and the n column headers scales with
Q as O(Q-1), whereas the memory needed for the cn nonzeros scales as (Q-2). This
implies that row and column headers take up more memory in parallel computations
than in sequential computations. Note that the grid distribution is still better in
this respect than a row or column distribution, since in the latter case each processor
would need (n) memory, irrespective of Q. The scaling behaviour of data structures
1 and 2 is similar to that of the other data structures.

3.4. Discussion. Table 1 indicates that the unordered two-dimensional doubly
linked-list structure 5 is superior: it outperforms all other data structures in the
multiple-row assignment, and it is one of the three optimal data structures for the
rank-m update. This conclusion is specific to parallel LU decomposition: in the
sequential case explicit row permutations and hence row assignments often do not
occur because permuting is done implicitly; furthermore, in the sequential case it
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is common to use rank-1 updates, and for m 1 and Q 1 the rank-m update
takes O(c2) operations for all data structures. Therefore, all data structures perform
equally well sequentially.

A series of multiple-rank updates based on compatible pivot sets may be of benefit
even in the sequential case. This gain is derived from updating an initial, small data
structure in one large step, instead of updating a growing data structure in many small
steps, each time accessing a larger and larger structure, with row length increasing
from c to c(m + 1) in the worst case. For an unordered data structure, the sequential
rank-m update has an operation count of O(c2m), whereas a sequence of m rank-
1 updates has a count of 0(c2m2). Note that in this comparison, c is fixed as the
number of nonzeros of a row at the start of the rank-m update or sequence of m rank-1
updates.

Table 1 shows that in all cases the time of the rank-m update dominates the time
of the other computations. It also dominates the communication time: the number
of communications in one step is of the order O(Sm - Q), since O(m) row parts of
length 5 have to be communicated in each processor column of length Q, and similarly
for column parts. For data structure 5, the communication count is about a factor
smaller than the operation count of the rank-m update.

The relative merit of data structures depends not only on operation counts, but
also on other, sometimes machine-dependent, parameters. Linked-list data structures
perform better on fast scalar processors, and hence on RISC-like architectures such as
transputers. In contrast, the Gustavson data structure may perform better on vector
processors.

We have chosen the conventional ordered two-dimensional linked-list structure
4 as the data structure for parallel sparse LU decomposition. Together with the
grid distribution, data structure 4 has become the standard of all the parallel sparse
linear algebra programs of PARPACK, a package developed at Koninklijke/Shell-
Laboratorium, Amsterdam. This package includes among others LU decomposition,
Cholesky factorisation, and triangular system solution. Our choice was made at a
time when we did not recognise the importance of multiple-row assignments and
rank-m updates in the context of parallel LU decomposition. Still, our data structure
is conceptually simple, and it allows the development of programs with a reasonable
amount of effort, so that it serves as an appropriate research vehicle. Also, it performs
efficiently for a wide range of other algorithms, so that it is suitable as a compromise
standard. As a suggestion for future research, we strongly encourage experiments with
data structure 5, which according to our analysis is the most efficient data structure.

4. Experimental results. The algorithm has been implemented in the parallel
programming language occam 2 (for an introduction, see [4]) and experimental re-
sults have been obtained on a Parsytec SuperCluster FT-400 parallel computer. This
machine consists of a square mesh of 400 INMOS T800-20 transputers, each with a
2 Mbyte memory. According to our measurements, a transputer performs a 64-bit
floating point operation (flop), such as addition or multiplication, in ttiop 1.9 its, and
a 32-bit integer operation in tiop 1.8 its. A transputer sends a 64-bit real number
to a neighbouring transputer in the mesh in tcomm,real 8.5 itS and it sends a 32-bit
integer in tcomm,int 6.6 its. In the experiments, all real numbers have a length of
64 bits, and all integers have a length of 32 bits. The machine accuracy for 64-bit
floating point operations is 2.2 10-16. All experimental times were measured by an
internal timer calibrated with a Wall clock.
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TABLE 3
Test set of sparse matrices.

Matrix Origin n nz(A) c(A) c(L\U)

IMPCOL B Chemical engineering 59 312 5.3 7.4
WEST0067 Chemical engineering 67 294 4.4 8.7
FS 541 1 Atmospheric pollution 541 4285 7.9 30.7
STEAM2 Oil reservoir simulation 600 13760 22.9 89.0
SHL 400 Linear programming 663 1712 2.6 2.6
BP 1600 Linear programming 822 4841 5.9 8.8
JPWH 991 Electronic circuit simulation 991 6027 6.1 66.3
SHERMAN1 Oil reservoir simulation 1000 3750 3.8 26.6
SHERMAN2 Oil reservoir simulation 1080 23094 21.4 326.2
LNS 3937 Compressible fluid flow 3937 25407 6.5 107.0
GEMATll Optimal power flow 4929 33185 6.7 10.8

4.1. Test set of Harwell-Boeing matrices. To investigate the properties of
our algorithm, we performed numerical experiments on eleven real unsymmetric as-
sembled (RUA) matrices from the Harwell-Soeing sparse matrix collection [13]. In
our test set we included matrices from diverse application fields, with widely varying
sizes and nonzero densities. Fig. l(a) shows the matrix IMPCOL B from the test set.
Table 3 presents data on the test matrices: n is the matrix order; nz(A) is the num-
ber of nonzeros of the matrix A before LU decomposition; c(A) is the corresponding
average number of nonzeros per row; c(L\U) is the average number of nonzeros per
row of the matrix L\U that contains the L and U factors of A. These L and U factors
were obtained by executing the parallel program on 400 processors.

4.2. Algorithm with standard parallel pivot search strategy. In this sub-
section we compare the parallel program running on p Q2 transputers, 1 _< p _< 400,
with a sequential program running on one transputer. The parallel program is an im-
plementation of the algorithm of 2. The data structure is the ordered two-dimensional
linked-list structure, i.e., data structure 4 of 3. Our standard pivot search procedure
is a specific implementation of the parallel algorithm of 2.2 for ncol 1. (Alternative
pivot search procedures will be examined in 4.3.) Candidate pivot elements must
satisfy (3) with u 0.1, as recommended by Duff, Erisman, and Reid [12, Chap. 7].
Candidates are rejected on sparsity grounds if their Markowitz count is higher than
four times the minimum Markowitz count of the candidates, as in the experiments of
Davis and Yew [9].

The sequential program is a well-optimised version of the parallel program. It
is obtained by simplifying the parallel program, removing all parallel overhead, and
wherever possible exploiting the fact that p 1. The parallel pivot search strategy
is replaced by the common sequential strategy of searching three matrix columns for
numerically acceptable pivot candidates and then choosing one candidate with the
lowest Markowitz count.

The sequential and p 1 times for matrices SHERMAN2 and LNS 3937 had to be
obtained on a separate transputer with 16 Mbyte memory, because these problems do
not fit into the 2 Mbyte memory of a transputer of the FT-400. (The maximum num-
ber of nonzeros per processor is about 70,000.) Incidentally, the separate transputer
is about 1.13 times faster on sparse LU decomposition problems than a transputer
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TABLE 4
Time (in s) of parallel sparse LU decomposition on p transputers.

Matrix seq p 1 4 9 16 25 49 100 400

IMPCOL B 0.34 0.38 0.20 0.15 0.13 0.12 0.12 0.11 0.13
WEST0067 0.47 0.53 0.27 0.20 0.18 0.18 0.15 0.13 0.16
FS 541 1 18.4 18.8 6.74 4.47 2.91 2.25 1.79 1.42 1.29
STEAM2 92.9 93.9 28.2 14.1 9.31 7.15 4.82 3.59 2.58
SHL 400 2.31 2.69 1.40 1.05 0.88 0.82 0.73 0.71 0.66
BP 1600 9.97 10.7 4.46 3.30 2.52 2.20 1.94 1.79 1.74
JPWH 991 121. 131. 34.8 20.4 13.7 10.3 7.33 5.50 3.97
SHERMAN1 36.6 41.0 13.0 7.00 6.08 4.33 3.09 2.75 2.37
SHERMAN2 1668. 1592. 196. 108. 87.8 46.2 32.7 15.6
LNS 3937 2119. 2111. 261. 168. 96.7 77.2 37.9 23.7
GEMATll 75.6 84.3 29.3 18.2 14.1 11.4 9.19 7.73 6.23

of the FT-400. Times measured on the separate transputer were multiplied by 1.13,
to obtain comparable table entries. The p 4 times for matrices SHERMAN2 and
LNS 3937 could not be obtained, because we did not have a four-transputer network
available with sufficient memory.

Table 4 shows the time Tp of parallel LU decomposition on p processors and the
time Tseq of sequential decomposition. The scaling behaviour of Tp with p can be
explained qualitatively by the expression

where c is the average number of nonzeros per row during the LU decomposition and m
is the average rank of a matrix update. The first term represents the computing time
of n/m rank-m updates, each of time O(2m(l +log m)) O(c2m/p); see Table 1. (In
this rough approximation the m log m term is neglected.) The second term represents
mainly the time needed to communicate row and column parts in n/m steps, each
of time O(m) O(cm/v/); see 3.4. The third term includes the startup time of
communication pipelines in n/m steps, each of time O(V). A few smaller terms have
been neglected in the derivation of (8). Usually the first term dominates for small p,
the second term for intermediate p, and the third term for large p. The cross-over
points between these ranges are problem-dependent.

The table shows that Tp is a monotonically decreasing function of p, with the
exception of the increase that occurs in moving from p 100 to p 400 for the
matrices IMPCOL B and WEST0067. This increase is hardly surprising, since at the
start of the computation there are fewer nonzeros (312 or 294) than processors (400),
so there is little to compute per processor and the total time is dominated by the
third term of (8), which increases with p. In the other cases either the first or the
second term dominates. For example, the gain by a factor of two in computing rate
for SHERMAN2 from p 100 to p 400 is probably due to the dominant behaviour
of the second term.

The maximum speedup Sp Tseq/Tp achieved is $400 107 for SHERMAN2.
Tables 3 and 4 show that the speedup is correlated to c(L\U): speedups increase with
increasing c(L\U).
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TABLE 5
Number of steps of parallel sparse LU decomposition on p transputers.

Matrix p 1 4 9 16 25 49 100 400
seq

IMPCOL B 59 35 30 25 22 20 14 15
WEST0067 67 40 33 32 27 24 20 18
FS 541 1 541 318 238 212 179 154 127 104
STEAM2 600 404 337 306 257 228 220 181
SHL 400 663 332 223 171 139 105 83 45
BP 1600 822 561 465 399 347 314 268 190
JPWH 991 991 679 558 506 477 398 376 306
SHERMAN1 1000 616 430 405 327 274 250 200
SHERMAN2 1080 911 857 795 803 785 745
LNS 3937 3937 2252 2140 1830 1634 1318 1237
GEMATll 4929 2589 1799 1389 1152 890 662 386

Table 4 shows that the difference in running time between the sequential program
and the parallel program with p 1 is small. The difference is due partly to par-
allel overhead and partly to differing pivot search strategies: the sequential program
searches three columns per step, whereas the parallel program with p 1 searches
only Q. ncol 1 column. In most cases, the parallel algorithm is slower due to the
parallel overhead and the lower quality (with respect to fill-in reduction) of the piv-
ots. In two cases, SHERMAN2 and LNS 3937, the parallel algorithm is faster because
these slowdown effects are more than offset by a faster search for pivots.

Table 5 shows the number of steps of the LU decomposition. This number is at
least n/v, because at most compatible pivot elements are found in each step,
due to our choice of ncol 1. The near-ideal behaviour shown by matrices SHL
400 and GEMATll can be explained as follows. For a general n x n matrix with c
nonzeros per row, the probability of an arbitrary element being zero is 1 -c/n, so
that the probability of two arbitrary pivot candidates being compatible is (1 -c/n)2;
cf. (4). This probability is even higher for pivot candidates that are chosen from the
sparsest columns of the matrix, as in our pivot search strategy. Both SHL 400 and
GEMATll have a very low nonzero density c/n, before and during LU decomposition.
This implies that pivot candidates are usually compatible, so that most candidates
become pivots and the number of steps is close to minimum. (Note that the number
of steps depends on the ratio c/n and not on c alone.)

For all matrices, the number of steps initially decreases rapidly with increasing
p, until a saturation point is reached. This point represents the situation where the
algorithm proceeds through the sparse part of the matrix in a few steps of high rank
m, and then handles the remaining dense part in steps of rank m 1; see Fig. l(d).

Table 6 displays the number of nonzeros and floating point operations, and the
numerical error of the LU decomposition. The number of nonzeros fluctuates with
p, without a clear trend, and without a clear advantage to either the sequential or
the parallel program. From these results, we conclude that there is at most a limited
penalty in terms of fill-in for relaxing the original Markowitz pivot search strategy.

The number of floating point operations is obtained by incrementing a counter for
every flop performed, including the redundant flops that are introduced by parallelis-
ing the sequential program. The growth in flop count that can be seen for the very
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TABLE 6
Number of nonzeros and floating point operations, and numerical error o] parallel sparse LU

decomposition on p transputers.

Matrix Nonzeros nz(L\U) Floating point operations Numerical error
seq p 16 p 400 seq p 16 p 400 seq p 16 p 400

IMPCOL B 412 445 435 8.8e-2 1.9e-P3 3.9e-3 3e-12 2e-12 3e-13
WEST0067 544 607 583 l.geT3 4.0e-3 8.3e-3 7e- 15 le- 14 3e- 14
FS 541 1 13553 15056 16609 2.2e-5 3.1eT5 5.8eT5 6e-15 7e-15 3e--15
STEAM2 42869 45010 53395 1.7e-6 2.1e-}-6 4.1eT6 6e-9 6e-9 8e-9
SHL 400 1712 1712 1712 0 4.0eT1 2.2e-3 0 0 0
BP 1600 7424 7398 7229 2.6eT4 3.le-4 7.2e-4 5e- 12 4e- 12 7e- 12
JPWH 991 68587 69263 65707 6.9e-6 7.7e-6 7. le-6 9e-12 3e-12 le-ll
SHERMAN1 27089 30989 26602 1.4e-6 1.8e-}-6 1.5e-6 le-11 7e 12 2e-11
SHERMAN2 375316 348651 352301 8.0e-7 6.ge-P7 8.4eT7 6e-7 8e-6 4e-6
LNS 3937 474800 448929 421090 8.3e-7 7.4e-7 7.4e-i-7 2e-4 le-4 2e-3
GEMAT11 53358 54086 53093 4.8eT5 5.8e-5 9.3e-5 2e- i0 4e- 10 3e- 11

sparse matrix SHL 400 is entirely due to such redundant computations. For denser
matrices the redundancy is negligible. In most cases, increasing p leads to a limited
growth in flop count.

The numerical error is defined as the maximum absolute error in the numerical
solution x of a system Ax b, with b chosen such that all components of the exact
solution are one. The system has not been scaled. It has been solved in stages
1-5; see 1. The error shows variations of one order of magnitude, without any
distinguishable trend. We attribute this behaviour to coincidence (e.g., caused by
arbitrary tie breaking in the pivot search) and not to the qualities of any particular
pivot strategy. In most cases the accuracy of our program is comparable to that of the
programs MA28 [11] and D2 [8], [9], with the notable exception of the cases STEAM2,
SHERMAN2, and LNS 3937, for which our program is less accurate (cf. [8, Table
4.3]). The accuracy can be improved by appropriately increasing u, decreasing a,
and increasing ncol. This has been confirmed by experiments, except for LNS 3937,
which could not be solved with a higher accuracy than 10-4, whatever the choice
of parameters. (For this matrix, however, accuracy can be improved significantly by
scaling.)

4.3. Algorithm with alternative pivot search strategies. To investigate
the influence of the chosen pivot strategy, we replaced the pivot search procedure by
alternative search procedures. The other parts of the program remained unchanged.
The first alternative is to search one column per processor column, and then choose
one pivot with the lowest Markowitz count from the Q pivot candidates. This leads
to a rank-1 update in each step, which is the usual method in sequential algorithms.
The second alternative is a general implementation of the pivot search algorithm of
2.2 for arbitrary ncol. We present results for the case ncol 3. Fig. 1 illustrates the
LU decomposition of IMPCOL B for ncol 5 and Q 2.

Figure 2 shows the time of parallel sparse LU decomposition for the standard
pivot search strategy (ncol 1) and the two alternative strategies (rank-l, ncol 3).
We observe that the standard strategy is clearly superior to the rank-1 strategy,
in particular for matrices with low density c/n, such as GEMATll. This is due
to the exploitation of sparsity-based parallelism, which is not used in the rank-1
strategy. The standard strategy is also better than the ncol 3 strategy. We attribute
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this mainly to the simplicity of the pivot search with ncol 1, which requires less
communication than the search with ncol 3. The potential gain in parallelism
caused by increasing the number of pivots (which is at most mmax x/" ncol), and
hence increasing the rank of the updates, does not compensate for the losses incurred
during the more expensive pivot search.
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FIG. 2. Time of parallel sparse LU decomposition for three pivot search strategies. The test
matrices are (a) FS 541 1; (b) STEAM2; (c) JPWH991; and (d) GEMATll. The squares denote
the standard pivot search strategy (with ncol 1); the pentagons the strategy with ncol 3; and
the circles the rank-1 strategy. The time of the sequential program is shown by a triangle. For
GEMATll the curves of ncol 1 and ncol 3 nearly coincide, and only the first curve is shown.

A possible application of the pivot search strategy with high ncol is when several
matrices have to be decomposed that have an identical sparsity pattern but slightly
different numerical values. In that case, the permutations 7r and p of (2) are de-
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termined during the decomposition of the first matrix. The remaining matrices are
ordered according to 7r and p and then decomposed without pivot searching or per-
mating. This saves the parallel pivot search and the parallel permutations which may
consume up to 80 per cent of the computing time. This procedure has been shown to
lead to significant gains in the sequential case [12, Chap. 5], and also in the parallel
case [28]. In our case, an initial investment in determining a high-quality ordering by
using the alternative pivot strategy with high ncol (and low a and high u) would pay
off handsomely in subsequent decompositions.
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800 40001
600 JPWH 991 3000
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____
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FIG. 3. Number of steps of parallel sparse LU decomposition for three pivot search strategies.
The test matrices and the marker symbols are the same as in Fig. 2. The dashed line denotes
the minimum number of steps, n//, for the standard strategy; and the dashed-dotted line, the
minimum number, n/3/-, for the ncol 3 strategy.

Figure 3 shows the number of steps of parallel sparse LU decomposition for the
standard strategy and the two alternatives. The rank-1 strategy gives n steps in all
cases. The ncol 3 strategy gives a smaller number of steps than the standard
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strategy, in particular for a small number of processors. For a larger number of
processors the difference between these two strategies is relatively small. Note that
the curves of the matrix GEMAT11 are close to the ideal curves.

The results with respect to number of nonzeros, number of floating point oper-
ations, and numerical error of the alternative pivot strategies are similar to those of
the standard strategy.

5. Conclusions. In this paper, we have presented a scalable parallel sparse LU
decomposition algorithm which is based on the grid distribution and the ordered two-
dimensional linked-list data structure. The algorithm scales reasonably well with the
number of processors, and it achieves a speedup of up to 107 on 400 processors for
large problems, i.e., problems with a large matrix order n and a high average number
c of nonzeros per row. The potential of the algorithm is best exploited in the solution
of large problems, such as the larger problems in the Harwell-Boeing collection.

Our general-purpose algorithm exploits both density-based and sparsity-based
parallelism. In a way, these two kinds of parallelism supplement each other: matrices
with high c have many potentially simultaneous operations in each rank-1 update;
matrices with low nonzero density c/n have many potentially simultaneous rank-1
updates. Matrices with high c and low c/n benefit from both kinds of parallelism.
Matrices with low c but high c/n (and hence small n) offer little hope for parallelism.

The timing results of our sparse LU decomposition program on 400 transputers
show that a distributed-memory parallel computer can successfully compete in the
field of sparse matrix computations with today’s fastest uniprocessor supercomputers.
As an example, the problem SHERMAN2 is solved in 15.6 s by our program running on
the FT-400, and in 34.4 s by MA28 running on one processor of the CRAY YMP/832
[27]. (This is only an indication of relative speeds, as computing speeds are obviously
problem-dependent: for SHERMAN1 the CRAY YMP/832 is four times faster than
the FT-400.)

Future research may lead to significant improvement of the algorithm of this
paper. First, the data structure can be changed into the unordered two-dimensional
doubly linked-list structure 5, which theoretically has the lowest time complexity; see

3. Second, the distributed-memory parallel sparse algorithm can be combined with
a parallel dense algorithm [3] which is invoked as soon as the nonzero density of the
reduced matrix exceeds a certain value and sufficient memory is available to store the
reduced matrix as a dense matrix. Such a switch from a sparse to a dense program
is performed in the shared-memory parallel algorithm D2 [9] (when c/n >_ 0.2), and
in the shared-memory parallel algorithms Y12M1, Y12M2, and Y12M3 [17] (when
c/n >_ 0.1), with often large gains. This switch prevents, for instance, extensive
searching for compatible pivots when only few compatible pivots exist due to the high
density of the reduced matrix. Third, several pivot search strategies can be combined:
searching for large pivot sets in the first few steps of the algorithm (ncol > 1), then
searching for smaller sets (ncol 1), and after that searching for single pivots, and
finally switching to a dense algorithm. (A similar combination of strategies is proposed
in [17].) We expect future hybrid algorithms with appropriate switch-over criteria to
be considerably faster than the current algorithm.

Appendix. Postcondition and invariant. The aim of the algorithm for pro-
cessor (s, t) is to establish the postcondition [10] R[s, t], which is the following logical
expression:
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i,j i<_j A (i,j)Egrid(s,t)

/ i,j i>j A (i,j)egrid(s,t)

i-1

Xij Uij A,,o- ELihUhj
h--O

h=O

At the start of step k of the algorithm, processor (s, t) guarantees the truth of the
following invariant [10]"

Vi,j: i,j>k ^ (i,j)egrid(s,t)

A Vi,j i<k A i<_j A (i,j)grid(s,t)

A Vi,j: j<k A i>j A (i,j)Egrid(s,t)

A i:i>_k A imodQ--s
A j :j>_k A jmodQ--t

The first three subexpressions of the invariant state which partial sums have been
accumulated so far. The last two subexpressions describe the nonzero counts.
All invariants PIN, t] hold trivially for k 0, after the initialisation X A and
7r p id and the appropriate initialisation of the nonzero count vectors R and C.
At the end of the computation, for k n, all components have their final values, so
that the postcondition R[s, t] is established. The algorithms works towards R[s, t] by
repeatedly incrementing k from 0 to n, while keeping the invariants P[s, t] valid.
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COMPARTMENTAL MODELING AND SECOND-MOMENT ANALYSIS
OF STATE SPACE SYSTEMS*

DENNIS S. BERNSTEINf AND DAVID C. HYLAND:I:

Abstract. Compartmental models involve nonnegative state variables that exchange mass, energy, or other
quantities in accordance with conservation laws. Such models are widespread in biology and economics. In this
paper a connection is made between arbitrary (not necessarily nonnegative) state space systems and compartmental
models. Specifically, for an arbitrary state space model with additive white noise, the nonnegative-definite
second-moment matrix is characterized by a Lyapunov differential equation. Kronecker and Hadamard (Schur)
matrix algebra is then used to derive an equation that characterizes the dynamics of the diagonal elements of
the second-moment matrix. Since these diagonal elements are nonnegative, they can be viewed, in certain cases,
as the state variables of a compartmental model. This paper examines weak coupling conditions under which
the steady-state values of the diagonal elements actually satisfy a steady-state compartmental model.

Key words, stochastic models, power flow, nonnegative matrices

AMS subject classifications. 15, 15A45

1. Introduction. Analysis and design methodologies based upon worst-case behavior
can be unduly pessimistic for applications in which system behavior includes highly
improbable events. It is thus our goal to undertake a probabilistic approach to account
for (or, more aptly, to ignore) unlikely behavior to achieve higher performance and more
realistic predictions. Accordingly, we consider an H2/white noise (as opposed to an
H/L2) system and signal model as a starting point. Now, however, we seek system
models that ignore detailed microscopic modeling data while focussing on the most likely
macroscopic phenomena. Our paradigm is heat flow in which molecular motion is highly
uncertain, whereas energy flows, with virtual certainty, from hot objects to cold objects.

Most probable motion in dynamical systems is the traditional province of statistical
mechanics, which normally deals with very large (say, 10 23 interacting components.
Our challenge in the field of modeling for robust control is to develop a useful theory of
"statistical mechanics of moderate-sized systems." Such a theory does not currently exist
due to the emphasis by physicists on large stochastic systems as well as the emphasis by
engineers, dynamicists, and control theorists on relatively small deterministic systems.
It is our view that a "middle ground theory" is needed to fill the gap between these
worlds. The benefits of such a theory include the means to overcome the inherent lim-
itations of worst-case design. The present paper is directed toward this goal.

To begin we shall focus on dynamical systems that involve subsystems or states
whose values are nonnegative quantities [1 ]-[ 13]. Dynamical models of such systems
are based upon the physics of the processes by which various quantities are exchanged
by the coupled subsystems. In addition, conservation laws are used to account for the
possibly macroscopic transfer (or flow) of such quantities among subsystems. Models
for this class of systems are known as compartmental models.

The range of application of compartmental models is quite large. Their usage is
widespread in biology and ecology [10], [12], while closely related ideas appear in eco-
nomics [6, Chap. 9 ]. Our interest in compartmental models arises from electrical and
mechanical engineering applications. Thus far there has been little direct connection
between these engineering disciplines and compartmental modeling since classical
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(R, L, C) circuit models and (M, D, K) structural models are not cast in terms of
inherently nonnegative quantities and do not explicitly invoke conservation laws.

The goal ofthis paper is to demonstrate a direct connection between arbitrary linear
dynamical systems in state space form and compartmental models. The key to this con-
nection is the recognition that even for arbitrary systems that do not explicitly involve
nonnegative quantities (such as the (R, L, C) and (M, D, K) models mentioned above),
it is possible to identify nonnegative quantities that do behave like compartmental models
with conservation laws. In certain specific cases such connections have already been
demonstrated, albeit, usually without recognition ofcompartmental concepts. Examples
include energy flow and power transfer in random media 14 ]-[ 17 ], dissipative circuits
18 ]-[ 27 ], mechanical systems 28 ]-[ 30 ], coupled structures 31 ]-[ 46 ], and networks
ofqueues 47 and [48 ]. A compartmental-like description ofcoupled structures is given
in [35].

In each of the above applications, the key to formulating the system dynamics in
compartmental form is to characterize nonnegative quantities that arise from the un-
derlying physical phenomena. The reason that such models have not been more widely
used is that physical principles such as Kirchhoff’s laws and Newton’s law are not usually
formulated in terms of subsystem interaction and energy transfer. However, once the
underlying laws ofphysics have been formulated as a dynamical system, it is often possible
to reformulate these dynamics in terms of energy transfer. There are at least three math-
ematical formulations that may give rise to compartmental models:

(i) root mean square (rms) averaging of system states over time within a deter-
ministic formulation,

(ii) averaging system states over the statistics of stochastic disturbances, and
(iii) averaging system states over the statistics of uncertain parameters.

The nonnegative quantities that arise from these formulations are then simply the mean-
square averages ofthe original not-necessarily nonnegative states. In this paper we consider
(ii), while approach (iii) underlies much of Statistical Energy Analysis [31]-[ 42] and
has been explored in [49] and [50]. The averaging techniques developed in [51 ]-[ 53]
are also related to (iii). The results of this paper may also be applicable to large-scale
systems problems [54 ]-[ 59 ]. Such connections remain to be explored.

The goal ofthis paper is to establish some basic mathematical results that demonstrate
how compartmental models arise from a second-moment analysis of state space systems.
Physical interpretation of the derived compartmental models will not concern us here,
while connections to circuit theory and dynamics will be explored elsewhere. Indeed, the
above allusions to electrical and mechanical systems should be viewed as purely moti-
vational. Within the paper we shall, however, use "energy" and "power" terminology as
genetic language to facilitate the discussion.

After introducing some global notation at the end of this section, we proceed in
2 to summarize some basic properties of compartmental models. Using [6] as our

principal reference, we show that compartmental models are confined to a nonnegative
state space (Proposition 2.1 and then give necessary and sufficient conditions for the
existence of a steady-state equilibrium energy distribution (Proposition 2.2). Sufficient
conditions are also given (Corollary 2.2) under which the steady-state distribution is
uniform. This phenomenon is known as "equipartition of energy" 34 ], 41 ], 50 and
is also related to the notion ofa "monotemperaturic" system 21 ]. We stress that although
many of these results are well known [3 ], [6], they are restated here in a concise and
unified format that supports the development in later sections.

Specializing to the asymptotically stable case, we then consider the problem of de-
termining the steady-state energy distribution in the limit of strong coupling, that is, the
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case in which the off-diagonal terms in the dynamics matrix become arbitrarily large
(Proposition 2.4). As a special case of this result we state conditions under which energy
equipartition occurs (Corollary 2.3 ).

In 3 we shift gears and undertake an analysis ofthe nonnegative-definite second-
moment matrix of an arbitrary (that is, not-necessarily compartmental) nth order
asymptotically stable complex-valued system subjected to additive white noise distur-
bances. Specifically, we rearrange the elements of the n n second-moment matrix into
an nZ-dimensional vector whose first n components are the diagonal elements of the
second-moment matrix, and whose last n 2 n components are the off-diagonal elements.
Our ability to do this is based upon the following crucial fact: the diagonal elements of
a (complex, Hermitian) nonnegative-definite matrix are (real and) nonnegative.2

The central result of 3 is the derivation of an explicit equation that governs the
evolution ofthe diagonal elements ofthe second-moment equation. As can be seen from
3.18 ), this equation involves the unusual nonnegative matrix coefficient erto ept, where
F is the dynamics matrix of the original arbitrary (not-necessarily compartmental) state
space system, and "o" denotes Hadamard (Schur) product. Since this system has dynamics
that are more complex than an nth order state space system, we confine our attention
in 4 to the steady-state energy distribution.

The goal of 4 is to determine an nth order state space system whose steady-state
solution coincides with the steady-state limit of the nonnegative diagonal system. This
requirement leads to a derived dynamics matrix (see (4.12)) involving the elements of
the dynamics matrix of the original state space model. To prove that the induced model
is asymptotically stable, we consider the case of weak off-diagonal coupling which leads
to an M-matrix condition and implies asymptotic stability. A final scaling of the non-
negative system in 5 shows that in this case the derived model is, in fact, a compartmental
model. Finally, notation and identities involving Kronecker and Hadamard products
appear in the Appendix.

Notation.

N,C
Rrxs crxs
Iror I
J
Akl
Re A, Im A
/,A T, A*
SI(A ), V’(A
A>=>=O
AoB

coli(A)

oij, I/i
diag (a,..., a,)

(R), (9, vec, vecd, veco

expectation
real field, complex field
r s real, complex matrices
r r identity matrix
/-1
k, /)-element ofA C (or a subblock ofA)

real, imaginary part ofA e C x

conjugate, transpose, complex conjugate transpose
range and null space ofA e Nrs

A e N is a nonnegative matrix
Hadamard (Schur) (element-by-element) product

1. T (boldface distinguishes from exponential)
ith column ofA
ith column of/r
see Appendix
n n matrix with diagonal elements al,..., an
diagonal, off-diagonal part ofA e C x (see Appendix
see Appendix

Throughout the paper a nonnegative-definite matrix is assumed to be Hermitian.
Since this paper uses both nonnegative matrices and nonnegative-definite matrices in close proximity,

care must be taken to note the distinction.
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2. Analysis of compartmental models. To begin we consider a system comprised
ofcompartments or subsystems that interact by exchanging some quantity such as mass,
energy, fluid, etc. We shall use energy and power analogies for genetic terminology. By
applying conservation of energy, energy flow among subsystems and the external envi-
ronment as shown in Fig. leads to the energy balance equation

n

(2.1) /;(t) -aiiEi(t) + IIij(t) + Pi(t), >= O, n,
j=l
j4:i

where, for 1,..., n,

Ei (t) energy of the ith subsystem,
ffii-- loss coefficient of the ith subsystem, O’ii O,

Pi (t) external power applied to the th subsystem, Pi (t) >=>= O, > O,
II0(t) net energy flow from the jth subsystem to the ith subsystem, j :/: i.

As depicted in Fig. 1, it is assumed that II0.(t) is of the form

(2.2) IIi(t) iE(t)- aiEi(t), >-_ O,

where aij>= O, :/:j, i,j n. Note that II(t) -IIi(t), >_- 0. Assembling (2.1)
and (2.2) into matrix form yields the overall systems model

(2.3) /(t) AE(t) + P(t), >= O,

where

E(t) [E(t) E,(t)] , P(t) = [P(t) Pn(t)] r,
and A [Aij]in,j= is defined by

(2.4) Aii Z ffji,
j=l

i= 1,...,n,

(2.5) AigAaij, i4:j, i,j= 1,...,n.

Letting a = [aig]i,9= and using the matrix operators introduced in the Appendix, the
matrix A can be written compactly as

A -vecd- (ae) + (
As shown in the Appendix, the operator "vecd" extracts the diagonal elements of a
matrix to form a column vector, while "vecd-’’ transforms a column vector into a

FIG. 1. Compartmental model involving interconnected subsystems.
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diagonal matrix. Furthermore, (r) denotes the off-diagonal matrix comprised of only
the off-diagonal elements of tr with the diagonal elements replaced by zeros.

An important special form of (2.2) arises when trij trji for some : j. In this case
II,.(t) can be written as

(2.6) II0-(t) ri[E(t) Ei(t)], > O,

which can be interpreted thermodynamically as saying that heat flow is proportional to
temperature difference. Note that A is symmetric if and only if a is symmetric.

The solution E(t) to (2.3) can be written explicitly as

(2.7) E(t) eAtE(O) + eAt-s)p(s) ds,

where the function P(. is assumed to be such that the integral in (2.7) exists. To analyze
(2.7), we begin by noting that A is essentially nonnegative 13 ], that is, the off-diagonal
elements of A are nonnegative. Equivalently, -A is a Z-matrix [6], that is, -A has
nonpositive off-diagonal elements. The following lemma concerns the exponential of an
essentially nonnegative matrix. Variations of this result appear in 6, p. 146 ], 13, p.
74], [55, p. 37], and [60, p. 207].

LEMMA 2.1. Let B E . Then B is essentially nonnegative ifand only if eat is
nonnegativefor all >= O.

Proof. IfB is essentially nonnegative, then there exists/3 > 0 sufficiently large such
that/ /31 + B is nonnegative. Consequently, et is nonnegative for all >= 0, and thus
e e-ee is nonnegative for all >- 0. Conversely, suppose that Bij. < 0 for some
j. Then, since (et)i tBi; + O(t2) as -- 0 for :P j, it follows that et)ij < 0 for some
> 0 sufficiently small. Hence e is not nonnegative for all >-_ 0.

Since A is essentially nonnegative, its exponential is nonnegative on [0, ). IfE(0)
and P(t) are both nonnegative, then it follows immediately from (2.7) that E(t) is non-
negative.

PROPOSITION 2.1. Suppose that E(O) >->= 0 and P( t) >=>= O, >= O. Then the solution
E( t) to (2.3) is nonnegativefor all >- O.

Henceforth we focus on the case in which the externally applied power P(t) is
constant, that is, P(t) P. In this case (2.3) and (2.7) become

(2.8) (t) AE(t) + P, >= O,

and

(2.9) E(t) eAtE(O) + eTM dsP, >= O.

The following lemma summarizes several properties of A that are useful in analyzing
(2.9). Recall 61 that the index k of a real matrix M, denoted ind (M), is defined to be
the smallest nonnegative integer k such that rank Mk rank Mk+l. (Here M I.)
Equivalently, ind (M) is the size of the largest Jordan block of M associated with the
eigenvalue zero. Furthermore, recall that if ind (M) -< 1, then the Drazin inverse MD

specializes to the group inverse M# of M. It can be seen that ind (M) _-< and every
eigenvalue ofM either has negative real part or is zero if and only if limt_, eMt exists.
In this case M is called semistable. Finally, let (M) and dV(M) denote the range and
nullspace of M, respectively.
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LEMMA 2.2. The matrix A defined by (2.4), (2.5) has thefollowing properties:
(i) -A is an M-matrix,
(ii) If ), is an eigenvalue ofA then either Re X < 0 or X 0,
(iii) ind (A) _-< 1,
(iv) A is semistable, and limt_, eAt I- AA # >--> O,
(v) I(A) t#(I- AA#), V’(A) 1(I- AA#),
(vi) f eTM ds A#(em- I) + (I- AA#)t, >= O,
(vii) f eTM dsP exists if and only if P (A),
(viii) If P 6 (A), then f eTM dsP -A #P,
(ix) If P (A) and P >=-> 0, then A #P >_- >= 0,
(x) A is nonsingular if and only if-A is a nonsingular M-matrix,
(xi) IfA is nonsingular, then A is asymptotically stable and -A -1 >=>= 0.

Proof. Since -A re >-> 0 and -A is a Z-matrix, it follows from [62, Thm. 1,
p. 237] or [6, Exercise 6.4.14, p. 155] that -A r, and hence -A, is an M-matrix with
"property c" (see [6, Def. 6.4.10, p. 152]), which proves (i). Since -A is an M-matrix,
it follows from [6, Prop. (Ell), P. 150 that the real part of each nonzero eigenvalue of
A is negative, which proves (ii). From [6, Lemma 6.4.11, p. 153], it follows that
ind (A) _-< 1, thus proving (iii). To prove (iv), write A S[ 0]S-1 where Ao is asymp-
totically stable. Then

eAt= S
0 I I

which proves (iv). Note that I- AA # is nonnegative since eAt is nonnegative for all >_-
0. To prove (v), note that if (I AA#)x 0, then x AA#x I(A). Conversely, if
x (A), then there exists y N" such that x Ay so that AA#x AA#Ay Ay x.
The second identity follows similarly. Next, (vi) follows from [61, Thm. 9.2.4] and can
be verified directly. Statement (vii) is a direct consequence of (v) and (vi), while (viii)
follows from (iv) and (vi). Next, (ix) follows from (viii) and the fact that eAt >= O, >=
0. Finally, (x) follows from (i) or 6, p. 137 ], and (xi) follows from (ii) and (ix) with
P=ei, 1,...,n. V]

Remark 2.1. Properties (ii) and (iii) imply that the homogeneous system/(t)
AE(t) is stable in the sense of Lyapunov. This result is given by [62, Thm. in terms
of the set Wq. The same result is given by [3, Lemmas and 2 and is attributed to
[1]. The result (ix) that x e (A) and x >=>= 0 imply that -A#x >=>= 0 is given by [63,
Thm. 3 ].

By using Lemma 2.2 we can obtain an expression for the steady-state energy dis-
tribution limt_. E(t). For notational convenience we denote this limit simply by E.

PROPOSITION 2.2. Suppose that E(O) >=>= 0 and P >->-_ 0 and let E(t) be given by
(2.9). Then E & limt_ E(t) exists ifand only ifP e l(A). In this case E is given by

(2.10) E (I- AA#)E(O) A#P,

and E >_->_- 0. If, in addition, A is nonsingular, then E exists for all P >_->- 0 and is given
by

(2.11) E -A-P.

In equilibrium, the dynamic system (2.8) becomes

(2.12) 0 AE + P.
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We now show that the steady-state solution (2.10) is in fact an equilibrium solution to
(2.8) and, furthermore, all solutions to (2.12) are of the form (2.10).

PROPOSITION 2.3. Let P N n. Then (2.12) has a solution E if and only if
P AA #P. Furthermore, E is a solution to (2.12) ifand only if there exists E(O)

such that (2.1 O) is satisfied.
Proof. Clearly, (2.12) has a solution E 6 n if and only if P 6 (A). By (v) of

Lemma 2.2, P (A) if and only if P ,U(I AA#), that is, P AA#P. Next, it is
easy to verify that E given by (2.10) is a solution to (2.12). Conversely, if E satisfies
(2.12) then z a__ E + A#P is in the null space ofA. Since by (v) of Lemma 2.2 the null
space of A coincides with the range of I- AA #, it follows that there exists E(0)
such that z (I- AA#)E(O), which yields (2.10). if]

Remark 2.2. Proposition 2.3 is entirely analogous to the standard result involving
the Moore-Penrose generalized inverse (see, for example, [64, p. 37 ]). Except for the
necessity of the second statement, the result is given by [65, Lemma 5.1].

Writing E [E E] and P [P Pn], the ith component of(2.12) can
be written as

(2.13) 0 ffiiEi + o’ijEj rjiEi] + Pi,
j=l
ji

which can be viewed as an energy balance relation.
When the rank ofA is equal to n 1, it is possible to simplify expression (2.10).

The following lemma will be useful.
LEMMA 2.3. Suppose rank A n and let v satisfy Av O. Then either

v >=>= 0 or-v >=>= 0.
Proof. Since v X(A), it follows from (v) of Lemma 2.2 that v 1(I- AA#).

Since rank A n 1, it follows that (A) is one dimensional and thus
rank (I AA #) 1. By (iv) of Lemma 2.2, I AA # is also nonnegative. Since I- AA #

is also nonzero, there exists a nonnegative vector w such that (I AA #) w is also nonzero
(and nonnegative). Since v and (I AA #) w both lie in the same one-dimensional sub-
space, there exists/3 such that v 13(I AA#)w. If/3 >= 0 then v >=>= 0, whereas if

-< 0 then v =<=< O. I--q

COROLLARY 2.1. Suppose that E(O) >=>= O, P >=>= O, and P I(A). Furthermore,
assume that rank A n and let v , v 4 O, v >=>= 0 satisfy Av O. Then the
steady-state energy distribution E given by (2.1 O) has theform
(2.14) E v A#P,

where/3 I1(I AA#)E(O) II/ Ilvll and I1" denotes an arbitrary norm on .
Proof. Since A is singular there exists nonzero v V(A). Furthermore, since

rank A n 1, it follows from Lemma 2.3 that either v >->= 0 or -v >=>= 0. Without
loss of generality, let v be chosen such that v >=>= 0. Since rank A n 1, it follows that
V’(A) and thus 1(I- AA#) are one dimensional. Thus there exists/3 >= 0 such that
fly (I- AA#)E(O). Note that/3 is necessarily nonnegative since v is nonzero and v
and (I- AA#)E(O) are both nonnegative vectors. Taking norms yields the given expres-
sion for/3. q

Remark 2.3. A sufficient condition for a singular M-matrix A to have rank n
is for A to be irreducible (see 6, Thm. 6.4.16, p. 156 ]). In this case the nonnegative
vector v (A) actually has all positive components (see [6]).

As an application of Corollary 2.1 we consider the case in which aii 0,
n. Then e rA 0, which implies that rank A -< n 1. In this case it is easy to see
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that when P 0 the total system energy is conserved, since (2.8) implies e T/(t)
e TAE(t) 0. If we also assume that Ae 0, we obtain the following result.

COROLLARY 2.2. Suppose that rii O, n, Ae O, and rank A n 1.
IfE(O >=>= 0 and P O, then the steady-state energy distribution E given by (2.1 O) has
theform

(2.15) E= Ei(O) e.
]’

Proof. Since Ae 0, it follows from Corollary 2.1 and (2.14) that E =/3e, where
(choosing the Euclidean norm in Corollary 2.1) /3 n-1/2[ET(O)(I- AA#)T(I-
AA#)E(O)] 1/2. Next, since Ae ATe 0 and rankA n 1, it follows thatA isan EP
matrix ([ 61, p. 74 ). Consequently, AA # is symmetric and, in particular, I AA #

1/n)ee r. This implies that/3 n-lerE(O), which yields (2.15).
The result (2.15 shows that under the stated assumptions each component of the

steady-state energy vector is equal, that is, the steady-state energy is uniformly distributed
over all states. This phenomenon is known as equipartition ofenergy [34], [41], [50].

Henceforth we consider the case in which A is nonsingular, that is, in which -A is
a nonsingular M-matrix. Numerous necessary and sufficient conditions for a Z-matrix
to be a nonsingular M-matrix are given by 6, Thm. 6.2.3 ]. The following easily verified
condition is sufficient but not necessary.

LEMMA 2.4. If trii > O, n, then -A is a nonsingular M-matrix.
Proof. Ifffi/> 0, 1,..., n, then -ATe [r r] T >> 0. By [6, Condition

(I27), P. 136], -A T, and hence -A, is a nonsingular M-matrix.
Next we examine the steady-state energy distribution E as a function ofthe coupling

parameters a0, 4: j. Specifically, we wish to determine the steady-state energy distribution
E in the limit of strong coupling, that is, as a0 oe, 4 j. To do this, define

A = D + aC,

where the diagonal matrix D is defined by D diag (fill, finn) and the matrix C of
coupling parameters is defined by

n

(2.16) C/i ffji, 1,..., n,
j=l
j4:i

(2.17) Ci9 gig, 4:j, i,j n.

In the notation of the Appendix,

(2.18) D {tr}, C -vecd -1 ((a)Te) + (a) A + D,

where { a} and (a) denote the diagonal and off-diagonal portions, respectively, of A.
Note that A Al. Furthermore, note that if O’ii > O, 1,..., n, then -A, is a nonsingular
M-matrix for all a >- 0. For P >_->_- 0, let E, denote the steady-state energy distribution
with A replaced by A,, that is,

(2.19) E, -A-dIP.
Note that letting a -- oe corresponds to letting rij -- oe, 4 j. The following result
provides an expression for lim,_ E,, which is the steady-state energy distribution in
the limit of strong coupling.
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PROPOSITION 2.4. If ffii > O, n, then E & lima_. E, exists and is
given by

(2.20) E [D-1 D-1CD-I(CD-1)#]P.

Proof. Since eTCD-1 O, it follows from [6, Exercise 6.4.14, p. 155] that -CD-1

is a singular M-matrix with "property c." Hence 6, Lemma 6.4.11, p. 153 implies that
ind (CD-1 1. From 61, Cor. 7.6.4 ], we obtain

E lim [D-aC]-IP

D-1 lim 3131- CD
30

[D-1 D-1CD-I(CD-1)#]P.
A minor variation of the proof of Proposition 2.4 shows that E can be written

equivalently as either

(2.21) Eoo [D -1 D-ICD-1/2(D-1/2CD-1/2)#D-1/2]P
or

(2.22) Eoo [O -1 D-1C(D-1C)#D-1]P.
The symmetry ofthe expression (2.21 will be useful in obtaining a more explicit expres-
sion for Eoo when C is symmetric and has rank n 1. The next result shows that in this
case strong coupling leads to energy equipartition.

COROLLARY 2.3. Assume that O’ii > O, n, and suppose that C is symmetric
and rank C n 1. Then Eoo is given by

(2.23) E=(eTp)eTDe e.

Proof. For convenience define ff & D-I/2CD-1/2, which also has rank n 1. Since
C and ( are symmetric, it follows that D1/2e 0. By decomposing ff it can be shown
that I- ff(# (eTDe)-lD1/2eeTD 1/2. Hence, using (2.21), we obtain

Eoo D-1/2[I- #]D-1/2p

(eTDe)-lD-1/ZD1/ZeeTD1/ZD-1/2p

eTDe e.

3. Second-moment analysis of state space systems. In this section we consider an
arbitrary asymptotically stable linear system subjected to additive white noise disturbances.
The second-moment matrix of the state then satisfies a matrix Lyapunov differential
equation. From this matrix differential equation, we then extract a vector differential
equation for the diagonal elements ofthe second-moment matrix. These diagonal elements
are the second moments ofthe individual states. This section relies heavily on Kronecker
matrix algebra, which is summarized in the Appendix.

To begin, consider the state space differential equation

(3.1) 2(t) Fx(t) + Gw(t), >= O,

where F e C" ", G e C" a, w(. is d-dimensional zero-mean stationary Gaussian white
noise with intensity Ia, and x(0) is Gaussian distributed with not-necessarily zero mean.
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The second-moment matrix ofx(t) defined by Q(t) & E[x(t)x*(t)] e C’’ satisfies the
matrix Lyapunov differential equation [66, p. 101],

(3.2) 0(t) FQ(t) + Q(t)F* + V, >= O,

where Q(0) :[x(0)x* (0)] and V& GG*. The solution Q(t) to (3.2) is given explicitly
by

(3.3) Q(t) eFQ(O)e* + ee’VeF* ds, >= O,

which shows that Q(t) is a (Hermitian) nonnegative-definite matrix.
Applying the vec operator [67 ], [68] to (3.2) and using (A.7) (see the Appendix)

yields

(3.4) vec ((t) (/ F) vec Q(t) + vec v.
Next, we use the n 2 X n 2 orthogonal permutation matrix U to rearrange the components
of vec Q(t) so that the diagonal elements of Q(t) appear as the first n elements. Hence
(3.4) implies

U vec 0(t) MU vec Q(t) + U vec V,(3.5)

where M is defined by

(3.6)

Since U o], identities (A. 13 and (A. 14) imply

[UavecQ(t)l[UvecQ(t)=
Uo vec Q(t)

and similarly for vec 0(t) and vec V.
Next, defining

(3.5) can be written as

M U(ff @ F)U-’ U(P @ F)U.
vecd Q(t) ]
veco Q(t)

E(t) & vecd Q(t),

/(t) veco Q(t),

P & vecd V,

P & veco V,

Note that E(t) and P are real and nonnegative, whereas/(t) and/3 are generally complex.
Furthermore, Q(t) and V can be reconstructed from E(t),/(t), P, and/3 by means of

(3.8) Q(t) vecd -1 (E(t)) + veco -1 (/(t)), V= vecd -1 (P) + veco- (/5).

Next, partition M defined by (3.6) as

[Mll M12](3.9) M=
M21 M22

where, using (3.6), the subblocks ofM are given by

Ml A__ Ud( F) U, M2 & Ua(ff @ F) Uro
M21 & Uo( ff (3 F)V, M22 _a_ Uo( ff F)Uo.
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Using (A. 11 and (A. 17 )-(A.20), Mll, M12, M21, and M22 can be simplified somewhat
as

(3.10) Mll 2 Re { F}, M12 Ue((ff) @ (F)) Uor,
(3.11)

M21 Uo(() (F))U, M22 Uo({/0} q {F})Uor + Uo(() (F))Uro,
where { F} and (F) denote the diagonal and off-diagonal portions of F, respectively.
Note that Mll is real and diagonal and that the term Uo( { if} @ { F} )Uro appearing in
M22 is diagonal.

We now wish to eliminate/(t) from (3.7)to obtain an equation solely in terms of
E(t). Hence solving for/(t) and substituting this expression into the equation for/(t)
with/(0) 0 and/3 0 yields the integro-differential equation

(3.12) (t) MilE(t) nt- M12 eM2(t-S)M21E(s) ds + P.

Again, using (3.7), it follows that the solution to (3.12) is given explicitly by

(3.13) E(t) [In 0]eMt In]E(0)0 + []0] eM, ds In p.
0

Since E(t) is nonnegative if E(0) and P are nonnegative, we expect the coefficients of
E(0) and P in (3.13) to be nonnegative matrices. This is illustrated by the following
result which provides explicit expressions for these matrices.

PROPOSITION 3.1. Thefollowing identities are satisfied:

(3.14)

(3.15)

[In O eMt[ In eFt e
0

01 es ds
I, eF’o e ds.
0

Proof. From (3.6) and (A.8) it follows that

O]eMt[ In Ue(P*F) ]o]=[I, o] ur[ 1"o
Ude(p*F)tu

Ud(e (R) eFt)U
epto eFt,

where the last step follows from (A. 11 ). Integrating (3.14) over [0, t) yields (3.15 ).
From (3.14), we obtain the following result.
COROLLARY 3.1. Thefollowing identities are satisfied:

(3.16)

(3.17)

M12M21 2Fo ff + 2 Re {F2 } 4(Re {F})2,
M12M22M21 2 Re {F } 8 Re {F} Re {F2 } + 8(Re {F})3

+ 6 Re (Fo ff2)_ 4 Re {F}(F )- 4(Fo ) Re {F}.
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Proof. First note that for - 0

O]ett[ In] I + Mllt + + M’zM2’)12

+ (MIII + MMzM2 + MzMzMI + MzMzzMz)t + O(/4),

eFt et (I + Ft + 1/2FZt 2 + F3t + O(t4))o (I + JOt + 1/2P2t2 + /3t3 + O(t4))

=I+ {F+F)t+(1/2{F2+j02} +Fo)t2

+ (1/2 Re {F3} + Re (Fo J02))t3 + O(t4).
Equating terms of O(/2) and O(t3) yields (3.16) and (3.17). []

COROLLARY 3.2. The matrix MlzMzl is essentially nonnegative.

Proof. The result follows from the fact that {M,zM2, ) 2 {Fo ) >=>= O.
Using expressions 3. 4 and 3.15 ), 3.13 for E(t) can be written as

3.18 E(t) eFt etE(0) + eFSo e" dsP.

For comparison, let us recall the solution (2.9) to the compartmental model (2.8) given
by

(3.19) E(t) eAtE(O) + eAs dsP.

These models, that is, (3.18 and (3.19), will coincide if and only if

3.20 eat eFt eit, >= O.

In general, howe_ver, there does not exist a matrix A satisfying (3.19) for the obvious
reason that eFt eFt involves more spectral content than can be provided by the exponential
of a single n n matrix. It is easy to see that there exists a matrix A such that (3.19) and
(3.20) coincide if and only ifF is diagonal, in which case A F + F. To proceed, let us
consider the steady-state problem. To guarantee that limt_ E(t) exists, we shall assume
that F is semistable. The following result will be useful.

LEMMA 3.1. IfF is semistable, then M is semistable.
Proof. Since eMt U(et (R) eFt) UT, the existence oflimt_ eFt implies the existence

of limt_ eMt. I-1

PROPOSITION 3.2. Suppose that F is semistable and assume that P /’(I
Ud( F)(F F)#U). Then E = limt- E(t) exists and is given by

(3.21) E (I FF#) (I FF#)E(0) Ud(F F)#UP.

Proof. The first term in (3.21 follows from (iv) of Lemma 2.2. Since ind (M) 1,
we have (using (vi) of Lemma 2.2)

;eFSo es dsP [In
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Since [In 0](I- MM#)[/] In Ud(F@ F)( (3 F)#U, the term linear in is zero
by assumption. Consequently, as o,

eFS ep" dsP -- [In 0 M# In p,
0

which is equal to Ua( (9 F) #UP.
When the rank of F is n 1, some simplification is possible.
COROLLARY 3.3. Let F and P be as in Proposition 3.2. Furthermore, assume that

rank F n and let v C n, V 4: O, satisfy Fv O. Then E is given by

(3.22) E= ( (v )rE(O))-(v.v)2 V Ud(F (9 F)#UP.

Proof. Since rank (I- FF#) 1, it follows that I- FF# wy* for some
nonzero w, y 6 C n. Hence v (y*v)w, y (y*v/v*v)(I FF#)*v, and I FF#

(v*v)-lvv*(I- FF#). Using (A.10) in (3.21) now yields (3.22).

4. Steady-state compartmental modeling of the diagonal system. In the previous
section it was shown that the evolution of the diagonal portion of the second-moment
matrix cannot generally be modeled by means ofan nth-order state space system. Hence
we now focus our attention on the steady-state solution to the diagonal system. Our goal
is to determine conditions under which the steady-state energy distribution ofthe diagonal
system coincides with the steady-state energy distribution of a compartmental model.
Henceforth (and without further notice) we assume that F is asymptotically stable, that
is, every eigenvalue of F has negative real part.

Since F is asymptotically stable, Q & lim/_ Q(t) exists, is nonnegative definite,
and is given by

(4.1) Q eVeF* ds,

which is the unique solution to the algebraic Lyapunov equation

(4.2) 0 FQ + QF* + V.

Note that Q is independent of Q(0). Furthermore, since F F is asymptotically stable
67 ], 68 ], M is asymptotically stable so that (3.13) can be written as

Now letting -- oe in (3.7) yields

(4.4) [J=-M-I[]
where E & lim_ E(t) and/ & limt_, oo/(t). For convenience, partition M-1 as

(4.5) M_ =[Nil N12]N21 N22

where

Nil & Ud(P F)-1U’ff

N21 & Uo(P F)-’U,
N12 Ud(P ( F) -I UoT,

N22 a Uo(P F) -1Uro.
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Next, letting -- oe in (4.3) yields

eFt ept dt(4.6) N

which shows that -N is a (real) nonnegative matrix. Finally, if/3 0, then 4.4 implies
that E is given by

(4.7) E -NP.
Returning to (3.18), the assumption that F is asymptotically stable implies that

E limt__, E(t) exists for all E(0) and P. Hence we consider the case in which A is
also asymptotically stable so that E limt--, E(t) also exists for E(t) given by (3.19).
In this case, the steady-state solution to (3.19 is given by (2.1 ), that is,

(4.8) E -A-P.
Requiting that the steady-state values given by (4.7) and (4.8) be equal yields

(4.9) A- N.
The matrix A given by (4.9) will be called the derived model. However, for the derived
model to exist, Nl must be nonsingular. The following result addresses this question.

PROPOSITION 4.1. Nl is nonsingular ifand only ifM22 is nonsingular. In this case

(4.10) Ni-i Mll M2MM2,

(4.1 MJ N22 Nz N-{ N 2

Proof. The result follows immediately from M-M In2.
COROLLARY 4.1. Suppose that M2z is nonsingular. Then M2M;dM21 is real.
Proof. From (4.10) it follows that M2MdM2 MI N-{. Since Mll and

N]- are real (in fact, -Nl is nonnegative), M12M]M21 is also real. []

Hence if M:2 is nonsingular, then (4.9) and (4.10) imply that A is given by

(4.12) A M MzMJM2.
It remains to be shown, however, that A given by (4.12) is asymptotically stable and
represents the dynamics of a compartmental model as defined by (2.4), (2.5). For con-
venience in discussing (4.12) define

(4.13) tx a__ -M, MzMMI
so that (4.12) can be written as

(4.14) A -(# + ).
The key to analyzing (4.14) is to exploit the structure of MJ. To facilitate our analysis,
decompose F as F {F} + (F) so that M22 can be written as

(4.15) M22 La + Lo,

where

Ld Uo({ff} @ {F})Uor, Lo= Uo((} (F})UTo.
Note that Le and Lo depend upon the diagonal and off-diagonal portions ofF, respectively.
When L and Mz2 are nonsingular, we use the decomposition (4.15 and consider the
identity

(4.16) MJ L LLoM,
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which implies that

(4.17) MzMM2 MzL’M2 MzL LoMM2.

Let us rewrite (4.17) as

(4.18) o + o,
where

(4.19) o = M2L-M2, 1o A= _M2L-LoMJ M21.

In (4.18), o can be viewed as the zeroth-order term in an expansion of while o
is the corresponding remainder. To evaluate o, define the Hermitian matrix F e Cnn

by

(4.20) Fij F "Jv Fjj
j n

PROPOSITION 4.2. Suppose that La is nonsingular. Then

o 2 Re [{(ro F)F} + (F Fo )1.(4.21)

Proof. First note that

In ]L-’ Uo E I’agii (R) ojj UTo
i,j=

Then using (A.4), (A. 11 ), (A. 13 ), and I’a I’ji, we have

In ]o U(F @ F) E Fgj gii ( jj P F)U
i,j
ij

i,j
ij

n, ra[FaFiii + fijiff’ijojj + Fiiji + Fo-Paa]
i,j

2 Re E [FaFoFjioi, +
i,j
i4j

2 Re (Fo F)oigii + (ro F
i=1 j=l i,j=l

ji ij

=2Re[{(FoF}F} + (F Fo }].
COROLLARY 4.2. Suppose that { F} is asymptotically stable. Then La is nonsingular

and o is a Z-matrix. If, in addition, F has no zero @diagonal elements, then o is
essentially negative (has negative @diagonal elements).
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Proof. If { F} is asymptotically stable, then Ld is nonsingular. The result now follows
from the fact that for # j

o)9 21Fiyl 2 Re (Fii q-- Fjj)/lffii + Fjjl 2 0.

If, in addition, F/# 0, then o)0 < 0.
Next let us define

(4.22) F { F} + c(F),

where {F} and a(F) are diagonal and off-diagonal matrices, respectively, and a is a
positive number. The scalar a in (4.22) allows us to adjust the strength ofthe off-diagonal
coupling in F,. When F is replaced by F,, derived quantities such as M22 and o are
written as M22, and 0,. Consequently, (4.12) becomes

(4.23)

We thus have the following result for the case of weak coupling, that is, for a 0.
COROLLARY 4.3. Suppose that F ) is asymptotically stable and F has no zero off-

diagonal elements. Then there exists ao > 0 such that F. is asymptotically stable, M22
is nonsingular, and is essentially negativefor all c (0, co).

Proof. By Corollary 4.2, 0. M2.L M2. is essentially negative for all a > 0.
Furthermore, it follows from (3.10) and (3.11) that 0. O(c2) as a - 0. Thus ifc
is sufficiently small, then F. is asymptotically stable and M22. Ld + oLo is non-
singular. Consequently, o. O(a3). The result now follows from the fact that
,o, + o.

THEOREM 4.1. Suppose that { F} is asymptotically stable and F has no zero off-
diagonal elements. Then there exists ao > 0 such that -A, is a nonsingular M-matrix
for all c [0, ao).

Proof. Let a e [0, ao), where c0 is given by Corollary 4.3. Since by (4.14)
-(A,> (,>, it follows from Corollary 4.3 that -A, is a Z-matrix. Furthermore,
by (4.6) and (4.9), -AS f eF"to eFt dt is nonnegative. Hence it follows from
[6, p. 137 ], that -A is a nonsingular M-matrix.

COROLLARY 4.4. Under the assumptions ofTheorem 4.1, A, is asymptotically stable
for all a [0, c0).

Proof. By [6, p. 135 ], each eigenvalue of-A has a positive real part. Hence A is
asymptotically stable. 73

The remainder of this section is devoted to further analysis of the properties of
The following result gives an alternative sufficient condition for M22 to be asymptotically
stable and hence nonsingular.

PROPOSITION 4.3. IfF is upper triangular, then M22 is asymptotically stable.
Proof. The result follows from the fact that Ld is asymptotically stable and Lo is

strictly upper triangular.
PROPOSITION 4.4. Suppose that M22 is nonsingular. If F is symmetric (but not

necessarily either real or Hermitian ), then is symmetric. If, in addition, is a Z-
matrix, then A defined by (4.14) is negative definite.

Proof. If F is symmetric, then so are (F> and (/>. The result is now imme-
diate. []

Next, we consider the case in which (F) is skew-Hermitian. This case arises fre-
quently in applications in which the modal coupling is energy conservative.
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PROPOSITION 4.5. Suppose that M22 is nonsingular. If (F) is skew-Hermitian,
then

(4.24) e re 0.

If, in addition, Re (F) 0, then is symmetric.
Proof. Using the fact that vecd In e along with (A. 14) and (A. 16 yields

((if) (F))Ue ((if) (F))U vecd In

((if) (F))vec In
vec (<F> + <f>)
0

which along with . and (4. implies that e 0. A similar argument shows that
io Te O. If Re.(F) O, then (F) j/O, where/ is real. Since (F) is skew-Hermitian,
it follows that F is symmetric. Consequently, (F) is symmetric, which implies that F is
symmetric. Now by Proposition 4.4, is symmetric, ff]

5. Compartmental modeling of state space systems. In this section we relate
the steady-state second-moment analysis of 4 to the compartmental model discussed
in2.

If-A is a nonsingular M-matrix (assuming M22 is nonsingular), it follows from
property (M36) [6, p. 137 ], that there exists a diagonal matrix D diag (d,, dn)
with positive diagonal elements di > 0, n, such that D(-A)D-’ is strictly
diagonally dominant, that is,

-Aii > Z (dj/di)Aji.
j=l
ji

Note that -Aii is positive since a nonsingular M-matrix has positive diagonal elements.
Now define A DAD-’ and note that - is also a nonsingular M-matrix. To show that

has the form of a compartmental model, define

(5.2) ffii -Aii . dj/ di )Aji, 1,..., n,
j=l
j4i

(5.3) aij (di/dj)Aig, :/:j, i,j 1,..., n.

With 5.3 we can rewrite (5.2) as

(5.4)
n

ffii =-Aii- Z oj
j=l
ji

Since Aij (di/)Ai, it follows that

(5.5) lii E O’ji,
j=l

i= 1,...,n,

(5.6) Ai ai, =/=j, i,j 1,..., n,

which verifies (2.4), (2.5) with A replaced by A.
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Next, we introduce the scaled energy states Es
DP so that (4.8) becomes

(5.7) 0 AEs +
With this scaling and the definition ofA, (5.7) has the form of a steady-state compart-
mental model as given by (2.12).

Remark 5.1. Consider the energy conservative case in which (F) is skew-Hermitian
so that (4.23) holds. Then the row and column sums of are zero. If is also a Z-
matrix, then no scaling is required (that is, D I suffices) to obtain a steady-state com-
partmental model.

6. Conclusion. Compartmental models are widely used to represent the dynamics
of systems involving the exchange of inherently nonnegative quantities such as mass or
energy. In this paper we summarized some of the key properties of these models and
characterized their steady-state energy distribution. In addition, conditions were given
under which the steady-state energy distribution tends toward equipartition in the limit
of strong off-diagonal coupling. We then considered arbitrary state space models with
additive white noise disturbance and obtained an equation that governs the evolution of
the nonnegative diagonal system. The steady-state limit of this diagonal system was then
examined for its relationship to steady-state compartmental models. The key step in this
regard was to show that the coefficient matrix is a Z-matrix, that is, has nonpositive off-
diagonal elements. It was shown that if the off-diagonal coupling is sufficiently weak,
then (up to a positive scaling) the diagonal system does in fact have the form of a
compartmental model. Conditions under which the diagonal system is a compartmental
model in the case of strong coupling remain an area for future research.

Appendix. Kronecker matrix algebra. In this Appendix we review some basic def-
initions and identities from Kronecker matrix algebra. Our main references are 67 and
68 ]. We also introduce several specialized definitions that are specific to this paper.

For A e C m, let col/(A denote the ith column ofA and define the vec and vec-1
operators by

vecA & [COll:(A)]col(A)j cnm’ vec- (vecA) &A"

For A 6 Cnm and B 6 Cp, the Kronecker product ofA and B is defined by

AIB A12B NimBI, AlB AB Az.mBA (R) B npXmq,

An B AneB An’mB-I
while for A e C n and B e C the Kronecker sum ofA and B is defined by

A (9 B & A (9 Im + In (9 B Cnmnm.
For compatible complex matrices A, B, C, D, the following identities hold:

(A.1) (A +B)(R)C=A(R)C+B(R)C,

(A.2) A (R) (B + C) A (R) B + A (R) C,

(A.3) (A (R) B) v= Ar(R) B 7", (A (9 B) r= A(9 B 7,
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(A.4)

(A.5)

(A.6)

(A.7)

(A.8)

(A.9)

(A (R) B)( C (R) D) (AC) (R) (BD),

(A (R) B) -1 A -I (R) B-,
vec ABC Cr (R) A) vec B,

vec (AB + BC) C @ A) vec B,

eAB eA (R) eB,

(A (R) B) C (R) D) (A C) (R) (B n).

If w, y (2" and x, z (2 m, then

(A.10) (WXT) (yz T) (Wo y)(Xo Z) T.

Next, let ei denote the ith column of the n n identity matrix, where the dimension n
is determined by context, and define 8rs & erers, which is the not-necessarily square
matrix whose (r, s) element is and whose remaining elements are all 0. Now define
the n /7 2 matrix

Ud ---- 11v22 nn] Z el" (R) Oii
i=1

Furthermore, letting I/i denote the (n n matrix obtained by deleting the ith row
of the n n identity matrix, define the (n 2 n) n 2 matrix

I/

Uo / I/2 0

IfA, B (2" x ,, then 69 and 70

n

Z Oii (R) I/i.
i=1

1/n

(A.11) Ud(A (R) B)U Ud(B (R) A)U A B.

Note that Ud and Uo satisfy the identities

(i.12) UaU In, UdUTo Onx(n2-n), UoUTo In2-n,
n

(i.13) UTo Uo Z ii (R) Ojj
i,j=l
i::j

Hence the matrix U N,2,2 defined by

satisfies Ur U-I; that is, U is an orthogonal (but not symmetric) permutation matrix.
For a square matrix A (2" ", let { A } and (A) denote the diagonal and off-diagonal

portions ofA, respectively. That is, A } is the diagonal matrix defined by

{A}&IoA,
and (A) is the off-diagonal matrix defined by
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Next, as in 67 ], let vecd A denote the n-vector comprised of the diagonal elements of
A, that is,

vecd A {A } e, vecd -1 (vecd A) {A },

where e 1] r, and let veco A denote the (n n)-vector comprised of the
-1off-diagonal elements of A ordered in accordance with vec A. Define also veco

(veco A) A ). The above-defined operators satisfy the following identities:

(1.14) vecd A Ue vec A vecd {A } Ue vec {A },

(A. 15 veco A Uo vec A veco (A) Uo vec (A),
(a. 16) vec A ) Uff vecd A, vec (A) Uo veco A.

Finally, if A, B C n, it is useful to note that

(a.17) {A B) {A} @ {B}, (A @ B) (A)
(A. 18) A B {A} {B} + (A)
(a.19) Ua(A @ B)US {A + B}, Uo{A B} Uff O,

(A.20) Uo(A B)U Uo((A) (B))US.
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Abstract. For an n n matrix-valued function L(p, A), where p is a vector of independent pa-
rameters and A is an eigenparameter, the eigenvalue-eigenvector problem has the form L(p, A(p))x(p)

0. Real or complex values for p and A are admitted, and L is assumed to depend analytically on
these variables. In particular, nonlinear dependence on A is the main concern. On the assumption
that the eigenvalue-eigenvector problem itself can be satisfactorily solved, a study is made of the
derivatives (sensitivities) of A and x with respect to p. Analysis is made of the existence of deriva-
tives, the effect of normalization strategies, and the solvability and condition of the bordered matrix
equations arising naturally in this context. Implications for various classical eigenvalue problems
L(p, A) A(p) AI are clarified.

Key words, nonlinear eigenvalue problems, eigenvalue and eigenvector sensitivities, general-
ized inverses
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1. Introduction and hypotheses. In this paper we study n n matrix-valued
functions L(pl,..., p,, A) where pl,..., Pm are either real or complex independent
variables, and n > 2 and A is an eigenvalue parameter that may also be real or complex
valued. For brevity, let p denote the m-tuple pl,..., p, and write L(pl,..., Pm, ))
L(p, A).

The number A(p) is an eigenvalue of L at p if the matrix L(p, A(p)) is singular.
Thus, eigenvalues have associated eigenvectors x(p) 0 such that

(1.1) L(p, A(p))x(p) 0.

We may also call x(p) a right eigenvector of L at p. A left eigenvector of L at p is a
right eigenvector of the transpose LT.

Let T be a domain in a space of k variables zl,..., zk. A real or complex valued
function f(z),z (zl,... ,Zk), defined on T, is said to be an analytic function ofz on

0T if, to each z0 (z,..., zk) E T, there corresponds a neighbourhood Af(z0) C :D in
which f(z) is the sum of an absolutely convergent power series in (Zl-Z),..., (zk--z).
Here, and in the sequel, we follow Bochner and Martin IBM].

Our fundamental hypotheses on the function L may now be formulated as follows:
The variables p, belong to domains Af, Afx, respectively, such that:

(i) The elements of L are analytic functions of the m+ 1 variables pl,..., p,,
on A/" A/’,.
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(ii) For each p e Af there is a A E Af such that det L(p, ) O.
Note that, for an n n matrix function A(p), our formulation includes the classical

eigenvalue problem if we define L(p, ,k) A(p) I. Similarly, the "generalized"
eigenvalue problem Ax ABx is included by defining L(p, )) A(p)- AB(p) and, for
parameter-dependent quadratic eigenvalue problems, which arise in many applications
([BL], [CMa], [HA], ILl, [ao]),

(1.2) L(p, ,k) A(p)2 + B(p),k + C(p).

Concerning hypothesis (i), note that this degree of generality admits a theory
of eigenvalue multiplicities and chains of generalized eigenvectors. This theory is
developed in [GR]. Only its most fundamental ideas are used in this work, but we would
emphasise that, although the classical eigenvalue problem is an important special case,
our major concern is with nonlinear dependence on A.

Our objective is to study the derivatives of eigenvalues and eigenvectors with
respect to the parameters pl,..., Pro, including some discussion of the problem of
existence of these derivatives. The derivatives tell us about the sensitivities of eigen-
values and eigenvectors and are, therefore, of great interest in many applications.
There is, of course, a very extensive literature including books and papers addressed
to mathematicians and a broad spectrum of scientists and engineers. Much of this is
directed to special classes of eigenvalue problems such as those described above and,
particularly, to the case of one parameter, m 1. We do not attempt to make a
representative list of references here, but let them arise naturally in the body of the
paper.

Careful investigations with m > 1 are relatively few in number and we believe
that none have the degree of generality admitted by hypotheses (i) and (ii). We note
the interesting recent work of Sun (see [$2] and references therein). He admits multiple
real parameters in his analysis of matrix functions L(p, ) A(p) ,kI and L(p, )
A(p)- )B(p) and, in contrast to our investigation of analytic eigenfunctions A(p), he
considers the more general question of existence of one-sided directional derivatives
for )(p) (see also [HC]). In 5 and 6, we also consider the case in which A(p) and
x(p) are required to have only partial derivatives with respect to the components
of p.

Because of the linear dependence on x the problem (1.1) might be described as
"mildly" nonlinear. So there is also a strong connection with the large body of liter-
ature on nonlinear analysis and, particularly, the literature on continuation methods.
(See [Kel], for example.) In the context of the problem (1.1) continuation is also an
important concern, and calculation of derivatives can be seen as a first step in that
direction. That line of investigation is not pursued here, although some connections
are clarified in an appendix.

The contributions of this paper concern mainly nonlinear dependence on A and
include:

(a) A study of the effect, and relative advantages, of different normalization
strategies for the eigenvectors.

(b) Explicit formulae for derivatives and their connection with item (a).
(c) Discussion of the solvability and condition of the equations with bordered

coefficient matrices, which arise naturally in this context.
These contributions provide insights and guidance relevant to the design of al-

gorithms for the solution of parameter-dependent eigenvalue problems of the form
(1.1).
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Some sufficient conditions for existence of analytic eigenvalues and eigenvectors
are established in 2, more detail on semisimple eigenvalues is provided in 3, while

4 includes a discussion of various normalization strategies (a subject on which there
has been some confusion in the engineering literature). The computation of partial
derivatives of eigenvalues and eigenvectors is investigated in 5 and 6, using equations
that are no more difficult to solve than those arising in the linear case. This contrasts
with the initial computation of eigenvalues and eigenvectors, which is significantly
more difficult in the nonlinear case. Sections 7 and 8 establish and examine new
explicit formulae for the partial derivatives in terms of the Moore-Penrose inverse
and the group inverse, respectively, while 9 extends this work to higher derivatives.
Section 10 contains further discussion of the condition of bordered matrices appearing
in this work. The extent to which our results simplify in the case of hermitian matrix
functions and in the case of the classical linear eigenvalue problem is considered in 11
and 12, respectively. Some of the results proved here were announced by us without
proof in [ACL].

Our results in 8 generalize some results of [MS], which considers simple eigenval-
ues in the linear case. Our equation (5.5) (but not our analysis) is classical for simple
eigenvalues in the linear case and has also been derived in the case of the quadratic
eigenvalue problem (again with simple eigenvalues) in [CMa]. Our relaxation of the
restriction to simple eigenvalues, though not complete, is important, for example, in
transient optimization problems, which are often characterized by root coalescence
[Ga], [HC]. If, as is frequently the case, there is no simultaneous coalescence of eigen-
vectors, then the semisimple hypothesis will be satisfied. Indeed, multiple eigenvalues,
once neglected in the engineering literature because of their difficulty, are now receiv-
ing increasing attention (see [HA], [HR], [Oj] and the references therein). Our results
also cover problems with transcendental dependence on the eigenvalue such as occur,
for example, in certain methods for the numerical solution of differential equations
(see [A], [OM] and the references therein).

2. Existence of analytic eigenvalues and eigenvectors. Let f(p,))
det L(p, .) where L(p, .k) satisfies conditions (i) and (ii) of 1. These conditions imply
that, for any fixed p0 EAf, the eigenvalues A(p0) are zeros of f(po, ik) (if any) and
form a finite or countable set of points in Aft. If the multiplicity of A(P0) as a zero of
f(po, )) is positive and equal to the dimension of ker/(p0, A(P0)), then A(p0) is said
to be a semisimple eigenvalue.

When A(p0) is a simple zero of f(po, )), it is known as a simple eigenvalue (and
is necessarily semisimple). When this is the case, the implicit function theorem can
be applied to f at (p0, A(p0)) (see IBM] and [C1]), and we see immediately that
A is an analytic function, A(p), in some neighbourhood of p0. Consequently, there
is a neighbourhood Af0 of p0 in which L(p, )(p)) is an analytic function with rank
identically equal to n- 1.

Now recall that the adjugate of L(p,)(p)), which we write adjL, is made up of
cofactors of L and is, therefore, nonzero in Af0. Also

(adjL)L- L(adjL)- (det L)I- O.

Hence we can pick out a nonzero row or column from adjL to obtain a left or right
eigenvector, (respectively), of L(p, )(p)) which is also analytic in Af0. (This argument
simplifies and extends the discussion of Sun [S1]--see also Theorem 2 of [C1]--but does
not obviously extend to multiple eigenvalues.) These observations may be summarised
as the following theorem.
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THEOREM 2.1. If L(p, ) has a simple eigenvalue at po then there is a neigh-
bourhood fifo of po on which there exists an eigenvalue function )(p) and right and
left eigenvector functions that are all analytic functions of p.

Note that, if complex eigenvalues and/or eigenvectors are to be considered, then
the "complex" version of the implicit function theorem is required in this argument.
When the independent variables pl,..., pm are real, the corresponding results are
obtained by restricting the domain of these independent variables to the real line. In
contrast, if L(p, ) takes values in the real symmetric matrices, then the independent
variables, eigenvalues, and eigenvectors are all real valued, and an implicit function
theorem for real variables only is appropriate in this case.

Problems with complex eigenparameters (with p taking only real values) can also
be treated in the context of "real" analysis provided the dependence on A is polynomial
and a suitable linearization with respect to is available (see [GLR], for example).
The real variable problem may then be formulated by separation of real and imaginary
parts.

Now let us consider the case of a multiple unperturbed eigenvalue A0 A(p0).
The argument leading to Theorem 2.1 breaks down immediately. Indeed, examples of
nonanalytic behaviour are easily found, even when m 1. In particular, with p0 0,

are of this kind. The unperturbed eigenvalue is semisimple in the first case and not
so in the second.

On the other hand, positive examples are also easily constructed. In fact, there
is an important class of problems where analytic multiple eigenvalues and analytic
eigenvectors can be guaranteed. This is the case of hermitian (or normal) matrix
functions of the form

L(p, )) A(p) ,hi

with only one real parameter, i.e., with m 1. (This is the theory, now classical,
of Wolf, Rellich, Kato, and others. See Baumgirtel [B] for a recent comprehensive
discussion.)

This beautiful theory for the case m 1 does not extend to m 2 as Rellich’s
example shows. Take m 2,iV" C ]12, P0 (0, 0), and

L(p,A)= [pl p2 ] )d
P2 --Pl

and it is easily seen that the eigensurfaces are given by

+ (p21 + p)I/2 and ,k_ =-,k+.

Neither of these functions is analytic at p0.

Nevertheless, we contend that analytic dependence of A on p is realised in suf-
ficiently many cases to make investigation worthwhile under the condition that any
multiple eigenvalue to be investigated is semisimple. As noted above, this corresponds
to the case in which distinct eigenvalues (or "eigensurfaces") come together at p0 and
cross one another with no loss of dimension in the linear sum of their corresponding
eigenspaces at the common point.
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3. Simple and semisimple eigenvalues. It will be useful to describe simple
and semisimple eigenvalues in more detail. Since properties of L()) at a fixed p are all
that are required here, we suppress p in the notations. We use L(r)(A),r 1,2,...,
for the rth order (partial) derivative of L with respect to A.

LEMMA 3.1. Let )o be a semisimple eigenvalue of L()) and x E kerL(o), x 0.
Then L(1)(Ao)x ImL(Ao).

Proof. Recall the "local Smith form" for L()). In a neighbourhood of an eigen-
value Ao we have

L(A) E(A)D(A)F(A)

where

(3.2) D(A) diag [(A Ao)a,,..., (A

E(A) is an analytic matrix function with detE(Ao) 0, F(A) is a matrix polynomial
with detF(A) equal to a nonzero constant, and 1 >_ (2 _> >_ cn(>_ 0) are the
"partial multiplicities" of Ao (see [GR] for more details).

Let Eo E(Ao), Fo F(Ao), and Ao be a semisimple eigenvalue. Thus, for some
k, o1 Ok 1 and ak+l an 0. Hence, if D =diag[Ik,0] and
D2 =diag[0, In-k], then L(Ao) EoD2Fo, and L(Ao)x 0 implies D2Fox--0. Thus

L()(Ao)x EoDFox + EoD2F(o)X.
If L(1)()o)x L(Ao)u for some u, then

DFox + D2Fo()x D2Fou,

and this implies DFox 0. Since D2Fox 0 also, we conclude that x 0. Thus, if
L(Ao)x- 0 and x 0, we have L()(Ao)x

THEOREM 3.2. The matrix function L(A) has a simple eigenvalue )o if and only
if L()o) has rank n 1, and yTL(1)x - 0 where x and y are, respectively, right and
left eigenvectors of L at )o.

Proof. If o is a simple eigenvalue, then it is semisimple, and, in (3.1), we have
1, a2 (n 0, and rank L(Ao) n- 1. If x is a right eigenvector at

Ao, then, from the lemma, L()(Ao)x ImL(Ao), and if yTL(Ao) 0T, y 0, then
: is orthogonal to the (n- 1)-dimensional subspace ImL(Ao), but not to the vector
L()()o)x. Thus yTL()(o)X 0.

Conversely, if L(Ao) has rank n- 1, then it follows from (3.1) that 2
an 0. If 1 _> 2, it is found that (with the notation used in the proof of Lemma 3.1)

L()(Ao) E(o)D2Fo + EoD2F().

Now L(Ao)x 0 implies D2Fox 0, and yTL(Ao) 0T implies yTEoD2 0T, and
hence, yTL(D(Ao)x 0. Hence yTL(1)(Ao)x 0 implies o1 1, and o is a simple
eigenvalue. [:]

The proof also shows that, for an eigenvalue that is not simple, we may have

(3.3) yTL(1)(Ao)x 0

for all right eigenvectors x and left eigenvectors y (see also Theorem 4.6 of ILl).



908 A. L. ANDREW, K.-W. E. CHU AND P. LANCASTER

4. Normalization of eigenvectors. The result of Theorem 2.1 leaves some
freedom for normalization of the eigenvectors while still retaining analytic dependence
on p. Let us first discuss an important but, in some respects, an unfortunate case. It
is natural to try to solve equation (1.1),

(4.1) L(p, A(p))x(p) 0 on Af,

simultaneously with the condition on the euclidean norm,

IIx(p)ll 2 x(p),x(p) 1 on

We claim that condition (4.2) is inconsistent with the differentiability of x(p) when p
is complex valued. For example, let m- 1 and

L(p,A)= [A-1 -p ]0 A-2

It is easily seen that A(p) 2 is an eigenvalue (for all p) with eigenvector []. This
cannot be scaled to satisfy (4.2) and remain analytic. This is because there is no
analytic function f(p) such that If(p)l 2 1 + Ipl 2. A proof of this fact is not difficult
to find. This is a problem peculiar to complex analysis and the strong form of differ-
entiation that it employs. If the independent parameters of p are real, this problem
does not arise (see Case 2 following).

The normalization procedures admitted here retain analyticity of the eigenvector
and can all be derived from the following discussion. Let (p) be an analytic eigen-
vector on a neighbourhood Af0 c Cm, and let z(p)T be any row vector analytic on Af0
for which

z(po)Tc(po) 1

at a fixed p0 e Af0. Without loss of generality, we may assume that II(p0)l[ 1.
(Throughout this paper we use the euclidean norm and the induced (spectral) matrix
norm.) Now the vector defined by

x(p)-- {z(p)T(p)}-l.(p)

is analytic in a neighbourhood Af of p0, (Afc Af0), and also satisfies x(p0) (p0)
so that IIx(p0)ll 1. Furthermore,

(4.4) z(p)Tx(p) 1 on Af.

Case 1. Orthogonally constrained eigenvectors. Let z be a constant nonzero
vector function. Then zTx(p) 1 on Af implies that, for all partial derivatives
x(r)(p0) of order r(r >_ 1), we have

(4.5) zTx(r) (p0) 0.

This is a very convenient orthogonality condition for analytical purposes and is the
most commonly used convention in analytic perturbation theory (see Kato [Ka], and
7.1.2 of [B]). Popular choices for z include the right eigenvector of L at P0 (see [TA]
for references), or a unit-coordinate vector. The latter may be convenient in numerical
work.
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The choice of a left eigenvector of L for z is not recommended. The reason for
this is well understood. Even for the classical eigenvalue problem there are situations
in which this would result in zTx(p0) being zero or dangerously small. On the other
hand, Theorem 3.2 shows that when A(P0) is a simple eigenvalue, zT proportional to
yTL(Z)(po, A0) is always possible. However, when A(p0) is not semisimple this strategy
can also be dangerous (see Theorem 4.6 of ILl and 10 following).

Case 2. Uniformly normed eigenvectors. This case concerns normalization of
eigenvectors x(p) so that I[x(p)ll 1 in a neighbourhood of p0. For reasons given
above, attention is confined to real parameters pz,..., p,. In (4.3) we now choose
z(p) (p) so that z(p)T x(p)* and IIx(p)ll 1 on Af.

Consider the significance of this in terms of Taylor expansions. Without loss of
generality, suppose that p0 0. Let xi, Xik denote derivatives of x(p) with respect
to Pi and Pi, pk evaluated at p0. (This use of subscripts to denote partial derivatives
with respect to Pi will also be applied to other dependent variables.) Consider the
expansion of x(p) about p 0 in terms of Pi and pk. We have

1 2x(pi, pk) x0 + pixy + pkxk

The normalization IIx( )ll -= 1 on Af means that llxoll 1 and, on examining coeffi-
cients in x(p)*x(p) 1, it is deduced from (4.6) that, for 1 _< j, k _< m,

(4.7) xxi + xx0 0

and

(4.8) + x/ xo +

These are necessary conditions for normalization of this kind.
When the eigenvector is real these necessary conditions reduce to

0, -xyx .
We make one more remark about the euclidean normalization. It should not be

imagined that, when x(p) is analytic and IIx(p)II 1, the magnitude of the derivative
of x(p) is also controlled. For example, if m 1, a E R, and x(p) E R2 is defined by

x (p) (1- p a2p2 ) /2 ap
1-p

x2(p)
(1 p)/2,

then IIx(p)ll- 1 and, as ]Pl-- 0,

11] [0]+O(]pl2)"x(p)= o +p

Thus, the norm of the derivatives of x at p 0 is Ic[ and may be arbitrarily large,
even though IIx(p)l] 1.

Case 3. Left normalized eigenvectors. Let y(p) be an analytic eigenvector for the
transposed matrix function. Thus, on a neighbourhood of p0,

(4.10) L(p, A(p))Ty(p) O.
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From Theorem 3.2, when A(P0) is a simple eigenvalue of L, then at (P0, A(p0)), we
may assume that

(4.11) yTL(1) 1

for some right eigenvector of norm one. In this case the choice

z(p)T y(p)TL(1)(p,

in (4.3) may offer advantages and leads to another special case of (4.4),

(4.13) y(p)TL(1)(p, A(p))x(p) =_ 1

on Af.
In the case of the classical eigenvalue problem this condition can be written

y(p)Tx(p) =_ 1.
Our investigations will focus primarily on Cases 1 and 2.

5. Bordered-matrix equations and their solutions. The discussion of 2
and 4 leads us to the study of equations of the form

L(p, A(p))x(p) O,
z(p)Tx(p) 1,

when A, x, and z depend analytically on p in a neighbourhood Af of some p0. Differ-
entiating both equations with respect to pj yields

(5.e) Lxj + AjL(1)x -Ljx

and zTxj --Z"X. These two equations can be combined in the form

(5.3) [ L L(1)x

In the case of orthogonally constrained eigenvectors this is an equation for xj, Aj in
terms of x, z, and zj. The coefficient matrix is obtained by a suitable "bordering" of
the singular matrix L. For this analysis it is important to note that the assumption
of analytic solutions to (5.1) ensures the consistency of the linear system (5.3) for xj
and Aj.

When considering algorithms for eigenvalues and eigenvectors themselves (rather
than their derivatives) it should be noted that the coefficient matrix of (5.3) arises in
the implementation of Newton’s method; with the exception that it is evaluated at
the current approximation for an eigenvalue, rather than at the eigenvalue itself (see
[KK] or [Ru], for example). Linear systems with a bordered coefficient matrix, as in
(5.3), play a prominent role in the study of continuation methods for fully nonlinear
eigenvalue problems (see [Ch], [Kel], and [Rh], for example). It is interesting to make
this connection precise, but in the interests of continuity this is postponed to the
Appendix.

The first step in the analysis of equations such as (5.3) (with any term on the
right) is the following lemma.
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LEMMA 5.1. Let o A(po) be a semisimple eigenvalue of L(p,)).
x E ker L()o) with x O,

ker [L(A0) L(1)(Ao)x] 0
"s E ker L()0)

Proof. If [sT a]T is in the kernel of [L L(1)x], then

aL(1)x -Ls.

Then if

However, if 0 is semisimple this contradicts Lemma 3.1 unless a 0, in which case
s kerL. El

The following theorem includes results of Tan, Andrew, and de Hoog (see IT] and
[AHT]) concerning classical eigenvalue problems. For convenience, let Z denote the
subspace of all vectors orthogonal to ., i.e., vectors x for which .*x zTx 0.

THEOREM 5.2. Let o X(Po) be a semisimple eigenvalue of L(p,A), x
ker L()0) with x O, and assume that the equation

(5.4) [L L(1)x t g]0 ]
.for given g Cn, -), C is consistent. If tp, p define a particular solution, then the
general solution has the form

t =tp+s, / p,

where s E (kerL) N Z.
Furthermore, when zTx 1 and ker L has dimension r, the dimension of (ker L)

Z isr-1.

Proof. Let tp, p define a particular solution of (5.4). Then the general solution
of (5.4) is defined by pairs tp + s, p -- , where

L L(1)x s o].
Using Lemma 5.1 this means that 0 and s (ker L) Z.

The relation zTx x*. 1 implies that x Z. Since x kerL we have the
proper inclusion

(kerL) Z C ker L.

Since Z has dimension n- 1 it follows that the intersection has dimension r- 1. El
COROLLARY 5.3. Let L(p,)) have a semisimple eigenvalue o at Po and let

A(p), x(p) be analytic functions .for which (5.1) is satisfied in a neighbourhood Af of
po. Then the set of all solutions of

(5.5) [ LzT
is given by

L() t

(5.6) t x + s, Z ,
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where s E (kerL) gl Z.
Proof. Since ,(p),x(p) are analytic, they are differentiable and equation (5.3)

holds. This shows that equation (5.5) is consistent with the particular solution t
xj, -- ,j. Now apply the theorem, rn

Equation (5.3) also applies under weaker hypotheses on ,(p) and x(p). If we
admit variation of only one scalar parameter at a time and suppose that ,(p0) is a
multiple eigenvalue, then ,(pj) has an expansion in powers of (pj pj,o)l/k about p,0
for some positive integer k. But without further hypotheses, k continuous eigenvector
functions need not exist at pj,o. With the hypothesis of a semisimple eigenvalue at
pj,0 the situation improves to the extent that: (a) the expansion for/(pi) in fractional
powers takes the form

as pj --. pj,0, and (b) there are k eigenfunctions with fractional power expansions

X0 - (pj Pj,o)l/kx(1) - (pj Pj,O)2/kx(2) --in a neighbourhood of pj,0. (See Theorem 11.7.1 of [LT] and Theorem II.2.3 of [Ka],
for example.) When p is real, it follows that, in this case, first partial derivatives of
,(p) exist at p0, although this is not generally the case for x(p). When p is complex,
,j in the above expansion for ,(pj) may still be interpreted as a "partial derivative" of
,(p) at p0, and the term "partial derivatives" in Corollary 5.4 is to be interpreted in
this weak sense. However, with appropriate hypotheses, a different version of the last
corollary is obtained which may extend its applicability even though the hypotheses
are still not easily verified. Note first of all that, when all necessary partial derivatives
exist, (5.3) is satisfied. Then we obtain the following corollary.

COROLLARY 5.4. Let L(p, ) have a semisimple eigenvalue ;o at po. Then A(p)
has partial derivatives Aj at po, j 1, 2,..., m. If, in addition, x(p) and z(p) have
first-order partial derivatives at po, then the conclusions of Corollary 5.3 hold.

COROLLARY 5.5. If in Corollary 5.3, A0 is a simple eigenvalue and zTx 1, then
the coejCficient matrix in (5.5) is nonsingular and the unique solution is t xj,

Proof. In Theorem 5.2 we have r 1 so that (ker L) Z {0} and (5.5) has
the unique solution t xj,/ j.

Note that, in Corollary 5.5, it is not necessary to assume the existence of analytic
functions A(p) and x(p) as in Corollary 5.3. This is assured by Theorem 2.1.

Corollary 5.5 may be seen as a central result of this development. From the
point of view of numerical computation the possibility of finding derivatives ,i and xj
simply by solving a nonsingular linear system is attractive. Of course, it is assumed
that the eigenvalue A0 itself and an eigenvector x0 (and possibly a left eigenvector y0)
are already known to a sufficient accuracy. In this context, the role of Corollaries 5.3
and 5.4 is to provide some insight into the behaviour of algorithms designed for the
nonsingular case in the neighbourhood of a multiple semisimple eigenvalue.

Now consider the normalization question in the context of (5.5). In the case of
orthogonally constrained eigenvectors, z is independent of p so that zj 0 in (5.5).

The analysis of uniformly normed eigenvectors is more delicate when the eigen-
vector is complex. In this case z(p)T x(p)* (recall that p E Nm in this case so that
z}" x in (5.5)), and this "unknown" appears on both the left and right of (5.5)
(see also (4.7)). However, if we find an xj for which xxj 0, as in Case 1, then the
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vector xj certainly satisfies (4.7) and (5.5). But now there is a family of solutions of
(5.5) for which t belongs to the set

{xj + iaxo" a

Uniqueness can be imposed by applying a further condition on xj. For example,
if it is required that x be orthogonal to x0, we obtain the unique xi of Case 1. A
second possibility is minimization of the norms of the derivative vectors of (5.7). Thus,
determine an "optimal" derivative vector j by

(5.8)

But, as xj and x0 are othogonal, it is found that a 0.
When the eigenvector is real, (4.7) reduces to the first equation of (4.9) and the

derivative vector is the same as in Case 1. Thus we have the following proposition.
PROPOSITION 5.6. Let o be a simple eigenvalue. If, in (5.5), zT x and

z O, then for the unique solution t , , we have:
(a) j is the derivative of an orthogonally constrained eigenvector function; and
(b) j is the derivative of a uniformly normed eigenvector function which, when

the eigenvector takes complex values, also satisfies (5.8).
6. Higher-order derivatives. It has been observed elsewhere (see [CMa], for

example) that, if xj and are determined by equations of the form (5.3), then higher-
order derivatives satisfy equations with the same coefficient matrix. All the terms in
that equation can be considered as analytic functions of p and so may be differentiated
with respect to Pk, 1 _< k <_ m. A little calculation shows that

where
(6.2)
bl (Lk + kL(1))xj q-(Lj + )jL(1))xk -b (Ljk q- )jL(k1) q- AkL1) + AAkL(2))x0,

--zkx + +

In particular, when k j,

(6.3)
bl 2(Lj + jL())xj + (Lii + 2AiL1) + AL(2))xo,

+  .hx0.
As in 5, the analytic property of A(p),x(p) ensures both the existence of the

derivatives and the consistency of equations (6.1). Furthermore, Theorem 5.2 then
gives a complete description of the solution set of (6.1).

As in the case of Corollary 5.4, it is easily seen that (6.1) holds under weaker
assumptions. For example, suppose that expansions such as (4.6) are known to hold
(for both x and A), but with P II 3 replaced by II P 2+l/p for some integer p > 0.
Equation (6.1) can then be obtained by first expanding L in (1.1) using hypothesis
(i), then substituting the appropriate expansions for A and x and then comparing
coefficients.
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Now consider the options for normalizing the eigenvector discussed in 4.
Orthogonally constrained eigenvector. In this case z is a constant vector and so

b2 0 in (6.1).
Complex uniformly normed eigenvector. Here we have z(p)T x(p)* in (6.1)

and this equation includes the necessary condition (4.8). As with the first derivative
vector, xjk is not uniquely determined by these conditions. If xjk is one solution, then
the set of all solutions is found to have the form

{Xjk + iax0" a

Since the right-hand side of (4.8) is real, one solution of that equation is obtained
by finding xik such that

1
+ xkx ).

With this choice of xjk the vector in the set of (6.4) of minimal norm is easily seen to
be given by taking a --0.

Real uniformly normed eigenvector. The problem of nonuniqueness no longer
arises. In view of the second equation of (4.9), equation (6.1) is to be solved with T
x and b2 x’xk. These results may be summarised as the following proposition.

PROPOSITION 6.1. Let )o be a simple eigenvalue.
(a) If, in (6.1), zT x, bl is given by (6.2) and b2 O, then the unique solution

xjk is a second-order derivative of an orthogonally constrained eigenvector function.
(b) If, in (6.1) zT x, bl is given by (6.2) and b2 1/2(x*.xk + xxj) then

the unique solution is a second-order derivative of a uniformly normed eigenvector
function which, when the eigenvector takes complex values, has minimum norm in the
class (6.4).

For the important case of uniformly normed complex eigenvectors, Propositions
5.6(b) and 6.1(b) initiate a general strategy for choosing a derivative vector, say
xl... (differentiated kj times with respect to pj); namely, we choose that candi-
date of minimum euclidean norm. It remains to be shown that this choice does,
indeed, generate an analytic vector function x(p). The hypothesis is that there is an
analytic function

kl ,k, _>0

Xk,...k,, (Pl p)k. (Pm POre

defined on a neighbourhood of Po (pO,... ,pOre)" In other words (see IBM]), the n
scalar series

j 1,2,...,n,

are absolutely convergent in a polycylinder of Cm. This means that

M

Rlkl...Rm
for some R > 0,..., Rm > 0, and j 1, 2,..., n. These inequalities imply

nM
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Now our strategy determines a derivative vector kl...k, with

nM

whence

As n is fixed, it follows that

is also absolutely convergent on the polycylinder defined by R1,..., Rm.
Thus, consistent use of the minimization strategy initiated in Propositions 5.6(b)

and 6.1(b) will determine a uniformly normed analytic eigenvector function x(p) on
a neighbourhood of p0.

7. Formulae for derivatives using the Moore-Penrose inverse. We op-
erate always under conditions for which (5.3) holds. From this equation an explicit
formula for the derivative Aj is obtained by introducing a left eigenvector y0 for L for
which

(7.1) y0TL(1)x0 0.

Thus

(7.2) Aj
YCLjx
y0TL()x0"

As noted in Theorem 3.2, condition (7.1) is automatically satisfied when A is a simple
eigenvalue. Furthermore, when A is multiple and semisimple, such a left eigenvector
can always be found. From the point of view of analysis it is therefore convenient to
treat Aj as known in (5.2). With this understanding the solutions of (5.2),

(7.3) Lxi -(AjL() + Lj)x0

can be expressed in terms of generalized inverses of L. In particular, let L+ denote
the Moore-Penrose generalized inverse of L (see [BG], [CMe], or [LT], for example),
and recall that L+L is the orthogonal projector on ImL* along kerL and LL+ is the
orthogonal projector on ImL along kerL*.

The general solution of (7.3), when A is a simple eigenvalue, has the form

x -L+()jL(i) + Lj)xo + axo,

where a is an arbitrary scalar. The choice a 0 determines a vector xj in
ImL* (kerL) +/-. Thus, the derivative vector is orthogonal to x. This is the solution
determined by putting zT x in the system (5.3). Other choices of a correspond to
other choices of the normalization vector z. Clearly, the choice a 0 produces the
vector xj of minimum norm in the manifold of solutions of (7.3).

An explicit formula for general z is contained in the next theorem.
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THEOREM 7.1. Let L have a simple eigenvalue at Po and corresponding eigen-
vector x0 with IIx011 1. Let z in (5.3) be a constant vector.for which zTx0 1. Then
the unique solution of (5.3) is given by (7.2) and

(7.5) xj -(I- xozT)L+(jL(1) + Lj)x0.

When zT x, we have

(7.6) xj -L+(AL(1) + Lj)x0,

and this is where rain Ilxjll is attained.

Proof. Note that I- x0zT is the (generally skew) projector on Z along ker L.
Here, as in 5, Z {y: zTy 0}, the orthogonal complement of span {}. Equation
(5.3) implies that xj E Z, so multiplying (7.4) on the left by I- x0zT we immediately
obtain (7.5). Clearly, we have zTxj --0 as required by (5.3). Because ImL+ ImL*
and x0 E karL (ImL*)+/- (ImL+)+/-, we have xL+ 0T. Thus, choosing zT x
in (7.5)results in (7.6). [:]

In the context of normalization strategies discussed in 4, this result provides an
argument for using zT x in (5.3). It is the normalization (of Case 1) producing the
derivative vector of least norm, i.e., this determines an eigenvector of least sensitivity.

Let # IIL+()jL() +/j)x011, the least norm attainable for xj. Then for other
choices of z (7.5) gives

Note that I]z]] _> 1. Also, a standard argument, using the easily proved fact that any
nonzero eigenvalues of (I- x0zT)*(I x0zT) I-- zT must be -1 =k Ilzll, shows that

I1 .111/2 < I1 -x0 . ll <
These inequalities indicate that, when the cosine of the angle between . and x0 is
small, so that [[z[[ must be large to maintain the condition zTx0 1, then I[xj may
be large of the same order.

A lower bound for [[xj can be obtained by using the singular value decomposition
(SVD) of the constant matrix L(= L(po, A(p0))). Let

(7.8) n diag [a,..., an-l, 0]
be the diagonal matrix of singular values of L and U, V be the unitary matrices of
singular vectors (see 5.7 of [LT], for example). Thus, i UDV* and L+ VD+U*,
where

D+ diag[a-1 an-_ 0]
As in Theorem 7.1 we assume that L(A) has a simple zero at p0, and this implies
that a,... ,an-1 are nonzero. Note also that x0 has the same direction as v, where
V [Vl,...,

For any k (1, 2,..., n- 1} we have vx0 -0 and

vii+
Multiplying (7.5) on the left by v we obtain

vlx. -a-iui(/(1) +/i)x0,
and by the Schwarz inequality

(7.9) lui(A /(i) +
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THEOREM 7.2. Given the hypotheses of Theorem 7.1

(.0)

max
l<k<n-1

Proof. The lower bound follows from (7.9). The upper bound follows from (7.5)
and (7.7).

Note that the terms in Ilzll on the right can be replaced by "one" when zT x.
Consider the significance of Theorem 7.2 for computation in the neighbourhood

of a multiple eigenvalue. Thus suppose that at pl there is an eigenvalue A1 A(pl) of
multiplicity _> 2. Guided by the discussion of 2 we suppose that A1 is a semisimple
eigenvalue of L(p, A), that A(p) is analytic in a neighbourhood Af of pl, and, when
p E Af and p = pl, then (p) is a simple eigenvalue.

The inequalities (7.10) apply to A(p) when p pl and they suggest that, as
p --+ pl, (- 1 singular values ak will converge to zero, so that Ilxj will be unbounded
on Af. That this is not necessarily the case is shown by observing that the consistency
of (5.2) gives (AjL(1) + Lj)x E ImL for all p 6 Af and x ker L.

Thus, since Cn ImL@ ker L*, we have

(7.11) u*(AjL(1) + nj)x 0,

whenever u
ker L* and (7.11) will apply.

Similarly, for any p E Af we have SVDs L UDV* and L+ VD+U*, where

D+ diag[a- (T- 0]D diag [al, a2,..., 0],

and [In+I[ will be unbounded on Af. However, the orthogonality (7.11) applies once
more to show that the vector L+(AyL(1) + Li)x (appearing on the right on (7.10))
may be bounded on Af.

It should also be recognized, however, that computational errors in finding x,
and (AjL(1) +L)x will generally satisfy no orthogonality condition and so lead to some
numerical instability.

8. Formulae for derivatives using the group inverse. There are some sit-
uations in which the use of the group inverse is natural in the formulation of explicit
formulae for derivatives of the eigenvectors. This has been demonstrated by Meyer
and Stewart [MS] in the context of complex parameters with m 1 and the classical
eigenvalue problem. In the context of (5.3), and especially (7.3), the solution is neatly
expressed in terms of the group inverse of L L(po, A(p0)), say L#, when the zero
eigenvalue of the constant matrix L is semisimple.

There is a distinction here between the matrix function L(A) evaluated at A0 and
the matrix function L(A0) AI. Let us illustrate the point with an example. Let
al (A), a2(A) be polynomials for which al(A0)a2(A0) 0 and let

(S.1) L(A)= ( )0)al ()) 0

Clearly, L(A) has a simple zero at A0. However,

L(A0) 0 0
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and has a double zero in det(L(A0)- AI) with a nonlinear elementary divisor (and rank
L2 rankL). In this case the use of the group inverse in the solution of (7.3) is not
appropriate. Thus, when solving (7.3) in terms of L# it will be necessary to make the
further hypothesis that rankL2 rankL at A0 A(p0). This is automatically satisfied
if L(p, A) comes from a classical eigenvalue problem, when L(p, A) A(p) AI, and
also when L(p, A) takes values in the hermitian matrices.

For the definition and properties of the group inverse, refer to the standard refer-
ences [BG] and [CMe]. We would remark however that, for a singular matrix A with
rankA2 rankA, the group inverse can be defined by the functional calculus (see [LT],
for example). It is the function A# f(A) obtained by defining

1/A whenA0,
f(A)

0 when A 0.
For this reason the term "spectral inverse" for group inverse is also appropriate.

The matrix A#A is a projector (generally skew) onto ImA along kerA and A#A
AA#. Note the strong contrast with properties of the Moore-Penrose inverse. When
A2 and A have the same rank the general solution of the consistent equation

Ay=b

has the form
y A#b + ax,

where x ker A and a is any complex number.
THEOREM 8.1. Given the hypotheses of Theorem 7.1 and also rankL2 rankL

at (po, A(po)), then the unique solution of (5.3) is given by (7.2) and

(8.2) xj -(I- xozT)L#(AjL() + Lj)xo.
When z yo, a left eigenvector of L, corresponding to the eigenvalue )o,

(8.3) xj -L#(AjL(1) + Lj)xo.

Proof. All solutions of (7.3) have the form

xj -L#(AjL() + Lj)xo + ax0

for some scalar a. Acting on this equation with the projector I- xozT (as in the
proof of Theorem 7.1) gives (8.2) and this xj obviously satisfies 2Txj O. Thus (5.3)
is satisfied.

By definition of a left eigenvector, LTyo O, and so yoTL 0T. Since Im L#
ImL we also have yoTL# 0T. Thus the choice z y0 in (8.2) produces (8.3).

Note that, when z y0, x0yc and I- xoYoT are spectral projectors for L at po
(i.e., in the sense of the classical eigenvalue problem involving L(po) AI). See 4.10
of [LT], for example.

In contrast to 7 and especially Theorem 7.2, where II xj is estimated in terms
of the singular values of L, the use of the group inverse admits similar estimates in
terms of eigenvalues of L. Let wT be any left eigenvector associated with a nonzero
eigenvalue of L. Say wTL ttwT where # 0. Then wTL# /t-lwT. We may
assume II w II-- 1 and, when rank L2 rankL, wTx0 0.

Multiply (8.2) on the left by wT and use these facts to obtain

wTxj --].t-IwT(jL(1) "- Lj)xo,
and hence

]wT(AL() + L)xol -<11 xj



DERIVATIVES OF EIGENVALUES AND EIGENVECTORS 919

THEOREM 8.2. Given the hypotheses of Theorem 8.1, let w be any left eigenvector
for L such that wTn #wT, # O, and w II- 1. Then

(8.4) wT(+jL(1) + L/)xol <11 I1<11 (1-+ II-X) x/2 II L#()JL() + Lj)xo II.

Proof. The lower bound has just been established. The upper bound follows from
(8.2) and (7.7).

Note that when ZT X or when z Y0, the terms in z on the right are replaced
by "one."

As discussed in 7, in the neighbourhood of a multiple semisimple eigenvalue
(with analytic extensions to simple eigenvalues) the unbounded growth of
suggested by (8.4) may be avoided as a result of orthogonality conditions following
from the consistency of (5.2). Also, some sensitivity to numerical errors is generally
unavoidable.

9. Higher derivatives with orthogonally constrained eigenvectors. In
this section we maintain an important hypothesis of Theorems 7.1 and 8.1, namely,
that the normalization chosen is the orthogonal constraint case of 4, i.e., that z in

(5.3) is constant. Under the hypotheses of these two theorems, and noting the results
of 6, it is clear that explicit formulae for higher derivatives can also be written down.

Thus under the hypotheses of Theorem 7.1, (6.1) has a unique solution given by

y0Tb
(9.1) jk= y0TL(1)x0,

where y0 is a left eigenvector of L at P0, bl is given in (6.2), and

(9.2) xjk -L+(AjkL(1)xo + b) + ax0

for some . Now ( must be chosen so that zTx.k 0 (see (6.1) and (6.2)) and we
conclude that

(9.3) xjk --(I- xozT)L+(,k:ikL()xo + b).

As in 7, this simplifies with the choice zT x to

(9.4) x -L+(L()x0 + bl),

the second derivative vector of minimal norm in the sense of Theorem 7.1.
Under the hypotheses of Theorem 8.1, Xjk can also be expressed in terms of the

group inverse of L, of course.
Finally, note that, for the second derivative of a uniformly normed eigenvector, a

different choice of a must be made in (9.2).
10. The spectral condition number and bordered matrices. A result

of Chu [C2] concerning the spectral condition number of bordered matrices quantifies
some earlier remarks on the effects of bordering a singular matrix, as in (5.3) and
(6.1). The relevant result appears on page 699 of [C2] for real matrices and is adapted
here to the complex case. First, as a measure of the angle between vectors u, v E Cn
we use , where

cos 0 Ju*vl o < 0 <
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and write cos 0 cos(u, v). The "spectral condition number" of a square matrix A is
denoted by (A)--IIAIIIIA-111. Let

(10.1) L- zT

and, as in 7, let L UDV* be a SVD of L, with D having the form (7.8) with
al >_ >_ an-1. A simpler argument than that in [C2] establishes the following
result, which is also valid in the complex case and, unlike the result in [C2], does not
assume [I z []--I[ q [I-- 1.

THEOREM 10.1. With the above notations and conventions, suppose, in addition,
that al >_ 1 >_ an-1. Let A0 be a simple eigenvalue of L with right and left eigenvectors
x, y, respectively. Then if zTx 0 and yTq 0, we have

(10.2)
(:rl < a(t) < (1+ II q II + II z 11)(2+ q -1 + z ]]-1) al

an-1 cos(., x) cos(q, y) (:rn--1

Proof. The SVD of L may be written

where u, and Vn have the same direction as : and x, respectively. Then

[ Ux u= 0L= 0T 0 1
0T 0 d2 v 0

c ’2 0 0T 1

where

q=[Ul,Un] d2 c2

Also, zTx # 0 and yTq # 0 imply d2 # 0 and c2 # 0. Hence, if cos/9 cos(q, u=)
cos(q, :) and cos cos(,, v) cos(,, x), then

and

Vn O] __;IcE_ idicE_id ;i0 1 j 0T d"1 0 0T 1

It is easily verified that t I1_<11 II / d + c / q / z II, and hence

(:rl _(amax(L) < al+ II q + z I1< a1(1+ q + z II).
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Similarly, it is found that

(

an-1-1 <- an,() <- an--11 1 / tan + tan + tan tan +
--1

(Tn_ 1< {2+ q -I + z -I}.
cos 0 cos

1 1 }q cos 0 + cos

The result follows, rn
A more elaborate argument, similar to that in [C2], yields a sharper upper bound

in (10.2) which, when z I1=11 q II- 1, reduces to

2x/- a
cos(., x) cos(q, ) o’n-1

(The square root in the denominator of the corresponding result in [C2, p. 699] was
included there by mistake and should be deleted, and the cosines in inequality (31) of
[C2] should be squared.)

Note that the hypothesis al E 1 >_ an-1 is not restrictive and can be achieved by
scaling L(A). Theorem 10.1 can be interpreted as follows: the bordered matrix , will
be ill conditioned (a() is "large") only if at least one of four conditions holds:

(i) an-1 is small compared to al (, is singular if an-1 0);
(ii) . is deficient in x (L is singular if ._l_x);
(iii) 1 is deficient in y ( is singular if t/y); or
(iv) q or z is too large or too small.
Conversely, L is ill conditioned if (i) holds. As (iv) can be avoided by standard

prescaling techniques and allan-1 is a condition number for the singular system
Lt g, the bounds in (10.2) show that the bordered matrix problem (suitably scaled)
has similar conditioning to that of Lt g unless (ii) or (iii) hold.

For our problems we have q L(1)x, so the freedom to align q with y is not
available. However, Theorem 3.2 shows that, for simple eigenvalues, yTL(1)x 0 so
that, at least, cos(L(1)x, ’) 0 (see also the discussion of 3 and 4).

Of course, Theorem 10.1 concerns only the coefficient matrix of (5.3) and cannot
address the point raised in 7 and 8, that bounded solutions of (5.3) may exist in the
limit as a-I - 0.

The ratio allan-1 also plays a role in the formulation of a "condition number"
for the derivative vector xj. For simplicity, consider the case zT x of Theorem 7.1.
Substitute the expression (7.2) for Aj into (7.6) to obtain

(10.3) xj -L+PLjxo,

where
1 ) L(1)x0y,P=I-

y0TL(1)x0

and p2 p (i.e., P is the projector into {span (y0)}-L along span(L(1)x0)). Standard
techniques show that

P II- L(1)xo IIII yo
lyoTL(1)xol

sec (Y0, L(1)x0).
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Since II L II-- al and II L+ II-- an-- (see [LT, Prop. 12.9.4]), it follows from (10.3)
that, under the condition of Theorem 7.1,

I[ x0 a’ ILl
sec (0,/()x0).

This bound demonstrates the possible sensitivity of II xj I] to three factors: the
condition of L (reflecting closeness of A0 to another eigenvalue), the size of Lj, and
the angle between Y0 and L()x0, respectively. Results of this kind for the classical
eigenvalue problem are well known (see [W, p. 69], and also [GV, 7.2.4]).

11. Hermitian matrix functions. When the function L(p, )) takes values in
the hermitian matrices then, generally, p E R". However, when the dependence on A is
nonlinear the eigenvalues may be complex. Furthermore, when L is hermitian-valued,
but not real symmetric, then the eigenvector will be complex. These phenomena arise
even in the quadratic eigenvalue problems (see (1.2)). In vibration theory the study of
viscously damped systems leads to real-symmetric matrix functions, but if gyroscopic
forces are admitted then complex hermitian matrices must be considered (see [BL],
ILl, or [Ro] for example).

Efficient numerical algorithms for the solution of (5.4) would then take advantage
of the symmetry of L. From the analytical point of view there is, however, not very
much to add to the discussion of explicit solutions for (5.4). The most notable feature
is that, when L is hermitian, the group inverse always exists and is identical with the
Moore-Penrose inverse. In contrast to the discussion of 8, a simple eigenvalue ,k0 of
the matrix function determines a simple zero eigenvalue (in the classical sense) of the
constant matrix L(/0).

12. The classical eigenvalue problem. Although the main thrust of this
paper is in the direction of problems with nonlinear dependence on/k, it may be useful
to present some conclusions for the special case of the classical eigenvalue problem,
i.e., when

(12.1) L(p, )) A(p) ,kI

and the eigenvalue is simple. The first observation is, of course, that explicit formulae
of 5-9 simplify in view of the fact that

L() -I, L(2) L(3) 0.

Furthermore, L1) 0 for j 1, 2, m. Let us first consider an orthogonally con-

strained eigenvector, i.e., for which [Ix(p0)[I 1, zTx(p) 1 and z is independent of
p. This normalization determines derivative vectors of x(p) whose norm is minimized
by the choice zT x.

The equations

and

[A I(12.3) zT
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have the unique solution

(12.4)

(12.6)
(12.7)

Aj yAjxo,
x -(I- xozT)(A- M)+(A )I)xo,
Ajk y((Ak AkI)xj T (A AjI)xk + Ajkxo},
xjk --(I- x0zT)(A- AI)+((Ak kI)xj

+ (A I)xk + Akxo xo},

where yo is a left eigenvector at A for which yoTxo 1.
Two ways in which these formulae simplify are noteworthy. First, the group

inverse (A-I)# can be used instead of the Moore-Penrose inverse (see 8). Then we
have (A-AI)#xo 0 and the formulae for xj, xk simplify accordingly. Furthermore,
if we then choose z yo, then yoT(A AI)# 0T. Thus

(12.8) x -(A M)#Axo
(12.9) xjk -(A- AI)#((Ak AkI)xj + (Aj AjI)xk / Akxo}.

Second, (12.5) and (12.7) simplify if we choose zT x, because in this case zT(A-
I)+ x;(A I)+ 0T.

Formulae involving the group inverse are consistent with results from Theorem 1
in the paper of Meyer and Stewart [MS].

Uniformly normed eigenvector. In this case the equations determining first and
second derivatives are

[ A I -x0(12.10)

x 0 A xx)

Formulae analogous to (12.4)-(12.7) are:

(12.12) Aj yoTAjxo,
(12.13) xj -(A- AI)+(Aj AjI)xo,

(12.14) Ak y’{(Ak AkI)xj + (Aj AI)xk + Akx0},
(12.15) xk -(A- AI)+{(Ak AkI)xj + (A AI)xk

+ Ajkxo Akxo} {(xxk + xx)xo.

Corresponding formul using the group inverse are le for the interested reader.
Classical hemitian problems. Finally, let us summarize the derivative formul

for hermitian matrix functions when the eigenvalue is simple and, necessarily, p takes
only real values. Note that the MoorPenrose and group inverses now coincide.

For an orthogonally constrained eigenvector:

A xAxo,
x -(I xozW)(A- AI)+Ajxo,

x;(A x + +
xk --(I- XozoT)(A- AI)+{(Ak AkI)x + (A AI)xk + Ajkxo}.
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For a uniformly normed eigenvector:

# xA#x0,
xi -(A- M)+Ax0,
Aik x(Akxi + Axk + ACkx0),
X#k -(A- M)+{(Ak AkI)x + (A AI)xk + Akxo} 1/2(x;xk + XX#)X0.

Appendix. Bordered matrices and continuation methods. Linear systems
with bordered coefficient matrix, as in (5.4), arise naturally in the study of "fully
nonlinear" problems. This connection is clarified here using the methods of Rheinboldt
[Rh]. Similar results can be developed using the techniques of Keller et al. (see [Ke2,
p. 71] or [MoS, p. 137]).

Consider first (5.1) where z(p) is a given analytic function and define a map

G C" x " x " - C" x C

G(x,A,p) (L(p,A)?,zTx
Here, " denotes R or C according as A and p take real or complex values.

Denote the (n + 1) (n + m + 1) Jacobian matrix of G by AG. If AG has full
rank at (x, A, p) this point is said to be regular, otherwise (x, A, p) is a singular point.
We have

[ L L(i)x Lix Lmx]AG= zT 0 ZlTX ZTmX
It has been seen (as in (5.3)) that analytic dependence of A,x, and z, on p imply that,
for j 1,2,...,m

zx e Im zT 0

so in this case
L L(1)x ]rank(AG) rank z 0

Thus, under the conditions of Corollary 5.5 (in particular, when A0 is a simple eigen-
value), (x, 0, p) is a regular point of G. If, however, 0 is semisimple with multiplicity
two or more, then (x, A0, p) is a singular point of G.

In the context of uniformly normed eigenvectors, we define

F :R x R x R" -- R x R

f
F(x, A, p) xTx 1

and assume, for the sake of the existence of necessary derivatives, that all parameters
are real.

Now it is found that

AF=[ L
2xT

L(1)x Llx L,x 10 a, j’
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where j 2x"x, j 1,..., m. But then (4.7) shows that 1 am O, and it
follows from (5.2) that

rank(AF) rank [ L
2xT L(1)x]0

Again, if A0 is semisimple, (x, A0, p) is a regular or singular point when A0 has multi-
plicity one, or more, respectively.
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NUMERICAL METHODS FOR SIMULTANEOUS
DIAGONALIZATION*
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Abstract. A Jacobi-like algorithm for simultaneous diagonalization of commutiig pairs of
complex normal matrices by unitary similarity transformations is presented. The algorithm uses
a sequence of similarity transformations by elementary complex rotations to drive the off-diagonal
entries to zero. Its asymptotic convergence rate is shown to be quadratic and numerically stable. It
preserves the special structure of real matrices, quaternion matrices, and real symmetric matrices.

Key words, simultaneous diagonalization, Jacobi iteration, eigenvalues, eigenvectors, struc-
tured eigenvalue problem
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1. Introduction. Many of the algorithms outlined in [6] require the simulta-
neous diagonalization of commuting pairs of normal matrices by unitary similarity
transformations. Often there are other structures in addition to normality. Examples
include commuting pairs of real symmetric matrices, pairs of Hermitian matrices, real
symmetric--real skew symmetric pairs, and quaternion pairs. In this paper we point
out some of the difficulties associated with simultaneous diagonalization and propose
a family of Jacobi-like algorithms for simultaneously diagonalizing commuting normal
matrices.

The term "simultaneous diagonalization" is sometimes used in the literature to
denote the diagonalization of a definite matrix pencil by congruence, e.g., [43]. Here,
we use the term in the classical sense of simultaneous similarity transformations.

To be viable for finite-precision computation, a simultaneous diagonalization al-
gorithm must work with both A and B simultaneously. To see how algorithms that
violate this principle can fail, consider the family of diagonalize-one-then-diagonalize-
the-other (DODO) methods suggested by the classic proof that commuting pairs of
diagonalizable matrices can be simultaneously diagonalized [30, p. 404]. If A E Cnn

and B E Cnn form a pair of commuting normal matrices, the DODO approach
uses a conventional algorithm to diagonalize A alone, and it then performs the same
similarity transformation on B. So, for example, if A and B are Hermitian, then one
might use CH from [39] to find a unitary matrix U Cn and a diagonal matrix
D R such that A UHDU. (The superscript H denotes the Hermitian trans-
pose.) Although CH does not produce the diagonal entries of D in any particular order,
it is easy to order the eigenvalues in decreasing algebraic order along the diagonal of
D. Then E :- UBUT is block diagonal with the order of the jth diagonal block equal
to the multiplicity of the jth distinct eigenvalue of A. In particular, if A has distinct
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eigenvalues, then E is diagonal and the simultaneous diagonalization is complete. In
any case, a subsequent block diagonal similarity transformation can diagonalize E
without disturbing D.

Rounding errors destroy this elegant approach. Suppose, for example, rounding
errors perturb the commuting pair (A, B) to the nearly commuting pair

1-e 0 0 0
0 l+e 0 0
0 0 0 1
0 0 1 0

and

0 1 0 0
1 0 0 0
0 0 1-e 0
0 0 0 l+e

where e is a small quantity that might be caused by rounding error. If e 0, then
and/) do not commute. However, if

1 1 0 0
00=- 0 0 11

0 0 -1 1

then the off-diagonal elements of QTfi.Q and QT:Q are bounded by e.
For e 7 0, -t-2, A has distinct eigenvalues, and its modal matrix of eigenvectors

1 0 0 0
0 1 0 0

0 0 ’/

0 0 - /

is independent of e and unique up to column scaling. Similarly, for e 0, =k2, B has
distinct eigenvalues and its modal matrix of eigenvectors

v 0 02 2

_v’ : 0 02 2
0 0 1 0
0 0 0 1

is independent of e and unique up to column scaling. Unfortunately, the off-diagonal
entries of UTBU and VTAV are of the order of 1. The DODO method creates a cyclic
sequence with period two.

The example suggests that a viable simultaneous diagonalization algorithm must
"do something reasonable" when it is applied to a nearly commuting pair of matrices.
Perhaps the most natural approach is to require the algorithm to choose a unitary sim-
ilarity transformation U E Cnxn that minimizes some measure of how much UHAU
and UHBU differ from being diagonal. This is the approach used in [21]. There, the
algebraic eigenvalue problem of a single normal matrix is solved by simultaneously
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diagonalizing the Hermitian and skew-Hermitian parts. It is known to converge lo-
cally quadratically under the serial pivot sequence [36]. When applied to a normal
matrix, the norm-reducing method of [14] is also an algorithm that simultaneously
diagonalizes the Hermitian and skew-Hermitian part of a normal matrix. A variation
of this method that uses nonunitary norm-reducing transformations is shown to be
globally quadratically convergent for complex normal matrices in [17]. The simulta-
neous diagonalization algorithms presented below are adaptations and generalizations
of [21] and are influenced by [14].

Interest in Jacobi algorithms declined when it was observed that classic and se-
rial Jacobi algorithms for the symmetric eigenvalue problem perform more arithmetic
operations than do more modern techniques [22], [33], [47]. However, with the ad-
vent of parallel and vector computers, interest in Jacobi methods has revived. Jacobi
methods have high inherent parallelism, which allows efficient implementations on
certain parallel architectures [4], [5], [8], [9], [13], [15], [16], [28], [27], [37]. This has
been demonstrated on parallel and vector machines in [2], [3], [15]. Parallel order-
ings, block Jacobi methods, and other techniques create parallel versions of Jacobi’s
method. It is easy to see that these techniques also apply to the simultaneous diag-
onalization algorithms presented here. A short discussion of some special techniques
for parallel computation along with a more extensive bibliography can be found in
[22, 8.5].

Another virtue of the Jacobi method is its favorable rounding-error properties.
Improved error bounds for perturbed scaled diagonally dominant matrices [1], [10], [25]
show that for this class of matrices, small relative perturbations in the matrix entries
cause only small relative perturbations in the eigenvalues. In some cases, Jacobi’s
method has rounding-error properties better than those of the QR algorithm [11].
We conjecture that this very favorable error analysis carries over to the simultaneous
diagonalization process as well.

We shall use the following notation.
The transpose of a matrix is denoted by a superscript T.
The Hermitian or complex conjugate transpose of a matrix is denoted by a
superscript H.
The vector 2-norm and its subordinate matrix norm, i.e., the spectral norm,
are denoted by [[’[[2"
The Frobenius norm or Euclidean norm is denoted by [IM[[F v/trace(MHM)"
The kth column of the identity matrix is denoted by ek.
The smallest singular value of a matrix M E Rnxn is denoted by amin(M).

2. A Jacobi-like algorithm. We will follow the approach of Jacobi [24], in
which the simultaneous diagonalization algorithm consists of a sequence of similarity
transformations by plane rotations. A plane rotation in the (i, j) plane is a unitary
matrix R R(i, j, c, s) of the form

(1) R R(i,j,c,s) I + (c- 1)eieTi eie + see + (-- 1)eje’,
where c, s E C satisfy / 1. For computational convenience we will often
restrict c to be real and nonnegative.

A natural measure of the distance of the pair (A, B) C C from diag-
onality is

(2) off2(A, B) la,j + Ib,j



930 A. BUNSE-GERSTNER, R. BYERS, AND V. MEHRMANN

If p, q, r, s E C and ps rq 0, then A and B are diagonal if and only if (pA / qB)
and (rA / sB) are diagonal. Hence for each ordered quadruple (p, q, r, s) E Ca such
that ps- rq O, (2) gives rise to an alternative measure

(3) off2-pqrs off2(pA + qB, rA + sB).

Scaling A and B as suggested in [21] is the special case q r 0.
In broad outline, the algorithm we present consists of a sequence of similarity

transformations by plane rotations, each of which is chosen to minimize either measure
(2) or measure (3). This is done as follows. Let R-- R(i,j, c, s) e Cn’ be a plane
rotation with c R. The restriction that c be real does not change the amount by
which off2(A, B) can be reduced. A simple calculation shows that

The choice of c and s that minimizes off2(RARH, RBRH) is the choice that minimizes

s) IIM yzll2 --’def

This is a constrained minimization problem. The constraint [cl 2 + Isl 2 1 implies
that Ilzl]2 1. So, for all z R3, zHz 1,

IIM  zll2 > min IIM  xll- O’min(Mij).

By parameterizing c and s as c cos(0), s ei sin(0) for 0, e R makes
the minimization of (5) into a two-real-variable optimization problem. The following
lemma shows that only the values 0 E [-, ] and [-r, r] need to be searched to
minimize (5).

LEMMA 2.1. All values of (5) occur with c cos(0), s e sin(0) for some value
of (0,)e [-, ]

Proof. Define gij (0, ) by gij (0, ) fij (cos(0), ei sin(0)). The functions cos2 (0),
cos(0) sin(0), and sin2(0) are 7r-periodic. Thus (5) implies that gij(O, ) is r-periodic in
0. The special structure of Mij in (5), along with the trivial observation Ile-2iMijzll
IIMjzll, shows that g(O, ) g(O + -, ) g(-O- -, ). Hence, for each fixed value
of , gij(O, ) assumes all its values on 0

In the terminology of [40], an "inner rotation" is one for which Icl _> Isl. An
"outer rotation" is one for which Icl < Isl. Corresponding to each inner rotation
that minimizes (5), there is an outer rotation that also minimizes (5). By choosing
0 I-Z, Zl, we have made the choice of using only inner rotations. Our proof of
quadratic convergence depends on them.

We have found no simple explicit formulae for the minimizers of (5). However,
explicit formulae are known in some special cases. Goldstein and Horwitz [21] and
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Eberlein [13] give explicit formulae for the special case A AH and B -BH. We
give explicit formulae for other special cases in 6. General optimization algorithms
like those described in [19] provide effective ways to find minimizers (0, ) e [-, ] x
[-Tr, 7r]. In our MATLAB [29] implementation we used the exact minimizer if an
explicit formula for the exact minimum was available. Otherwise, we used a heuristic
approximate minimizer described below.

The work needed to find a minimizer of (5) does not grow with n. The work
required to perform a similarity transformation by a rotation is proportional to n. For
large enough problems, the work of finding minimizers of (5) is negligible. However,
general constrained optimization algorithms are relatively complicated. A computer
implementation of Algorithm 1 (described below) would devote the majority of the
code to the optimization problem. Fortunately, it is sufficient to approximate the
minimizer. Consider the following strategy:

Let cl E R and Sl E (:3 be minimizers of

(6)
gij(cl,s) Isc(5ii 5jj) + caij saji

+ Iscl(aii- ajj)- saij + c2aji
and let c2 R and s2 ( be minimizers of

(7)

Explicit formulae for (c,s) and (c2, s2) appear in [13], [21]. Use as approximate
minimizers the pair (c, s) (c,, s,), i 1, 2, that yields the smaller value of (5). This
strategy has worked well in practice, and the proof of local quadratic convergence
presented in 3 goes through with little modification for this approximate minimizer.

The following algorithm summarizes the procedure for simultaneous diagonaliza-
tion of a commuting pair of normal matrices.

ALGORITHM 1.
INPUT" e > 0; A,B C such that AB=BA, AAH-AHAandBBH-
BHB

offrPffr- Q c’ such that off2(QHAQ, QHBQ) <_ e(IIAIIF / IIBIIF)and
QQH I.

1. Q-I
2. WHILE off2(A,B) > e(IIAIIF + IIBIIF)

3. FOR i--- 1, 2, 3, n
4. FORj-i/l,i+2, i/3,...,n

[-Tr 7r] such that c5. Select 0 e [-7, 7] and e cos(0) and
s ei sin(0) minimizes (5). (Or approximately minimizes (5)
as described in (6)and (7).)

6. R +- R(i,j,c,s)
7. Q +- QR; A +- RHAR; B +-- RHBR

If rotations are stored and applied in an efficient manner similar to that outlined
for real rotations in [22, 5.1] or [33, 6.4], then each sweep (step 2) uses approxi-
mately 8n3 complex flops to update A and B and approximately 2n3 complex flops
to accumulate Q. A complex flop is the computation effort required to execute the
FORTRAN statement

(8) (,J) (,J) + s (K,J),
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where h and S are of type COMPLEX.
Algorithm 1 needs storage for approximately 3n2 complex numbers. This can be

shaved to 2n2 complex numbers if Q is not required.
As with the serial Jacobi algorithm, to promote rapid convergence in the case

of multiple eigenvalues, it is a good idea to use a similarity transformation by a
permutation matrix to put the diagonal entries of A and B in lexicographic order [20].
Such an eigenvalue ordering is required by our proof of local quadratic convergence
in 3.

In our experience, for randomly chosen examples with n < 80, rarely does e
10-la make Algorithm 1 require more than six sweeps. In 3 we show that Algorithm 1
has local quadratic convergence. There are, however, examples for which Algorithm 1
does not converge. For example, if A E Rnn is given by

cos((j + k)Tr/n) if j k,(9) akj 2____n_n cos(2kTr/n) if j k,

and B E l:tnx is given by

sin((j + k)r/n) if j k,(10) bkj 2_...n sin(2kTr/n) if j k,

and n > 6, then it is easy to verify through Theorem 6.1 below that no rotation
reduces off2(A, B), so that Algorithm 1 with exact minimization in step 5 leaves A
and B invariant. This example is essentially due to Voevodin [45].

In practice, rounding errors usually perturb (9) and (10) sufficiently to allow
Algorithm 1 (with exact minimization in Step 5) to reduce off2(A, B) and ultimately
to converge to a simultaneously diagonal form, albeit rather slowly. For example, an
early version of our experimental implementation on a Sun 4/60 computer (with unit
round of approximately 10-16) applied to the n 20 case needed 47 sweeps to reduce
off2(A,B) to approximately 10-1a(llAII / I]BII). Rounding errors did not perturb the
n 30 enough to allow convergence.

The example given by (9) and (10) is not held fixed by the heuristic minimiza-
tion strategy, but it does sometimes require a few more sweeps than does a random
example. Algorithm 1 with the approximate minimization heuristic in step 5 needed
from 9 to 10 sweeps to reduce off2(A,B) to less than 10-1a(llAII + IIBII) for n 10,
n 15, n 20, n 25, and n 30.

Scaling one of the two commuting matrices by (say) replacing A by A/2, as
suggested in [21], is a more reliable way to break away from a fixed point like that
of (9) and (10). This is equivalent to using off2-,0,0,2 in place of off2. Motivated in
part by the exceptional-shift strategy often used with the QR algorithm, we changed
our experimental code to use off2-1,0,0,2 for one sweep, whenever off2(A, B) declines
by less than the 1% across a sweep. With this modification, only 6 to 7 sweeps were
required to reduce off2(A,B) to less than 10-a(llAII + IIBII) for the n 10, n 15,
n 20, n 25, and n 30 cases of (9) and (10). (The choice of 1% is ad hoc.
A more cautious approach would require a greater per sweep reduction in off2(A, B)
and would try other scaling factors if 1/2 does not work.)

We have not been able to show that Algorithm 1 with the above modification is
globally convergent.

3. Convergence properties. Algorithm 1 shares many of the desirable prop-
erties of algorithms related to the serial Jacobi algorithm for the real symmetric
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eigenvalue problem [201, [23], [36], [38], [41], [46]. In our experience Algorithm I,
with the above strategy for avoiding stagnation, converges globally and ultimately
quadratically.

In this section we establish the local quadratic convergence and numerical stability
of Algorithm I. In parenthetical remarks we give a rough sketch of how the argument
can be modified to show the local convergence of the heuristic variation (6), (7).

Unfortunately, we do not have a proof of global convergence. Global convergence
for special cases is shown in [21] and, by using a modified norm-reducing algorithm,
in [17]. The latter, however, uses nonunitary transformations. In our case the use of
unitary similarity transformations confers satisfactory numerical stability.

3.1. Local quadratic convergence. Here we follow [20], [36], [46] to show that
Algorithm 1 ultimately converges quadratically. In particular, the resemblance to [36]
is unmistakable.

Let the set of eigenvalues of A be {al, a2, a3, an}, and let the set of eigen-
values of B be {ill,/32,..., n}. Set

(11) min min i 1, min Ii 1

Denote the kth rotation of Algorithm 1 by R(k) R(i,j,c(k),S(k)), and let A(k)

and B(k) be the values of A and B immediately before the kth rotation. Following
common practice, we call (a),a), b), b)) the "kth pivots," because the rotation

R(k)(i,j, c(k), s(k)) is chosen to minimize

_(k+l) 2 (k+l) 2 (k+l) 2 (k+l) 2

Define Pk by

Partition A(k) and B(k) as

and

Pk V/Off2(A(k) B(k)).

A() D( + E(Ak)

where D(), D(Bk) E Cnn are diagonal and E(Ak), E(Bk) Cnn have zero diagonals.
Note that

Suppose Algorithm 1 h converged to the point that

(12) Ok off2(A(k),B(k)) < 5.
Using a permutation similarity, we may order the eigenvalues ai and i so that

(k) ]](k)], 1
(13)

F--
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and

(14) Ibk)-il < E < Pk < .
F--

Because Algorithm 1 uses inner rotations and of2(A(k),B(k)) is monotonically de-
creasing, (13) and (14) hold throughout the remainder of Algorithm 1 [20], [36], [46].
In particular, the order in which the eigenvalues will eventually appear along the
diagonals of A and B is fixed.

(The heuristic (6) and (7) does not necessarily make off2(A(k),B(k)) decrease
monotonically. However, it can be shown that off2(A(k),B()) does not increase by
more that O(52). Thus under a slightly stronger hypothesis, (13) and (14) continue
to hold.)

Each diagonal entry ak) is said to be "affiliated" with hi, and each diagonal
entry bk) is "affiliated" with i. As Algorithm 1 drives off2(A(k),B(k)) to zero,

(k)limk_ ii ai and limk_o bk) i. The affiliation of a diagonal entry does not
change during subsequent steps of the algorithm [20], [36], [46].

Inequality (13) implies that if (i = j, then

(15) laii’(k)_ a) > 5.

Inequality (14) implies that if i # j, then

(16) Ibk) b)l > 5.

An eigenvalue pair (a, ) has multiplicity m if there are m distinct integers ij,
j 1, 2, 3, ..., m, for which (c, ) ((i, i). Using permutation similarity, we
may order the diagonal entries so that affiliates of an m-fold multiple eigenvalue pair
appear in m adjacent diagonal entries.

We will show the following theorem.
THEOREM 3.1. Suppose that the hth rotation starts a sweep of Algorithm 1, i.e.,

ah2 21"(h), bh2), b(2hl are the hth pivots. If (12) holds and if affiliates of m-fold multiple
eigenvalue pairs appear in adjacent diagonal entries, then at the end of the sweep

2

Ph+n(n-)/2 <-- 2n(9n- 13)..
We will need several lemmas to prove Theorem 3.1. The proof has two parts. The

first part establishes that

(17) (k+l) (k+l)[2 (k+l){ 2 (k+1){2lai 12 + lai + Ibi + Ibji < O(p2).

In the second part we will show that subsequent rotations preserve (17) for subsequent
values of k.

Lemmas similar to the following are well-known tools in the study of quadratic
convergence of cyclic Jacobi algorithms [36], [41], [48].

LEMMA 3.2. If (12) holds, if ((,) (aj, ), and ifi j, then

/, (k-l-l) 12 (k-l-l) 12 (k+l) 12 (kT1) P



SIMULTANEOUS DIAGONALIZATION 935

Proof. Regardless of the particular choice of R(k) (i, j, c(k), s(k)), the partitioning
lemma [36, 2] implies that

(18)

and

(19)

The next lemma covers the case (i, i) (cj, j).

and if (,) (j, ), then

(+) _(+) (+) (+) < 5
p

I% + I + I, + I T"
Proof. Wihou loss of generality sumeh

(0)

In particular, (20) implies , j. In [36, 3] i is shown h here is a roaion

h

(21)

In fact, this rotation minimizes the left-hand side of (21) (and (6)), so that

Se hnB h. Recallh A and commue. The (i, j)h entry of the equation
A-A=0

Applying H61der’s inequality [35] o the sum and using (21) o bound the second erm
on he left-hand side of (23) gives

Inequality (22) implies that (13) and (15) hold for A and

(25) Ib bJ. + 4.k

Inequalities (15) and (24)imply

.11 2+-
aii ajj
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To bound the right-hand side, apply (25) to get

The triangle inequality applied to [(bk) i) / (i j) + (j b)) and [(ai ag) /
(ai &ii) " (aj 5jj)[ gives

Inequalities (13) and (14)imply

aii- ajj

Multiply and divide the right-hand side by (ai- aj)-1, and apply (20), (13), and
(14) to get

It now follows that 18, 1 Similarly, it can be shown that IE, ,I Therefore,

.(kq-1) 12 (kq-1) (kq-l)Now, R(k) is chosen to minimize la3k.+l)l 2 d- Itji d- Ibij 12 + Ibji 12 so that

inequality (26) gives an upper bound on the minimum value. (If R(k) is chosen by
using the heuristic (6), (7), then (26) is one of the two choices of off2(A(+l), B(+))
over which the heuristic minimizes. Hence inequality (26) also gives an upper bound
on the minimum value for this case.) 0

Lemmas 3.2 and 3.3 imply (17). It remains to show that subsequent rotations
preserve (17). The following lemma gives a bound on the angles of rotation that occur
in Algorithm 1.

LEMMA 3.4. If (12) holds and if (ai,i) (aj,j), then

( 5pk) 9pk
(27) Is( ) <_ v/ 1 + -- <_

5

Proof. For ease of notation, set (c, s) (c(), s()). Without loss of generality we
may assume that (i aj. Lemma 3.3 implies that

c2a(k)la’J(k+l) Isc(aki a)) 82aki - -ij <-
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The triangle inequality gives

5p c2a(k)(28) Isc(aki a))1 <-- - + Is2aki) +
5pg

AlgoriChm 1 chooses cos(0) for some 0
and (8) gogegher imply the le-hand inequaligy of (27). The righg-hand inequaligy
follow8 from ghe le-hand inequaligy and (12).

Proo o eorem 3.1. Fix a particular choice of (, j), and consider n during a
8weep of Algorithm 1 k varies from k hrough k + n(n 1).

Noe Cha p is monoonically decreeing in k, so if (,) (,j), hen
emma 3.2 implies ha for k , + 1, + , ..., + n(n- 1)/2,

la) < <
2 2

Suppose that (i,i) (, flj) and that the kth pivots are a), uji-(k), b), and
b). Fix i and j. Lemma 3.3 implies that lai(+)] 5p/5. Affiliates of multiple
eigenvalue pairs appear in adjacent diagonal entries, so subsequent pivots in row i

satis the hypothesis of Lemma 3.4. If j < u and (for ee of notation) (c, s)
(c(k+t), s(k+)), then

(+) (+) (+)a0 =lca0 + saj+,]
_(k+t) ,(k+t)

2 2

< 5p + 9pk+

2 2

Similarly, each subsequent pivo in row i may incree la) by at mos 9p/.
Suppose hag the 1 pivot in row i is ghe qh pivot. here are at most n- i-

(1 N n- 2 pivots in row i subsequent to the kh pivot. Hence for j
(g + 9(n 2))p/. We may bound he qth off-diagonal row sum by

< +

Pivoting in rows other han row i leaves he off-diagonM row sum invarian, so ha
fo < k < h +( 1)/, ( 1)(

he same argumeng applied o B yields he idengical bound for the off-diagonal
row sums of B. Adding he bounds of he off-diagonal row sums of boh
he end of the sweep, we ge
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It is clear from the derivation that the bound of Theorem 3.1 is not tight.
The theorem assumes that affiliates of multiple eigenvalue pairs appear in adjacent

positions along the diagonal. This assumption guarantees that large angles of rotation
do not cause fill-in of small off-diagonal entries. As suggested in [36], a threshold
strategy would have much the same effect.

3.2. Rounding errors. Algorithm 1 uses only unitary similarity transforma-
tions. A classical rounding-error analysis of the construction and application of real
rotations appears in [47, p. 131ff]. It is easily extended to the complex case. Applying
it to Algorithm 1 results in the following theorem.

THEOREM 3.5. Suppose the rotations in Algorithm 1 are constructed by using
methods similar to those described in [22, 5.1] or [33, 6.4]. If A, B E Cnxn are a
commuting normal pair input to Algorithm 1 and if Q(k), A(k), B(k) (2nxn are the
computed versions of Q, A, and B after k sweeps, then there are matrices FA, FB
Cnxn such that

(A + FA) Q() Q()A(),
(S + FB) Q(k) Q(k)B(k)

and

where # is the machine precision and p(n) is a modest polynomial that depends on the
details of the arithmetic.

Thus the effects of rounding errors are equivalent to making small normwise per-
turbations in the original data matrices A and B. Algorithm i is backward numerically
stable.

4. Real matrices. If Algorithm i is applied to a pair of real, commuting normal
matrices A and B, then it will use nontrivial complex arithmetic on what is essentially
a real problem. Thus storage must be set aside for two complex arrays instead of two
real arrays, and complex arithmetic must be used instead of real arithmetic. Complex
rounding errors may perturb the eigenvalues of A and B so that they do not appear
in complex conjugate pairs. This section presents a modification of Algorithm 1 that
avoids complex arithmetic.

Of course, there may be no real similarity transformation that simultaneously
diagonalizes A and B. However, the following theorem shows that there is a real
similarity transformation that block diagonalizes A and B with 1-by-1 and 2-by-2
blocks.

THEOREM 4.1. If A, B Rnn, ATA AAT, BTB BBT, and AB BA,
then there exists Q Rn such that QTQ I, DA QTAQ is block diagonal and
DB QTBQ is block diagonal with 2-by-2 blocks and at most one trailing 1-by-1 block.

Proof. Ifn 1 or n 2, then the theorem holds with Q [1] R11 or
Q I R2.

Assume the induction hypothesis that the theorem holds for all real, normal, k-
by-k, commuting pairs A and B for k < n and 3 _< n. Let A Rnn and B Rnn
be commuting normal matrices, and let x (2n be a simultaneous eigenvector of A
and B with eigenvalues AA and A, respectively. There are two cases to consider: (i)
x is linearly independent of and (ii) x and are linearly dependent.

If x and are linearly independent, then A AA and B ABe. Thus x and
are simultaneous, linearly independent eigenvectors of A and B. The vectors y x+
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and z i(x- 2.) span a two-dimensional, real, invariant subspace of A and B. Let
U E Rnn be an orthogonal matrix whose first two columns form an orthonormal
basis of span(y, z), and set . UTAU and/ UTBU. Thus diag(Aii, A22),
/ d_iag(Bl,B22), where All, Bll E 12x2 and A22, B22 1n-2xn-2. Observe
that A and B are real, normal, commuting matrices, and hence A22 and B22 are
commuting, normal (n- 2)-by-(n- 2) matrices. By the induction hypothesis there
exists an orthogonal matrix V22 ( pn-2xn-2 such that V2A22V22T and V22TB22V22 are
block diagonal with 2-by-2 blocks and at most one trailing 1-by-1 block. If Vll is the
2-by-2 identity matrix and V diag(V11, V22), then the matrix Q UV satisfies the
conclusion of the theorem.

If x and are linearly dependent, then )kA R, )kB ( P and x is a scalar multiple
of some real, simultaneous eigenvector y E Rn. Without loss of generality we may
choose y such that IlYlI2 1. Let U Rnn be an orthogonal matrix whose last
column is y, and set l UTAU and [ UTBU. Observe that and/ are real,
normal, commuting matrices and that diag(Ail, ann), [ diag(B11, bnn), where
a,, )A, bn, )B, and All, Bll Rn-ln-1. By the induction hypothesis there
exists an orthogonal matrix Vll Rn-ln- such that VAllVll and
are block diagonal with 2-by-2 blocks and at most one trailing 1-by-1 block. If V
diag(Vll, [1]), then the matrix Q UV satisfies the conclusion of the theorem. Note
that at this point that if n is even, it is necessary to logically combine the two trailing
1-by-1 blocks into a single trailing 2-by-2 block.

Partition each matrix M Rnn into a k-by-k block matrix as

(29) M

Mll M12 Mlk
M21 M22 M2k

MI Mk Mk

where for i, j [Y
R21

k- n2-J and < n J Mij E R22. Ifnisodd, then forj < k-l,
Mkj Rix and for i <_ k- , Mik and Mkk 1:11. Theorem 4.1 states
that there is a real orthogonal similarity transformation that simultaneously block
diagonalizes A and B conformally with (29).

The next algorithm makes extensive use of elementary orthogonal matrices Z
Z(i,j, U) Rnxn that are partitioned conformally with (29). Define the block rota-
tion Z(i, j, U) to have the form

(30) Z(i, j, U)

Zj Zj

I
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Here,

z zz
=:g= g g

is an orthogonal matrix. If j < k or if n is even, then U E Raa. Otherwise,
U E R33. A similar definition of "blockwise rotation" appears in [18].

The Jacobi annihilators of [31] and the orthogonal matrices proposed in [42] are
block rotations.

We will use block rotations Z(i,j, U), where U has the form

(31) U- R(2,4, ca, sa)R(1,4, c3, s3)R(2,3, c2,s2)R(1,3, c,s)

or

1 0 0 0 c3 0 0 -s3
0 cA 0 -sa 0 1 0 0
0 0 1 0 0 0 1 0
0 84 0 c4 83 0 0 c3

1 0 0 0 Cl 0 -Sl
0 c2 -s2 0 0 1 0

x
0 82 c2 0 81 0 c
0 0 0 1 0 0 0

0
0
0
1

(32) U-- R(2,3,c2, s2)R(1,3, c1,s1) 0 c2 -s2 0 1 0
0 82 C2 81 0

where for 1, 2, 3, 4, c, s R and c + s 1. It is convenient to parameterize
c and s in (31) and (32) as c cos(6) and s sin(O), where 9 e R. Note that
the Jacobi annihilators of [31] use a a different order of the factors in (31) and (32).

In broad outline, Algorithm 2 (presented below) is a block version of Algorithm 1
that uses the partition (29). It measures progress with a block version of (2) defined
by

OffB(A, B) E
where A and B are partitioned as in (29). At the (i,j)th step of a sweep it chooses
a block rotation Z Z(i,j,U) to minimize offz(ZTAZ, ZTBZ). It is easy to verify
that for i < j

(33)
OffB(ZTAZ, ZTBZ) OffB(A, B) IIA,[I F

"- IIu1T2AiiUll -4- u2T2AjiUll + vT12AijV21 "3
t- u2T2AjjU21 2

F

/ TA / / U A  U22 / U A  U2 II 2

F

/ / / /

Minimizing (33) is equivalent to minimizing the sum of the lt four terms. General
optimization algorithms like those described in [19] provide effective ways to find
minimizers (ct,s)= (cos(0), sin(0)) for the parameters in (31) or (32).
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For U E R4a as above define by

I 0 U U

Observe tha Z Z(i,j, U) and S Z(i,j, U) are boh block rotations and tha
OffB (ZTAZ, ZTBZ) OffB (STAS, STBS). Thus we may choose a block rotation
so that [IUlllIF >_ IIU1211F. Such block rotations are sometimes called "inner" block
rotations. The use of inner block rotations promotes convergence [18]. The 3-by-3
case is more complicated. However, the 3-by-3 case arises only if n is odd. As in [44],
it can be eliminated simply by adding an extra row and column of zeros to A and B.

The following theorem implies that (33) is minimized by a block rotation of the
form of (31) or (a2). There is no need to use more general block rotations. A similar
theorem about a different set of block rotations is proved in [42] by using different
methods.

THEOREM 4.2.
1. If Q Raa is orthogonal, then there is a block rotation Z R4x4 of the

form of (31) and an orthogonal block diagonal matrix D Raa with 2-by-2 blocks
such that ZQ D.

2. If Q R33 is orthogonal, then there is a block rotation Z R33 of the

form of (32) and an orthogonal block diagonal matrix D R33 with 2-by-2 and
1-by-1 blocks such that ZQ D.

Proof. We will prove statement 1. The proof of statement 2 is similar.
Select Cl -cos(01) and sl -sin(0) such that

cldet[ q21q31 q32q22 I +sldet[ q21q11 q22 ]--0"q12
Set Q() R(1,3, c,s)Q. With this choice of cl and s

de qa(ll)qa(
so that there is a choice of c cos(O) and s sin(O.) such that

_(1) A1) A1)=0.s:q(? +1 +
Thus Q(2) R(2,3,c:,s)Q() has zeros in the (3, 1) and (3,2) entries. Select c3
cos(03) and s3 --sin(0a) such that

C3 det qa( q4( + 83 det q) q)

Set Q(3) R(1, 4, c3, s3)Q(2). With this choice of c3 and sa we get

det qa(31) qa(32)
Hence there is a choice of ca cos(Oa) and sa sin(Oa) such that
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Thus Q(a) R(2, 4, c4, s4)Q(3) has zeros in the (3, 1), (3, 2), (4, 1), and (4, 2) entries.
Set

Z-- R(2,4, ca, sa)R(1,4, c3, s3)R(2,3, c2, s2)R(1,3, cl,s),

and set D Q(a) ZQ. Observe that D is an orthogonal, block upper-triangular
matrix with 2-by-2 blocks. Hence D is block diagonal with 2-by-2 blocks.

The following algorithm summarizes the procedure for simultaneous diagonaliza-
tion of a commuting pair of real normal matrices.

ALGORITHM 2.
IIPffr" e>0;A, BERnsuchthat AB- BA, AAT ATA, and BBT=

BTB
0trrptrr. Q E Rn such that OffB(QTAQ, QTBQ) <_ e(IIAIIF+IIBIIF) and QQT

I.
1. Q.--I
2. WHILE offs(A,B) > e(llAIIF + lIB]IF)

3. FOR/-- 1, 2, 3, [n-2
4. FOR j i + l, i + 2, + 3, ..., [n2

5. Select an inner block rotation Z - Z(i,j, U) that minimizes
OffB ZTAZ, ZTBZ)

6. Q - QZ; A - ZTAZ; B - ZTBZ
If rotations are stored and applied in the efficient manner described in [22, 5.1] or

[33, 6.4], then each sweep (step 2) uses approximately 8u3 real flops to update A and
B and approximately 2n3 real flops to accumulate Q. A real flop is the computation
effort required to execute FORTRAN statement (8) if h and S are of type REhL. The
rough estimate that one complex flop is equivalent to four real flops implies that
Algorithm 2 does about half the work of Algorithm 1.

Algorithm 1 also needs storage for approximately 3n2 real numbers. This can be
shaved to 2n2 real numbers if Q is not required.

5. Quaternions. A matrix H C2n2n has quaternion structure if it is of the
form

(34) JH HJ,

where J R22n is defined by

(35) J diag(E, E, E,..., E)

and

[01]E--
-1 0

If a quaternion matrix H is partitioned into an n-by-n block matrix with 2-by-2 blocks,
then each block is of the form

(36) Hii uij -vii

where uij, vii (. It is easy to show that (34) and (36) are equivalent.
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If P E R2nx2n is the permutation matrix

P [el e3 eh, e2n-l e2, e4 e6 e2n],

then

[ -](37) pHpT
V

In other treatments, e.g., [7], quaternion matrices are defined to have the form of
(37), but in this context (36) makes the explication somewhat simpler. Quaternion
matrices arise naturally from quantum mechanical problems that have time-reversal
symmetry [12], [26], [34], and in eigenvalue problems that have two special structures

The eigenvalues and eigenvectors of quaternion matrices appear in pairs. If
(A,x) is an eigenvalue-eigenvector pair of a quaternion matrix, then (A, J5) is also
an eigenvalue-eigenvector pair. A quaternion matrix H has a quaternion Schur de-
composition as HQ QT, where Q E C2nx2n is a unitary quaternion matrix and
T C2nx2n is an upper-triangular quaternion matrix [7]. If H C2nx2n is also
normal, then T is a diagonal quaternion matrix. From this it is easy to show the
following theorem.

THEOREM 5.1. If A, B C2nx2n are normal commuting quaternion matrices,
then there are a unitary quaternion matrix Q C and quaternion diagonal
matrices DA, DB C2n 2 such that AQ QDA and BQ QDB.

Algorithm 1 applied to a commuting pair of normal quaternion matrices will
destroy the quaternion structure. General 2n-by-2n matrices must be stored and
updated. Rounding errors may destroy the pairing of eigenvalues and eigenvectors.
Algorithm 1 takes no advantage of the pairing of eigenvalues.

Theorem 5.1 suggests that if quaternion structure were preserved throughout
Algorithm 1, then work and storage requirements would be cut in half and the special
pairing of eigenvalues and eigenvectors will be preserved despite rounding errors.

The key to preserving quaternion structure is the observation that products and
inverses of quaternion matrices are quaternion matrices. In particular, there is a rich
class of quaternion unitary matrices to use in a modified version of Algorithm 1.

A quaternion rotation is a quaternion unitary matrix W E C2nx2n of the form
W W1W2W3, where

(38) W1 R(2i, 2j, ha, a)R(2i 1, 2j 1, ca,

(39) W2 R(2j 1, 2j, c3, s3)R(2i 1, 2i, c2, s2),

and

(40) W3 R(2i, 2j, 51, I)R(2i 1, 2j 1, c, s).

The matrices W, W2, W3 are quaternion unitary matrices. (The two rotations in

(39) are quaternion, but the individual rotations in (38) and (40) are not.) Hence
W is quaternion and unitary. In terms of the block 2-by-2 partitioning (29), for



944 A. BUNSE-GERSTNER, R. BYERS, AND V. MEHRMANN

1 <_ i < j <_ k n the quaternion rotation W W(i, j, U) is of the form

(41) W

"I

where

(42) [ w,
R(e, a, e, )R(, a, ,,)
xR(3, 4, c3, s3)R(1, 2, c2, s2)
xR(2, 4, St, St)R(1, 3, ct,

Up to column scaling, quaternion unitary matrices are products of quaternion
rotations. This was proved for symplectic matrices in the permuted form (37) in [32],
but the methods carry over to the quaternion case with few modifications.

Suppose A, B E C2nx2n form a commuting pair of normal quaternion matrices.
In broad outline, Algorithm 3 (presented below) is a block version of Algorithm 1
partitioned into 2-by-2 blocks. It measures progress with a block version of (2) defined
by

offQ(A,B) E IIAII uF /

At the (i, j)th step of a sweep it uses a quaternion rotation W W(i, j, U) to minimize
OffQ(WHAW, WHBW).

By partitioning U as in (42), it is easy to verify that for i < j

(43)
OffQ(WHAW, WHBW) OffQ(A,B) IIAijllF --IIAjill 2

HA-II HA u2H2Ajlull FUi iiU + + UAiUI + UAjUlll
gl iiSl2 + SAjiSl2 + SlAijS22 + UAUIIF

U2 iiU T U22BjiUl + U12BijU2 + U22BjjU21[lF
glxBiigl + glBji12 + gNijg2 + glNjjgll.

Minimizing (43) is equivalent to minimizing the sum of the last four terms. General
optimization algorithms like those described in [19] provide effective ways to find
minimizers (c,s)--(cos(O),sin(O)) for the parameters in (38), (39), and (40).
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For U E Raa partitioned as in (42) define by

U I 0 U2 U22

Observe that W W(i,j, U) and S W(i,j, ]) are both quaternion rotations
and that OffQ(WHAW, WHBW) OffQ(SHAS, SHBS). Thus we may choose the
quaternion rotation so that [lUll[IF >_ [[U2[[F. Such block rotations are sometimes
called "inner" block rotations. The use of inner block rotations promotes convergence

The following modification of Algorithm 1 summarizes the procedure for simul-
taneous diagonalization of a commuting pair of quaternion normal matrices. Note
that the output of Algorithm 3 includes a pair of block diagonal matrices with 2-by-2
blocks. The trivial step of simultaneously diagonalizing the commuting 2-by-2 blocks
is omitted.

ALGORITHM 3.
IP" e > 0; A,B C22 such that AB BA, JA J, JB J,
AAH AHA and BBH BHB

0P" Q C2nx2n such that offQ(QHAQ, QHBQ) e([A]]F + []B]]F) JQ
QJ, and QQn

1. QI
2. >  (IIAII + IIBII )

3. FOR i 1, 2, 3, ...,
4. OR j

5. Selec an inner quaternion roaion W W(i,j, U) ha mini-
mizes off(WnAW, WnBW)

ft. QZ; A WnAW; B WnBW
Noe ha Q is a produc of quaternion roaions, so ha Q is a quaernion uniy

matrix. The quaernion srucure of A and B is preserved hroughou. Equations (36)
and (37) show ha only 2n2 complex numbers are needed o represent a quaernion
matrix. Wih his economy Algorithm 3 needs approximately fin2 storage. If roations
are sored and applied in an emcien manner similar to [22, 5.1] or [33, fi.4], hen
each sweep (step 2) uses approximately 24n3 complex flops to update A and B and
approximately fin3 complex flops to accumulate Q.. Additional symmetry structure. In [fi] simultaneous diagonalization pro
lems usually have an additional special sructure in addition to normality. At imes
A and B are Hermiian, real symmetric, real skew symmetric, or quaternion. In his
section we outline how to modi Algorithm 1 o ake advantage of additional special
srucure.

.1. Hermitian ce. If (A, B) =x xx= is a pair of commuing Hermit-
ian matrices, hen A is he Hermiian par and iB is he skew-Hermitian part of he
normal matrix H A+lB. All normal matrices are of this form. Algorithm I reduces
o he 3acobi mehod for normal matrices for which explicit formulae for minimizers
of (5) are known [21].

.2. Real symmetric case. The following theorem shows tha if A and B are
real symmetric, hen no complex arithmetic is required by Algorithm 1. Moreover,
here is an explici formula for he minimizer of (5).
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THEOREM 6.1. Suppose A, B E Rnxn, A AT, B BT, and AB BA. If
c, s E tt, c2 + s2=1, and

is a right singular vector of

W
--82

2cs ]
aii ajj 1aij 2

bij
aii- bjj

2

corresponding to its smallest singular value, then (c, s) is a minimizer of (5). Fur-
thermore, if Lj has distinct singular values and (5, ) C ( minimizes (5), then

is a scalar multiple of w.
Proof. In this case, (5) simplifies to

5 2 ]
2s

(44) fij(c, s) /][Lwiiu =f /
a 2 cu su

bj
a b 2cs

2 2

If the double-angle formulae for s sin(0) and c cos(0) are used, any two-
dimensional real vector of Euclidean length 1 may be written in the form of w for
some choice of c, s R, c2 + s2 1, and c _> s. In particular, there is a choice of c
and s such that w is a right singular vector of Lij that corresponds to the smallest
singular value of Lij. Note that Lii is real, so that w may be chosen to be real.
Clearly, (44) is bounded below by amin(Lj), so that this choice of c and s minimizes
fij(c, s). If Lij has distinct singular values, then its singular vectors are unique up to
scalar multiples.

In addition to simplifying the calculation of the minimizing c and s, Theorem 6.1
shows that only real rotations are needed. The real symmetric structure of A and B
is preserved throughout. Consequently, only the real part of the upper triangle of A
and B and the real part of Q need to be stored and updated. These modifications
cut storage requirements of Algorithm 1 by a factor of 3. The work requirements are
cut to 6n3 real flops per sweep.

6.3. Real symmetric-real skew-symmetric case. If A Rnn is symmet-
ric, B Rn is skew symmetric, and AB BA, then H A / B e R is
normal. All real normal matrices are of this form. In this case, Algorithm 2 applies
with A :- A + B and B :- 0. Note that B := 0 is invariant throughout Algorithm 2,
so that no work need be expended for updating B and no storage need be allocated for
storing B. This cuts the cost of Algorithm 2 down to approximately 4n3 real flops per
sweep for updating A :- A + B and approximately 2n3 flops per sweep for updating
Q. A similar algorithm that uses a different set of block rotations is suggested in [42].

6.4. Real skew-symmetric-real skew-symmetric case. The skew-symmetric
structure of A and B is preserved throughout Algorithm 2. It is necessary to store
and update only the upper-triangular part of A and B. This cuts the work required
by Algorithm 2 to the same level as that required for the symmetric-skew-symmetric
case
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6.5. Hermitian quaternion case. If (A, B) are Hermitian quaternion matri-
ces, then A is the Hermitian part and iB is the skew-Hermitian part of the normal
matrix H A/ iB. However, H is not quaternion. (The matrix iB is antiquaternion
[7]. See 6.6 below.) Nevertheless, Algorithm 3 preserves both the quaternion and
Hermitian structures, so that only the upper triangles of A and B need be stored
and updated. Thus both the storage required for A and B and the work required for
updating A and B are cut in half.

6.6. Hermitian quaternion-Hermitian antiquaternion case. A matrix H
E C2n2n is said to be antiquaternion if and only if iH is quaternion. If A E C2n2n

is Hermitian and quaternion and B C2nx2n is Hermitian and antiquaternion, then
A is the Hermitian part and iB is the skew-Hermitian part of the quaternion normal
matrix H A + iB. Moreover, all quaternion normal matrices are of this form.
Algorithm 3 applies with A := A + iB and B :-- 0. Note that B :- 0 is invariant,
so that it need not be stored or updated. This economy cuts the work and storage
requirements of Algorithm 3 down to approximately 18n3 complex flops per sweep. If
Q is not required, then the work requirement drops to 12n3 complex flops per sweep.

6.7. Commuting m-tuples. Algorithm 1 extends to the problem of simulta-
neously diagonalizing rn commuting normal matrices. In this case the minimization
problem (5) uses a 2m-by-3 matrix coefficient matrix. Algorithm 1 must apply simi-
larity transformations to all m commuting matrices.

7. Conclusions. We have presented a Jacobi-like algorithm for simultaneous
diagonalization of commuting pairs of complex normal matrices. The algorithm uses
a sequence of similarity transformations by elementary complex rotations to drive the
off-diagonal entries to zero. Convergence and rounding-error properties are similar to
those of the serial Jacobi algorithm [20], [38], [46]. We have shown that its asymptotic
convergence rate is quadratic and that it is numerically stable in the sense that the
computed eigenvalues and eigenvectors are correct for a perturbation of the data.
Empirically, it appears to converge globally, but we have not been able to give a
proof. The algorithm can. easily be modified to preserve and exploit the additional
special structure of real matrices, quaternion matrices, and real symmetric matrices.
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ON THE CONVERGENCE OF REVERSIBLE MARKOV CHAINS*
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Abstract. A simple upper bound for the second-largest eigenvalue ofa finite reversible time-homogeneous
Markov chain is presented as a function of the transition probabilities, the equilibrium distribution, and the
underlying structure of the chain. This work is extended to a relation between the second-largest eigenvalues
of any two reversible Markov chains with the same underlying structure. Furthermore, a lower bound for the
smallest eigenvalue of a reversible chain is also presented, thereby providing a bound on the spectral gap of
such chains. These eigenvalue bounds are fairly easy to compute for a variety of reversible chains by using
known results on eigenvalues of certain matrices associated with graphs or random walks on graphs. The results
on the spectral gap lead to a bound on the time constant ofa reversible Markov chain converging to its equilibrium
distribution. As an application, the temperature asymptotics of simulated annealing, which is a probabilistic
algorithm widely used for solving combinatorial optimization problems, are studied.

Key words, reversible Markov chains, eigenvalue, underlying graph, Laplacian matrix, simulated annealing,
temperature asymptotics, combinatorial optimization
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1. Introduction. Let ft { 1, 2, N} be a discrete state space, and consider a
time-homogeneous Markov chain X(k)} on ft with an N N probability transition
matrix P [Po], where

1.1 Pij Prob (X(k + jlX(k) i)

for any pair of states i, j ft and any time k >= O. Let v(k) [vi(k)] be the N
distribution vector describing the chain at time k such that vi(k) Prob (X(k) i) for
all states e ft. It follows that v(k + v(k)P. Suppose the Markov chain converges
to an equilibrium distribution vector r, i.e.,

(1.2) lim v(k) 7r 7rP.
k--

In this paper we are primarily interested in the speed of convergence of v(k) to 7r. If the
Markov chain is reversible, then the eigenvalues of P are real and are given as
X >- X2 -> > kN >= --1. It is then known [10], [21] that the error at time k can be
bounded by

(1.3) I[v(k) rll --< 7rln/2/3 k,

where/3 max (X, XNI), Ilvll 2/N=I vii is the conventional 1-norm, and rmin

mini 7ri. The quantity -/3 is often referred to as the spectral gap of the chain. Define

-1
(1.4) r

log/3

to be the time constant of the Markov chain converging to its equilibrium distribution.
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It follows that if/3 =< /q for some q > 1, then r _-< q. Furthermore, given any 0 <
6 < we will have the error [Iv(k) r[[ =< 6 for all times k >= -(log 6 + 1/2 log rmin)r. In
this case we say that the Markov chain is within a distance 6 from equilibrium. Therefore,
the rate at which the Markov chain achieves equilibrium is determined by the time
constant r, which in turn depends on the spectral gap of the chain. An upper bound for
r has many applications in the study of probabilistic algorithms based on simulating
Markov chains. For example, random walks may be used to simulate uniform distributions
on a given set of objects [1]. In such cases, if r is obtained as a function of the size of
the state space, the computational complexity of the algorithm may be studied. Another
application is a probabilistic search algorithm, such as simulated annealing (SA) [15 ].
In this algorithm the transition probabilities are controlled by a temperature parameter.
For the SA algorithm we would require a bound for r in terms of the size of the chain
as well as the temperature. A more detailed discussion ofsuch an application is presented

in4.
One of the main results of this paper is the derivation of an upper bound on the

second-largest eigenvalue of a reversible Markov chain. There is a considerable body of
research in this area. Many successful approaches are based on the work of Cheeger [7],
who considered the problem offinding a lower bound for the smallest positive eigenvalue
ofthe Laplacian ofa compact Riemannian manifold. Knowledge ofthis eigenvalue leads
to bounds on the speed of convergence of the random process describing Brownian
motion ofa particle on the manifold. A discrete analogue ofCheeger’s work was developed
by Alon [2 ], who established the relationship between the smallest positive eigenvalue
of the Laplacian matrix of a graph and a measure of its expansion properties. Alon’s
bound has the advantage of being easily computable, but direct application of his ideas
to Markov chains leads to a useful bound only for random walks, as shown in [1 ].
Cheeger’s work was generalized to reversible Markov processes on a general state space
by Lawler and Sokal 16 ]. In the present paper we seek a useful bound for arbitrary
discrete-time finite reversible Markov chains.

Sinclair and Jerrum [22] have derived a bound of the form )k2 2/2, where
4 is the conductance associated with a reversible Markov chain. The conductance is an
extension of the expansion idea for edge-weighted graphs. The main effort of bounding
)k2 is then transferred to the task of bounding from below. Ingenious path-counting
arguments have been used in 22 to get excellent bounds for some complex Markov
chains. Another path-counting approach based on a Poincarr-type inequality was de-
veloped by Diaconis and Stroock [10 ]. This method gives results comparable to those
in 22 ], but the task of calculating the bounds is still difficult, even for random walks
on graphs. The difficulty involved in computing these bounds for arbitrary reversible
chains (that are not random walks) is expected to be even greater.

The bound on )xz(P) derived in this paper is of the form )k2 o-N2 (Q), where
is a simple function of the entries in P and its equilibrium distribution vector r, and

tzz(Q) is the second-smallest eigenvalue of Laplacian matrix Q associated with the
underlying graph of P. Similarly, a lower bound for XN(P) of the form )kN --1 +
al([Q[) + 23’ is also derived, where r and 3" are, once again, simple functions of the
entries in P and the equilibrium distribution r, and tz (]Q[) is the smallest eigenvalue
of the matrix [Q[ obtained by taking the absolute value of the entries of Q.

The special feature of the bounds derived in this paper is the clear separation of the
effect of the underlying structure ofP captured by tz(Q) (or tz ([Q[)) and the effect of
the entries in P and r captured by a. Our bounds will be useful in the case of reversible
chains for which tz2(Q) is known exactly (e.g., cycles and hypercubes) or can be effectively
bounded (e.g., graphs in [1 ]-[4], [9], [19]). In other cases one could bound uz(Q) by
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using known results on eigenvalues of random walks on graphs (e.g., graphs in [10 ],
[22 ]). We also provide examples of reversible Markov chains (which are not random
walks on graphs) for which our eigenvalue bounds are tight. As a penalty for the simplicity
of their computation, there are instances in which our bounds may be pessimistic when
compared with those obtained by more sophisticated methods, such as those in 10 and
22 ]. Our bounds, however, can provide first-order approximations to the speed of con-
vergence of reversible chains in terms of their underlying structures and equilibrium
distributions. By methods similar to those used in deriving the bounds on 2, we obtain
a relation between the second-largest eigenvalues of two reversible chains that are struc-
turally equivalent (i.e., that have the same underlying graph). This result is more general
in the sense that knowledge of ,2 for a reversible chain enables us to bound ,2 for any
structurally equivalent chain without explicitly considering the underlying graph.

The rest ofthis paper is organized as follows. In 2 we establish some preliminaries.
A new upper bound for the second-largest eigenvalue and a lower bound for the smallest
eigenvalue of a reversible transition matrix are presented in 3. In 4 we briefly describe
the simulated annealing algorithm and we discuss the application of our bounds to the
corresponding reversible Markov chains.

2. Preliminaries and definitions. Consider a time-homogeneous Markov chain
{X(k) } on a finite state space fl 1, 2 N with transition matrix P [P0] as in

1. We begin this section by reviewing some basic material on nonnegative matrices in
general. In this paper we use standard graph-theoretic terminology from 6 ].

The underlying directedgraph ofP (or any matrix that is not necessarily a transition
matrix) is a directed graph Gd (ft, Ed) with vertex set ft and an arc (i, j) directed from
vertex to vertex j if and only if Pij 4 O. The matrix P is irreducible if there exists a
directed path from each vertex to every other vertex in its underlying directed graph Ga.
For an irreducible matrix let r denote the greatest common divisor of the lengths of all
the directed cycles in its underlying directed graph. If r 1, the matrix is said to be
aperiodic.

The Markov chain itself is said to be irreducible (aperiodic) if its transition matrix
P is irreducible (aperiodic). Some basic facts on transition matrices [21] are as follows.
Every eigenvalue of a transition matrix has magnitude =< 1. If P is irreducible, then is
a simple eigenvalue of P. Let 7r be the left eigenvector corresponding to eigenvalue of
an irreducible P, chosen so that ift 71"i 1. Then 71" > 0 for each ft and 7r is termed
the equilibrium distribution vector. An aperiodic Markov chain converges to its equilib-
rium distribution r for any initial distribution v(0). The main results of this paper deal
with reversible Markov chains, which are defined as follows.

DEFINITION 2.1. An irreducible Markov chain with transition matrix P and equi-
librium distribution vector 7r is said to be reversible if for all i, j ft we have

(2.1) 7r PO 7rjpj

From Definition 2.1 we see that a reversible Markov chain with transition matrix
P is structurally symmetric, i.e., Pi > 0, if and only ifPji > O. The underlying undirected
graph ofP (or any structurally symmetric matrix) is a simple undirected graph G( r, E)
obtained from the underlying directed graph Gd(ft, Ed) by deleting all self-loops and
replacing directed 2-cycles by simple edges. Thus arcs (i, j) and (j, i) in Gd are replaced
by a single edge i, j } in G.

A reversible Markov chain has the following interesting property. The proof is an
easy consequence of Definition 2.1 and is therefore omitted.

PROPOSITION 2.2. Consider a reversible Markov chain with transition matrix P and
equilibrium distribution vector 7r. Define di ifor each , and define the diagonal
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matrix

(2.2) D diag [d, d2 ds].

Then thefollowing hold:
D2P is a symmetric matrix.

(2) DPD-1 is a symmetric matrix.
(3) P is diagonalizable, has real eigenvalues, and has afull set oflinearly independent

eigenvectors. Ifx and y are two linearly independent right eigenvectors ofP, then they
are D2-orthogonal, i.e., xTD2y O.

In general, for any K K matrix M with real eigenvalues, let (M) >= ,2(M) >=
>= /(M) denote the eigenvalues of M arranged in descending order. Then for a

transition matrix P of a reversible Markov chain we have

(2.3) XI(P) > X2(P) >-- X3(P) >= >-- XN(P) >---- --1.

There are several symmetric matrices associated with undirected graphs. For this
paper it suffices to consider only one of them.

DEFINITION 2.3. Consider a simple undirected graph G(ft, E) on N vertices. Let
deg (i) denote the degree of vertex ft, which is the total number of edges in E incident
on the vertex i. Then the Laplacian matrix Q(G) is an N Nmatrix with entries defined
as

(2.4)

deg(i) ifj= i,

qi; -1 if { i,j } E,

0 otherwise.

Remark. The Laplacian matrix Q used here is associated with the adjacency matrix
[6] of the graph G. Some authors (see [10 ], for example) refer to L I P as the
Laplacian matrix associated with a transition matrix P. Relationships between the two
Laplacians are discussed in Example 3.4 for the case in which P is a random walk on
the graph G.

Clearly, the Laplacian matrix Q(G) is a symmetric matrix. The following theorem
provides some more information about Q(G). The proof is an easy consequence of the
discussion in [5], [6], [9] on spectra of graphs and is therefore omitted.

THEOREM 2.4. IfG( ft, E) is a connected simple graph with Laplacian matrix Q,
then thefollowing hoM:

QI O, where I is a vector with each entry 1. Hence Q has an eigenvalue 0
with eigenvector 1. Moreover, 0 is a simple eigenvalue ofQ, i.e., rank (Q) N- 1.

(2) The quadraticform xT"Qx equals {i,j}eE(Xi Xj) 2.
In general, for any K K matrix M with real eigenvalues let t (M) =< Iz(M) -_<

_-< /(M) denote the eigenvalues ofM arranged in ascending order. From Theorem
2.4, Q is positive semidefinite and has eigenvalues

(2.5) 0 #I(Q) < #2(Q) --< --< laN(Q).
The following results are key to deriving the eigenvalue bounds in the next section.
LEMMA 2.5 (min-max principle).

lfA is symmetric and z is the eigenvector corresponding to # (A), then

(2.6) man{ xrAx rx }xTx X =//= 0, Z 0 #2(A).
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(2) IfA and B are any two symmetric K K matrices such that A B is positive
semidefinite, then #i (A) >= #i (B) for each 1, 2,..., K.

LEMMA 2.6. Let B be any (N N matrix offull row rank. Then Ii (BB 7-)
ti + B TB for each 1, 2 N 1.

The above two lemmas are well-known results from linear algebra. The proofs can
be found in [14], for example.

TI-IEOR,M 2.7. Let Q be any N N symmetric and positive semidefinite matrix
with rank (Q) N 1, and let D be an N N diagonal matrix with strictly positive
diagonal entries. Let dmi, > 0 denote the smallest diagonal entry in D. Then thefollowing
hoM:

There exists an (N- N matrix B offull rank such that Q B TB.
(2) The N N matrix DQD is symmetric and positive semidefinite.

2(3) #2(DQD) > dmin#z(Q).
Proof. Statements (1) and (2) are standard results and can be found in most

textbooks on linear algebra. To prove (3), use (1) to write Q B rB, where B is an
(N N matrix of full rank. Define C BD. Clearly, C is also of full rank since D
is a diagonal matrix with strictly positive diagonal entries. Note that CC BDZB7 and
that the matrix CC dZmi,BB is positive semidefinite since the quadratic form

N

xT(CCT 2 TdminBB )x (d2ii- d2min)[BTx] 2i
il

is nonnegative for any vector x -. Also, DD DBrBD CC. Therefore,

(2.7)
2 (BB 2 rB#2(DQD) #2(CTC) Iz(CCT) >= drni,# dmin#z(B d2min#z(Q),

where the second and third equalities are from Lemma 2.6 and the inequality is from
part (2) of Lemma 2.5.

3. A new eigenvalue bound for reversible Markov chains. A reversible Markov chain
has a structurally symmetric transition matrix P, as noted in 2. Its underlying undirected
graph G, therefore, is both connected and simple. Moreover, P is irreducible and has
real eigenvalues from Proposition 2.2. Hence the second-largest eigenvalue of P is
1. One ofthe main results ofthis paper is a tighter upper bound for X2, which is provided
in 3.1. Another result relating the Xz’S of two different reversible chains having the
same underlying graph is also derived. In 3.2 a lower bound for the smallest eigenvalue
XN(P) is presented.

The following quantities defined for a transition matrix P with equilibrium distri-
bution r will be used frequently:

Wmi min 7riPij 4: j, Pij > 0 }.
(2) rm, max/ ri.

(3) /zz(Q) the second-smallest eigenvalue of the Laplacian matrix Q of the un-
derlying undirected graph G of P.

3.1. An upper bound for
THEOREM 3.1. Consider a reversible Markov chain on the state space
N}, with transition matrix P and equilibrium distribution r. Let Wmin, 7rmax, and

(Q) be as defined above. If < is an eigenvalue ofP, then

Wmin
(3.1) , =< #2(Q).

71"ma
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Proof. Let di for each 2, and define the N N diagonal matrix D
diag [d, d2, dN]. Since P is irreducible, we have that D is invertible and D-diag di- d d ].

Let < be an eigenvalue ofP, and let x 6Nbe the corresponding fight eigenvector,
i.e., Px Xx. Note that xT;D2(I- P)x X)xTD2x, which can be written as

xT(D2 W)X
(3.2) X xTD2x
where we have defined the matrix W D2p, which is symmetric by Proposition 2.2,
part (1). For each 1, 2, Nwe have

N N

(3.3) Wij 7r Z Pij 7r

j=l j=l

Now consider the quadratic form in the numerator of (3.2), which can be written as

N N N
2(3.4) xT(D2- W)x-- Z (Tri Wii)Xi Z WijXiXj.

i=1 i=1 j=l
j4:i

N N
2 XiXj)(3.5) xT"(D 2 W)X wij(xi

i=lj=l
j==i

Now consider G( f, E), the underlying undirected graph ofP. This is also the underlying
graph of the symmetric matrix W, since for j 4 we have Po 4:0 if and only if wo 4 O.
Hence (3.5) can be written as

(3.6) xT(D2 W)x-- Z wi(xi xj) 2
Wmin Z (xi xj) 2.

{i,j}E {i,j}6E

Applying Theorem 2.4, part (2), to the fight-hand side of (3.6) results in

(3.7) xr(D2 W)x >= WminxrQx,

where Q is the Laplacian matrix associated with the underlying graph G. Combining
(3.2) and (3.7) gives

xTQx yTD-QD-y
3.8 k Wmin

XTD2X
Wmin

yTy
where we have defined y Dx. Since PI 1, we have xVD21 0 from Proposition
2.2, part (3). Hence yT"Dl xTD21 0 and y 4: 0. Also, QI 0, which implies that
DI is an eigenvector ofD-QD- corresponding to # (D-QD- 0. Therefore, from
(2.6) in Lemma 2.5 we have

(3.9)
YTD-QD- Y > #2(D-QD- ).yTy

Applying Theorem 2.7, part (3), to the right-hand side of (3.9) gives

(3.10) #2(D-QD-) >= #2(Q).
71"ma

Finally, combining (3.8), (3.9), and (3.10) proves that (3.1) is true and hence proves
the theorem. V1

Using 3.3 ), we get
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Remark. Note that (3.1) may be rewritten as

Wmin
(3.11)

71"ma

This was derived by using the min-max principle (Lemma 2.5) and the fact that 1 is
a common fight eigenvector to both (I- P) and Q corresponding to eigenvalues
1(I- P) 0 and I(Q) 0, respectively. It might seem that a relation similar
to (3.11 between tai(I- P) and #i(Q) for > 2 could be proved by extending
the min-max principle for other eigenvalues. However, this is not possible since the
smallest (i eigenvalues of (I P) and Q may not in general share a common set
of eigenvectors for > 2.

For some graphs G the second-smallest eigenvalue #2(Q(G)) is easy to compute
analytically. Two examples are given below.

Example 3.2 (cycle graphs). If G is a simple cycle on Nvertices, then the eigenvalues
of its Laplacian matrix Q can be shown to be (e.g., see [5], [9])

(3.12) 2(1-cos(2r(i- 1)/N)) fori= 1,2,...,N.

Consequently, #2(Q) 2( cos (2r/N)), which approaches 0 as N
Example 3.3 (hypercube graphs). If G is an n-dimensional hypercube having N

2 vertices, then its Laplacian matrix Q has n + distinct eigenvalues given by (e.g., see
[9],[101)

(3.13) m 2m for m 0, 1, 2 n.

The eigenvalue 2m has an algebraic multiplicity (). Consequently, the second-smallest
eigenvalue #2(Q) 2 is independent of N, the size of the matrix.

Remark. For graphs G for which tzz(Q(G)) is not easy to compute exactly, one
can use a lower bound. For example, Alon 2 relates tzz(Q(G)) to the expansion properties
of the graph G. Another class of graphs for which tzz(Q) has been estimated is the class
of Cayley graphs of a finite group ], 4 ]. There has been considerable related work on
finding tz(Q) for a variety of graphs, as summarized in [9 ], [19 ]. Alternatively, one
could relate tz(Q) to the known results on eigenvalues of random walks on graphs as
follows.

Example 3.4 (random walk on a graph). Let G (ft, E) be a connected simple
graph with minimum degree d, and maximum degree d*. Let P be the transition matrix
of a random walk on G with entries

[deg(i)]- if{i,j}fE,
(3.14) Pij

0 otherwise.

Then P has underlying graph G and is reversible with respect to the equilibrium vector
r with entries
d*/(2lEI). Then Theorem 3.1 gives

(3.15) ),2(P) =< tz(Q(G)).

Application of Alon’s lower bound [2] for /2(Q) yields the same upper bound for
),2(P) as the one derived in [1]. For regular graphs (i.e., graphs for which d, d*),
the inequality in 3.15 is, in fact, an equality. The graphs in Examples 3.2 and 3.3 are
regular graphs for which 3.15 provides )k2 (P) exactly. Recently there has been a flurry
of activity in lower-bounding ),:(P) :(L) for random walks, where L I- P
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is called the Laplacian matrix associated with the transition matrix P. It is clear that
the two Laplacian matrices are related by Q =/)L, where/) is a diagonal matrix with
ith diagonal entry deg (i). Hence

(3.16) d*#2(L) d*#2(1)-l/2Ql)-l/2) >= #2(Q) #2(ff)l/2Lj)l/2) >= d.#2(L),

where the equalities are from similarity transformations and the inequalities follow from
Theorem 2.7, part (3). One could then use (3.16) and lower bounds for u2(L) from
sources such as 9 ], 10 ], 16 to get lower bounds for #2(Q). A recent paper by Diaconis
and Stroock [10 summarizes much of the activity in obtaining lower bounds for #_(L)
for random walks. For regular graphs the inequalities in (3.16) become equalities.

It must be emphasized that the utility of Theorem 3.1 is not in obtaining bounds
for Xz(P) of random walks on graphs but rather in bounding Xz(P) of any reversible
Markov chain as a simple (and easily computable) function of the entries of P and r

and the structure of the chain as captured through 2(Q).
We now relate Xz(P) and Xz(P’) of any two reversible Markov chains P [Pij] and

P’ [pj having the same underlying graph G(f, E). To this end, let quantities associated
with P’ be denoted as r’, W’, D’, etc., analogous to similar quantities associated with P,
as in Theorem 3.1.

THEOREM 3.5.2 Let P and P’ be the transition matrices oftwo reversible chains with
a common underlying graph G(ft, E). Then

mini’j}F(Wo/W}9)
(1 X2(P’))(3.17) X2(P) >--

max/(ri/}

Proof. The proof is similar to that of Theorem 3.1. We provide only an outline
here and omit the details for the sake of brevity. Let x be the right eigenvector of P
corresponding to Xz(P), and define z x (Zv= zrxi)l. Since x and 1 are linearly
independent and DZ-orthogonal, we have z 4:0 and zTDZ2 >= xTD2x. Moreover,
zr(D 2 W)z xr(D W)x since (O 2 W)l 0. By proceeding as in the proof of
Theorem 3.1 it can be shown that

X2(P)
xr(D2 W)x

xrD2x

zT(D2 W)z
zTD2z

(3.18) >_ min{i,j}eE (Wij/W}j) zr(D’2 W’)z
max/( 7r / "11 zTD’2z

>= min i,j}eE (Wij/Wtij)
#2(1 D’P’D’-I)

max/( 7ri/7r}

min{i,j} : (wij/wj)
max/( 7ri/7r

(1 X2(P’)),

which completes the proof.
Remark. In Theorem 3.1 we related the eigenvalue of a reversible chain to its

underlying structure. The result ofTheorem 3.5 extends this line ofthought a step further
by directly relating 2(P) of a reversible chain P with Xz(P’) ofany other reversible chain

This result was provided by one of the referees of this paper.
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P’ that has the same underlying graph, without explicitly computing the 2(Q) of the
underlying graph. This is especially useful in the case for which Xz(P’) can be computed
exactly or at least can be bounded tightly. Such is the case when P’ is a random walk on
a graph [9], [10], [16].

3.2. A lower bound for ),v. The rate of convergence of a reversible Markov chain
is governed by the spectral gap -/3 min ,2, + 3,u), as seen in 1. In 3.1
we provided bounds for ,2. In this section we present a simple lower bound for +
kN of a reversible P as a function of the entries in P and its underlying structure. The
two bounds together will provide a bound on the spectral gap. Before stating the main
result, we define a few terms. Consider the reversible Markov chain P defined in the
statement of Theorem 3.1. Let G(2, E) be the underlying graph of P. Define the matrix

OI with ijth entry ql, where qij’S are the entries of the Laplacian matrix Q of G as
defined by (2.4). Let z (101) denote the smallest eigenvalue of I01. From (3.24) below
we shall see that I01 is nonnegative definite; hence l (101) >-- 0. In addition, let 3’
mini Pii denote the smallest diagonal entry in P. The rest of the terminology is the same
as that in Theorem 3.1.

THEOREM 3.6. The smallest eigenvalue ofP satisfies

Wmin
(3.19) Xu >- -1 / (IQI) / 23‘.

71"ma

Ifthe underlying graph G is k-regular i.e., the degree ofeach vertex is k), then

(3.20) ,(IQ]) 2k- #N(Q),

where #N( Q is the largest eigenvalue ofthe Laplacian matrix Q ofG.
Proof. This proof uses the same notation as that of Theorem 3.1. Note that + kN

is the smallest eigenvalue ofthe matrix I + P. Let x be the corresponding fight eigenvector.
Then, as in the proof of Theorem 3.1, we can write

xTD2(I + P)x
3.21 - N XTO2x

By proceeding as in the proof of Theorem 3.1, it can be verified that
N

(3.22) xTD2(I + P)x 2 , 7riPiiX +
i=1

Using 3’ mini Pii and riPij Wij >=- Wmin, we get
N

7riPij( Xi -- Xj) 2

{i,j}E

(3.23) 2xTD2(I + P)x > 23" , 71"iX + Wmin
i=1

(Xi qt_ Xj) 2

{i,j}E

Analogously to Theorem 2.4, part (2), we can write

(3.24) , (X "- Xj) 2 xrlQIx.
{i,j}eE

Since IOl is symmetric, we have xTlQlx > m(IQl)xTx. Hence

(3.25) xT:D2(I + P)x >= 23‘xTDZx + WminV.l(IQl)xTx.

But xTDZx <= 7rmaxXTX. Combining this with 3.21 and 3.25 proves 3.19 ). To prove
(3.20) note that if G is k-regular, then Q] 2kI- Q. U]
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Remark. Suppose P [Pij] and P’ [p}j] are the N X Ntransition matrices oftwo
reversible chains with the same underlying directed graph Gd(f, Ed). For two such matrices
we can obtain a result analogous to Theorem 3.5 for their smallest eigenvalues. By using
the same terminology as in Theorem 3.5, it is easy to show that

nt- ,N(P) >- min(i,j)Ed (wij/w) + }kN(P’)).
maxi (ri/or}

In conjunction with Theorem 3.5, this provides a relationship between the spectral gaps
of two reversible Markov chains with the same underlying directed graph.

Example 3.7 (a reversible chain that is not a random walk). Consider the following
reversible Markov chain on the vertex set 1, 2, N}. Let 0 < e < 1, and define the
transition matrixPbyp;j 1/(N- 1) for 2, 3,...,Nandj# i, and bypj
e/(N 1) forj 4 1. The diagonal entries of P are p,, e and Pii 0 for > 1.
The underlying graph ofP is the complete graph on N vertices, which is (N )-regular
and is denoted by KN. Let Z + (N- )e. Then the equilibrium distribution is given
by 7r, 1/Z and 7ri e/Z for > 1. Hence wij e/(Z(N- 1)) for all # j, 7rmax
1/Z, and , 0. If Q is the Laplacian matrix OfKN, then g2(Q) gN(Q) N. Therefore,
#, Q N 2 from (3.20). The exact eigenvalues ofP for this example are

(3.26) ,(P)

with 1 as the corresponding right eigenvector,

N-2 Z
(3.27) ,2(P) e

N-1 N-1

with the entries of the corresponding right eigenvector defined as x, -e(N and
x2 x3 XN 1, and, finally,

-1
(3.28) h3(P) k4(P) kN(P)

N-1

with the corresponding (N- 2)-dimensional right eigenspace defined as { y e N. y,
O, Z = 2 Yi 0 }. The results of 3 can be used to bound ,2(P) and ,N(P) as follows.
Using Theorem 3.1, we get

N
(3.29) },2(P) <- e N-I’

and, using Theorem 3.6, we get

(3.30) XN(P) >= --1 -+-e
N-2
N-1

If Theorem 3.5 is used with P’ corresponding to the random walk on KN, we get the
same bound for ,2(P) as in (3.29) since in this case X2(P’) -1/(N- 1), w}j
/(N(N )) for all # j, and 7r} 1/N for all i. A comparison of (3.27) and (3.29)

shows that the upper bound is off by e) /(N ), and comparing 3.28 and 3.30
shows that the lower bound is offby e)(N- 2)/(N- ). From (3.29) and (3.30),
the spectral gap ofP can be bounded as

The authors are very grateful to one ofthe referees ofthis paper for providing us with the exact eigenvalues
for Example 3.7.
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N-2
(3.31) 1-/3>-eN_ 1’

whereas the exact eigenvalues result in

min {Z, (N- 2))
(3.32) -/3 N-

Therefore, the bound of (3.31 is off by (1 + e)/(N- from the exact value of the
spectral gap for 0 < e =< (N 3)/(N ), whereas (3.31) is offby e)(N 2)/
(N- for (N 3 )/(N- < e < 1. In either case the bound on the spectral gap is
tight for large N.

Remark. If a graph G is bipartite, then/ O 0 with the corresponding eigen-
vector x having entries xi + if vertex is in one part and having entries Xi --1 if
is in the other part. Hence if we have a reversible Markov chain P on such a graph, then
Theorem 3.6 gives XN >- --1 + 23’. If Pii 0 for all i, then it can be shown that N --1,
which agrees with the lower bound since 3’ 0 in this case. On the other hand, if y 0
but Pii > 0 for some i, then P is aperiodic, which implies that XN > 1, whereas Theorem
3.6 simply gives N >- 1. In such a situation one could use the results in 10 ], in which
a lower bound for XN of a random walk is provided as follows. Let ’i denote a closed
path from a vertex to itself that contains an odd number of edges in the underlying
graph G(ft, E) of a random walk. Let be a set of n such paths in G, one for each
vertex in f. Define the quantity

O(I’)= max ( IilTri).{i,j}E {iel:{i,j}i}

Then, 10, Prop. 2 states that

2
)kN >= --1 +..

Alternatively, one could use the approach in [23 ], where a lower bound for u (]Q]) is
derived as a function of a measure of the nonbipartiteness of the graph.

4. Applications of the eigenvalue bounds. As an application of the results of 3,
we consider the simulated annealing algorithm, which is a probabilistic algorithm first
proposed in 15 for solving difficult combinatorial optimization problems in the design
of very-large-scale integrated (VLSI) circuits.

The SA algorithm can be briefly described as follows. Given a state space ft
1, 2,..., N) with a cost function C" ft -- R, the SA algorithm attempts to find a state

with minimum cost. The algorithm can be modeled by a reversible Markov chain whose
underlying graph G(ft, E) is connected. For simplicity of presentation we assume that
G is (p )-regular, where p ->- 3 is an integer. The transition probabilities are controlled
by a parameter T > 0 called the temperature. To further simplify notation we define

(4.1) e e-1/T.

We will henceforth refer to e as the temperature parameter. Given e > O, the SA
algorithm is described by the transition matrix P [Po] whose off-diagonal entries
(i :/: j) are given by

.[ p-etc(j) c(i)l if { i, j } E E,
(4.2) P0 [ 0 otherwise,
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where z] + z if z > 0, and z] + 0 if z _-< 0. The diagonal entries of P are given by

(4.3) Pii 1-- Pij.
j4i

It follows from (4.2) and (4.3) that Pii >= /o for each e ft. This, combined with
the fact that G is connected, implies that P is aperiodic. Furthermore, the equilibrium
distribution vector r(e) can be shown (see [18]) to have entries

ec(i)
(4.4) ri(e)

"(e) is called the Boltzmann distribution at temperature e. The denominator of (4.4) is
called the partition function, and we shall denote it by Z(e). Using (4.2) and (4.4), one
can verify that the SA chain is reversible and thus converges to its equilibrium distribution.
From the discussion in the rate of this convergence is governed by the time constant
r as defined by (1.4).

For the SA chain, lim_0 r(e) ’* [18 ], where -* is the optimal distribution
vector, which is zero outside the set of states with globally minimum cost and is uniformly
distributed within this set. Several researchers have shown that if e is allowed to vary
with time k according to a prespecified cooling schedule, then the resulting time-inho-
mogeneous Markov chain converges to the optimal distribution (see [8 ], [12 ], [18] for
details).

One may also hold e fixed and use the SA algorithm as an approximation method
as follows. Given a 6 > 0, suppose that a state e f of cost C(i) < Cmin + 6 is desired,
where Cmn mini C(j). For any arbitrarily small c > 0 the temperature e may be
selected so that the equilibrium probability of the SA chain’s being in the desired set of
states is at least c. If the SA chain is simulated until it is almost at equilibrium, then
a desired state will be obtained with probability at least c. The above experiment
may be repeated k times to obtain a desired state with probability at least c k, which
can be made sufficiently close to for large k. In the above approximation algorithm
the determination of a suitable temperature e is by no means an easy task, in general,
since it involves a careful study of the distribution of costs among the states. However,
this approach has been used successfully in some problems, such as finding maximum
matchings in graphs [20 ], [22] and finding integer compositions from a given set of
positive integers [17 ]. The computational time required for such an approximation al-
gorithm is determined by the time constant of the SA Markov chain, which we will
bound by using the results of 3.

Temperature asymptotics ofSA. By temperature asymptotics of SA we mean the
behavior of the spectral gap fl and time constant r as e -- 0. We will use Theorem
3.1 and Theorem 3.6 to obtain bounds for the spectral gap ofthe SA chain as a function
of e. From these results we can also bound the time required for the SA chain to ap-
proximate equilibrium at any temperature.

Let us now relate the parameters used in our bounds to the parameters of the op-
timization problem being solved by the SA Markov chain. Define Cmax maxj C(j) and
A Cmax Cmin. If Z(e) is the partition function, then wis e max {C(i)’C(J)}/(pZ(3)) for
each edge {i, j} E, and ri ec(i)/z(e) for each state ft. Therefore,
Wmin/’g’max eA//). Theorems 3.1 and 3.6 result in

#2(Q)e 2
(4.5) ))_(P) =< and )N(P) ->- --1 +-

p p

since 3’ >-- 1/p and #l(]QI) >= 0. From (4.5) and (1.4) the spectral gap and the time
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constant of the SA chain can be bounded as

2(Q)e A p
(4.6) 1-/3>= and -=<

p #2(Q)e A

when e -< [2/12(Q)] /a.
Remark. For a fixed optimization problem (i.e., fixed parameters p, A, uz(Q),

etc.), (4.6) shows that the time constant of the SA Markov chain is O(e-). The
recent work of Holley and Stroock [13] indicates that a better bound exists as e 0.
Their result is briefly summarized as follows. Let v.. denote the set of all paths betweenl,J

two veices (states) and j in the underlying graph G of the Markov chain. For each
path v define the height of the path to be h() max/ C(l) For the SA chain
define the depth parameter d maxi,yCa min z.y (h()- C(i)). Clearly, d is bounded
above by A, but it may be smaller in many instances. In [13 it is shown that as e 0
the spectral gap is O(ed) (i.e., there exist constants c and c2 such that ced

Cze d). This suggests that there is scope for improvement in the bounds ofTheorems
3.1 and 3.6 when d < A.

We will now consider the case ofthe SA chain operating under a prespecified cooling
schedule. In paicular, we show that knowledge of X at some temperature provides
information about Xz at any other smaller temperature. Consider the cooling schedule
8 ], 12 ], 18 em }, which is typically of the form em (m + )- for m 0. Note

that the case e0 corresponds to the random walk on the graph G. Let Pm denote the
transition matrix at temperature em. Using Theorem 3.5, for the case 0 < e < em we
see that (era/el)A( 2(Pm)) 2(P/)) (el/em)A( 2(Pm)). For successive
temperatures of the typical cooling schedule, this works out to

m+2 m+l
(4.7) (1 X(Pm)) (1 Xz(Pm+,)) (1 2(Pm)).

m+l m+2

For large m, (4.7) illustrates the variation of the spectral gap at successive temperatures
for the typical cooling schedule.

We will next provide an example of a cost distribution on a state space for which
the eigenvalue bound of Theorem 3.1 for the SA transition matrix is quite tight when
treated as a function of temperature e alone. We will also compare our bound with those
of Sinclair and Jerrum [22] and of Diaconis and Stroock [10] for this example. The
bound in 22 is based on an analogue ofthe expansion idea for an edge-weighted graph,
which is briefly described as follows. Consider a reversible Markov chain on state space

with transition matrix P and equilibfum distribution . The conductance of P is
defined as

(4.8) O(P) min
Z{,yct(s) py,

iS i

where the minimization is over all subsets S of states with 0 < s and Cut (S)
denotes the set of all edges u, v } in the underlying graph with u S and v S. The
conductance is also called the Cheeger constant, and the set S at which the minimum
of (4.8) is achieved is called the Cheeger set. It can be shown [22] that

O(p)
(4.9) 2O(P) Xz(P)

2

An alternative lower bound for 2 WaS developed by Diaconis and Stroock on the basis
of the Poincar6 inequality [10]. Let P, , W, and G(, E) be as in Theorem 3.1. For
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each pair of distinct states and j in f specify a canonical path ((i, j) from to j in the
underlying graph G. Denote by I((i,J)l the number ofedges in the canonical path from
to j. Let I’ denote the collection of canonical paths (one for each ordered pair (i, j) E

2 ft). Define the quantity

(4.10) K(rl max I((u, v)lrrrr
{i,j}eE ((u,v {i,j}

where the inner summation is carried out over all canonical paths (( u, v) e r that contain
the edge i, j }. Then it can be shown [10] that

(4.11) X2(P)
K(r)

A judicious choice of the set of canonical paths F is critical in developing a tight bound.
Also, the conductance may be bounded by using the set ofcanonical paths as follows.
Define the quantity

(4.12) U(r) max ,
{i,j}6E ((u,v)9{i,j}

Then, from [10], 4 1/(2U(P)) and also K(F) N/maxU(F), where/max is the length
of the longest path in . The quantity U in (4.12) is usually easier to compute than is K
in (4.10) or 4 in (4.8).

The following simple example will be used as a test case to compare the different
eigenvalue bounds.

Example 4.1. Consider a simple cycle on N 4n veices as the underlying graph
of an SA Markov chain with a cost function defined as follows:

(4.13) C(i)

ifl_-<i=<n,

2n+ 1-i if n+ 1-<i_-<2n,

i-2n if2n+ =<i_-<3n,

4n+ 1-i if3n+ =<i=<4n.

At a given e > 0 the transition matrix P is obtained from (4.2) and (4.3) by using the
costs from (4.13) and p 3. The corresponding equilibrium distribution r can be
found by using (4.4). For this SA chain we can obtain the following bounds for )kz(P).
For transition matrix P it can be shown that 7rma e)/(4 an)), Wmin
an-l( e)/( 12( an)), and #2(Q) 2( COS (’/(2n))) because the underlying
graph is a cycle on 4n vertices. Thus the bound from Theorem 3.1 gives

n-I(4.14) X2(P) > COS nn i2n
where the approximation holds for large n (uniformly in e). The conductance of the
chain in this example can be computed to be an- e)/( 3 e n)) with S
{ n, n + 1, 3n as a Cheeger set. Hence the Sinclair-Jerrum bounds from (4.9)
imply that

(4.15)
2an- ( e) >_ )t2(P) >- a2n-2( a) 2

3( a n) 18( an) 2

To compute the Diaconis-Stroock bound for this example we choose the shorter of the
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two paths from to j on the cycle as the canonical path (i, j) for each pair of distinct
states and j in ft. It is easy to see that ](i, j)] =< 2n. The number of canonical paths
containing a particular edge in the graph can be shown to be at most + 2 + +
2n n(2n + ). With this information one can bound the quantity in (4.10) as K =<
2nTrZm,n(2n + )/Wmin 3nZ(2n + )( e)/(2en-l( an)). Hence from (4.11)we
get the Diaconis-Stroock bound

(4.16)
2en-l(1 e n)

2(P) 2(3n 2n + 1)(1 e)

For a fixed n > 2 (i.e., a fixed problem) it is clear that the bound in (4.14) is superior to
the Sinclair-Jerrum lower bound in (4.15 as e 0. Comparison with the upper bound
of (4.15) shows that the bound in (4.14) is tight when treated as a function of e alone.
On the other hand, the Diaconis-Stroock bound in (4.16) has the same exponent of e

as the bound in (4.14) but is worse as a function of n.
Remark. The methods in [22] and [10] can lead to excellent bounds in certain

cases. For example, consider an SA Markov chain whose state space is the set of all
matchings in a graph on 2n vertices, which has been analyzed in [22 ]. The time constant
for such a chain has been shown to be - =< f(n)e-, where f(n) is independent of e and

is constant independent of n and e. On the other hand, the bound from Theorem 3.1
for the same chain yields - <= f (n)e -n, where f (n) is independent of e; this bound is
clearly much worse. Thus Theorem 3.1 may be too pessimistic in some cases. Also, as
remarked on earlier, Theorem 3.1 will not be directly useful when zz(Q) is not known.

The purpose of Example 4.1 was merely to illustrate an example of a reversible
Markov chain for which the eigenvalue bound of Theorem 3.1 (hence a bound on the
time constant) is tight as a function of temperature. The corresponding optimization
problem, however, is very easy since, by construction, the states 1, 2n, 2n + 1, and 4n
have the globally minimum cost of 1. The following example illustrates a difficult and
more realistic optimization problem for which one can still use Theorem 3.1 to obtain
a meaningful bound for the time constant of the corresponding SA Markov chain.

Example 4.2. Let a _-< a2 <- an be a given set of n positive integers in
ascending order, and define A (a + a2 + -k- an)/2. Let ft denote the state space
of all binary vectors of length n, and consider a state u (u, u2, un), where ui
0, }. Define the cost ofthe state u as C(u) A Z ’= ai ui I. The problem of finding

a state of minimum cost is the optimization version ofthe SUBSET_SUM problem that
is known to be NP-complete [11]. However, the SUBSET_SUM problem is pseudo-
polynomial and can be solved by using a dynamic programming approach in time poly-
nomial in A [11]. We will use our bounds to study the temperature asymptotics of the
SA Markov chain to solve SUBSET_SUM. Define the neighbors of a state u as all states
differing from u in one bit. Then the SA Markov chain has N 2 n, o n + 1, and A =<
A, and the underlying graph is the n-dimensional hypercube with tz2(Q) 2. Using
(4.6), we can bound the spectral gap and the time constant as

(4.17) /3 >= 2eA
and z <

n + e-A
n+l 2

for any 0 < e < 1. In computing both the Diaconis-Stroock and Sinclair-Jerrum bounds
in this case, a judicious choice of canonical paths must be made. Since we are not aware
ofthe best possible choice, we let I’ be the set of canonical paths used in 22 to compute
) for a random walk on the n-dimensional hypercube. In this case each edge in the
hypercube is used by 2 paths in 1. Computation of U(I’) in (4.12) requires the
evaluation of a summation comprising 2n- terms for each edge in the hypercube. It is
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easier to see that U(I’) =</ge-AJrmax 2 n-. Exact calculation of 71"ma involves computation
of the partition function; however, we will use 7rma min 1, 2-% -a) instead. Thus the
bound on spectral gap provided by the Sinclair-Jerrum bound is

(4.18) /3 >= max (2 -2n, 2A) e2A
2(n + 1)2

which is much worse than (4.17) both as a function of e and as a function of n. The
Diaconis-Stroock bound (using/max n) gives

(4 19) /3 >
2 max (2 -", eA) A

n(n+ 1)

which is comparable to (4.17 as a function of e (when e is close to 0) but is worse as a
function of n. Possible improvements may be obtained by a considerably more careful
estimation of U(I’) or a different choice of I’ or both. Such efforts have provided significant
rewards in the form oftight bounds (see the remark after Example 4.1 in many instances.
On the other hand, when one is faced with an arbitrarily specified SA chain, Theorem
3.1 yields a useful bound in cases for which the underlying structure is well understood.

Using (1.3), (1.4), and (4.17), we see that the time k required for the SA chain of
Example 4.2 to be at distance within 6 from equilibrium is at most

(1 A n )n+l A(4.20) log- + - log-e + log 2
2

e

For a fixed temperature e the expression in (4.20) is exponential in A, which does not
recommend the use of SA for solving the SUBSET_SUM problem with provably good
results. This is especially the case here because there exist dynamic programming tech-
niques that can solve SUBSET_SUM in time polynomial in A 11 ]. In practice, however,
the SA method might perform much better than what the bounds presented in this paper
allow us to show.
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AN ALGORITHM FOR THE LINEAR COMPLEMENTARITY PROBLEM
WITH A Po-MATRIX*

V. VENKATESWARANf

Abstract. This paper presents an algorithm for solving the linear complementarity problem (LCP) with a

P0-matrix (i.e., a matrix with all principal minors nonnegative). The method is based on solving a perturbed
problem for an arbitrarily small perturbation. To that end, a Bard-type algorithm for performing computations
with rational functions is developed. The algorithm has been tested on random Po-matrix problems that are
readily constructed. The results appear to bear out the viability of the method.

Key words. LCP algorithm, Po-matrix

AMS subject classification. 90C33

1. Introduction. In this paper we consider the linear complementarity problem
(LCP) (q, M) with a Po-matrix:

Find w, z R such that

w=Mz+q,
(1)

w,z>_O, wtz=O,

(M 6 Rn" fq P0, q 6 R given).

Recall that a square matrix is in the class P0 if all of its principal minors are nonnegative.
A given instance of an LCP (q, M) may or may not have a solution. By "solving an
LCP" we mean either producing a w, z) that satisfies or demonstrating that no such
pair of vectors exists.

Highly effective algorithms exist for important subclasses of the problem, such as
when M is a P-matrix (definitions follow) or a positive semidefinite matrix [1 ]-[4 ].
However, no such algorithm exists for the general problem ). Part of the difficulty lies
in the fact that when M is in Po, (q, M) may not have a solution even when the feasible
set F(q, M) { (w, z)lw Mz + q; w > 0, z > 0 is nonempty. The proposed algorithm
does not rely on the feasible set being empty to show that the LCP has no solution. In
the study of LCPs a matrix is said to belong to the class Q0 if (q, M) has a solution
whenever F(q, M) is nonempty. In this terminology existing approaches will solve the
LCP only when M is in Q0.

Our method is motivated by the fact (see Theorem that a simple perturbation
ofM results in a P-matrix. The object is to solve the perturbed problem for an arbitrarily
small perturbation. To that end we develop a Bard-type algorithm 3 for working with
rational functions. From the terminating tableau one can readily retrieve the solution or
deduce that none exists.

Such a perturbation of the LCP when M is a P0-matrix has been extensively studied
in [5]. We comment on the relationship to that work in 3. Also, our scheme can be
thought of as a special type of regularization, and as such it is closely connected to the
well-known proximal-point algorithm from monotone operator theory [6 ].

The Bard-type algorithm introduced by Murty in [3 has been widely studied; see,
for instance, the recent papers [7] and [8 ]. For algorithms that use similar least-index
arguments, see 9 ]-[ ].

Received by the editors November 28, 1990; accepted for publication (in revised form) January 4, 1992.- AT&T Bell Laboratories, Holmdel, New Jersey (ven@hocus.att.com).
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In the remainder of this section we introduce some definitions and explain our
notations. In 2 we derive the required results, and in 3 we present the algorithm. In
any practical implementation it is essential that the degree of all of the polynomials in
the tableau be bounded. We give an update scheme that ensures that the degree of no
polynomial exceeds n, the dimension of the problem. Finally, 4 describes our imple-
mentation and the computational tests that we have performed with the algorithm.

Algorithms for algebraic computation are well known [12 ]-[ 14 ]. For an algorithm
for solving a linear program when the entries in A, b, and c are polynomials, see 15 ].

Notation and definitions. IfM R"x and q R ", by Mi(qi we mean the ith row
ofM (the ith coordinate of q). We use e to denote the vector of ones, with dimension
to be inferred from the context. We denote { 1, 2,..., n by I’. Let c,/3 I’. By M, we
mean the rows ofM indexed by c, and by q we mean the subvector with components
in c. We use M, to denote the submatrix ofM whose rows and columns are indexed
by c and/3, respectively. We denote I’\ a by . We use a -/3 to denote the elements in
a that are not in/3. We use I to denote the identity matrix, with dimension suitable to
the context. We use det (M) to denote the determinant of M. To call attention to the
fact that a function fis a polynomial in e we will write f(e). At other times, to simplify
the notation, we will write finstead off(e).
M is a P-matrix if all of its principal minors are positive, and it is a positive semi-

definite PSD matrix if for all x R n, x Mx >_ O. M is strictly (row) diagonally dominant
if for every i, Mii > j M0l A strictly diagonally dominant matrix is also a P-matrix,
and a PSD matrix is also a P0-matrix. It is well known that an LCP with a P-matrix has
a unique solution for all q 6 R 16 ]. A square matrix M is said to belong to the
class Ro if it has a unique solution to LCP (0, M). M is said to be column sufficient if
xi(Mx)i < O, 1, n, implies that xi(Mx) O, 1, n, [17]. Mis said to
be row sufficient ifMr is column sufficient. M is said to be sufficient if it is both column
and row sufficient. Column sufficient (row sufficient) matrices are a subclass of Po-
matrices.

2. The perturbed problem. Our starting point is the following well-known result.
THEOREM 1. M is in Po ifand only if M + eI) is in Pfor all e > O.
Proof. See 18 ].
As indicated, our approach is to solve the perturbed problem (q, (M + eI)). We

will assume the following standard nondegeneracy condition on the q vector. With this
assumption, if has a solution, it has a unique basic feasible solution and the solutions
of the perturbed problems converge to this solution.

Assumption 1. Every feasible basis of F(q, M) is nondegenerate.
THEOREM 2 [19 ]. Let M Po, and let Assumption hoM. Let q, M) have a

solution. Then the problem has a unique basicfeasible solution.
Proof. If (q, M) has a solution, it has a basic feasible solution. Let (-M./, I./),

K
___

1, denote such a basis. For e > 0 let M(e) M + eI. By Assumption

(2)
ZK --[MKK]-lqK > O,

w: qi- MIorMqI > O.

For sufficiently small e > O, M(e)KK is nonsingular, and since (2) holds,

z(K)i( --[M(e)KK]-lqK > O,

w K qlr: M e Il M e Il ql > O

Therefore, z(K) (z(K)/, 0), w(K) (0, w(K)/) is a nondegenerate solution to
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(q, M(e)). By contradiction, let (--M.L, I.), L
_

I’, L 4: K, denote a different com-
plementary feasible basis for (q, M). Then for sufficiently small e > 0, (w(K), z(K))
and (w(L), z(L)) are two distinct nondegenerate solutions to the P-matrix LCP,
q, M(e ), a contradiction. Zl

Next, we note that if the LCP has a solution, the solution of the perturbed problem,
as a function of e, will converge to this solution as e tends to 0.

THEOREM 3. Let M E Po, and let Assumption hold. Let w*, z*) solve q, M).
Let (-M.:, I.i) denote the unique solution basis. Let (w(e), z(e)) denote the unique
solution to q, M(e)). Thenfor all sufficiently small e > O, (-M(e).i, I.i) is the solution
basis of(q, M(e)). Furthermore, (w(e), z(e)) - (w*, z*) as e -- O.

Proof. The proof of this theorem is similar to proof of Theorem 2; also see
[51.

The next result shows that in the event that (q, M) has no solution, there is at least
one complementary basis that is feasible for all (q, M(e)) for all e > 0 sufficiently small.
This result is needed to ensure that the proposed algorithm terminates in a finite number
of steps.

THEOREM 4. Let M Po. Then there exists an index set K
_

I’ such that
(-M(e).i(, I.i) is a feasible basis for (q, M(e)) for all sufficiently small e > O.

Proof. Consider a fixed e > 0. Let (-M(e).i(, I./), K
___

F, denote the unique
solution basis for this P-matrix LCP. Then the solution z (z/(, 0), w (0, w/) is given
by

zi( M( e)m(]-l qi(,

wR qR M(e)zz[M(e)::]-l qI.

Viewed as a function of e, each component of z/(, w/ is a rational function of e. This
follows from the fact that each entry of [M(e)/(:] -l is a ratio of polynomials; the de-
nominator is the determinant, det (M(e)//(), and the numerator is a cofactor ofM(
Since a rational function can change sign only finitely many times, as e becomes arbitrarily
small either (-M(e)./(, I./) will remain feasible or for all 0 < e < and for some > 0
it will remain infeasible. Since there are only finitely many choices for K and since for
every e > 0, (q, M(e)) must have a solution, the result follows.

THEOREM 5. Let M Po. For e > 0 let w(e), z(e)) denote the unique solution
to (q, M(e)). Further, let (q, M) have no solution. Then []w(ei), z(ei)l[ -- as
{;}0.

Proof. As in Theorem 4, let K denote the index set that is the unique feasible basis
for (q, M(e)) for all arbitrarily small e > 0. By contradiction, if w(e i), z(e i) is bounded,
the solutions to the perturbed problems have a limit w*, z* on a subsequence. On this
subsequence

w/ lim w(e)/ >_ 0
ei-- O

(because w(ei): > 0),

z/( lim z(ei)i( > 0
ei.- O

w=0,

(because z ei) > 0 ),

Since w(e i) Mz(e i) + q, w* Mz* + q. Hence (w*, z*) solves (q, M), contradicting
the hypothesis. V1
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In view of Theorems 3 and 4, there exists an index set K
_

I’ and an > 0 such
that both of the following hold:

(i) For all 0 < e < , (-M(e).:, I./) is a solution basis for (q, M(e)).
(ii) Either (-M./, I./) is a solution basis for (q, M) or the LCP has no solution.

In the algorithm below we solve (q, M(e)) algebraically with a view to determining this
index set K.

3. Bard-type algorithm for lolynomial entries. For a description of the original
Bard-type algorithm for P-matrix LCPs, see [3 ]. Here, we develop a variant that will
solve LCPs with P0-matrices. All the entries in any intermediate tableau are taken to be
rational functions. In the input data we provide (M + el) for M; in what follows we use
M to denote this perturbed matrix. The algorithm then is as follows:

Step O. Set B I. Proceed to Step 1.
Step 1. Let t] B-lq. Each ; Pi (e)/Qi (e) is a rational function. Let j
min_<i_<n i" Pi(e)/Qi(e)l=o+ < 0}. If no suchj exists, go to Step 3; else proceed to
Step 2.
Step 2. If-M.j is in the basis, replace it with I.j. Else, replace I.; in the basis with -M.j..
Let B denote the new basis matrix. Go to Step 1.
Step 3. Let B (-M./, I./), K

_
I’. Let q lim, 0 ti, _< _< n. If q" for any

< _< n, terminate; by Theorem 3, (q, M) has no solution. Else, z* (q, 0), w*
(0, q) is the solution by continuity, as in the proof of Theorem 5.

We make the following remarks:
1. We show below how the basis inverse and may be updated so that the degree

of no polynomial in their representation exceeds n, the dimension of the problem. Then
the space required to store each rational function entry is no more than 2n + 2, (n +
being the space necessary to store the (n + coefficients of each degree-n polynomial.

2. To check whether Pi(e)/Qi(e)[=o < 0, we proceed as follows. Ifa is the coef-
ficient of the lowest-degree term in P; (e), say, of degree k, and if b is the lowest-degree
term in Qi (e), say, of degree l, then Pi (e) / Qi (e) I 0 < 0 if and only if a / b < 0. Also,

lim Pi e i 0 if k > l,

0 Qi(e)
ct) ifl > k,

a/b ifk l;

cf. Step 3.
3. The index j chosen in Step is precisely the least index prescribed in [3]. As in

the proof of Theorem 4, each i is a rational function of e and can change sign only
finitely many times. Thus for each basis B there exists an (B) such that, for all 0 < e <
(B), the index j (Step is the least index of [3]. Since there are only a finite number

of bases, there exists an > 0 such that, for all 0 < e < , Step produces the least index
for every basis.

The algorithm in 3 terminates in a finite number of steps when the matrix is a P-
matrix. In view of the fact that (M + el) P for all e > 0 and of the remarks following
Theorem 5, the above algorithm also terminates in a finite number of steps.

To implement the algorithm it is sufficient to keep B-1 and . Entries ofB -1 are
rational functions. We will provide an update scheme that ensures that the denominators
of all of the entries in B- are identical and, in fact, are equal to det (B). With this
invariant it is easy to see that the numerators of the entries in B- are polynomials of
degree no greater than n. If it is assumed that this invariant holds at some stage, Theorem
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6 shows how it can be maintained during a pivot. The key is to perform certain divisions.
We show, moreover, that in each case the divisor divides the dividend exactly, without
remainder. (Note that in terms of data structures for storing B-1 q, it suffices to keep
only the numerators since the denominators are all identical.

THEOREM 6. Let B (-M.I, I.i;:), K
_

F, denote a complementary basis. Let
B- [bk]. For <_ k, <_ n, in the representation of bk as a ratio ofpolynomials
let the denominator equal d(e) det (B). Let F. If K, let u I.i and K’ K-

}. If K, let u -M.i and K’ K U { ). Let B’ -M.I,, I.i,). Let

p2()
bj.:=

d(e)
<k,j<n,

(B_u) v(e)
< k <_ n,

d(e)

(B_q)k r(e)
< k < n.

d(e)

Then thefollowing hold:
(i) vi det (B’),
(ii) dl(PkjVi PijVk) and dl(rkvi riVk).
Proof. Case K). Since

u=I.i and B-l=[ -M: 0 ]M:tcMTc I::

i B- ]ii

(B)ii
det (B)

det (B’)
det (B)

where (B)ii is the (i, i) cofactor of B. Therefore, b vi/d implies that/)i det (B’).
Case 2 K). Then u -M.i, and

l?ti B-1M. ]i

MI,I, 0
det

M/,/, I/,c,

det (B)

det (B’)
det (B)

(by Cramer’s rule ),

Again, tTi vi/d implies that vi det (B’).
(ii) Let [B’] - [b’j]. Then, for _< k,j <_ n, each entry b;j can be expressed as

a rational function, with denominator d’ det (B’) and numerator an appropriate cofactor
of B’, pj. Hence if b,. p;i/d’, by pivoting on zi, b,./can also be expressed as

p.i Vk Pi# d Pkd’-- VkPij

d d dd’ dd’
(since vi d’).

Therefore, dl (pvi vpi).
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Similarly, if , ([B’]-q) r’/d’, again by pivoting, can be expressed as

rk v ri d rkd’ rivk
d ddd’ dd’

Therefore, dl(rvi rive).
In view of the above theorem, with v [p]u, [P0], r, and d can be updated as

follows:

PkjVi PijVk
<_k,j<_n, k4:i,Pky d

rkl) rl)k
rk - <_k < n, k4: i,

d

We make the following observations:
1. With B I, evidently the property in the hypothesis of Theorem 6 holds. In all

subsequent iterations the property holds by Theorem 6 and induction. With this scheme,
since each p/..j is an appropriate cofactor of B, its degree does not exceed n. Since ri

’= Pijq9, its degree is also bounded by n. Clearly, the degree of d det (B) also does
not exceed n.

2. It is easy to see that d above is always a monic polynomial. (This follows from
our perturbation scheme M -- M + el. Hence in evaluating P9, r above, no numeric
division is involved. The algorithm is, therefore, an all-integer, exact algorithm.

3. In the terminal iteration, if the polynomial d has no constant term, at e 0 the
set of columns representing the basis is no longer linearly independent. By Theorem 3
(and Assumption 1), (q, M) has no solution. Conversely, if d(e) has a constant term,
d(0) 4:0 and the basis is also a basis of ). Also, the entries in q* are then finite and
clearly w (0, q/), z (q, 0) solves by continuity.

We illustrate the algorithm with a numerical example.
Example.

M- -1 0 q=
0 0

Iteration 1.

B=I, d= 1, [pig]=I,

The entering variable is z.
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Iteration 2.

The entering variable is z2.
Iteration 3.

0 ]
-2

3+e

The entering variable is w.
Iteration 4.

d= -1 e,

-1 0 -e -e 0 -1 +2e
B= 0 -e v= d -e, [pij] 0 0 r= -1

0 0 0 0 -e

-1 +2e

The terminating criterion is satisfied. Since d(0) 0, the problem has no solution. We
note that for this problem, F(q, M) is in fact nonempty.

We now comment on the assumption that we have used. To conclude that
LCP (q, M) has no solution when the solutions to LCP (q, M(e)) diverge, we need to
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impose further conditions on the problem. Assumption is one possible condition. Some
others are the following:

(i) Let B lim_0+ B(e), where B(e) is the solution basis to LCP (q, M(e)).
Then we require { x R lBx 0, x > 0 { 0 }. This is the condition derived by Gana
in [5].

(ii) Me R0.
(iii) M PSD, and LCP (q, M) is solvable.
Note that whereas all of the above are sufficient conditions, none are necessary.

Indeed, our example above does not satisfy any of the conditions (i)-(iii). However, it
satisfies Assumption 1, and therefore we are able to conclude that the LCP does not have
a solution when the solutions to the perturbed problems diverge.

In our development we have used Assumption since it is simple and has the
property that given a matrix M P0, it is satisfied for almost all q e R n.

4. Algorithm implementation. Our code is written in the C programming language
and makes use of doubly linked lists to store and manipulate polynomials. As indicated
earlier, the algorithm is an all-integer, exact algorithm. The code is designed for the IBM
3090 computer; we perform all arithmetic operations with a radix of 1016. Polynomial
multiplication is done by first computing the convolution of the coefficients. To carry
out the multiple-precision arithmetic operations involved we have used the classical al-
gorithms from [20 ]. The only division operation that is performed is in computing
(z*, w*) finally (Step 3). For this we use an approximate multiple-precision division
algorithm.

It is not straightforward to generate a P0-matrix that is also neither a P-matrix nor
a positive semidefinite matrix. Our method has been to generate a lower-triangular matrix
with a nonnegative (but not positive) diagonal. By making the off-diagonal entries suitably
large, we prevent the matrix from becoming positive semidefinite. Also, as mentioned
earlier, sufficient and column-sufficient matrices are contained in the class P0. We have
used a method proposed in [11] to construct simple test matrices of these types as well.
In addition, to check the robustness of our procedure we also tested the algorithm on
certain P and positive semidefinite matrices. To exercise the algorithm thoroughly some
of these latter problems were constructed not to have solutions. We give below complete
details of how these problems were generated. In each set, we tested the algorithm on
problems of size n 10, 20, and 30. Entries of M and q were all integers with three
significant digits. Average computation times are shown in Table 1. In each case the time
reported is the average for 10 problems. Solutions from the first two sets were verified
by using Lemke’s algorithm implemented as in 21 ]. Also, it is known that when M is
a sufficient matrix, the LCP can be solved by Lemke’s algorithm [17 ]. This provided a
check of our solution for those instances. For the column-sufficient matrices (designed
not to be row sufficient) we had no adequate method of verifying our solution. However,
we did run Lemke’s algorithm on these problems as well. In no instance did it find a
solution when our algorithm had failed to find one.

1. Strictly diagonally dominant matrices. Off-diagonal entries were obtained by
sampling from the uniform distribution U[-1000, 1000] and truncating to integers.
Diagonal entries were determined as

Mi _, [Mini + U[0, 50].
j=l
j4i

Entries for q were drawn from U[ 1000, 1000 ].
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TABLE
Average computation times for different problem types and dimensions.

CPU seconds

n 10 n 20 n 30

Strictly diagonal dominant M 0.94 41.53 420.13
2(a) PSD M 0.91 58.6 361.67
2(b) PSD M without solution 3.68 92.93 643.23
3(a) Special P0 0.33 7.45 42.45
3(b) Special P0 without solution 1.27 21.83 121.51
4(a) Sufficient M 8.36 27.76 224.97
4(b) Column-sufficient M 1.45 22.09 156.33

2. Positive semidefinite matrices. The first set of problems that we tried involved
random symmetric positive semidefinite matrices and random q vectors. Some of the
problem instances had solutions, whereas others did not. To further exercise the algorithm
we put together a second set of problems without solutions. Results for these two sets of
problems are shown under the headings "PSD" and "PSD without solution" in Table
1. Details on how these problems were generated follow.

2 (a). PSD. M was constructed to be symmetric positive semidefinite by setting

M AA T (A lower triangular, PSD).

Roughly a third of the diagonal entries of A were randomly set to zero. Off-diagonal
entries ofA were generated as

Aj U[-d, d] (d 3000.0 / n, n dimension of the problem).

The limit d, above, is designed to keep the largest entry in M within [-1000, 1000 ].
The expression for d follows from the fact the variance of U[ a, b is b a) 2 / 12. Entries
for q were drawn from U[ 1000, 1000 ].

2 (b). PSD without solution. First the matrix M was constructed as above. Then a
vector d satisfying

MTd <- O, d > 0, etd

was obtained (if one existed) by solving an LP. Then q was constructed as

qi {-diUI- 000, 0001

if di >0,

ifdi 0.

With this construction qtd < 0 and the LCP has no solution.
3. Special Po-matrices. Mwas constructed to be lower triangular with a nonnegative

diagonal. Roughly a third ofthe diagonal entries were randomly set to zero. Off-diagonal
entries were chosen from U[500, 1000] or U[-1000, -500] with a probability of 0.5.
Nonzero diagonal entries were drawn from U[ 1,300]. A matrix M constructed in this
manner is in P0 but, in general, is not positive semidefinite. Entries for q were drawn
from U[ 1000, 1000 ]. Obviously, such LCPs can be solved by backsubstitution.

Step 0. - q, - 1.
Step 1. If i < 0, Mii 0, LCP has no solution; terminate. Else, set zi -4i/Mii,

wi 0. If ti > 0, set zi O, wi i. Set t - t + M.iz. Set - + 1. If _< n, repeat
Step 1. Else, terminate with a solution (w, z).
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It is clear that if i 0 in Step and if q is also in F(q, M), it is degenerate. Hence
to satisfy Assumption 1, if i 0 in Step 1, we perturb qi by setting qi -- qi + 1. Results
for problems with and without solutions are reported separately in Table under the
headings "Special Po" and "Special P0 without solution." In every instance, the algorithm
either produced a solution or correctly showed that none exists. The Lemke algorithm
terminated on a ray in each case. For the problems with a solution, this confirms that
the matrix was not positive semidefinite. Among the problems with no solution,
there were eight with nonempty feasible sets (three each with n 10, 20 and two
with n 30).

4. Sufficient and column-sufficient matrices. In 11 it is shown that ifNl is sufficient
(column sufficient), the matrix M constructed as follows is also sufficient (column suf-
ficient):

Nl Nn a
0

M= a.b < 0, c>0.

Nn Nn 0
b0 0 c

To construct a sufficient matrix we start with a sufficient matrix [N and inductively
build it up to size n n by using the above result. At each stage, [a[, [b[, and c were
drawn from U[ 1, 1000 and c was set to 0 with a probability of 0.25. (The initial seed
Nl was also chosen likewise.) To generate a column-sufficient matrix, we start instead
with a 2 2 matrix Nil of the form

[a 01b 0
a U[1, 1000], b U[- 1000, 1000 ].

Note that such a matrix is column sufficient but not sufficient. In the case ofthe sufficient-
matrix problems, entries for q were randomly drawn from U[- 1000, 1000 ]. In the case
of the column sufficient matrix problems, on the other hand, q was chosen so that the
problems would have solutions, with high probability. With M constructed as above,
strictly complementary solution vectors zi* U[ 0, ], w U[ 1, 1000 are generated
and q is set equal to (w Mz). (Each zj is nonzero with probability 0.5.) However,
since the input to our algorithm must be all integer (obtained from M, q by rounding
down), the procedure does not always guarantee a solution.

The results for the sufficient-matrix problems were verified in each case by using
Lemke’s algorithm. As constructed, these problems tend not to have solutions, i.e., 60%
of the problems with n 10 did not have solutions, and none of the problems had
solutions for n 30.

With the column-sufficient-matrix problems, our algorithm found solutions in 24
instances (out of 30). As mentioned earlier, our procedure is not guaranteed to produce
problems with solutions. Also, since these matrices have a zero column and since there
is a 0.5 probability of using this column in generating q, these problems tend not to
satisfy Assumption 1. In such instances our algorithm is not guaranteed to find a solution.

As mentioned earlier, we also ran Lemke’s algorithm on each problem. It produced
a solution in only 11 instances. In no instance did Lemke’s algorithm produce a solution
when our algorithm had failed to find one.

In summary, from these computational tests it would appear that the method pre-
sented here holds promise as a means for solving LCPs with P0-matrices.
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ROBUST CONTROL OF DELAY FEEDBACK SYSTEMS
WITH BOUNDED UNCERTAINTY*

R. T. YANUSHEVSKY-

Abstract. The problem of the analytical design of controllers for a class of delay plants with uncertain
parameters is considered. The proposed procedure of the synthesis of a class of robust time-invariant linear and
nonlinear control systems with delay is based on the consideration ofan optimal control problem with a specified
performance index for a linear plant with specified parameters.

Key words, linear delay systems, nonlinear delay systems, robust delay systems, robust control
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Introduction. Robustness of control systems refers to the ability of the system to
maintain stability and/or performance characteristics in the presence of parameter un-
certainties. Intensive research in the area of robust control was inspired by the Kharitonov
theorem, which is related to the asymptotic stability of a family of systems described by
linear differential equations [12]. Different generalizations of the Kharitonov theorem
for continuous and discrete linear systems in the time and frequency domains have been
discussed in [2]-[5], [7], [9], [10], [16], [17].

Based on criteria similar to the well-known criteria in the classical automatic control
theory, the problem of robust stability in linear time-invariant closed-loop systems with
parametric uncertainty is formulated essentially as the analysis problem. By using the
Kharitonov-type theorem, we can only check if the system with perturbed parameters
remains stable. There exists no effective design procedure of changing the controller
parameters to make the real (not nominal) system asymptotically stable.

Parallel with the approach mentioned above, the Lyapunov-Bellman method is
used to design controllers for systems with uncertain dynamics (see, e.g., [1], [8], [14],
15 ], 22 ], 23 ]). In 14 ], a measure of stability robustness was presented in terms of

the solution ofa Lyapunov matrix equation. A modified Riccati equation is used in 14 ],
15 ], 22 ], 23 to design the controller, which guarantees robust stability. The robustness
problem is combined with the known He and H problems.

Unlike the literature devoted to robustness of systems described by ordinary differ-
ential equations, we can point out only some papers related to the robustness problem
for systems with delays [6], [11] which generalize results obtained in [4], [12].

This paper presents the procedure of the robust delay control systems design. The
proposed approach differs from the techniques based on the use of the Kharitonov-type
theorems. It is based on the consideration ofan optimal control problem with a specified
performance index.

Statement of the problem and main results. Let us consider the linear uniformly
controllable plant described by the equation

2(t) Aix(t- ri) + Bu(t)
(1) i=0

x(t)= ck(t), -r <=t <=O,

where x is an m-dimensional state space vector; u is an n-dimensional control vector;

* Received by the editors August 6, 1990; accepted for publication (in revised form) January 6, 1992.- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742.
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Ai [aikj] and B [bkj] are matrices of appropriate dimensions; 0 7.0 < < 7.l--
7. are time delays associated with the system coordinates; and x(t) is the initial function
ofx(t).

It is assumed first that only elements of the state matrices are not known exactly,
i.e.,

(2) A li <= Ai <= A2i,
(1) (2)where A li [aj and Azi [aikj characterize the upper and lower bounds of A;,

respectively (the inequalities (2) are componentwise).
The robust control problem consists in finding state feedback controller equations,

which make the closed-loop system asymptotically stable for all state matrices of the
form (2).

The well-known procedure of analytical controller design for systems of the form
is based on minimization of the functional

T( T((3) Jo - (x t)Qx(t) + cu t)u(t)) dt,

where Q [qi] is a nonnegative definite symmetric matrix and c is a positive constant
(see, e.g., [19], [20]).

The optimal control law has the form [19], [20]

(4) u(t) Br Wx(t) + B()x(t + ) d

where the matrices B(() and W, together with P((, o-), satisfy the Riccati equations

(5) O + AgW + WAo WBBVW + B(O) + BT(o) O,

(6)
dB() AB() P(O, ) +- WBBTB() O, -7- < < O,
d c

OP( g;, or) T((7)
OP(, r) + +-B )BBTB(r) 0, -7. < < 0, -r < < 0,
0 0r c

(8) WAi B(-r-) + B(-r-) O, (i= 1, l- 1),

(9) AB() P(-7.i, ) + P(-7.i, ) 0, (i- l-- 1),

(10) AIB(g;) P(-7., ) O, WAl- B(-7.) O.

(The above equations correspond to the particular case of the expressions given in I19];
the upper indices "+" and "-" denote the left (7.i 0) and the right (7.i + 0) limits at
the points of discontinuity.)

The minimal value of 3 V(x()) follows from

2V(t+ () xr(t)Wx(t)+
(11)

+ x + )P(, a)x(t + o) dr d.

It is known [20] (see also Appendix that if the control law (4) minimizes the
functional (3) subject to system ), then the control law

(12) u(t)
1 Br Wx(t) + B(f;)e’x(t + f;) d(
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minimizes the functional

(13) e23,J1 - (xr(tlQx(t) + cur(t)u(t)) dt

subject to the system ).
We will consider how this property can be used to solve the problem of robust

control of system ).
In practice, linear differential-difference systems are analysed by considering their

approximation. Moreover, the solution of the Riccati equation (5)-(10) is obtained
approximately on the basis of a discrete approximation. In the future, we will use the
finite-dimensional approximation of system

(14) 20(t) Aoxo(t) + Aizi(t) + Bu(t),
i=1

rj i(t) + zi(t) zi-l(t) (i N)

Zo(t) Xo(t), z(t)--
and the difference approximation of (5)-(10) (we do not give here the boundary and
discontinuity conditions; see [19 ], [20 ])

(15) Q + AW + WA WBBrW + B[0] + B[0] 0,

N
(16) (B[1 i] B[-i]) AB[1 i] P[0, i] + WBBrB[1 i] 0,

"r c

(17)

N
--(P[1 i, -j] P[-i, -j] + P[1 i, -j] P[1 i,-j])
7"

+ Br[1 i]BBrB[1 -j] O,
C

where Xo(t) and z(t) are m-dimensional vectors; N is an integer.

0 0

By introducing the state and input matrices

Ao 0 A1

NI 0 0
Tl

N N
0 I---I 0 0

7" 7"

(18) AN-

N
I

N
I

7" 7"

BN

WIN+I
W2’,N+

WN+ N+

and the positive definite matrix

WI
(19) WN W21

WN+ 1,1

W12

WN + 1,2

B
0
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with elements W W, (N/t)Wi B[1 i], and (N/-t)2Wo P[1 i, -j], the
approximate system (14) with the state vector XN(t) {x0(t), z(t), ZN(t)), the
system of difference equations 15 )-( 17 ), the optimal control blN[XN( t)] in this system
with respect to the functional (3), and the approximate optimal value VN of the perfor-
mance index 11 can be presented in the form [19], [20]

(20) N( t) ANNN(t) -}- BNUN( t),

(21 biN(t) BNWNXN(t),

(22) QN + A TNWN " WNAN WNBNBvWN O,

(23) VN(XO, Zi - xTNWNXN,

where Uu(t) denotes the control of the approximate system and

(24) QN=[0Q 001"
The next consideration is based on the following theorems [19], [20].
TOM 1. Let u[x(t) ], x[ u(t) ], V( x(f;)), and UN[XN(t)], XN[ UN( t)], VN be the

optimal solutions ofthe original ), (4), 11 and approximate (20), (21 ), (23) quadratic
cost optimal problems. Then, for any arbitrary small 6 > 0, a number No can befound
such that for all N >= No

(25) ]Ix(t)- x0(t) 2 dt < 6,

(26) V(x()) VN] < 0.5(1 + q)6.

The symbol I]" 2 denotes the square ofthe euclidean norm ofthe corresponding vector;
q max,.i q,.i.)

This theorem justifies the approximation of the type 14)-(23 for the study of the
given class of delayed systems.

The concept of the strong dominant matrices and the dominant matrices in the
following discussion is based on comparing the performance of optimal systems (the
minimal values of the cost functionals) with various state matrices.

Let WON-- WN -- AWN, A,i Ai + AAi, A,N AN q- AAN(i O, 1,..., l)and

AAN 0 0 0 0

0 0 0 0

where WON and WN correspond to the optimal solutions (22) that are the approximations
of the optimal solutions for the original system with the state matrices A,o + 3,I,
A,ieri, and Ai, respectively; A, and A are state matrices of family (2); ZXA, AWN,
and ZXAN are some matrices, with ZXAN being formed from A,N (see 18 ))corresponding
toA,; (i 0, 1,..., l).

THEOREM 2. Suppose WON and WN correspond to the optimal solutions (22)for
the approximate systems (14) ((20)) with the state submatrices A,o + 3"1 and A,ie"rri

and with the state submatrices Ai A,i AAi 1,..., l) offamily (2). Ifthere exist
No and "1 >= 0 such that, for all N >= No,
(27) QN( WON 23’ WON .qt_ AAvWoN -{" WoNAAN
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is a positive definite matrix for all AAi corresponding to Ai offamily (2), then WON
WN > 0for all A offamily (2) in the case 3" > 0 andfor all A 4 A,i in the case "y O.

Proof. The optimal values WON and WN of (3) corresponding to the matrices
A,o + "yI, A,ei and arbitrary matrices of family (2), respectively, satisfy the Riccati
equations

(28) QN qt_ 2")’WON qt_ A T,NWON -+" WoNA,N WoNBNBTNWoN O,

(29) QN -[- A TNWN -- WNAN WNBNBTNWN O.

Subtracting (29) from (28), we have

WONWON -Jff AA + WONAAN + A TN AWN -Ji- A WNAN

WNBNBNWN WNBNBcAWN
c c c

AWNBNBfcAWN O,

or, according to (27),

(30)
QN(WoN) + AN BNBvWN AWN d- AWN AN- BNBfWN

AWNBNB TN A WN O.

The Riccati equation (30) corresponds to an asymptotically stable system with the
state and input matrices AN (1/)BNBfcWN and BN, respectively. It has a positive
definite solution AWN > 0 if QN(WoN) > 0 [18]. The positive definiteness of QN(WoN)
for all N >= No guarantees WON WN > 0 for all Ai of family (2) in the case -y > 0, and
for all mi A,i in the case

DEFINITION 1. The state matrices A,; (i 0, 1,..., l) of family (2) of system
are called the strong dominant matrices if, for the corresponding family ofthe approximate
systems (14) and (2), a number No can be found such that condition (27) is satisfied
for all N >= No and -y 0.

DEFINITION 2. The state matrices A,0 + q/I and A,iei (i 1, l) are called
the dominant state matrices of family (2) of system if, for the corresponding family
of the approximate systems (14) and (2), a number No and -y > 0 can be found such
that condition (27) is satisfied for all N => No.

According to Theorem 2, the following property of dominant and strong dominant
matrices can be established.

For the system ((14)) with strong dominant matrices, the minimal value of the
cost functional (3) is more than that for the system with any other matrices of family
(2), i.e., Vo(x()) V(x())or VON> VN(WoN> Wu) forN>- No.

System with dominant matrices has the minimal value of the cost functional
3 ), which is more than its minimal value for arbitrary matrices of family (2). Formally,

the system with the dominant matrices can be considered as the system with the strong
dominant matrices of the extended domain (2), i.e.,

(31)
All <= Ai < A2i or Ai A,ie, 1,...,

A10 --< Ao < A20 or A0 A,0 + "yI.
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If system with the state matrices has no strong dominant matrices, we can build
such matrices by extending domain (2). By choosing certain A,i (i O, 1, l) of
family (2) and by including the matrices A,0 + 3"1 and A,iei (i l) in the
extended domain (see (31)), we can expect that for some 3" > 0 condition (27) will
be satisfied.

Remark. It is more attractive to introduce the dominant and the strong dominant
matrices not on the basis of condition (27) but on the basis oftheir established property.
This would widen a class ofdominant matrices. Moreover, the existence ofthe dominant
matrices of type A,0 + 3’1 and A,ie"Yi (i 1,..., 1) would follow from the fact that the
minimal value of 13 increases with an increase of 3’. However, because the established
condition (27) is the sufficient condition ofthe existence ofthe strong dominant matrices
and the dominant matrices, the definitions ofthese matrices are linked with this condition.
By analyzing (27) we can expect that for large 3’ the first term of (27) will be dominant
so that QN(WoN) will be positive definite. This would mean that there always exists the
possibility to choose the proper 3" from the sufficient condition (27). However, this
problem needs special consideration.

THEOREM 3. Suppose system with the elements ofthe state matrices Ai O,
1, 1) satisfying (2) has strong dominant matrices A,i (i 0, 1, l). Then, the
optimal control law (4), which minimizes the cost functional (3) subject to system
with these matrices, makes the system and (4) asymptotically stablefor all matrices
A O, 1,..., l) satisfying (2).

Proof. For arbitrary A/. 0, 1,..., 1) offamily (2) there exists the optimal control
(4) and the positive definite solution W, B(), and P(, a) ofthe Riccati equations (5)-
(10) (the quantities corresponding to the strong dominant matrices are denoted by the
lower index "0"). Consider the system with arbitrary state matrices Ai and the control
(4) determined for the strong dominant matrices

(32) 2(t) Ax(t z) BB r Wox(t) + Bo(gz)x(t + f:) dg:
i=0 C

Its finite approximation has the form

33 N(t) ANXN(t) BNBWoNXN(t).
C

The derivative of the positive definite form VON 1/2x(t)WONXN(t) along (33)

dVoN
2

dt

(34) x(AvWoN -I- WoNAN 2c WNBNBcWN)xN

x ru(ANWON ql_ WoNAoN AAvWON WONAAN c2 WoNBNBNWoN)X
Xv(--QN WoNBNBcWoN (AAvWoN -JI- WoNAAN))XN < O.

Its negative definiteness follows immediately from the nonnegative definiteness of
AAfcWoN + WoNAAN (see (27)). Hence, system 33 is asymptotically stable for all state
matrices Ai (i O, l) of family (2). Theorem establishes the proximity of
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behavior of the approximate and original closed-loop optimal systems (14) and (1).
Analogous to the proof of Theorem 1, the proximity of the solutions of (32) and (33)
can be established. Therefore, system (32) is asymptotically stable for all matrices
(i 0, 1, 1)of(2). 73

THEOREM 4. Suppose system with uncertain parameters (2) has dominant state
matrices A,o + /I and A,ie where A,i O, l) arefixed matrices offamily
(2). Then, optimal control law (12) that minimizes the cost functional (13) subject to
system with thefixedA,i 0, 1,..., l) makes the system and (12) asymptotically
stablefor all state matrices A satisfying (2).

Proof. The minimization of the functional (13) subject to is equivalent to the
minimization of 3 subject to the system with state matrices A,o + 3’1 and A,ie (see
Appendix ). The existence of dominant state matrices is equivalent to the existence of
the strong dominant matrices oftype A,o + ,I and A,e for system with uncertain
parameters belonging to domain (31). The needed result follows immediately from
Theorem 3.

The problem ofrobust control of system is solved in two steps. First, an estimate
of the appropriate 3’ should be established. Then, the optimal control problem (13) for
system (1) with fixed constant parameters is considered. The chosen state dominant
matrices should satisfy (27).

As an estimate of 3’, the upper bound to the real parts of the eigenvalues of of
family (2) can be used, i.e., such a number that for any matrices ofA; (i 0, 1,..., l)
satisfying (2) the zeros of the characteristic determinant det (sI- =0 Aie-is) are in
the half plane s: Re s =< 3’ (see Appendix 2).

(35a) 3 max[l, (m+e)maXr,aikj IMri]
Res_0

(35b) 3’ min max Z Z aik#[, max Z aiKyl
k,aikj j 0 j,aikj j

(35c) 3’ m max [aikj + aij, 1,
k,j,aikj 0

where Mr(s) denotes the sum of all the principle minors of order r, =< r _-< rn of the
matrix =0 Aie-rs; e is a small positive number.

Now we assume that the elements of the input matrix B belong to a domain, which
is described by

(36) B <- B =< B2,

where, unlike (2), the upper and lower bounds of bk9 are assumed to have the same sign.
Such a condition corresponds to the realistic case when an investigator knows qual-

itatively (but not quantitatively) how the controls influence the state variables.
TttEOREM 5. Let the control (12) be determinedfor thefunctional 13 ), arbitrary

state matrices of the form (2), which correspond to the dominant state matrices A.o +
"I, A.ie and the input matrix equal to B. Then, the closed-loop system and (12)
are asymptotically stable for all the matrices A O, 1, l) and B oftheform (2)
and (36), respectively.

This theorem can be considered as part of the more general theorem that will be
given below.
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Let us consider the nonlinear controllable plant of the type

(37) A(t) Aix(t- ri) + Bg(u(t)),
i=0

where Ai and B are matrices of the form (2) and (36); g(u) (g(u),..., g(un)) is a
vector function whose elements satisfy the conditions

2 < uigi(bti) hiO1 > 0 (i n)(38) hiui
(It is assumed that g(u) is smooth enough to guarantee the existence of the solution of
(37) for any given initial conditions and controls u.)

THEOREM 6. Let there exist the optimal solution (12) ofthe problem and 13
for Ai of the form (2) that correspond to the dominant state matrices A,o + 3’1,
A,iei, and B BH, H H >= O, H (hii) > O, and H (hi) > O. Then the
nonlinear system (12) and (37) is absolutely stablefor all Ai and B oftheform (2) and
36 ), respectively.

For any fixed Ai and B, the control (4) of system with the input matrix BH,
which is optimal with respect to the performance index (3), or the control (12), which
is optimal with respect to the performance index (13), makes the nonlinear system 37
asymptotically stable (see the corresponding theorem in [21 and Appendix 3).

In the case of B belonging to the domain (36) we can describe the term Bg(u) by
introducing a set of nonlinear functions (u) satisfying (38) and the condition Bg(u)
Bl(u). This is due to the fact that only the lower bound is used in (38).

Hence, instead of system (37) with the family of input matrices B and the given
g(u), we can examine the nonlinear system with the constant matrix

(39) A(t) Aix(t ri) + Bl(u),
i=0

where the vector function (u) satisfies condition (38).
According to the theorem mentioned above, the system (37) and (12) under the

control determined for B BH is asymptotically stable.
Finally, according to Theorem 4, the optimal control (12) determined for system

with fixed Ai and B BH makes the system and (12) asymptotically stable for
the entire family of Ai and B (i 0, 1,..., l).

Example. First we consider the problem of robust control for the system

)1 allXl + u,

.’2 a22x2 +
where

--1 all 0, a22 1.

According to (35), we can choose 3’ 2.
Let

0 0].
To prove that A,0 + 21 is the dominant matrix, we will solve the optimal problem

with qii 1, qo O, 4: j, and c 1000 (see (13)) and then use condition (27) of
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Theorem 2. The solution Wo of the algebraic Riccati equation of type (28) is

-1.2 ]. 105Wo=
-1.2 1.501

Condition (27) has the following form:

4. 105[ + 0.5Aall
L -1.2(1 + 0.25Aall)

--1.2(1 + 0.25Aa)] > 0,
1.501

where 0 =< Aa =< 1.
It is easy to check the positive definiteness of this matrix. The robust control law

follows from expression 12):

u =-20x + 30x2.

Let the first equation ofthe system examined contain an additional term with delay.
We consider the problem of the analytical design of a controller for the system

ax + 0.05xl(t- 0.01) + u,

-2 X22 -]- b/,

where <- a < 0.
The approximate solutions of optimal control problem (13) for

3’=2, A,1
0

and A,0=
0

showed little change between the first- and second-order solutions (i.e., N and N
2), and the computations were terminated at N 2 (this is stipulated by the smallness
of the delayed term). Here we give the approximate solution which corresponds to
N=I:

AN 100 --98 0 WN 6" 10 -4 10 -5 --7" 10 -4 l05.
0 0 3 --1.38 --7"10 -4 1.7

As done before, we can see that condition (27) is satisfied and the robust control law is

u(t) -21.8x 0.01x(t 0.01) + 31.9x2.
Conclusions. The proposed approach of designing a class of robust control systems

is based on the consideration of the special optimal control problem for the system with
the specified constant parameters. The given procedure allows us to build robust linear
systems, as well as a wide class of robust nonlinear systems.

Appendix 1. Let the control law (4) minimize the functional (3) subject to system
). Consider the problem of minimizing the functional 3 subject to system ). By

introducing

xy(t) x(t)ey’, uy(t) u(t)eyt,

the functional 13 becomes of the form (3) with respect to xy(t) and uy(t), and system
is transformed into

Ycy(t) (Ao + 3’ )xy(t) + Aieyixy(t ri) + Buy(t).
i=1
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Hence, the problem ofminimizing the functional 13 subject to system is equivalent
to the usual problem of minimizing the functional of the form (3) subject to the system
given above, and the optimal control law u(t) can be written as

u(t) u(t)e Br Wx(t)e + B(()eex(t + ) d(

i.e., u(t) has the form (12).

Allemli . The characteristic determinant f(s) of system is

f(s) det sI Aie-" S nt- rl(S)Sm-1 q- -t- Pm(s),
i=

where

Pr(S) (- )rmr(S),

and Mr(s) is the sum of all the principal minors of order r of the matrix

Aie-is.
i=0

The coefficients ofPr(s) belong to some domains, which are defined by the elements
of Ai (i O, l) in ). The location of the eigenvalues of depends on these
domains.

We will determine a domain of the right half of the complex plane, Re s > 0, which
does not contain eigenvalues of the system for all possible a/c0 satisfying (2).

From the above expression off(s), we have

]f(s)[ >= ]s[ 1- ]Pr(s)[ [s[

I]sl 1- Z KmaxlS[
r=l

where

Kmax max IMr(s) l.

Assuming Is] >= 1, we have

If(s)l >--Islm[1
Hence,

r,aiKj
Res>_-0

mgmax ]Isl
Islm-l(Isl mKmax).

If(s)l > 0 if Isl >-- max [1, (m + 8)gmax]

where e is a small positive number.
The upper bound (35a) of the eigenvalues of (1) follows immediately from this

expression.
LEMMA IfZ ;=0 Aie-’ is a complex mxm matrix A(s) [aa(s)] and [a(s)[ >

Z’/ a/e.,(s)[ for all Re s >= O, then det [A (s)[ 4 0 in Re s >- 0. The proof is analogous
to the proof of the Levy-Desplanques theorem 13 ].



988 R.T. YANUSHEVSKY

We will use this lemma to obtain the estimate (35b). Let So be an eigenvalue of
with Re So -> 0. Then

det ]sol- A(s)] 0

and, according to the lemma, at least for one k

and

_
aikke- isoSo

i=o

So _-<max
Res>=0 j= i=0

ai:je iSO

=< max aigl.
k j=l i=0

Analogously, considering A T(S), we obtain

j#K

aikje-is

i=o

_-<max ]
Res>=0 j= i=0

k

aikj e- iso

]Sol --<max Z E aigl.
k=l i=0

Finally, inequality 35c) can be obtained by using the procedure proposed by Hirsch
13 ]. Let x be a unit eigenvector that corresponds to an eigenvalue So, i.e., A (So)X SoX
and the scalar product (x, x) 1. Then, (A(so)x, x) So, (A*(go)X, x) (x,A(so)x)
S-o, where the symbol "*" denotes the transpose complex-conjugated matrix and the bar

denotes a complex conjugated value.
Hence,

(A(so)+A*(Yo) )Re So [(A(so)x, x) + (A*(go)X, x)]
2

x, x

(B(so)x, x)

and in the right complex half plane

Re s <= Z bij(So) lxi l[ xj 7,
i,j=l

where y is described by (35c).

Appendix 3. Consider a positive definite functional

2V(x(t + ()) xr(t)Wx(t) + (x t)B(f;)x(t + f;) + xr(t + ()Br(()x()) d(

+ xT(I + )P(, )x(t + ) da d,

where W WT, B(), and P(, ) are matrices of appropriate dimensions.
We will use the functional V(x(t + )) to examine the stability of the nonlinear

control system, which is formed by the plant (37) and the controller (4) determined by
solving the auxiliary optimal problems (1) and (3). Its derivative d V/dt along the
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equations of the nonlinear system has the form 20 ], 21

dVn- dVe T( ( l T( T( )dt dt
cu t)u(t) + xT(t)W + X + )B ) d Be(u),

where d Ve/dt denotes the derivative of V along the equation of the linear system (1)
with the input matrix BH and the corresponding control (4). According to (4) and 38 ),
we have

cur(t)u(t) + xr(t)W + x + f;)B f;) dr; Bg(u)

cur(t)u(t)- curH-lg(u)

<-_ cur( t)u( l) cur(t)HH-1 u( t).

If H H >- 0, H > 0, then the right part of the inequality is not positive so that
(d V/dt) <= (d V,/dt) and, hence, the nonlinear system is absolutely stable.

The case ofthe control (12), which is determined from the condition ofthe minimum
of (13), has no principal differences from the case considered above.
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CONSTRUCTIVE HEURISTICS AND LOWER BOUNDS FOR GRAPH
PARTITIONING BASED ON A PRINCIPAL-COMPONENTS

APPROXIMATION *

K. S. ARUNf AND V. B. RAO

Abstract. This paper addresses the problem of partitioning the vertex set of an edge-weighted undirected
graph into two parts of specified sizes so as to minimize the sum of the weights on edges joining vertices in
different parts. This problem is NP-hard and has several important applications in which the graph size is
typically large and the brute-force approach (of listing all feasible partitions and comparing costs) is compu-
tationally prohibitive. In this paper a new class of algorithms is developed on the basis of a transformation of
the graph problem to a geometric problem of clustering a set of points in Euclidean space. Instead of searching
through all feasible partitions that meet the size specifications, it is shown that the search can be confined to a
set of 17p(p+I)/z partitions, where n is the number of vertices in the graph and p is the rank of the n X n graph
connection matrix. Procedures are developed for constructing all such partitions in O(npp+ 3)/2) time. For
matrices with large ranks, approximation of the connection matrix by a matrix of low rank by using principal-
components analysis is suggested. The algorithms presented in this paper are constructive algorithms in that
they generate a feasible partition of the graph directly from the connection matrix, as opposed to iterative
algorithms that start from a feasible partition as an initial guess. The algorithms also bound the difference
between the achieved cost and the lowest achievable cost. These lower bounds on the cost of the optimal
partition are proved to be superior to the Donath-Hoffman lower bound for two significant special cases wherein
either the two part sizes are equal or the graph connection matrix has equal row sums. Simulation results on
randomly constructed graphs of different sizes clearly demonstrate the effectiveness of these heuristics in terms
of both the cost of the constructed partition and the lower bound provided.

Key words, graph partitioning, geometric clustering, rank reduction, eigendecomposition, principal com-
ponents, lower bounds, strongly separated partitions

AMS subject classifications. 68R10, 90C27, 62H25, 62H30

1. Introduction. The problem addressed in this paper is the following: Given a
weighted undirected graph on n vertices and two positive integers n and n2 such that
n + n2 n, partition the vertex set into two disjoint subsets of cardinality n and n2
such that the sum ofthe weights on edgesjoining vertices in different subsets is minimum.

It is well known that the graph partitioning (GP) problem is NP-hard, i.e., its decision
version is NP-complete [1 ]. A naive brute-force approach to solving the GP problem is
to generate all feasible partitions and to select the one with the lowest cost. It is easily
seen that the number offeasible partitions and hence the number ofcomputations required
by this brute-force algorithm grows exponentially with graph size. For example, the number
of bisections (partitions with nl n2 ) in a graph on n vertices is (n/2). The GP
problem arises in standard cell placement and floor planning in VLSI circuit design 2 ],
[3 ], in paging of computer programs, and in computer logic partitioning. In many of
these applications the graph size is very large, typically around 1000, and the brute-force
algorithm for bisectioning requires over 10 300 computations.

Let nl and 172 be any two positive integers, and let n A nl + n2. Then a feasible
partition of the set V _a_ { 1, 2 n is a pair of sets (S1, $2) such that

s, u v, s, n d, S, hi, n2.
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Every feasible partition (Sl, 32) can be uniquely represented by an indicator vector
_s with ith entry defined as

&I1 ifieS,
s( i)

0 if e $2.

For any subset V’ V define IND(V’) e as

=I1 ifiV’,
INDi V’)

0 otherwise.

Then the indicator vector s for a partition may be constructed as s IND(S ). Conversely,
the partition may be reconstructed from its indicator vector _s as S { V s(i) }
and $2 V" s(i) 0 }. We will use I’ to denote the set of all indicator vectors
corresponding to feasible partitions of.

Let be the vertex set of an undirected, edge-weighted, connected graph on n
vertices with an n n connection matrix A whose ijth entry a0 >= 0 denotes the weight
on the edge i, j } in the graph. We assume ai 0 if there is no edge between vertices
and j in the graph. The connection matrix A serves as a representation of the graph.
Clearly, A is a symmetric matrix since the graph is undirected. Define 1_ 1... ) as
the n vector of ones. The cost of a feasible partition _s I’ with respect to A is defined
to be

(1.1) cOStA(S) _stA(l s_) ai.
iaSl jrS2

The GP problem on A addressed in this paper may be formulated as follows: Given a
symmetric n n matrix A, find a feasible partition s * F such that cOStA (S*) _--< cOStA (_S)
for all _s 6 F. A special case of the GP problem is the graph bisectioning (GB) problem,
wherein n is even and n =/72 n/2.

Our approach to solving the GP problem on the connection matrix A of a graph is
to approximate A by a simpler matrix of small rank by using principal-components
analysis 4 ], so that GP on the small-rank matrix can be solved exactly in polynomial
time. Motivation for such an approximation is based on an observation in 5 that there
exists a rank-one, positive semidefinite matrix Q such that a solution to the GP problem
on Q is also a solution on A. The principal-components approach is computationally
attractive because of the availability of Procedure PART-mD, described in 4, which
allows the computation ofan exact solution to the GP problem on a positive semidefinite
matrix of rank p in O(11p(p+ 3)/2) time. Our approach does not exploit any special
structure (apart from the connection matrix’s possible proximity to low rank) that the
graph might possess, such as planarity or near planarity 6 ].

The principal-components approach was first motivated by the work ofFrankle and
Karl9 [7], whose heuristic involved sorting an eigenvector of the graph’s connection
matrix. In brief, the principal-components approach involves projecting the graph’s con-
nection matrix onto the orthogonal complement of Span (1_), computing a set number
of principal eigenvalues and eigenvectors of the projected matrix, and solving the GP
problem exactly on the low-rank matrix obtained from the principal eigencomponents.
Our presentation here includes the derivation of an algorithm for exact solution of the
GP problem on low-rank matrices. This approach based on rank-one approximation was
first proposed in 5 ]. An algorithm for exact solution of the GP problem on rank-two
matrices was first presented in 8 ], and the principal-components approach with rank-
two approximation was suggested there. The general low-rank case was presented first in
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9 ], 10 ]. The principal-components approach also allows for easy computation oflower
bounds on the best partition by.using the eigencomponents left out ofthe approximation.
The approach provides a degree of freedom in choosing diagonal entries that may be
added to the connection matrix before the projection on Span (1_). Experiments with
two different choices of diagonal entries were reported in [8].

There are interesting connections between the work here and some work on Euclidean
distance matrices. A symmetric matrix with only zeros on the main diagonal is said to
be a Euclidean distance matrix embedded in q dimensions if there exist n points in a q-
dimensional Euclidean space such that the (i, j)th entry of the matrix is the square of
the distance between the ith and jth points. It can be shown that a graph connection
matrix is a Euclidean distance matrix embedded in q dimensions ifand only ifthe matrix
has rank q after projection onto the orthogonal complement of Span (1_) [11], [12 ].

An algorithm for graph partitioning based on eigendecomposition was recently pro-
posed by Pothen, Simon, and Liou [13]. It turns out that their algorithm is identical to
one of the principal-components heuristics studied here, specifically, the principal-com-
ponents algorithm based on rank-one approximation and equal-row-sum choice of di-
agonal entries. The approach expounded here is more general in that it allows for arbitrary
choice of the diagonal entries and higher-rank approximations. It also leads to tighter
lower bounds.

The rest of this paper is organized as follows. Section 2 presents a transformation
of the GP problem to a geometric problem of clustering a set of points in Euclidean
space. In 3 and 4 algorithms are developed for solving the GP problem on rank-one
and low-rank matrices exactly in polynomial time. Section 5 provides a means for con-
structing low-rank positive semidefinite approximations to the connection matrix via
principal-components analysis. Heuristics for solving the GP problem on connection
matrices of large rank are presented in 6. Methods for improving the approximations
of 5 by using clever choices of diagonal entries of the connection matrix are studied in

7. New lower bounds on the cost of any feasible partition are presented in 8. The
paper concludes with a presentation of simulation results on graphs of different sizes in
9.

2. A problem transformation. We begin by noting that the diagonal entries ofA do
not affect cOStA (S_) defined in 1.1 ). Therefore, for any diagonal matrix D

cOStA(S) cOStA+D(_S) for all s I’.

This is a useful observation that leads to a transformation of the GP problem into a
geometric clustering (GC) problem in Euclidean space, where lower-dimensional ap-
proximations can be made. It also provides a degree of freedom in selecting the matrix
to be approximated by its principal components. On the basis of the above observation
one can construct a positive semidefinite matrix from A by changing only its diagonal
entries, without affecting the solution to the GP problem. One approach is to subtract
the smallest eigenvalue ofA from its diagonal elements. Therefore, without loss of gen-
erality we will henceforth assume that A is positive semidefinite. Being positive semi-
definite, the A matrix admits the following square-root factorization: A BtB, where B
is a k n matrix and k rank (A). Therefore,

cOStA (S_) Bs_ it[B(1 _s) 1/2 BI_ - B_s [12 B 1_ _s) 2

(2.1)
1/4( B! 2 IlBs B(I s)ll -).

Hence solving the GP problem on A is equivalent to solving the following (GC) problem
on B" Given a k n matrix B, find s I’ that maximizes 11B_s]] 2 + liB(I_ _s)[I 2.
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The solution to the GC problem on B also maximizes Bs_ B(I_ s_)[I 2. If we use

bje Nk to denote thejth column ofB, then the GC problem on B reduces to partitioning
a set {_hi, _b2,..., _bn of n vectors in N k into two sets {_hi S } and {_bj :j e $2 } with

S1 /71 and 52] n2 such that iSl b__i 2

__
jes2 bjl] 2 and iSl b__i

Es2 _bl[ 2 are maximized.
The above transformation of the GP problem on A to the GC problem on B was

first used by Frankle and Karp 7 for the bisectioning case, and their heuristic for solving
the GB problem is briefly discussed in 5. One of the principal-components-based heu-
ristics of this paper was first developed for the GB problem in [5] as an alternative to
the Frankle-Karp approach. Extensions for handling unequal part sizes appear in [8].

It must be mentioned that the GC problem is also NP-hard, primarily because the
dimension k of the space in which the problem is formulated grows, in general, with the
size n of the problem. The principal-components approach to solving the GC problem
is first to approximate the given points in by their projections on a low-dimensional
linear variety and then to solve the simpler GC problem there.

3. An algorithm for the ID problem. Throughout this paper 1D will be used to
denote the term "one-dimensional." Likewise, pD will be used to denote "p-dimensional"
for any integer p > 2. Also, all matrices will be denoted by italic upper-case letters, and
vectors will be denoted by underlined bold lower-case letters. Thejth column ofa matrix
A is a, and its ijth entry is either aior aj(i). Finally, the ith entry ofa vector b is denoted
by either bi or b(i). We begin by demonstrating that solving the GC problem on a
k n matrix B is computationally simple if all the columns of B lie on a 1D linear
variety.

Consider the following algorithm for generating a pair of feasible partitions based
on sorting the entries of a vector g E n. In the following procedure s SELECT(e, k)
is a binary vector of the same size as g and with exactly k entries set to unity and with
the other n k entries set to zero. The indices of the entries set to unity correspond to
the k largest entries in e. The function SELECT can be implemented in O(n) time [14 ].
When the entries of e are not all distinct, different implementations of the function
SELECT may generate different outputs, depending on the strategy used to break ties.
The pair of feasible partitions generated by the following procedure will therefore depend
on the implementation of the function SELECT when there is a tie for either the nth-
largest or the n2th-largest entry in g. Procedure PART-1D can be used to generate an
optimal solution to the clustering problem on any set ofpoints that are on a 1D subspace
or a 1D linear variety.

Procedure PART-1D (__e, n, n2, _Sa, _Sb)
Input: A vector g 6 E and two positive integers n and n2 such that n + n2 n.
Output: Two indicator vectors S_a and sb representing two feasible partitions.
begin

sa SELECT (__e, n );
Sb NOT(SELECT(g, n2));

end

PROPOSITION 1. For any given e__ , one ofthefeasible partitions, s__ or S_b, output
by Procedure PART-1D(g, n l, n2, S_a, sb) is an optimalfeasible partition for GP on the
matrix ee t.

Proof. From the definition of function SELECT we have

(3.1) _Stag >- ste >_- _s_e for all _s e I’.
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Define c Stag,/3 sg, 3’ __a _1 re,_ and a function f(x) 3"x- x2 of a real variable x.
Since f is strictly concave, its minimum over the interval [/, c] is achieved at one of
the end points [15]. Hence f(x) >= min {f(c), f(/)} for all x [/3, c]. Replacing x
by ste and noting that f(ste)=costee/(s) we get costee/(s)>min {cost,(Sa)
cOSteet(Sb) for all _s F, which proves this proposition, if]

COROLLARY. Given fixed vectors v, z k and e , where k <= n, define b__
v + e(i)z and a k n matrix B [b_, b_2,..., b]. Then one ofthefeasible partitions

s or Sb output by Procedure PART-1D (e_, n, n2, S_a, S_b) is an optimalfeasible partition

for GC on B and, consequently, an optimal partition for GP on A = BtB.
Proof. First note that the columns of B defined by this corollary lie on a 1D linear

variety in k given by v + az" a ). Let Vo v + aoZ be the minimum-norm element
[16] of this variety, which clearly satisfies ZVo 0. Since _hi Vo + (e(i) ao)Z, we get
for each s 6 F

(3.2) cOStA(S) bi bj nn2llv0ll 2 + sre’e’t(l_- s)llzll 2,
J

where e’ " is defined by e’(i) e(i) a0. From Proposition we see that one of the
feasible partitions, sa or sb, outputted by Procedure PART-1D (e’, n, n2, _Sa, _sb) is an
optimal feasible partition for GP on e’g ’t, which is also optimal for GP on A by (3.2).
But the output of function SELECT on the vector e is the same as the output on the
vector e’ e a01. This proves the corollary. U]

It is important to note that when the solution to the GP problem on e_ge is not
unique, Procedure PART-1D does not generate all the optimal partitions. However,
nonuniqueness of the optimal partition is possible only when the points are not all distinct
from one another. Since procedure SELECT on g n takes O(n) time, the above results
show that solving the GC problem for vectors on a 1D linear variety takes O(n) time. It
can be shown 5 that there exists a 1D subspace such that the application of PART- 1D
to the projections of the bi’s on this subspace results in an optimal partition for GP on
BiB. However, the problem offinding such a subspace is itselfcomputationally intractable;
hence we resort to heuristics.

One ofthe heuristics proposed in this paper uses in place ofthe optimal 1D subspace
a 1D linear variety that is closest to all the points bi V} in the least-squares sense.
Then a simpler clustering problem is solved with respect to the projections _i of the
original points on the chosen 1D variety. Replacing the points by their projections is
equivalent to approximating the original connection matrix BtB by a new matrix/t/
of rank no greater than two. However, an optimal partition for GP on the approximated
matrix may not be an optimal partition to the original problem. The quality of the
approximation can be improved by using higher-dimensional varieties for the approxi-
mation. To this end, in the following section we will develop an algorithm for solving
the clustering problem in EP, where p is a small positive integer.

4. An algorithm for clustering in higher dimensions. The corollary to Proposition
establishes that the clustering problem for points on a 1D linear variety in k is as

simple as the clustering problem for points on a 1D subspace of k. More generally, it
can be shown that the clustering problem for points on any pD linear variety in ,
p =< k, can be solved by clustering an appropriately translated set of points on a pD
subspace of. The translation is achieved by subtracting the minimum-norm element
of the variety from every point.

We have seen that the clustering problem in is simple and that its solution can
be obtained by using PART-1D. We will now show that the clustering problem in Rp is
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also relatively simple for small values of p. To this end, we introduce the notion of
strongly separated partitions.

DEFINITION. A feasible partition (S, $2) (and its corresponding indicator vector
_S_S) is said to be strongly separated with respect to a k n matrix B [b, b2,..., b,] if
there exists a hyperplane in k that separates the points {_hi S from the points
{ bj’j $2 } and if this hyperplane touches the two sets at most at one point common
to both sets. More precisely, (S, $2) is a strongly separated partition with respect to B
if there exists a nonzero vector x k and a scalar # such that

(4.1a) xb_i>= for all irS, _xtbj_ _-< for all jS2

and

(4.1b) xb =#=xbj if and only if _b;--_b.

Observe that when all columns of B are distinct and (S1, $2) is a strongly separated
partition with respect to B, then the inequalities in (4. a) become strict, which in turn
implies that the convex hulls of {_hi S and of { b_i $2 do not intersect. A
partition satisfying this nonintersecting convex hull property is called an NICH partition
in 8 ]. Note that every NICH partition is a strongly separated partition, but not vice
versa.

PROPOSITION 2. For a given k n matrix B, an optimal partition for GP on A
BtB is necessarily a strongly separated partition with respect to B.

Proof. Let s * be the indicator vector corresponding to an optimal feasible partition
(S, $2 that solves the GP problem on A. Define

x Bs_* B(! _s*) 2B_s* B!.
The expression for cost,(s) in (2.1) can be manipulated to give

(4.2) cOStA (S_) cOStA (_S * hx [[_h 2,

where _h A B(s* _s). Since s* is optimal, we must have htx > ][h[[ 2. Thus x cannot be
0 unless _h_h 0 for all _s 6 F, which would mean B_s B_s * for all _s 6 F. It can be seen
that B_s can be constant for all s F only if the b__; are all identical. Thus when x 0_,
every partition is optimal, every partition is strongly separated, and the proposition is
trivially true.

When x 4: 0, consider a fixed but arbitrary e S and j e S. Let _s be the indicator
vector ofthe partition (S, $2 obtained by interchanging andj from the optimal partition.
More precisely, S, S {i} {j} and $2 S {j } {i}. Note that _h b_i _hi
in this case. Since s* is optimal, (4.2) yields h tx >= 0 or bx > _bx with equality if and
only if h 0 or bi bj.. The above is true for every pair (i, j) such that e S* and
j S. Pick a scalar such that

min _xtbi_ # max xtbj,
ieS jeS

and observe that the chosen x and satisfy the three conditions of (4.1). Hence the
proposition. [--]

Example 1. Consider the two partitions depicted in Fig. 1. In each case, there exists
a hyperplane that separates the two sets { bi S ) and { b $2 ). But the partition
in Fig. (a) is not strongly separated because there is no separating hyperplane that passes
only through a point common to both parts. Also, the partition in Fig. (b) is not strongly
separated because the two convex hulls intersect even though the points are all distinct
in this case. Therefore, both partitions are not optimal since neither is strongly separated.
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(a) (b)

FIG. 1. Two partitions that are not strongly separated. Points in one set are denoted by "O and those in

the other set are denoted by "X

Proposition 2 establishes that the GP problem on low-rank, positive semidefinite
matrices can be solved relatively easily. The approach it suggests is to work with the
points i in P, where p is the rank ofthe connection matrix, and to construct all feasible,
strongly separated partitions. It will be shown below that when the points i are all
distinct, the number of strongly separated feasible partitions is relatively small and man-
ageable. We next describe a polynomial-time algorithm PART-mD that generates a set

of strongly separated feasible partitions with respect to a p n matrix B that con-
tains an optimal solution to the GP problem on BtB. The size of this set I, is at most
rip(p+ 1)/2, and the search for an optimal partition can be confined to . When the columns
of B are distinct (they may be linearly dependent), the set I, generated by PART-mD
consists of all strongly separated feasible partitions with respect to B. When the columns
are not distinct, not every strongly separated feasible partition is generated by the pro-
cedure, but for every such partition not in there is guaranteed to be one in that has
the same cost. The procedure relies on the following proposition, which establishes that
strong separation is preserved even when attention is restricted to a subset of points that
lie on a lower-dimensional linear variety in P.

PROPOSITION 3. Let ($1, $2) be a strongly separated partition of V { 1, 2,
n with respect to a p n matrix B [b_, b_z, b__n]. Consider a fixed w__ P,

an integer s < p, and a p s matrix Z with orthonormal columns. Let W =
{w + Ze_ e__ s} be an sD linear variety in P, and define J { V b_i W}.
For each J define gi = Z t(b_ w__) as the representation of b_i with respect to Z. If
S N J and $2 J are each nonempty, then ($1 f-I J, $2 N J) is a strongly separated
partition ofJ with respect to the matrix [g e J].

Proof. First note that for any subset J of V, (S C) J, $2 J) is a strongly separated
partition ofJ with respect to B as long as $1 71 J and $2 f) J are both nonempty. Hence,
by definition, there exists x e r and a scalar such that

and

xtbi >= t.t for all 6 S fq J xt_b _-< # for all j e S_ fq J,

xt_b, u xt_bj if and only if __b bj.

But xlbi X/W + htgi for all J, where h Zt_x. Since xtw is constant for all J,
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the vector _h_h and scalar u’ # xtw satisfy the definition of strong separation of the
partition (S10 J, $2 [’ J) of J with respect to { _e; J }. V]

This property of strongly separated partitions permits the recursive generation of
all such partitions by the Procedure PART-mD. For any hyperplane H in Np, H/ and
H- will denote the two strict half-planes of NP generated by H in this procedure. Points
that happen to fall on H are partitioned by,a call to Procedure PART-H, which in turn
calls PART-mD for a subspace that is one dimension smaller. The procedures are
shown below.

Procedure PART-mD (B, n, n, )
Input: Positive integers n, m_, and full-rank matrix B with (n + n2) columns and
two or more rows.
Output: A set of indicator vectors representing strongly separated partitions with
respect to B.
begin

p -- Number of rows in B;
FOR each set is, i2, ip } ofp distinct positive integers =<nl + n2, DO

IF L = hi2 hi,, b_i3- b_i, b_ip- _bil is linearly independent THEN
Generate hyperplane H containing b__;,, _hi2,..., b_;p };
_s + =IND({ieV’_bH+});n+=lts+;
_s-=IND({ieV’b_eH-});n-= lts-;
so IND({i V" _b H});
IF (n + =< n AND n- =< n2) THEN

IF (n + nl) I, I, U {_s + };
IF (n- n2) I, -- I, U {_so + _s + };
IF (n + < n AND n- < n2) THEN

PART-H(B,s L n n + ’,n2--n ),
FOR each s’ q’ DO

u +

ENDIF
ENDIF
IF (n- _-< n AND n + =< n2) THEN

IF (n- nl) -- U {_s-};
IF(n + n2) --U {so + __s- };
IF (n- < n AND n + < n2) THEN

PART-H(B,s L nl-n- nz-n+ ’)"
FOR each s’ q,’ DO

,I, u {_s-
ENDFOR

ENDIF
ENDIF

ENDIF
ENDFOR

end

Procedure PART-H B, sp, L, n,,, nb, )
Input: Positive integers na, nb, full-rank matrix B with (na + nb) or more columns
and two or more rows, binary vector so indicating the n + nb columns of B that
lie on a translation of Span (L).
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Output: A set of of indicator vectors representing strongly separated partitions
on the hyperplane.
begin

V- {i:s(i) 1);
Let f: l, 2,..., na + r/b -’ V0 be any ordering ofV;
Obtain an orthonormal basis Z for span (L);
Let e Z t(_bi bi represent _hi with respect to Z for each V;
B’ -- el< j’< 2 f< no)

IF (B’ has two or more rows) THEN
PART-mD (B’, na, nb, ’);

ELSE
PART-1D (B’, n:, nb, __Sq, _Sr)
+’=

ENDIF

FOR each s’ +’ DO
V’= {f(i):s’(i)= 1};
+ -- + I IND(V’);

ENDFOR
end

The following proposition establishes that Procedure PART-mD generates all relevant
strongly separated partitions with respect to B.

PROPOSITION 4. If (Sl, 32) is a strongly separated partition with respect to a
p n matrix B [_hi, b2, _bn] of rank p, then there exists a hyperplane H
in P that passes through a subset il, i2, ip } of p columns of B such that
{ b_i2 b_i,, b_i3 b_i,,..., b_ip b_, is linearly independent and the two sets (b_i, SI
and b_i $2 are on opposite half-planes ofH. More precisely, there exists a nonzero
vector x P and a scalar # such that b_x >= # for all S1, b_x < is for all j $2,
and bx is for at least p indices i, i2,..., ip) for which the set ofvectors { b_i2 hi,,
bi3- b_i,, b_ip- b_i, is linearly independent.

The proof of this proposition is straightforward but tedious, and it is omitted in the
interest of brevity. The proposition guarantees that when the columns of B are distinct,
every strongly separated partition can be generated by Procedure PART-mD. When the
points are not distinct, since PART-1D produces only two strongly separated partitions
even when there are more, not every strongly separated partition will be generated by
Procedure PART-mD. However, there will be at least one optimal partition in the set
+, since for every strongly separated partition not in + there is one in + with the same
cost. By using the fact that PART-1D generates only two partitions, it can be shown
that the number of partitions ]I’l generated by Procedure PART-mD is no greater
than tl

p(p+ 1)/2 and that the computational complexity of Procedure PART-mD is
O( HP(P+ 3)/2). When n H2 (i.e., for the GB problem), we have ]I,[ < 1/2Hp(p+ 1)/2.

These procedures for generating strongly separated partitions may be used to find
optimal solutions for the GP problem on rank-one and other low-rank positive semi-
definite matrices in polynomial time. This motivates seeking a low-rank approximation
of a graph’s connection matrix by the principal-components approach discussed in the
following section.

5. The principal-components approximation. The heuristic approximation advo-
cated by this paper is to seek a good low-rank approximation to the connection matrix
BtB of the GP problem by approximating the points b by their projections on an ap-
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propriately chosen low-dimensional linear variety. The choice of variety is based on the
following result attributed to Pearson [17 ]. To state the result we need to introduce a
few notions. Suppose p, n, and k are given positive integers with p =< min { n, k). Also
given is a k n matrix B with columns _b; e k. Consider a pD linear variety
L(w, Z) = { w__ + Z_e _e e P) in k, parameterized by _w e k and a k p matrix Z
with orthonormal columns. For each V let the orthogonal projection of _hi onto
L(w_, Z) be denoted by PLt_,z)(_bi) = w + ZZt(bi w_). It is the point on the variety
L(_w, Z) that is closest to _b in the least-squares sense. Define a k n matrix C as

(5.1) C =B-mlt; m-I _bi.
ni=l

Here m is the centroid of the _b.’s, and the ith column of C is Ci Ili 111 for each V.
Let the singular-value decomposition (SVD) of C be given as

rain k,n

(5.2) C ri_uX UZ V’,
i=1

where a >= ff2 O’min (k,n) are the singular values arranged in descending order, I1

is the ith left singular vector, and i is the ith right singular vector of C. We are now
ready to state Pearson’s result.

PEARSON’S PRINCIPAL-COMPONENTS THEOREM [4]. For a given set of n points
{_hi V} in , the pD linear variety L(w__, Z) that minimizes the total error

[l_b/ PL(w,z)(lli )I[ 2 is L(m__ t)) where m is the centroid ofthese points as defined
by (5.1) and the columns of t) u_i, u__2 up] are the left singular vectors corresponding
to the p largest singular values ofthe matrix C of 5.1 and (5.2). Furthermore, iffo zx

PL_,C)(b_i denotes the projection of b__i on the variety L( m__, l)), then the matrix formed
from these projections is given by

p

(5.3) / [__fi,, _fi2,..., "_b] ml + 2 au__,._vf ml + t); 12’,
i=1

where diag a or2 ap) is the diagonal matrix with the p largest singular values
ofC and 12 [v__, y_2, V__l,] are the corresponding right singular vectors.

For various interpretations of the principal-components approximation the reader
is referred to an excellent tutorial on the subject by Rao [4 ].

The approximation suggested by Frankle and Karp to the multidimensional geo-
metric clustering problem is a 1D approximation obtained by retaining only the com-
ponents of the vectors along one of the coordinate axes. The axis chosen is the one on
which the sum of squares of the components of the given vectors is maximum [7].
Unfortunately, the solution thus obtained is highly dependent on the choice of basis for
the vectors or, equivalently, on the choice of the square root B of the connection matrix
A. Frankle and Karp, therefore, specify which square root to use. The principal-com-
ponents approximation, on the other hand, is insensitive to the choice of square root
and does not constrain the search for the best variety to the set of coordinate axes. For
this and other interpretations of the principal-components approximation of the set of
vectors, the reader is referred to [5].

The principal-components heuristic for solving the GP problem on A BtB is to
solve the easier GP problem on p-rank matrix//. The difference between the solutions
to the two problems is quantified in 8, where lower bounds on cOStA (_S) are also presented.
To solve the clustering problem on/, given the connection matrix A, one need not
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explicitly determine a square root B of A. The following two propositions give a com-
putationally efficient scheme for computing the entries of CtC and/t/ directly from the
connection matrix A. Moreover, the discussion in 6 shows that the clustering problem
on/ can, in fact, be solved by applying Procedure PART-mD to a subset of eigenvectors
of CC.

Let I denote the n n identity matrix and J 1_1 T denote the n n matrix of ones.
Define P I 1/n)J. It can be seen that P is the:orthogonal projection matrix onto
the orthogonal complement of 1_.

PROPOSITION 5. For a given connection matrix A BB, consider the matrix C
defined by (5.1). Then the matrix M CtC can be constructed directlyfrom A as M
PAP in O( n2) time.

Proof. From 5.1 we see that C B / n)BI I BP. Therefore,

(5.4) M = CtC PAP A l._x_r t- rl + rlJ,

where r 1/n)Al_ is the average row-sum vector ofA and r 1/n2)l_tA1 is the average
of all entries in A. Note that r and can be computed from the entries of A in O(n 2)
time. Also, (5.4) indicates that the i, j-th) entry ofM can be obtained from the corre-
sponding entry of A by subtracting ri and rj. and then adding r/. Hence computing M
from A can be done in O(/7 2) time. This completes the proof. [3

The matrix M defined by (5.4) has several interesting features. Note that PI_ 9_
implies that MI_ 0_. Moreover, let/1 >= /22 /n denote the eigenvalues of A
arranged in descending order, and let l => k2 + n- denote (n eigenvalues
of M that have eigenvectors orthogonal to 1_. We will refer to these as the nontrivial
eigenvalues of M. In addition to these, M always has a trivial eigenvalue of n 0 with
1_ as its corresponding eigenvector. The following interlacing relation between the eigen-
values of A and the nontrivial eigenvalues of M can be established by using the min-
max principle 18 ]"

(5.5) #i > hi>=#;+1 for all =<i_-<n- 1.

This shows that rank (M) =< rank (A).
The singular values 0" and fight singular vectors i of C needed in the principal-

components approximation can be directly found from an eigendecomposition of M
19 ]. Since M CC, the singular values of C are the square roots of the eigenvalues of
M, and the right singular vectors of C are the eigenvectors ofM. Thus the approximants
and l? can be identified, respectively, with the square roots ofthe principal eigenvalues

and the corresponding eigenvectors of M. Thus I / & [__el, 2 ep] and ;
1/2 __a diag [kl/2 k91/2 Xp112]
We will see in the next section that an explicit determination of U is not needed to

compute the solution to the GP problem on the approximation =//. We will see
that the matrix/ also need not be constructed. Procedure PART-mD can be used directly
on/ to solve the lower-dimensional clustering problem. Thus only one eigendecom-
position, that ofM, is needed. We will go one step further. We will show that only a few
eigenvalues and eigenvectors ofM need to be computed.

6. The heuristic algorithms. In this section we list algorithms for solving the GP
problem on rank-one and other low-rank principal-components-based approximations
of the connection matrix. These algorithms use Procedures PART-1D and PART-mD
of 3 and 4. The basic idea underlying the algorithms listed in this section is to find a
low-rank positive semidefinite approximation .3 /t/ to a positive semidefinite con-
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nection matrix A by using the eigendecomposition ofan intermediate matrixMand then
to use Procedure PART-mD on/. Among all the strongly separated partitions generated
by this procedure, the one with the smallest value of cOStA(S) is reported as the output.
Note that the low-rank approximation is used only to generate a small set I, ofcandidate
partitions, namely, those that are strongly separated with respect to/. However, the
partition from the set that is finally output is based on comparison of cOStA(S) and
not of costA(s). Thus the final output partition (say, So) may not be the solution to the
GP problem on the approximated matrix , although the latter is also guaranteed to be
in the set I,.

Using the notation of 5, recall that ( ;it and that/ defined in (5.3) is
obtained by uniformly translating all the columns of by the centroid vector in. However,
the set ofstrongly separated partitions with respect to a collection ofvectors is not affected
by uniform translation of the vectors. Also, the set of strongly separated partitions is not
affected by a rotation of the coordinate axes or by scaling of the coordinates of each
vector identically. Thus the set of strongly separated partitions with respect to/ is also
the set of strongly separated partitions with respect to it t. Therefore, Procedure
PART-mD (or PART-1D, when p can be applied to/t itself. Recall that the rows
oft are the principal eigenvectors of matrix M.

It is instructive to note that although the set of strongly separated partitions is un-
affected by operations such as uniform translation, the optimal partition itself can be
affected. The following simple example serves to demonstrate this possibility.

Example 2. Consider a 3 matrix (-2 -1 3) and/ 2 6) obtained by
a uniform translation of +3. Here n 3, and let n 2 and n2 1. The set I, of strongly
separated partitions with respect to both/ and is the same:

I {_a, _b }, where _s (0 1) and _sb (1 0) t.

But costdd(_Sa) --4 is larger than costdd(_Sb) --9, whereas cost(_Sa) +8 is smaller
than cost,(_s) +18. Therefore, _s is optimal for GP on (@, whereas _s is optimal
for GP on/}@. Hence the optimal partition changed after translation, although the set

itself was unaffected.
The example shows that even though the generation of can be based on the

eigenvectors of M, the choice of partition from the set should be based on comparison
of cOStA and not of cost. The algorithm based on 1D approximations is given below.

Algorithm GP-ID
Input: Two positive integers n and n2 such that n + n2 n and an n n connection
matrix A.
Output: A feasible partition indicator vector So.
begin

Obtain M from A by using (5.4);
(2) Find the largest eigenvalue and corresponding eigenvector e of M;
(3) PART-1D (e, hi, n2, sa, Sb);
(4) IF (cost, (_a) cOStA (_b)) THEN So Sa;

ELSE So sb;

ENDIF
end

Example 3. To illustrate that 1D approximations are not always enough to get
optimal partitions even for problems with connection matrices of rank two, consider
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bisecting a six-node graph described by the connection matrix

85 62 56 44 38 15
62 68 60 44 36 42
56 60 53 39 32 36A
44 44 39 29 24 24
38 36 32 24 30 18
15 42 36 34 18 45

Using (5.4), one can obtain from A the matrix M, which is rank two, whose eigenvalues
are 91 50 and 2 10, and whose corresponding eigenvectors are

5 0
0 2
0
0 -1
0 -2

-5 0

Procedure PART-1D on el will return one of six indicator vectors (s through $6) as 8a
and will return 1 Sa as sb, depending on the strategy used to break ties in the middle
four entries of

81 0 0 0)t, 86 1__ Sl, costA (s cOStA (s6) 1416,

_s_ 0 0 0)t, s5 1_ 82, COSTA (S:z) COSTA (_SS) 1424,

s3 0 0 0) t, 84 ! 83, cOStA (83) cOStA (84) 1425.

However, the six 8i’s listed above do not all have the same cost with respect to M. It is
clear in this case that the second principal component ofM is needed for selecting the
best bisection. The reader may verify that s is a strongly separated bisection with respect
to C, whereas 82 and s3 are not even NICH bisections with respect to C. The algorithm
based on mD approximations is listed below.

Algorithm GP-mD
Input: Three positive integers n, n2, and p, such that n + n2 n, 2 =< p < n, and
an n n connection matrix A.
Output: A feasible partition So.
begin

Obtain M from A by using (5.4);
(2) Find the p largest eigenvalues of M and corresponding eigenvectors /

(3) PART-mD (/t, p, n, n2, I,);
(4) low +;
(5) FOR each _s DO

IF (costA (_S) < lOW) THEN
So _s;
low cOStA(S);

END IF
END FOR

end
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Since/1 =//t is only an approximation to M and .3 is only an approximation
to A, the partition So obtained by GP-mD will not, in general, be an optimal solution to
GP on A. Bounds on the proximity of the cost of So to the cost of the best partition are
presented in 8.

7. Choice of diagonal entries. Recall from 2 that diagonal entries of A do not
change the cost of a candidate partition with respect to A; hence the optimal solution to
the GP problem on A remains unaffected. However, different diagonal choices for A
indeed do affect the eigenvalues and eigenvectors ofM, thereby altering the partition So
generated by the principal-components heuristics of 6. In this section we suggest two
choices for the diagonal entries of the connection matrix A.

First observe from the A-to-M transformation of (5.4) that ifA changes to A + el,
then M changes to M + eP since P, being a projection matrix, is idempotent. Moreover,
(M + eP) I_ 0, and

(7.1) Me_= ke_(M+eP)e=(k+e)_e for all etl =0.

This means that 0 remains an eigenvalue ofM + eP with eigenvector 1_, whereas all other
eigenvalues of M are translated by e with the same set of eigenvectors. Therefore, the
addition of eI to A does not change the partition generated by the principal-components
heuristics of 6.

However, nonconstant diagonals can affect the partition obtained and can even
bring M closer to low rank. A similar problem of choosing diagonals arises in factor
analysis in multivariate statistics, wherein cross correlations between multiple quantities
are measured but autocorrelations (called communalities) have to be guessed [20]. The
problem is one of determining a suitable diagonal for a symmetric matrix that makes
the matrix positive semidefinite and close to low rank. Different choices ofdiagonal (such
as the Spearman formula [21]) are suggested in the factor analysis literature, but our
experiments with these choices indicate that the partitions ofrandom graphs so obtained
are not better than the partitions obtained with a constant diagonal.

One other interesting possibility that we suggested in 8 and have found to be useful
is to choose the diagonal entries ofA so as to make the new matrix have equal row sums
and be positive semidefinite. This is done as follows. Assume that A has nonnegative
entries and zeros on the diagonal initially. As before, let r /n)Al_ denote the average
row-sum vector, and let rmax maxi ri be the maximum average row sum. Then choose
the ith diagonal entry ofA as

(7.2) aii n 2rmax ri ).

This will make all the rows of the new A sum to 2n rmax. It can be easily verified that this
new connection matrix A is simply 2n ?’maxI Q, where Q is the Laplacian matrix of the
graph. Hence the eigenvector for the second-smallest eigenvalue of the Laplacian is the
same as the eigenvector for the second-largest eigenvalue of A, which is shown in 8.2
to be equal to the eigenvector for the largest eigenvalue of M (see (8.20)). Therefore,
Algorithm GP-1D applied after the diagonal is chosen according to (7.2) is essentially
the same as the algorithm of Pothen, Simon, and Liou in [13 ].

8. Lower bounds. To evaluate the quality ofthe partitions obtained by the heuristics
of 6, we can compare their costs with lower bounds (on the cost ofthe optimal partition)
established in this section. These bounds are easily computable from certain eigenvalues
and eigenvectors of the matrix M used in Algorithm GP-mD. It should be intuitively
obvious that the quality of the partition obtained by GP-mD depends intimately on the
relative magnitude of the n p eigenvalues ofM dropped by the principal-components
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approximation. In this section we will quantify this notion. We will see that for each
choice of rank p >_- we can obtain a lower bound LBp on the optimal cost. Furthermore,
increasing the value ofp improves the lower bound LBp. Finally, for the special case of
bisectioning we will show that our lower bounds are better than the lower bound estab-
lished by Donath and Hoffman 22 ], which is computed directly from the two largest
eigenvalues ofA. The same conclusions will be reached in the more general GP problem
(nl 4: H2) if the connection matrix A has equal row sums.

For deriving the lower bounds of this section we will assume that M PAP has
eigenvalues ) >_- )2 >-- >= Xn- > 0 Xn, i.e., that M is positive semidefinite and that
the trivial zero eigenvalue ofM is simple. By using (7.1) this can be guaranteed by simply
adding a sufficiently large constant diagonal to A. We will later see that to calculate the
bounds in practice not all nontrivial eigenvalues of M need be positive. Also, for each
V let ei denote the normalized eigenvector of M corresponding to )i. Note

that e /fn )1_ and that E [el, e2, en] is an orthonormal matrix.
Without loss of generality, assume n >-- rt2 throughout this section, i.e., n denotes

the larger part size. Consider any feasible partition indicated by s e I’. The key to deriving
our lower bounds is to decompose cOStA(S) into contributions from the separate eigen-
vectors of M as follows. Using (5.4) and denoting the row-sum averages of A by r
1/n)Al_ and the average of all entries ofA by /= 1/nZ)l_tAl_, we see that

(8.1) cOStA(S) n21 (nl nz)_Str )i(__stei) 2,
i=1

where )k is the ith-largest eigenvalue of M and ei is the corresponding normalized ei-
genvector. The first term in the above cost decomposition is a constant independent of
s e I’. We now attempt to upper bound the second and third terms by quantities that
are independent of_s e I’, which thereby results in a lower bound for cOStA(S).

Sort the entries of the average row-sum vector r, and let r* denote the sum of the
n largest entries of r. Clearly, this implies

(8.2) (n nz)S_tr <= (n nz)r* for all _s I

since n >= n2 by assumption. Note that (8.2) provides the desired upper bound for the
second term of (8.1).

Now consider the third term Z’g )k(stei) 2 in (8.1) for any _s e I’. Note that the
index need range only from to n since X, 0. In order to upper-bound this term
we start by listing some constraints to be satisfied by the quantitie_sse; )2. Using EE
I and ss nl, we have Y f= (s_tei)2 nl. Moreover, en / Vn )1_; hence (_Sten) 2

n / n. Therefore,
n-1

(8.3) (s_te,i)2 nn2 for all _s e F.
i=1 n

For each 1, 2,..., n run PART-1D (e, n l, n2, S_a,i, s_,i) and define

(8.4) /i = max { (efS_a,i)2, (e__fS_b,i)2 }.
By using (3.1) it follows that

(8.5) 0 =< (ste;) 2 =</3; for all _s e I’.

Consider a fixed integer p >= but less than n. Define [el, e2 ep] and
1/2 diag [X]/2, ){/2 )p/2], and obtain the set I, of strongly separated partitions

with respect to/t by using either PART-1D or PART-mD. Note that the set is au-
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tomatically obtained in step 3 of the principal-components heuristics GP-mD (or GP-
1D ifp applied on A for the chosen value ofp. Since the set is small (no greater
than nP(p+I)/2), the following maximum may be computed relatively easily:

p

(8.6) d __a max Xi (st_ei)2.
_se

If2 Z p 2kiii JXJ, then cost(s) -sUOs -Ep
Xi (_s t__ei By Proposition

2 an optimal partition for GP on 2t7/must be strongly separated with respect to 1/2,.
Consequently,

p p

(8.7) for all s G I, E ki(s--igi) 2 max ki(stgi) 2 d.
i=1 _sO i=1

Define the following subset of N"-:

(8.8) ZX IK ( [n- 0 <= X < E X and k X <=
i=1 n i=1

where the fli’s and d are defined by (8.4) and (8.6), respectively. It follows from the
constraints on (s’gi)2 in 8.3 ), 8.5 ), and 8.7 that

n-I n-1

(8.9) max E ki(Stgi) 2<= max kiX
s_eI’ xe

The following proposition indicates that the right-hand side of (8.9) can be computed
easily from fli, d, and the eigenvalues Xi. It can then be used to bound the third term in
the cost expression of (8.1).

PROPOSITION 6. Let the eigenvalues ofM be k k2

_
k > 0 k Let

p >= be a fixed integer smaller than n. Define i as in (8.4), and define d as in (8.6).
Let k >= be the smallest integer such that

k

(8.10) ki

_
d.

i=1

Similarly, let >- p + be the smallest integer such that

I(8.11) , fl - --- d- k fl q-
i=p+

Then the vector with entries defined by

d kl Xi
i fori=k,

i=1

(8.12)

nln2
fli "

forl <= <= k- 1,

fork+ <=i<=p,

forp+ <=i<=l 1,/i
l-1

/71//2 E 2i for l,
n i=1

0 for/+ <-_i<=n-

achieves the maximum ofY f2 Xixi over all xfrom the polytope ,t, defined by (8.8).
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The proof of this proposition is not included in the interest of brevity. It follows
from standard results in linear programming. The above proposition can be used to prove
the following main result, which provides a lower bound for the cost of an optimal
partition of GP on a positive-definite connection matrix A.

PROPOSITION 7. Let A be an n n positive-definite connection matrix, and
let p >= be an integer less than n. Also, let n >-- n2 >= be two integers such that
n + El2 El. Then for all s_ I’, cOStA(_) as defined in 1.1 is bounded as

(8.13) cOStA(S) >= LBp n2 (nl n2)r* , XiAi,
i=1

where 1/n2)l_tAl__ is the average of all entries of A, r* denotes the sum of the n
largest entries of r (1/n)Al_, the Xi’s are the eigenvalues ofM PAP in descending
order, and

_
is defined by (8.12).

Proof. From the interlacing property (5.5) between the eigenvalues of A and M,
we note that ifA is positive definite, thenMis positive semidefinite and the zero eigenvalue
is simple, i.e., the eigenvalues ofM satisfy >_- k2 k > 0 k From (8.1)
and (8.2) and by using Xn 0, we see that

n-1

for all _s a I, cOStA(S) > n2 (n nz)r* ki(te__i) 2.
i=1

From (8.9) and the definitions of and A in Proposition 6 we can upper-bound the last
term in the right-hand side of the above inequality by Y= XiA;. This completes the
proof.

Note that to compute the lower bound LBp all the eigenvalues and eigenvectors of
M need not be computed. It suffices to compute only the largest eigenvalues and the
corresponding eigenvectors, where is defined by (8.11 in Proposition 6. If in a specific
instance it turns out that is large and the computation of the largest eigenvalues and
corresponding eigenvectors of M is prohibitively expensive, then the following weaker
lower bound L]p may be computed by using only the [ largest eigenvalues of M, for
any/such that p < [< I.

L]p
i=1

where

Ai for =< <= [- 1,

Xi
/x /’/1El2

[-~-- ; fori=/,
n i=1

0 for+ <=i<--_n 1.

It is easily verified that LBp > L]p and that LB + >_- LB and L + >_- LI.
In the derivation of the lower bound, the positivity of all nontrivial eigenvalues of

M was never actually needed. For the bounds to be valid, it suffices to have only the
largest eigenvalues of k/be positive. When rank-one approximations are used (p ),
the epressions for lower bounds are considerably simpler because d X/, k as defined
in Proposition 6 becomes 1, and defined in Proposition 6 is the smallest integer greater
than unity that satisfies

i=1 El
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For comparison purposes we include below a lower bound due to Donath and Hoff-
man [22].

THEOREM OF DONATH AND HOFFMAN. IrA is any n n connection matrix and
s_ I’ is any indicator vector ofa feasible partition with n >= n2, then

(8.14) cOStA(_) >- LBDH 1/2(ITAI- nix n2/x2),

where and 1,2 are the largest and second-largest eigenvalues ofA, respectively.
Note that the bound LBDH is computed directly from the eigenvalues of the con-

nection matrix A, whereas LBp and Llp for all values ofp are computed by using eigen-
values ofM PAP. We now consider some special cases.

8.1. Graph bisectioning. In the case of bisectioning, n n2 n/2. Therefore, the
lower bound of 8.13 reduces to

LBp l_tAl_
i=1

where k is defined in (8.10) as before but >= p + is the smallest integer satisfying

k i=p+ 4

The entries of_ are defined by (8.12), as before. Similar results can be obtained for the
bound L]p. Note that the average row-sum vector r does not contribute to the bounds
in this special case.

PROPOSITION 8. For the graph bisectioning problem, LB >= LBDH.
The proof of this result is included in the appendix.

8.2. Equal-row-sum connection matrix. Recall that 1_ is an eigenvector ofM PAP
for the trivial eigenvalue 0. If 1_ is also an eigenvector of A, i.e., if AI_ al_, then
the connection matrix A has all row sums equal to a. Since A has only nonnegative
entries, a must equal the largest eigenvalue of A. Since A is symmetric and 1_ is an
eigenvector of A, all other eigenvalues of A must have eigenvectors orthogonal to 1_.
Suppose e is one such eigenvector ofA corresponding to eigenvalue u, i.e., Ae ue and
e tl 0. Since Pe e in this case, we have Me PAPe PAe Pe tze, which implies
that e is also an eigenvector ofMwith the same eigenvalue u. Therefore, ifthe eigenvalues
ofA are a u >= #e >-- > #,, then the nontrivial eigenvalues ofM are

(8.15) Xi=#i+ forall <-i=<n-

in this special case.
PROPOSITION 9. IfA has equal row sums, then LB >= LBDH.
The proof of this result is also found in the appendix.
The term (n nz)sr in the cost expression of (8.1) contributes negatively as

(n nz)r* to the lower bound of (8.13). The presence of this term could make the
bound loose, especially because it is not weighted down by the small eigenvalues of M.
This term may be large even when Xp + and the other eigenvalues dropped out in the
principal-components approximation are small. When these eigenvalues are small, the
principal-components heuristics provide good partitions but the lower bounds may be
poor. The effect ofthis term on the tightness ofthe lower bound depends on the variation
in the term over the set of all feasible partitions. In the bisectioning problem this term
is zero and thus has no effect on the lower bound. For unequal-size partitions, if the
connection matrix A has equal row sums, then this term is constant and does not affect
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the tightness of the lower bound. In both these special cases we have shown that the
lower bound of (8.13) is superior to the Donath-Hoffman lower bounds. In the general
case of unequal-size partitions and unequal row sums of A, we have not been able to
prove that the lower bounds of (8.13) are superior to the Donath-Hoffman bound.
However, the extensive simulation results of 9 seem to suggest that this is true.

The tightness of the lower bounds of (8.13), in general, depends on the magnitude
of (n r/2)(r* r,), where r, minsr _str. The smaller the differences n r/2 or
r* r,, the tighter is the lower bound of (8.13 ).

8.3. Improved ID bounds. The lower bound LB can be further improved by using
the second-best solution to the GP problem on 57/= )_elg, as was first suggested in 5 ].
Consider, once again, the /i’s defined by (8.4) and {_Sa, _Sb } output by Procedure
PART-1D (g, nl, n2, _Sa, _Sb). Let fa be the difference between the nth-largest and
(n + )th-largest entries in el, and let fib be the difference between the n2th-largest and
(n2 + )th-largest entries in el. They can be obtained by two additional calls to procedure
SELECT. Also, define I’ & I’ as the set of all feasible partitions other than S and
Sb, and observe that

gtl_Sb -- fb - e__]_S <= __e]S__ fa for all _s E r
Therefore,

(8.16) 0 < (ste 2_) -<-< C/1# max (]Sa fa) 2 _Sb -- fb) 2 } for all _s

It is apparent that/3 =< /. When 31# is strictly smaller than/31, an improved lower bound
can be obtained for costA(s), _S I’, by replacing the constraint for in (8.5) by
(8.16) and by repeating the arguments of Propositions 6 and 7. The exercise leads to

cOStA(S) >= LB]’ nZn (n nz)r* kiX for all s 6 I’,
i=1

where l >_- 2 is the smallest integer that satisfies

13 + , [3i >= n n___2
i=2 n

and the vector x# has entries defined as

nln2

n

0

l-1

j=2

for/= 1,

for2_-< i_-< 1,

for/= l,

9. Experimental results. The algorithms described in the previous sections have
been extensively tested on a large number of 0-1 connection matrices drawn from the
following three categories:

Let So denote the feasible partition produced by Algorithm GP-1D on A. Obviously,
So e I,. Therefore, cOStA (So) ----< LB1 is a sufficient condition for the optimality of So. If
cOStA (So) > LB#, then LB will serve as a lower bound on cOStA (_S) for all s e I’. This is
a tighter bound on cOStA(S) over s E I" since 3 <= 3 implies that LB1# >_- LB1. Furthermore,
when/3 is strictly smaller than/31, LB is strictly greater than LBI. As before, when only
[ < eigenvalues and eigenvectors ofM have been computed, a weaker bound can be
similarly found.

for/+ <=iNn- 1,
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Sparse matrices (0-1 pattern only) from the Boeing-Harwell collection [23 ].
(2) Connection matrices of five-point and nine-point grid graphs 13 ].
(3) Connection matrices generated randomly.
In each case all the nondiagonal entries in the connection matrix were either zero

or one. For results ofsimulations on graphs with more general, nonunit weights on edges,
the reader is referred to [5 ], [8 ]-[10]. Sparsity control was included in the random
matrix generator to control the number of nonzero off-diagonal entries in the matrices.
We suggest the following indicator of sparsity, to be called the densityfactor:

I tAl Trace (A)
3"(A) - n(n )amax

where amax is the largest nondiagonal entry in the n n connection matrix A. When all
nonzero entries in the off-diagonal positions are 1, as in the simulations reported here,
3" is simply the fraction of nondiagonal entries that are not zero. The algorithms imple-
mented were the following, based on Algorithms GP-1D and GP-mD of 6:

GP-1D.0 is GP-1D applied on the connection matrix A with zero diagonal entries.
GP-1D.E is GP-1D applied on the A with diagonal entries chosen as per (7.2).
GP-2D.0 is GP-mD with p 2 applied on A with zero diagonal entries.
GP-2D.E is GP-mD with p 2 applied on A with diagonal entries chosen as

per (7.2).
Each of the above algorithms generates a feasible partition as well as a lower bound

on the cost of the optimal partition. The integer ceiling of the computed lower bounds
is reported here since A has only integer entries and costs are hence integer valued. In
most cases the computation of LB required at most three largest eigenvalues and eigen-
vectors of M, i.e., =< 3, whereas LB2 required <- 4. The cases in which better bounds
are possible with more eigenvalues are indicated by an ampersand (&) in the following
tables. It must be mentioned, once again, that Algorithm GP-1D.E is equivalent to the
algorithm of 13 ].

The above four algorithms were coded in FORTRAN and used special subroutines,
provided by the standard IMSL package, to compute eigenvalues and eigenvectors of
matrices. All experimental simulations were performed on a SUN-4 Sparc-station.

We begin by presenting our results on the bisectioning of some graphs with con-
nection matrices from the Boeing-Harwell collection and some grid graphs in Table 1.
In each case, n n/2 if n is even and n (n + )/2 if n is odd. The results of Table
indicate that Algorithm GP-2D.E gave the best performance in terms of both the cost

and the lower bound, with the exception ofBCSSTK04, in which GP-2D.0 outperformed
the others. Also, the 2D algorithms outperformed their 1D counterparts in all cases, as
expected.

The graphs in Table are extremely sparse with 3’ < 0.1, with the single exception
of BCSSTK04, which has 3’ 0.203. In the case of BCSSTK04, the zero-diagonal Al-
gorithms GP-1D.0 and GP-2D.0 gave significantly better lower bounds than did their
equal-row-sum counterparts. Moreover, GP-2D.0 gave the best partition in this case.
The results in the next table indicate that for graphs with higher density, the zero diagonal
is a better choice than the equal-row-sum diagonal.

In Table 2 we present results on bisectioning randomly generated graphs with a
density factor 3" 0.3. The zero-diagonal Algorithms GP-1D.0 and GP-2D.0 performed
consistently better than their equal-row-sum counterparts. For example, in the n 500
case the GP-2D.0 algorithm was able to produce a lower bound within 4% of the cost of
the bisection generated. The performance of all four algorithms improves as n increases.

Table 3 presents the results for unequal-size partitioning on some randomly generated
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TABLE
Bisectioning ofBoeing-Harwell and grid graphs.

GP- 1D.0 GP- 1D.E GP-2D.0 GP-2D.E

Name n cost LB cost LB cost LB2 cost LB2

NOS4 100 14 -6 14 3 14 -3 14 5
BCSSTK04 132 308 211 304 157 302 215 304 159
BCSSTK22 138 12 -45 14 0& 11 -39 4
DWT19393 193 142 -5 142 54 142 -2 139 56
DWT20909 209 97 -43 67 10 87 -35 50 13
ASH292 292 101 -57 23 4 54 -50 21 4
DWT31010 310 26 -44 20 3 20 -40 20 4
PLAT362 362 126 -65 125 23 122 -64 121 24
LSHP4066 406 41 -14 45 5 41 -13 40 5
NOS5 468 201 -22 212 50 194 4 182 62

GRD5.10.20 200 10 -5 10 2 10 -4 10 2
GRD9.10.20 200 28 15 28 6 28 12 28 6
GRD5.19.25 475 21 -11 20 3 20 -9 20 3
GRD9.19.25 475 57 -32 56 7 56 -30 56 7

graphs of density 3’ 0.3 as well as on some Boeing-Harwell and grid graphs. In each
case the size of the larger part n was chosen to be approximately 0.6n. For the GP-1D.0
case we also list the Donath-Hoffmann lower bound LBDH for comparison.

For random graphs with density of 3’ 0.3 the performance ofalgorithms GP-1D.E
and GP-2D.E was generally worse than their zero-diagonal counterparts in terms ofboth
the cost of the partition generated and the computed lower bound. Finally, we present
some statistics on the performance of Algorithms GP-1D.0 and GP-2D.0 as a function
of the graph size n and the density factor 3’. In this study we considered only the bisec-
tioning case. We also omitted GP-1D.E and GP-2D.E from this study since the earlier
discussed results indicate that the performance of these algorithms is not as good as their
zero-diagonal counterparts for larger densities. The performance measure for each al-
gorithm was chosen to be

A= 1- 100.
cost

TABLE 2
Bisectioning on random graphs with 3’ 0.3.

Name

GP- 1D.0 GP- 1D.E GP-2D.0 GP-2D.E

cost LB cost LB cost LBz cost LB

RAND30.3
RAND50.3
RANDI00.3
RAND150.3
RAND200.3
RAND300.3
RAND400.3
RAND500.3

30 53 41 51 33
50 150 126 172 103
I00 615 545 652 473
150 1405 1275 1502 1084&
200 2587 2379 2719 2110&
300 6059 5629 6327 5068&
400 10829 10189 11334 9203&
500 17229 16531 18036 14963&

47
145
607
1395
2559
5976
10762
17146

44
126
547
1280
2383
5639
10225
16480

5O
152
640
1470
2661
6197
11238
17731

34
106
478
1132&
2144&
5123&
9234&
15037&
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TABLE 3
Unequal-size partitioning.

GP- 1D.0 GP- 1D.E GP-2D.0 GP-2D.E

Name n n cost LB LBDH cost LB cost LB2 cost LB2

RAND30.3 30 18 46 33 27 48 31 45 34 47 32
RAND50.3 50 30 141 109 90 156 98& 135 109 143 100
RAND100.3 100 60 590 488 412 618 452& 580 490 610 459
RAND200.3 200 120 2487 2193 1861 2579 2022& 2464 2197 2531 2054&
NOS4 100 60 15 -16 -21 14 3 14 -14 14 5
BCSPWR03 118 71 12 -33 -59 4 2 5 -32 4 2
BCSSTK05 153 92 174 -83 -218 70 20 62 -64 66 26
GRD5.10.20 200 120 22 -12 -17 10 3 10 -11 10 3
GRD9.10.20 200 120 50 -35 -49 28 6 28 -32 28 6

It is a measure ofrelative separation between cost achieved and the lower bound computed.
Note that a small value of/x indicates good performance of the algorithm in terms of
both the cost of the partition generated and the lower bound. A measure of relative
separation (such as A) is preferred over a measure of absolute separation (such as
cost LB) because scaling of the connection matrix affects absolute separation but does
not change the relative separation. The results for graphs offixed size n 100 and density
factor - varying between 0.1 and 0.9 are shown in Table 4. In this table the mean Amean
and standard deviation Asd of the performance measure were obtained by running both
GP-1D.0 and GP-2D.0 on 11 random graphs for a fixed value of 3’. These results show
that GP-2D.0 performs better than does GP-1D.0 on average at all levels of density.
Moreover, the performance of either algorithm improves dramatically as the density
factor increases.

The final set of results for graphs with a fixed density of 3’ 0.3 and size n varying
between 30 and 500 are shown in Table 5. In this table the values of Amean and Asd were
obtained by running both GP-1D.0 and GP-2D.0 on 10 random graphs for each value
of n. The performance of either algorithm, once again, improves quite significantly on
average as n increases. For example, on a random graph on 500 vertices the GP-2D.0
algorithm is expected to give a lower bound within 5% ofthe cost ofthe bisection generated,
whereas on a graph on 100 vertices the lower bound is expected to be within 10% of the

TABLE 4
Statistics ofperformance versus density.

GP-ID.0 GP-2D.0

0.1 32.2552 4.51599 24.8996 3.23034
0.2 16.2231 1.93971 11.8037 1.73474
0.3 11.5375 0.94880 8.0821 1.15707
0.4 9.1858 0.89699 6.4410 0.96194
0.5 7.0142 0.64616 4.8301 0.41526
0.6 5.5250 0.53461 3.9802 0.25564
0.7 4.5473 0.35456 3.2629 0.34936
0.8 3.4856 0.31932 2.6135 0.24535
0.9 2.4210 0.28736 1.8271 0.19292

")/ Amean Asd Amean Asd
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TABLE 5
Statistics ofperformance versus graph size.

GP-ID.0 GP-2D.0

n Amean Asd Amean Asd

30 18.1527 4.16481 8.96826 3.62944
50 16.7834 1.68350 9.57364 1.62944
100 11.3557 0.79174 8.07255 1.21314
150 9.0417 0.55910 7.32810 0.58846
200 8.0465 0.89136 6.36207 0.45827
300 6.9040 0.36230 5.71936 0.22667
400 5.9739 0.43197 5.09929 0.38692
500 5.2265 0.20352 4.62660 0.18563

cost of the bisection generated. The results of Tables 4 and 5 are only for bisectioning;
for unequal-size partitioning the values of/mean will be larger as the difference between
the sizes of the two parts increases.

In conclusion, this paper deals with a new class of constructive heuristics based on
principal-components approximation for solving the GP problem with fixed but not
necessarily equal part sizes. Low-rank approximation of the connection matrix is moti-
vated by an observation made in this paper that the GP problem on low-rank matrices
can be solved in polynomial time. Justification for such an approximation is based on
another remarkable observation, that there exists a rank-one positive semidefinite matrix
Q such that an optimal partition with respect to Q is also optimal with respect to the
original connection matrix. The approximation used is based on principal components
and requires computing a few largest eigenvalues and corresponding eigenvectors of an
n n matrix for a graph on n vertices. New lower bounds on the cost of an optimal
partition are also obtained from these eigenvalues and eigenvectors, and these bounds
are shown to be significantly better than the previously known Donath-Hoffman lower
bounds. The quality of the performance of these heuristics and the corresponding lower
bounds improves quite significantly on average as the size of the graph increases or the
density factor approaches 1.0. One of the heuristics of this paper, namely, GP-2D.0, is
able to produce partitions with cost within 10% of a lower bound LB2 for graphs on 300
or more vertices and with density 3’ -> 0.1. A much faster heuristic is GP-1D.0, which
produces partitions with cost within 5% of those produced by GP-2D.0. In case further
improvement in cost is desired, we suggest using the partition generated by GP-1D.0 as
an initial partition for iterative improvement techniques, such as the Kernighan-Lin
method 24 ], or even stochastic search methods, such as simulated annealing 25 ], 26 ],
or stochastic evolution 27 ].

Appendix.
Proof ofProposition 8 (for the graph bisectioning problem, LB >_- LBDH). In the

special case of bisectioning, LBDH reduces to LBDH 1/21TAI_- (n/4)(# + #2). With
n n2 n/2 in (8.18), we have =i n/4. Hence

We will now prove that + 2 1/n)l_tAl_ + , which will establish the result. To
this end, let w;" Aw__i #iW__i, 1, 2 n } denote an orthonormal set of eigenvectors
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of A. Similarly, let {el: Me__i ,igi, 1, 2, n} denote an orthonormal set of
eigenvectors of M, where gn (1/fn)l_. Since the two sets of eigenvectors of A and
M are individually orthonormal basis sets in [n, we can express the eigenvectors ofM
as a linear combination of the eigenvectors ofA as e__i Ef= 0wj for each 1, 2,...,
n, where the scalars 0 __el w can be easily shown to satisfy

(A. 1) (20 for all <i <n
j=l

and

(A.2) 2__ for all <j <n
i=1

Moreover, for each 1, 2, n we have e__}Aei_ ZT= (otsj.2 Now, elAglt
g]PAPgl Xl since g]l_ 0 implies P_e el. Furthermore, _eAg, 1/rt)l__tAl__. Com-
bining these yields

-I’AI_ + )t ((29 + (29)#9
/7 j=l

q- 211)]d’l -1- (2 (2

1 nt- 2,

where the first inequality follows from #1 > #2 >= , the second equality follows
from (A. ), and the last inequality holds because 0 < 21 + 2 =< from (A.2) implies
that ((21 + 211) -t- (1 2 + 2)tz2 is a convex combination of 1 and #2. This
completes the proof of this proposition.

Proof ofProposition 9 ifA has equal row sums, then LBI >_- LBoH). Since AI
#11, we have r* znl/n and t/n. Using (8.13) of Proposition 7 (with p and
(8.15), we get

nln2 nl/2
LB- #1- E kidi t2,1- E IAi+ 12i

n i=1 n i=1

An examination of(8.12)shows that = 1.i-- nln2/n. Thus LB1 -> (nln2/n)(#l ts2).
On the other hand, using AI_ #11_ in (8.14) implies that LBDH (n2/2)(1 2). Since

n >_- r/2 and n + n2 n, the desired inequality follows.
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FAST TRIANGULAR FACTORIZATION AND INVERSION
OF HERMITIAN, TOEPLITZ, AND RELATED MATRICES

WITH ARBITRARY RANK PROFILE*

DEBAJYOTI PALer AND THOMAS KAILATH:

Abstract. A fast procedure for computing a "modified" triangular factorization and inverse of Hermitian
Toeplitz and quasi-Toeplitz (matrices congruent in a certain sense to Toeplitz matrices) matrices is presented.
A modified triangular factorization is an LDL* factorization where L is lower triangular with unit diagonal
entries and D is a block diagonal matrix with possibly varying block sizes; only matrices with all leading minors
nonzero, often called strongly regular, will always have a purely diagonal and nonsingular D matrix. For the
matrices studied herein, the diagonal blocks also have a particular quasi-Toeplitz structure.

The algorithms are obtained by extending a generating function approach ofLev-Ari and Kailath Operator
Theory: Adv. Appl., 18 (1986), pp. 301-324.] for matrices with a generalized displacement structure. A particular
application of the result is a fast method of computing the rank profile and inertia of the matrices involved.

Key words, triangular factorization, Schur complement, Toeplitz, quasi-Toeplitz, inversion, zero minors,
rank profile, inertia

AMS subject classifications. 15A06, 15A09, 15A23, 15A57, 65F05

1. Introduction. Fast O(n 2) algorithms for linear algebra problems associated with
Toeplitz matrices have been studied for many years now, starting perhaps with the classical
work of Levinson [Lev47 on the solution of linear equations with a Toeplitz coefficient
matrix; Levinson’s algorithm was O(n2) for an n n Toeplitz matrix as compared to
O( r/3 for an arbitrary n n matrix. Elaborations and extensions were supplied by many
authors, especially Durbin Dur60 ], Trench Tre64 ], Zohar Zoh69 ], and others. Durbin
[Dur60] studied the particular case of Toeplitz matrix systems with the fight-hand side
being proportional to the first unit vector, 0 0 0]*. The relation of Durbin’s re-
cursions to those for the Szeg6 orthogonal polynomials was perhaps first made by Whittle
[Whi63, p. 36], and by Trench [Tre64]. Trench in fact essentially noted that the Chris-
toffel-Darboux formula for the Szeg6 polynomials (orthogonal on the unit circle) gave
a fast recursion for finding the elements of the inverse of a symmetric positive definite
Toeplitz matrix. The "summed" form of these recursions gives a result that is a special
case of a celebrated formula ofGohberg and Semencul GS72 ]; for more discussion and
further references see the survey papers of Kailath, Vieira, and Morf [KVM78] and
Kailath [Kai87, Appendix C]. It was also known to many authors (see, e.g., [Bur75])
that arranging the successive solutions of the normal equations in a lower triangular
matrix essentially gave (apart from scaling) the lower triangular factor in a so-called
UDL (upper diagonal lower) triangular factorization of the inverse of the coefficient
matrix.

In many problems, it is of interest to determine the triangular factors of the matrix
itself rather than its inverse. Fast algorithms for doing this can be inferred after .some
algebra from the Levinson Algorithm as, e.g., in the survey Kailath [Kai87, Appendix

Received by the editors November 13, 1989; accepted for publication (in revised form) March 11, 1992.
This work was supported in part by U.S. Army Research Office contract DAAL03-86-K-0045 and the Strategic
Defense Initiative Organization/Innovative Science & Technology, managed by Army Research Office contract
DAAL03-87-K-0033.

? Information Systems Research Laboratory, AT&T Bell Laboratories, 101 Crawfords Corner Road,
Holmdel, New Jersey 07733 (debu@vax135.att.com).

Information Systems Laboratory, Stanford University, Stanford, California 94305 (tk.isl.stanford.edu).

1016



FACTORIZATION AND INVERSION OF TOEPLITZ METHODS 1017

B ]. The first explicit solutions of the direct (so-called Cholesky) factorization problem
for Toeplitz matrices were given in different contexts and in somewhat different ways by
Bareiss Bar69 ]; Morf Mor70 ], Mor74 ]; Rissanen Ris73 ]; and Le Roux and Gueguen
[RG77 ]. It was noticed that all these algorithms were essentially related to a recursive
algorithm of Schur Sch 17 for checking if a power series is analytic and bounded in the
unit disc. Schur’s work was perhaps first introduced into this circle ofproblems by Dewilde,
Vieira, and Kailath [DVK78 ]; further study of Schur’s paper by Lev-Ari and Kailath
LK84 showed that the same algorithm also provides the triangular factorization ofany

positive definite matrix of the form

(1.1) Q L(a)L*(a)- L({3)L*([3),

where L(a) is a lower triangular Toeplitz matrix with first column a and (*) denotes
Hermitian transpose. Such matrices will be called quasi-Toeplitz (QT), in part because
of the identity (first given by Schur Sch 17 ]),

(1.2) Q L(a)L*(a)- L()L*() L(a + [3)TL*(a + ),

where T is a Toeplitz matrix (said to be congruent to Q). It may be of interest to point
out a physical interpretation via lossless transmission lines of the Schur factorization
algorithm; see Kailath, Bruckstein, and Morgan [KBM86 ].

After this lengthy review it must be noted that all ofthe above results are for positive
definite Toeplitz matrices, or at least for Toeplitz matrices with all nonzero leading mi-
nors-so-called strongly nonsingular or strongly regular matrices. Successful attempts to
generalize the Levinson algorithm, and consequently to compute the inverse matrix, to
nonstrongly regular Toeplitz matrices were made by Heinig and Rost HR84 and later
by Delsarte, Genin, and Kamp DGK85 and in a different way (using generalized three-
term recursions) by Pombra, Lev-Ari, and Kailath [PLK88 ]. However, there appears to
be no prior results on the direct triangular factorization of nonstrongly regular Toeplitz
matrices despite scattered attempts by various researchers. We should mention here that
a strict triangular factorization is not possible unless all the leading minors are nonzero.
What can be achieved otherwise is a modified triangular factorization of the form

(1.3) M LDL*,

where L is lower triangular with unit diagonal, while De is a block diagonal matrix, with
possibly varying block sizes. In this paper we will present a recursive O(n 2) algorithm
for such a factorization. Furthermore, following the ideas of Chun [Chu89 ], we will
develop fast O(n2) algorithms for factorizing certain block Toeplitz matrices that will
allow us to obtain alternative O(n2) algorithms to those mentioned above for solving
linear equations and obtaining the inverse of the coefficient matrix.

A characteristic of all these new algorithms is that the coefficients in the recursions
are all computed without invoking inner products, a fact that sets them apart from all
Levinson-related algorithms. The absence of inner products makes parallel computation
more feasible in the sense that with O(n) processors, the computation time for the direct
factorization methods can be reduced to O(n), assuming unit time for each elementary
computation; because ofthe inner products, the corresponding number for the Levinson-
type algorithms is O(n log n).

To close this introduction we should mention a number of papers that solve the
problems for Toeplitz matrices by converting them to Hankel matrices (by reversing the
order ofthe columns); see, e.g., Brent, Gustavson, and Yun BGY80 ]; Sugiyama Sug86 ];
and Labahn, Choi, and Cabay [LCC90]. The point is that the corresponding problem
for Hankel matrices appears to be easier to solve, with solutions going back to Berlekamp
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[Ber68 ], Massey [Mas69 ], Gragg [Gra74], and many others. However, recursive solutions
(in the size of the Toeplitz matrix) are apparently ruled out by such an approach. Our
paper focuses only on recursive algorithms, which are important in various problems.
For completeness we should also mention a paper of Gover and Barnett [GB85 ], who
use certain so-called r-Toeplitz matrices; however, the algorithm is not efficient in terms
ofthe amount ofcomputation and requires a lot of O(r3) steps and a considerable effort
to find the right choices of r.

In the next section we explain the general (Jacobi)triangular factorization procedure
for an arbitrary matrix. In 3 we show how the structure of Toeplitz and QT matrices
can be exploited to obtain a fast recursive procedure for computing a modified triangular
factorization of Toeplitz and QT matrices. It is shown that the diagonal blocks are also
QT. Following Lev-Ari and Kailath ILK86 we introduce a "generating function" rep-
resentation of Hermitian matrices and derive all our results in the form of certain poly-
nomial recursions. In 4, we consider the inertia properties and show that the signature
of the block diagonal entries is always zero. In 5 we introduce the notions of block
generatingfunctions and block quasi-Toeplitz (BQT) matrices. It is shown that inverse
of a QT matrix can be obtained by computing a block Schur complement of a certain
associated BQT matrix. Next we discuss the so-called admissibility conditions and derive
polynomial recursions for Schur complementation of BQT matrices with regular and
arbitrary rank profiles. At this point we discuss the transmission line interpretation of
these polynomial recursions and indicate that this procedure works under all circum-
stances, including those where a Gohberg-Semencul formula does not hold good. We
end this section with an example. In 6 we show how to adopt the procedure of 5
toward obtaining solutions to linear equations with a nonsingular QT coefficient matrix
and an arbitrary right-hand side. Section 7 contains some concluding remarks.

2. Triangular faetorization of Hermitian matrices. Strongly regular Hermitian ma-
trices M C" ", can be factored as

(2.1) M LDL*,

where L is a lower triangular matrix with unit diagonal elements, D is a nonsingular
diagonal matrix, and the superscript * denotes Hermitian transpose.

Let us denote the columns of matrix L by { 1, 1, 2, n } and the diagonal
elements of the matrix D by { di }. Then we can write

(2.2) M LDL * dilil ’i=1

which suggests the following recursive computational procedure:

(2.3) Mi+ Mi- d;lil/*; M M,

(2.4) di e Miei and li Mieid7, 1,

where e is the unit vector with nonzero entry at the th position.
The above procedure is the celebrated Jacobi procedure (see [LK86]). Equations

(2.2)-(2.4) show that the first rows and columns ofM contain only zero entries,
d is the (i, i)th element of Mi, and dill is the th column of Mi.

So Mi has the form

o
where Pi is called the Schur complement of the matrix M with respect to the leading
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(i (i principal submatrix; note that Pi+l is the Schur complement of the
(2.1) entry of Pi, i.e., we compute one Schur complement at every step of the triangular
factorization procedure (2.3)-(2.4).

Singularities. Given a real symmetric matrix M it will be impossible to compute
the Schur complement of the (2.1) element if and only if the (2.1) element is zero. The
following are the possibilities: (i) M 0; (ii) M 4: 0, but the first row and column ofM
are identically zero; and (iii) M 4: 0, the first row and column ofMare also not identically
zero, but rn 0.

In case (i) finding a triangular factorization is trivial. In case (ii) there is no need
to find the Schur complement of mll. We simply choose the first column of L to be el,

the first unit vector and d 0; then resume the triangular factorization procedure. In
case (iii) we must find the block Schur complement of the smallest nonsingular block
available at the top left corner of the matrix M. This will lead to a modified triangular
factorization M LDL *, where L e C is a lower triangular matrix with unit diagonal
elements and D e C is a Hermitian matrix with scalar as well as block entries along
the diagonal, while all the other entries are zero. The matrix D is nonsingular if and only
if M is. Such a factorization always exists; however, it is nonunique (see also Bunch,
Kauffman, and Parlett [BKP76 ]).

3. Modified triangular factorization of Toeplitz and quasi-Toeplitz matrices.

3.1. Generating functions. Since triangular factorization is nested, factorization of
the leading principal submatrices does not depend on the actual size ofthe matrix. Hence
we can consider, without loss of generality, that the matrix under consideration is in fact
semi-infinite. Following [LK86], we will associate such a matrix M with a "generating"
function

(3.1) M(z, w) [1 2 2
2 ]M[1 w w2 ]*.

A Toeplitz matrix of order n (= 1, 2, .) has the form Tn_ [ti-j] -/,j=l 0, where
the tk } are arbitrary (k (n ),..., 1, 0, (n )). If T, is Hermitian,
then the entries tk} t_]2))must satisfy t_ t for 0 =< k _-< n 1. The semi-infinite
extension T,_ , of a finite Hermitian Toeplitz matrix T_ is the banded semi-infinite
Toeplitz matrix with the first row [to*
its generating function can be seen to be

(3.2) T,_l,(z, w)=

where

tn_) 0 0 ],and

t(z) + t*(w)
ZW*

(3.3) t(z) - to + tz + + t,_lz-l

Similarly, the generating function Q(z, w) of the semi-infinite extension of the QT
matrix Q in 1.1 can be represented as

(z)*(w)- (z)*(w)
(3.4) Q(z, w)=

zw*

where a(z) and/3(z) are polynomials (power series) in z, say
q

(3.5) c(z)= az and /(z)= /zk.
k=0 k=0

THEOREM 3.1. The Schur complement ofthe leading principal submatrix of
Tn_ 1, is QT provided to :/: O.
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Proof. If to 0, then the Schur complement does not exist. So we assume to 4: 0.
The generating function T_ 1, (z, w) of this Schur complement is

(3.6)

(zw*)T_I.(z, w) Tn-l,(z, w)- Tn-l,(z, 0)[Tn-l,(0, 0)]-1T,_1,(0, w).

Rearranging (3.3),

T._ ..(z. w)

which implies that

(t(z) + 1/2to)(t(w) + 1/2to)* (t(z) 1/2to)(t(w) 1/2to)*

T_ l.oo(Z, w)

where we have defined

zw*)to

(t(z) + 1/2to)(t(w) + 1/2to)* tl(z)t(w)
zw*)to

n-2

(3.7) tl(z) 6+1z.
k=0

Since at least one Schur complement is evaluated at every step of triangular factor-
ization, a question naturally arises about the structure ofthe Schur complement of a QT
matrix.

THEOREM 3.2. The Schur complement ofthe leading principal submatrix of
a QT matrix is also QTprovided Q(O, O) 4 O.

Proof. The generating function QC(z, w) of the Schur complement is given by

(3.8) (zw*)Q"(z, w)= Q(z, w)- Q(z, 0)[Q(0, 0)]-IQ(0, w),

where Q(z, w) is as in (3.4), and we have assumed that Q(0, 0) 4: 0. In this case some
algebra will show that

[(z)*(0)- (z)C*(0)][(0)*(w)- N0)C*(w)]- (z)(w)
QC(z, w) (1(0)12 13(0)12)(1

where

(3.9) /31(z) [c4z)3(0)- (z)c(O)]/z.

Clearly,/31 (z) is a polynomial since the numerator in (3.9) has a root at the origin. This
completes the proof of the theorem, since QC(z, w) is clearly QT. Ul

3.2. What can we do when Q(0, 0) 0. The following are the possibilities (see
2).

Case (i). Q(z, w) 0, which will happen if and only if c(z) eJ(z), for some
[0, 27r1.
Case (ii). Q 4 0, but the first row and the column are identically zero, i.e.,

Q(z, w) 4 O, but Q(z, O) 0 Q(O, w). This is equivalent to having c(0) 0 =/3(0).
Case (iii). Q is not zero, neither the first column nor the first row is zero, but the
entry of Q is zero, i.e., Q(0, 0) 0, Q(z, O) # O, Q(O, w) # O, and Q(z, w) # O.

This implies that

I(0)1 -- IN0)I2; (0)=0, /3(0)0, and (z)4eJB(z) foranycke[O, 2r].

Carrying on with the triangularization is simple in Cases (i) and (ii). However,
Case (iii) is more difficult to deal with. To see what is happening here, it will help to first
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rewrite the expression (3.4) for Q(z, w) using the so-called immittance variables

Va(z) c(z) (3"(0)/c*(0))/3(z),
(3.01

b(z) (z) + (*(0)/*(0))(z),

to get

(3.11) Q(z, w)
a(z)b*(w) + b(z)a*(w)

ZW*

The condition Ic(0112 ]/3(01[2 can now be restated as follows.
TrEOREM 3.3. The polynomial a(z) must have at least one root at the origin and

if a(z) has roots at the origin, the first nonsingular leading principal submatrix ofQ
must be ofdimension 2t.

Proof. Since

* (0)
a(z) a(z) /(z); /3(0) # 0,

a*(0)

the first claim is verified immediately. Now suppose a(z) has roots at the origin. Then
a9 0, 0 =< j =< 1, which implies that

p--t

(3.12) a(z) ztat(z), at(z) , ag+tz.
j=0

Therefore,

(3.13) Q(z, w)=
ztat(z)b*(w) + (w*)ta?(w)b(z)

ZW*

Now introduce the Taylor series for the rational function g(z) defined as

b(z)
(3.14t

at(z)
g(z) g,zk.

k--0

Then we can write

where

Q(z, w) at(z)G(z, w)a? (z),

(3.51 G(z, w)=
[ztg*(w) + (w*)tg(z)]

ZW*

Clearly, ztg*(w) represents a semi-infinite matrix whose (t + )th row from the top is
[go*’, g, g ], and all the other rows are zeros; w* )tg(z) represents the Hermitian
transpose of this semi-infinite matrix. Thus the arrangement of the zero and nonzero
elements of the matrix (, associated with ((z, w), must have the form

(3.16) (



1022 DEBAJYOTI PAL AND THOMAS KAILATH

where U is a upper triangular Toeplitz matrix, and is a semi-infinite Hermitian
Toeplitz matrix. Clearly, the entry on the diagonal of U is go*. Since b(0) 4:0 implies
go 4: 0, U is full rank. Therefore, its 2t 2t first leading principal submatrix must be full
rank. All other j j, =< j =< 2t 1, leading principal submatrices of G can be verified
to be rank deficient by inspection. This completes the proof of the theorem. []

LEMMA 3.1. Formula for . The first row of the upper triangular Toeplitz
matrix U is [g g g?_ l], while thefirst column ofthe Hermitian Toeplitz matrix

is [(o + ), ,...,...], where

gi-" gt+i 4C" g-i

gt+i

(3.17) (

Proof. The proof is obtained by direct coefficient matching.
THEOREM 3.4. The block Schur complement of the first 2t 2t leading principal

submatrix of is O.
Proof. Note that

where the Toeplitz matrices di are formed from the coefficients of the first
rows and columns of ( by proper partitioning. Hence the Schur complement (c under
consideration is

However, ( can be obtained directly from ( by removing U and U* from it, i.e.,

U

l<=i<=t,

i>t+l.
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Thus the generating function of (,. can be represented as follows:

(3.19)

(zw*)’G"(z, w) d(z, w)
’__- z’- * ’- * [ *[ [gf + g(w ](zw -(zw

ZW*

Clearly, the above process of "removing U* and U" from G can be carried out in steps
such that at every step one of the diagonals (super diagonals) of U and a corresponding
diagonal (subdiagonal) of U* are removed.

Since Qt(z, w) a(z)J.a*(w), it should be possible to obtain Qt in scalar
steps, also.

Observe the first step:

(zw*)- (z, w)

zl--j W* )t--j-- * j )t--j-- *(3.20) [gf+, + gj+ ( l(zw [1 (zw* 1/(1 zw
J

+ Q](z, w)/a(z)a*(w),

where

(3.21)

Since

zw*Q]’ (z, w)

Q(z, w)- at(z)[(gz + go(w*)t)(1 -(zw*)t)/(1 zw*)la?(w).

Q( z, w)
ztat(z)b*(w) + (w*)ta?(w)b(z)

zw*

Q(z, w) at(z)[(g6’z + g0(w*)t)(1 (zw*)t)/(1 zw*)la?(w)

ztat(z)[b*(w) ga?(w) (w*)Ztgoa?(w)]
+ (w*)ta?(w)[b(z) goat(z) zZtgat]

zw*

Since go b(O)/at(O), limz0 b(z) goat(z) zZtgat(z) 0. Thus,

3.22 Q z, w)
zt- at(z)b (w) + w* )t- a? (w)b(z)

ZW*

where

zb(z) b(z)- goal(2)+ z:Z’gat(z) and go lim b(z)/at(z).
0

This suggests the following result.
LEMMA 3.3. The recursive form for Qt(z, w) is as follows.

(3.23) Q.,(z, w)
at(z)b?(w) + bt(z)a?(w)

ZW*

where bt(z) is defined by the recursion

b0(z) b(z),
(3.24)

zbj+ ,(z) bj(z) -jat(z) + -f z2(’-J)at(z); b(O / at( O
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Proof. Define the sequence

z’--iat(z)b(w) + (w*)t--ia?(w)b(z)Q.(z, w)
zw*

j--1 t,

where bj.(z) }}_ is defined by the recursion (3.24). Then

Q’j(z, w)- a(z)a?(w)[rfz- + r(w*)-][1 -(zw*)-]/(1 zw*)

(zw*)Q;+ l(Z, w).

It is clear that there is a relationship between the r; } and the coefficients gi } of the
power series expansion of g(z). We will repeat (3.14) for convenience:

b(z)
g(z)= Z gzk,

at(z) k=0

whose matrix version is

(3.25)

bo
bl
b2

0
0

at 0 0 go
at + at 0 . . gl

at+2 at + at 0 ".. g2

0 "" ""
gr+l

gr+2

r= max (m, q).

Clearly, the above equation could be solved for the gi } using the following recursion:

(3.26) zui+l(z) ui(z)-giat(z); Uo(Z) b(z) and gi ui(O)/at(O).

Since the terms rf z2(t- J)at(z) for all j, 0 _-< j _-< 1, do not have any effect on the
coefficients of the j lowest power of z in the expression, bj(z) "fiat(z) +
r z2(t- J)at(z) we can conclude that { rj

t-
j.= could be computed via (3.24), and in fact

gj rj, 0 _-< j <- t- 1. Therefore,

Q(z, w) at(z)a?(w) [gf zt-j + gi(w*)t-J](zw*)J[1 (zw*)t-Jl/(1 zw*)
[.j=0

(zw*)Q(z, w) (zw*)tQt(z, w).

Hence

Q;(z, w)= Q.t(z, w)=
at(z)b?(w) + bt(z)a?(w)

zw*

Thus (3.23) and (3.24) provide an efficient way ofcomputing the block Schur complement
Qt. It is clear that Qj }j does not represent any Schur complement related to the
problem at hand. However, the last member of this finite sequence, Q(z, w), represents
the desired block Schur complement and allows us to continue with the factorization
procedure. Lemma 3.2 suggests the following block reduction step, namely,
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(3.27)

Q=AL

0 U*
u o
0 d
0

U* 0
(o I

0

U*]-[" 0 U* 0 0

do] [u do dt d

[0 I ][U o ({
I -Go 0 I 0 0

It is clear from Theorem 3.3 and Lemma 3. that

U*

go 0 0 10
gt- go txt

and

2 Re (,o) ,i ,L
(o 2 Re (,o)

gt-1 gl 2 Re (o)

The generating function of the first columns of the block triangular factor

AL
0 I 0

is at(z) (ZW*)t-l-k[g(z) AI- zk+l/k(Z)]
I.k=0

where

2t-k-

(3.28) "(z) gzt j -lZ; 0 =< k -< 1.
j=O

It is clear that "(z) t-1
k o can be generated via the backward recursion

(3.29) I /k-I(Z) Zfk(Z) -I- g2t-k,

5/,- l(z) Z &-jzj.
j=0

Recalling (3.26) we know that { gi can be computed via

zui+l(z) ui(z)- &at(z); Uo(Z) b(z)

and

gi ui(O)/at(O).

Hence the following recursions can be used to compute { a,(z)-}k(z) } k=0t-

(3.30) zui+ I(Z) Ui(Z) &at(z)
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and

(3.31)

where

(3.32)

It is clear that

DEBAJYOTI PAL AND THOMAS KAILATH

b/i+ l(Z) Zbli(Z) J- giat(z),

gi ui(O)/at(O) Uo(Z) b(z) and Uo(Z) O.

The following cases represent all the possibilities to be encountered at any step j.
Case l(a). aj(0)= 0, I(0)1 I(0)1.
This is a strongly regular step (the Schur complement of the 1, entry can be

computed), for which the recursion is

z z 1.

and

(3.36)

This implies that

Q(z, w) -(z)7(w) + (zw*)Q+(z, w),

]1)
Iki]i=0

li(z) + l(Z)/j+ 1(0),

where 69 is the number of times Case (a) has occurred before step j.
Case l(b). c9(0)4: 0, [%.(0)1 4: I/(0)1.
This is also a strongly regular step, for which the recursion is

(3.37)
O/j+ l(Z) Olj(Z) kjj(Z),

z+,(Z) --kf (Z) + (z),

where

(zw*).(z, w): M(z, w): [ z

and

zJ(z) l(z) [1

z 2 ]Mj[1 w w2

(3.33) at(z)5/k(z) L92t-k(Z); 0 <= k <= t- 1.

Since computing ff t-
o
2t-1

o from { g9 is trivial (see Lemma 3.1 ), computation of -(o
for the block diagonal

[oI
is trivial, also.

3.3. Polynomial recursions and triangular factors. Let us first express the factoriza-
tion formulas (2.3) and (2.4) (see 2 in generating function terms,

(3.34) /17+ ,(Z) Jj(Z, W)- Jj(Z, 0)J)-I (0, 0)Jj(0, W),

(3.35) 4 ]0;(0, 0), (z) 20j.(z, O)df’ when dj. O,
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where kj =/3j* (0) / aj* (0). This implies that

j+l( ZQj(z w)
Ikl 2 c+,(z)a+,(w) +

Ikl 2 zw*Q. w),

i=0 Ikl 2 Ikl 4: ,
and

l(z) a+ ,(z)/a+ ,(0),

where 6 is the number of times Case (a) has occurred before step j.
Case 2. a(z) e(z) for some 4 [0, 2r].
Since Q(z, w) 0 the factorization is trivial. We simply pick

(3.38) dj- 0 and lj.(z) z.
In fact, at this step there is no need to proceed any further.

Case 3. a(O) 3(0) O.
Since Qj(z, 0) 0 Q(0, w), but Qj.(z, w) 4: 0, we proceed (as described in 2)

simply by shifting the matrix Q up by one row and one column. Thus we assign

(3.39) zw*Q+ (z, w)= Qj(z, w).

From (3.39) we get the recursions

zaj+ (z) aj(z),
(3.40)

zj+l(Z

which implies that

(3.41) d=O and lj-(z)=z.
Case 4. [a(0)[ flj(0)[ 4: 0, a(z) 4: e(z) for all q e [0, 27r].
In this case we need to find the block factorization of the kind shown in (3.27).
Define, following (3.10) (we ignore the factor (2 here ),

(3.42)
a( z .( z

o
.j*(o)

bj(z) aj(z) +
7(o)

Now if is the smallest positive integer such that limz_, o z-ta(z) 4: 0, then by Theorem
3.3 the first nonsingular leading principal submatrix of Qj must be 2t 2t. Then Lemma
3.3 suggests the recursions

za+ I(Z) a(z),
(3.43)

zb+l(Z) b(z) rjz-ta(z) +
where

n lim ztb(z)/a(z).
0

This implies that the block diagonal factor Dj (2t 2t matrix) is

-’ [ 0 gdI]o
(3.44) D (-1)J ]-]

[ki 12 go,It -o, limz._,.0 z-ta(z)l’ [ki[ 4:o0,
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where (0,j is the X Hermitian Toeplitz matrix whose first row is [2 Re (o,j)*,
_

,], with

gt,j; O,

i,j gt + i,j "31- g?-i,j’ <= <-_ t,

gt+i; >= + 1,

and 6j is the number of times Case (a) has occurred before step j. The gi,j} can be
computed via

(3.45)
ZUi + 1,j(Z) Ui,j(Z) gi,j2-t aj(z);

gi,j lim ui,j(z) / z- aj(z).
0

Uo,j( z bj( z and

The first columns of the triangular (block) factor have the generating function

(3.46) L(z, w)

where

[Z’-=’o (zw*)’-’-[b(z) + z+ ’a+,(z)5/,(z)]]
go, la+(O)l

2t-k-I
W.

(3.47) ",(z) gz_i__l,jZ, 0 <= k <= t- 1,
i=0

(3.48) a+,(z) z-taj(t),

and the a+t(z)5/,(z) } are computed via

(3.49) 0i + 1,j(Z) ZLgi,j(Z .3f_ gi,jaj+t(z); Oo,j(z) O.

The last columns of the block triangular factor have the generating function
t--1

(3.50) L(z, W)"-- ajq_l(Z Z (ZW*) ih-1

i=0

Once the singularity is overcome we will use recursions on %(. and/3j.(. rather than
the recursions on aj.(.) and b.(.).

It is important to note that at any step we just need to compute a linear update of
two polynomials. This is irrespective ofthe presence ofa singularity. Hence the triangular
(modified triangular) factorization of the QT matrices can be computed in O(n2) com-
putations, using the recursions of this subsection.

Example. Consider the following Toeplitz matrix T4,

0 0 0
0 0

T4-- 0 0
0 0
0 0 0

whose semi-infinite extension T4,oo has generating function

t(z) + t* (w)
(3.51) T4,o(z, w)=

1- zw*
t(z)= + z.

We can rewrite (3.51) as

(z)* (w) (z)t* (w)
T4,o(z, w)=

zw*
o(z) + z and /(z) z.
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We initiate the recursions with

Co(Z)= +z and /3o(Z)=Z.

It is clear that o(Z) and/3o(Z) put us in Case (b), so we get ko 0. Therefore,

,(z) co(Z)= + z, (z) o(z)/z 1,

which implies

lo(z)=c(z)=c(z)= +z and do= 1.

Since c(0)l I/(0)1, but c (z) 4 e(z) for all 46 [0, 2-], the polynomials c(z)
and/3 (z) must correspond to Case 4. We define

Va,(z) o(z)- ,(z)= z,

1/b(z) c(z) + (z)= 2 + z.

Since unity is the smallest positive integer such that z-ta(Z)lz=o 4: O, we assign 1.
Then at+(z) az(z) 1/V and the 2 2 block diagonal entry D must be

D (-1)
(1 [ko[ 2) go, -(o, la2(0)12"

Since go 2, (o ff + ff 2, So 0, ko 0, and a2(0) 1/V, the block diagonal
factor is

D1
-1

NOW since 1, and L are one column each and

Ll(Z, w)
[(zw*)[bl(Z) + za(z),O,l(Z)]]

g0,1 a:z(0)

where

and

o,(z) g*, + go*, z + 2z

L(z, w)= zw*az(z)-- zw*.

Then the generating function Ll(Z, w) of the triangular (block) factor must be
L(z, w) + Ll(Z, w),

L(z, w)= + z + z2 + zw*.

The polynomial bz(z) is computed as

zbz(z) bl(Z) z-al(z) + " zal(z),

where

Then

rl lim
zb(z)_ bl(0)= V.

z-*o a (z)

bz(z) (1 + 2z)/V
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so that

az(Z) [a2(z) + b2(z)]/1/r + z, flz(Z) [b2(z)- az(z)]/f z.

Since a (z) a2(z) and/3 (z) =/32(z), it is clear that even the polynomials a2(z) and
/32(z) correspond to Case 4, and we get the same diagonal and triangular block factors.
We can proceed in this way to get the factorization

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 -1 0 0 0 0

after proper truncation of the factors of T4,.

4. Inertia of the block diagonal factor. Computing the inertia of Toeplitz and QT
matrices has applications in the problems ofroot distribution ofpolynomials with respect
to the unit circle. If the given matrix is strongly regular, the inertia can be determined
from the diagonal factor D by inspecting the signs of the nonzero entries of D. In this
section we show that the situation is not really different even when the given matrix is
not strongly regular. The reason is that the signature of a block diagonal entry is zero,
as we will now prove.

The diagonal factor Dj in (3.44) has the same inertia as the matrix

It -(od/go,y
Since O,j is Hermitian,

o,/2go,; It It -o,/go,j 0 It

which implies that D must have an equal number of positive and negative eigenvalues.
In fact, the above result also enables a simple proof of Iohvidov’s rules (see Iohvidov
[Ioh82 ]) for determination ofthe nullity and inertia ofHermitian Toeplitz matrices with
arbitrary rank profile. Such an alternative proof will be published elsewhere.

5. Inversion of Toeplitz and quasi-Toeplitz matrices: Block generating function ap-
proach. If possible, let the Hermitian Toeplitz matrix Tn- of (3.2) be nonsingular. We
will define the 2n 2n Toeplitz block matrix

(5.1) Tb I 0 2n2n

Tn_ is the first n n principal submatrix of Tb, and the corresponding block Schur
complement is -T[ 1.. We define the following semi-infinite matrix
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where T,_ 1,o is the semi-infinite extension of Tn- 1, Io is a semi-infinite identity matrix,
and Oo is a semi-infinite zero matrix. It is useful to associate a semi-infinite block struc-
tured matrix M Mll IiMl2M2, M2 (with structured semi-infinite blocks Mo., =< i, j =< 2) with
a block "generating" function

(5.3)
M(z, w)

O O z Z2 M2 M22

.[1 W W2 O O ]*O O w w2

Then the block generating function (which is obtained by replacing each of the semi-
infinite Toeplitz blocks by their generating functions)

(5.4) Tb,(z, w)=
T._,(z,w)

1-zw*

O
zw* 22

where Tn_ ,(z, w) is as in (3.2).
For simplicity assume to for now. Then notice that

(5.5) T,(z, w)=
Gb(z)JG(w)

ZW*

where

(5.6) J=
O -1

and Gb(z)

Next we will define a matrix Qb to be BQT if its block generating function Qb(Z, w) can
be represented in the form

(5.7) Qb(z, W)
ZW* 3"(Z) 6(Z O][a(w) (w)]*o - (w) (w)

where a(z),/3(z), 3’(z), and 6(z) are all polynomials (functions) in z.
THEOREM 5.1. The Schur complement ofthe leading principal submatrix of

a BQT matrix is also BQT provided the entry is nonzero.
Proof. The generating function Q(z, w) of the Schur complement is given by

z O](5.8) O
Qb(z’w)[w* O]

=Qb(Z,w)--Qb(z,O)[1 0]*([1 0]Qb(0,0)[1 0]*)-111 0]Qb(0, w),

where Q(z, w) in (5.8) is the block generating function of BQT matrix Q in (5.7).
Assuming that Qb(O, O) 4:0 we obtain, after some algebra,

(5.9) Q(z, w) =
zr,(z) 6,(z) o - .,(w) (w)]

w’(w) (w)

(1(0)12 13(0)12)(1 zw*)
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where

OI(Z O/(Z)O/*(0)- (Z)/*(0), /I(Z) [O/(Z)/(0)-
(5.10)

3,,(z) 3,(z)c*(0)- (z)3"(0), and i(z) [3,(z)/(0)- 6(z)c(0)].

It is clear that 3(z) is a polynomial since the numerator in (5.10) has a root at the
origin. This completes the proof of the theorem, since Q(z, w) is clearly BQT.

It is clear that n steps of Schur reduction on the block generating function
Tb.(z, w) would lead directly to the generating function of TI via the computed
polynomials (functions) 3‘,_ (z) and 6,_ l(z) starting with 3’0(z) and 60(z) as
in (5.7).

It was shown in [Pal90, Appendix A, A.2, eq. (A.5)] that for an arbitrary nonsin-
gular QT matrix Q,, it is Q#-I and not Q that possesses the same displacement
rank. This naturally raises the following question: Is it possible to computeQ in a
similar fashion? The answer is "yes" and we provide an explanation below.

It is clear that

Q,-I Ln-,{ceiL*n-l{}
(5.1 la)

L.-I{_ _} TL*n-l{OZ- },

where

(5.1 lb) T-- - { Ln_ { o/--

_
LI { o/ _/} -- Ln*_ 1{o/-- _/ } L-*__ 1{o/_-_/}}

(assuming invertibility of L,_ 1{ / }; otherwise we will use -/3 instead of/3) is a
nonsingular Hermitian Toeplitz matrix

(5.12a)

by the fact that T-l T-#. Given c(z) and/3(z) it is possible to find 3"e(Z) such that

(5.12b) [.(z)- Nz)]r(z): + O(z").

Partition 3" e(z) as 3",,(z) e(z) + O(zn). Then the choice

(5.12c) 3"(Z) 6(Z) e(Z)

would be sufficient and the Schur procedure would compute the generators for Q-# in
n steps.

5.1. Admissibility condition. It is clear that construction of the generators for an
arbitrary nonsingular Hermitian QT matriX requires a certain amount of preprocessing
for obtaining the starting 3"(z) and 6(z). This is equivalent to the prefiltering in Lev-Ari
and Kailath [LK84] or in Kailath, Bruckstein, and Morgan [KBM86 ].

If the preprocessing is not desired, we can always possibly construct generators of
displacement rank four for the inverse working with a nonminimal generator for the

Qo [Q’[ is sometimes called Q-natural;/r being the reversed identity matrix and ’being the transpose.
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original matrix. We can choose

(5.13a)

Qb(z, w)

lolo

o o 11/21-1/2 ol o1
ol o Io

o *(w) o
o 1/2

ZW*

which implies that

Qn-,, Iv ]( 13b) Q,
I OJ

Thus, after n steps of Schur complementation we obtain the generators for the inverse.
However, if the given c(z) and/3(z) are such that there exists complex numbers and
u satisfying

(5.14a) Xc(z) z/3(z) 1,

then it is possible to find generators of displacement rank three while working with
generators of displacement rank two. This condition (5.14a) is a so-called admissibility
condition (see LK84 ]). Next choose

[(z)(5.14b) Qb(z, w)
zw*

which implies that

Io (XX* ##*)Ioo
As usual, after n steps ofSchur complementation we obtain the generators for the inverse.
However, depending on the sign of ),2* zz*, the generator changes If 22* #* >
0, the generator must be [3’n(z)6n(z)())* zz*) 1/2] with J= -1 (9 @ 1; otherwise,
if XX* #* < 0, then the generator must be [3,n(z)(z)(XX* z*) 1/2] with J
-1 @ @-1.

It is clear that as long as Ic(0)12 4:I/3(0)12, the above procedure works and the
following recursions could be used to update c(z),/3(z), 3’(z), and 6(z).

5.2. Singularities and block Schur complements. The Schur complement Q(z, w)
of the leading principal submatrix of a BQT matrix cannot be computed if

0 Q(0, 0) 0 * Q(0, 0) 0 (see (5.8)). Since we are interested in inverting
Q, the first two cases (see 3.2) of singularity are not material. The third case, which
requires computing a block Schur complement, must be understood in terms of its impact
on the block generating function procedure.

5.2.1. Immittance variables and the structure of Qb. It is convenient to understand
singularities in terms of the immittance variables. Motivated by this we rewrite the
expression (5.6) using the following so-called immittance variables:

Va(z) c(z) (/*(0)/c*(0))t3(z),

b(z) ,(z) + (*(0)/.*(0))B(z),

c(z) (z) (*(0)/*(0))(z),

Vd(z) (z) + (*(0)/*(0))(z).
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We get, say,

Qb( Z, w)
(1 Zw*

[a(z)b*(w) + b(z)a*(w) a(z)d*(w) + b(z)c*(w)]a*(w)d(z) + b*(w)c(z) c(z)d*(w) + d(z)c*(w)

(1 zw*)

(5.16) [c(z) d(z) 0 c(w) d(w)

(1 zw*)
Q(z, w) Q(w, z)].
Qx( z, w) Ql( Z, w)

Let a(z) zta(z) (see Theorem 3.3). Since congruence preserves rank profile and
inertia, the BQT form G(z, w) defined as, say,

(5.17) [at(z), O ] a?(w) 0 ] [Q(z,w)[ Q,(w,z)]0 c(z)
G,(z,w)

0 c*(w) Qx(z,w) Q1(z,w)

must have the same rank profile and inertia as Qb(Z, w). Let Gb(z, w) be partitioned as,
say,

(5 18) Gb(z W)= [ (z, w) G,(w, z)]Gx(z,w) GI(Z,W)
5.2.2. Structures of , Gx, and, GI. The structure of has been studied in 3.

Let us first examine the structure of Gx:
x(z)(w* )’ + g* (w)

(5.19a) Gx(z, w)=
zw*

where

(5.19b) x(z) d(z)/c(z)= _, xi.
i=0

Then

(5.20)

Gx

U
0

U

0
0
0
0

L+ Gxo

g+ 2o
21

Gx

+ o
g+2o
21

L + Gxo
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where U and L are upper and lower triangular Toeplitz matrices, respectively, and

Gx is a semi-infinite Toeplitz matrix with the partitions shown above. It should be
noted that U is as defined in (3.24). L is a lower triangular Toeplitz matrix whose
first column is [x; x* X?-- ]* The matrices { Gxj } and Gj }, _-< j _-<

are related as follows:
A,
Gxl +U*

(5.21)

The 2t 2t block Schur complementation on Gb modifies Gx and produces Gv as
follows:

O O
O O
O O
O O
O O
O O
O O

U L+ xo
o V+2o

O 21

(5.22) u do u do d

0 0 -U* 0 0

o o

0 0 Gx
0 0

It can be shown that the generating function G)(z, w) of the above matrix Gv is given
by

(5.23a) Gv(z,w)=
[-t(z) + ztx(z) + z+ lgte(z)l + zt[?(w) + w*gte*(w)]

zw*

where x(z) is as defined above and

Z
t-1t(z) go + glZ + + gt

(5.23b)
t(z) gt + gt+ lZ +

Noting that (z) gl(Z) - zg#l(z) (see Lemma 3.1) and defining 2(z) -,t(z) +
zx(z) + z+ g*(w), we can rewrite (5.23a) as

(5.24) Gc(z, w)
2(z) + z’g* (w)

zw*

so, clearly, Gv is QT. Next we examine the structure of GI"

(5.25) Gl( Z, w)
x(z) + x*(w)

zw*
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where x(z) has been defined above. Then

(5.26) G

2 Re.{)o 2 )
X, 2 Re {’0} ) ".. "..

)2 )1 2Re{0} "-. "’.

The 2t 2t block Schur complementation on Gb modifies GI and produces G as fol-
lows:

G GI-

(5.27)

U L+ Gxo
o V+2o

0 21

U* 0

L* + Gx)" U* +
0 -U* 0

O O

It can be shown that the generating function G(z, w) of the above matrix G is given
by

(5.28)

[-g,(z) + ztx(z) + z’+’g",(z)](w*) + [-g?(w) + (w*)’x*(w) + (w*)’+’g*(w)]z
G( z, w)

zw*

A( z)( w* )’ +
ZW*

where (z) has been defined before. Thus, clearly, G is QT. Then the generating function
of the 2t 2t block Schur complement G2, of Gb is given by

Gbzt(z, w):
Gt(z w) G’* w)
Gx,(z, w) Gz,(z, w)

(5.29)

*(w)+(w*)’g(z) ]
(z)(w*) + z* (w) J
ZW*

z’ 2( z) w 2( w)

(1 zw*)
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Thus the 2t 2t block Schur complement G of GI must be BQT, which implies
that by congruence the 2t 2t block Schur complement Q of QI must also be BQT,

Q;(z, w)

that is, say,

(5.30a)

[ a(z) at(z)(z)][O lo][ at(w) at(w)(w)]*z’c(z) c(z)(z) w’c(w) c(w)(w)

(1 zw*)

[at(z) b(z)lIO lol[a(w) b(w)l*c,(z) d,(z) c,(w) dr(w)

Then

(1 zw*)

(5.30b) b,(z) a,(z) (z), c,(z) z’c(z) and dr(z) c(z) A(z) z-’ct(z).

It is clear that bt(z) is as defined by (3.23) and (3.24). Since it is possible to compute
bt(z) using a linear scalar recursion (see (3.24)), it may be possible to obtain one such
recursion for computing dt(z). Next we show that it is indeed so.

5.2.3. Recursions for updating a(z), b(z), c(z), and d(z). Since g z, 0 _-< j _-<
t- 1, (z) ro + zz + + zt_zt- . Thus it is clear from the definition of(z)
that the linear recursion

(5.31a)

Xo(Z) z’x(z),

x2+ t(z) x2(z) ’ + r z2(’-),

x,_ (z) (z),

recursively computes (z). So the following linear recursion

Co(Z)=C(Z) and do(z)=d(z),

(5.31b) z-cj+(z) cj(z),

z- d2+ (z) d2(z) "Oz-(’-2)cj(z) + ’) z(t-J)c2(z),
recursively computes ct(z) and dr(z) using the { r. in (3.43). Then we can combine the
recursions (3.43) with the above recursion 5.31 b) and write

0 z -1 Cj+l(Z) 4+l(Z)
(5.32)

=[a2(z) b.(z)] I--2z-’-2’+-fz‘-]c(z) 4-(z)J o
5.3. Polynomial recursions for Schur complementation. Using (5.1 O) we can rewrite

(5.9) as follows:

Z’l(Z) (z) o -1 w’r(w) l(W)
Qb(Z, w) (1(0)12 1(0)12)(

(5.33)

0 "y(z) 6(z) (w) 6(w)

zw*
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where J @ -1 and the 2 2 matrix O(z) assumes three different forms which are
discussed in the following.

O(z) for a strongly regular step. It is clear that a strongly regular step of Schur
complementation is translated into a univariate map G(z) - G(z)O(z) of form

(5.34)
O

Gj+ l(Z) Gj(z)l)j(z).

Let us define the partitions

(5.35) Gj( z) [ aj( z) /j(z)]j(z) 6j(z)

It should be noted that the transformation Og(z) is completely determined by cg(z)
and (z).

Case l(a). c9(0 0, [c9(0)] 4: [/3j(0)[.
This is a strongly regular step (the Schur complement of the 1, entry can be

computed), for which the recursion is

(5.36a)

This implies that

(5.36b) O(z)
O

Case l(b). a(0)
This is also a strongly regular step, for which the recursion is

{Olj+I(1Z) Olj(Z)-- kjj(Z),
(5.37a)

zflj+ (z) -kf’aj(z) + 13j(z),

where k c9.(0)//3(0).
This implies that

[(5.37b) Oj.(z)
(1 kkf) 1/2 -k)

if Ikjl < 1; otherwise, if Ikjl > 1, then

[(5.37c) Oj
(kjk) 1)1/2 -k*

(R)(z) for a nonstrongly regular step.

O

O

Case 2. a(z) eJ(z) for some 4 e [0, 2r].
Since Q(z, w) 0, all the following principal submatrices of Q are singular. Thus

at this step there is no need to proceed any further.
Case 3. a(O) (0) 0.
Since Q(z, 0) 0 Q(O, w), Q and all the following principal submatrices are

singular and so there is no need to proceed any further.
Case A. laj(O)l :/3j(0)l 4: 0, a(z) 4: ejeCt(z) for all e [0, 2r].
In this case we need to find a 2% 2% block Schur complement provided

(0)
aj( z) aj( z) j( z)

(o)
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is not identically zero and has t2. repeated zero roots. At this point we need to make
repeated (t2. times) use of the linear recursion

za2. + Z

zbj+ l(Z) bj(z) rjz-’Ja2.(z) + r. ztJaj(z),
(5.38a)

z- c+ (z) c(z),
Z-1 4+ I(Z) 4(Z) Tjz-tJcj(z) q" T; ztJcj(z),

where

r2. lim ztb2.( z / a2.( z
z--- 0

to obtain the generators for the 2t2. 2t2. block Schur complement. The above recursion
(5.38a) can be rewritten in terms of a2.(z), /2.(z), 3’2.(z), and 62.(z) as follows:

(5.38b)

This implies that the univariate map G(z) ---. G(z)O(z) assumes the form

(5.39a)
O z -l

where

(1 +-rz,--z 1/2(r2.*z t
(5.39b) 02.(z)

kf 1/2(rTz t r2.z-) (1- ztj + z-t)j

It is clear that the O(z) in (5.39b) may introduce negative powers ofz in the intermediate
39(z) and 62.(z). However, the final result would not show any such irregularity. This
irregularity can be explained nicely using a transmission line interpretation.

5.4. Transmission line interpretation and causality. The step j of Schur reduction
on cg(z) and/32.(z) produces a two-port network section 8f(z), where z represents a
delay element. Next, 39(z) and 62.(z) are applied to this network section, and that results
in the outputs 3’2. +l(z) and 62. +l(z). Since the network section in (5.39b) is noncausal,
it results in a noncausal output. However, we can get a causal output by appropriately
delaying it. Multiplying the resulting -y2. +l(z) and 62. +l(z) by z at each network section
simply accomplishes this task.

Gohberg-Semencul-type representation and this approach. Gohberg and Semencul
GS72 created a striking formula for the inverse of a finite Toeplitz matrix. However,

this formula can be used if and only if the second largest principal submatrix is also
nonsingular, but Toeplitz matrices without this property are not uncommon. Gohberg
and Krunipik resolved this issue by embedding the given Toeplitz matrix in a one-size
larger nonsingular Toeplitz matrix and then deriving a solution from there. The solution
is nonunique and requires working with a bigger matrix. Our procedure always finds a
Gohberg-Semencul-type representation without starting with a bigger matrix.

Example. Next we will consider inverting a 3 3 nonsingular symmetric Toeplitz
matrix whose 2 2 principal minor is zero. Consider the 3 3 symmetric Toeplitz
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matrix T with first row [1 0]. The starting generator

(5.40a) Go(z)=
3’o(z) o(z)

Using 5.37a)-(5.37b), we get

O]k0=0 and O0(z)=
O

which implies

w(z) (z) z

Then, using (5.39a)-(5.39b) we get

k 1, t 1, and

which implies

O(z) [ + z- z-) (z-z-l) ]--(Z- Z-l (1 Z - Z -l

[’r3(z) 3(z)]=[z--l+z2 z--z+z2].
The causal generator for negative of the inverse of T must be z73(z) z63 (z)
[1 z + z z2 + z3]. A straightforward calculation verifies this claim. In this
particular case it is not possible to find a Gohberg-Semencul formula, but our procedure
provides us with one similar kind of formula.

6. Solution to linear equations. It is clear that the solutions to the Yule-Walker
equations are obtained directly from the generators of the inverse. However, solution to
a system of linear equations with an arbitrary right-hand side requires extending the
notion BQT generating function (5.7) to

(5.41) Q’(z’w)=
1-zw* "y(z) 6(z) O -1 K(w) x(w)

where c(z),/3(z), 3’(z), 6(z), K(z), and x(z) are all polynomials (functions) in z.
The linear equation

Qx=_y

for an arbitrary column vector y can be solved by choosing q/(z) "e(z) 6(z) (see
(5.12c)) and (z) e(Z)y#(-) X(z), where y(z) [1 z z2 z’]y and
y#(z) z"y*(l/z*). It turns out the Schur complements can be computed via trivial
modification of the linear recursions in 5.3. In fact, the Oj.(z)’s in (5.34)-(5.39b)
remain the same, while a strongly regular step of Schur complementation is translated
into two univariate maps Gi(z) Gi(z)(z), =< =< 2 of the form

Z Oli(5.42)
O

Gj+(z)= Gj(z)O(z).

Let us define the partitions

(5.43a) G) (z) [ a(z) (z)
(z) (z)
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and

[(z) ()]5.43b G(z)=[Kj(z) X/(z)

In the singular case see 5.38 )-( 5.39 )) the univariate maps Gi(z) -). Gi( z)O(z) assume
the form

(5.44a) G.+ l(Z) G}( z)O( z),

where

-k. ( +-z-(5.44b) Oj( z) k. 1/2(’ ztj ’jz -tj)
([ z’ .z-) ]* t. rJ_-n(1-wzJ+z J)

7. Concluding remarks. A new approach has been developed that provides a unified
framework for fast and completely recursive procedures for computing a modified tri-
angular factorization of Hermitian Toeplitz and QT matrices. This recursive procedure
is based on the fact that the Schur complement (or the block Schur complement) of the
top left entry (or block) of a Toeplitz or a quasi-Toeplitz matrix is quasi-Toeplitz; except
for Kailath and his associates (see LK86 ], BK88 ], and Chu89 ]), other authors did
not make use ofthis fact. This procedure does not require computation ofinner products
and is completely parallelizable. Determination of the size of a block factor is done by
counting the number of repeated zeros at the origin of a polynomial. It also turns out
that the block diagonal entries ofD are even sized with an equal number of positive and
negative eigenvalues.

Using the results on modified triangular factorization, we have extended the Schur
complement-based approach of Chun [Chu89] for solutions to linear equations and
inversion of strongly regular Toeplitz matrices to Hermitian Toeplitz and quasi-Toeplitz
matrices with arbitrary rank profile. This leads to simultaneous derivation of Schur- and
Levinson-type recursions. The inversion procedures work as long as the underlying ma-
trices are nonsingular. Unlike all previous approaches (see Heinig and Rost HR84 and
Ben-Artzi and Shalom [BS86 ]), no special requirement on the rank profile is needed.

Since theoretical detection of a singularity and the number of consecutive zero
minors require infinite precision, it is clear that a floating point implementation of the
algorithm would contain serious problems. This raises the issue ofdevising a numerically
sound general algorithm that would be able to deal with "nearly singular cases." Such a
question goes beyond the scope of the paper and deserves a thorough investigation.

Acknowledgments. The authors thank Professor Hanoch Lev-Ari of Northeastern
University for his constructive criticism and suggestions for improvement. The first author
thanks Dr. Victor B. Lawrence, Dr. Joseph G. Kneuer, Dr. William H. Ninke, and Dr.
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LENGTH BOUNDS FOR SINGULAR VALUES OF SPARSE MATRICES*

CHARLES R. JOHNSON AND PETER M. NYLEN:]:

Abstract. For an m-by-n matrix A with singular values al >= a2 >= >= rn, the following is observed.
Concatenate all rows of A having nonzero entries in the ith column and calculate the Euclidean length g; of
the result. Let 1 >= 2 > > gn be a rearrangement of the numbers gi, n. Then ai < i, 1,

n. Examples show that can be smaller than the bound for al obtained by applying Gersgorin’s theorem
to A *A.

Key words, singular values, sparse matrix

AMS subject classifications. 15A18, 15A45, 15A60, 65F35, 65F50

Let A (aij) be an m-by-n complex matrix with singular values 0-1 >-- 0"2 >

0"n >= 0. It is well known that 0"1 is at least the greatest row length or column length ofA,
and that 0"1 is no more than the geometric mean of the largest absolute row and column
sums ofA or the square root of the largest absolute row sum ofA *A HJ ]. Our interest
here is in describing selections of entries, from A, whose Euclidean lengths give upper
bounds for the singular values of A. These will be of most interest when A is relatively
sparse. In this event, our bounds can be better than standard known bounds. Of course,
if the columns ofA are combinatorially orthogonal, then the column lengths will be the
singular values, and, if A is dense, then the length of A, thought of as a vector (the
Frobenius norm), will be an upper bound for 0"1. Both of these are special cases of our
observations.

Our most succinct result is the following. For 1,..., n, define g as the Euclidean
length of the concatenation of all rows ofA having nonzero entries in the th column.
(Equivalently, g is the Frobenius norm of the submatrix lying in the rows ofA in which
column has nonzero entries.) Reorder the gi’s in descending order to obtain the sequence
gl g2 gn 0. For example, if

all 0 a13 i 1a21 a22 0
0 a32 0
0 0 a43 a44

then

el- ([all[ 2 + 0 2 -- lal3[ 2 + 02 -[’- la21l 2 + 1a22{ 2 + 0 2 + 02) 1/2,

e2--" (]a21[ 2 + la2212 + 02 q-02 -}-02 -}- 1a3212 + 02 q-02) 112,

g3- (]a, 12 + lal3[ 2 + 1a4312 + 1a4412) 1/2,

g4 (la4312 + [a4412) 1/2,
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and

{ max {g, g2, g3, g4}; 2 max {gl, g2, g3, g4}/{},
{3 min {g l, g2, g3, g4}/{4}; L min {g l, g2, g3, g4}.

The result then is the following theorem.
THEOREM. For any m-by-n complex matrix A, we have

ri(A) <= fi(A), i= 1, n.

Of course the theorem may be applied to A *, whose nonzero singular values are
the same as those ofA, to obtain also

i(A) <= {i(A*), m,

so that we have

(A) =< min { { (A), gi (A * }, i= 1,...,min{m,n}.

Although the theorem produces rather good bounds, especially for certain sparsity
patterns, perhaps more interesting is the technique of proof. We adjoin rows to A to
produce a matrix A’ with orthogonal columns and notice that the singular values of a
matrix with orthogonal columns are its column lengths. As deletion of rows from a
matrix cannot increase any singular value because of interlacing [HJ ], the column lengths
of A’, properly ordered, bound the singular values of A. The simplest construction of
such a matrix A’ is as follows. First adjoin rows to A with two nonzero entries to make
the first column orthogonal to all subsequent columns. For each pair of nonzero entries
of the form (akl, ak), j 4: 1, adjoin the row to A with first entry -67, jth entry 671, and
all other entries zero. Note that the length ofthe new first column is g l(A ), as it contains
all its original nonzero entries plus one copy of (the negative conjugate of) each nonzero
entry "hit" by a nonzero entry of column one ofA in the inner product of that column
with subsequent columns. Now, "fix up" the orthogonality of the second column with
all subsequent columns in exactly the same way and note that the orthogonality between
column one and subsequent columns is not disturbed. Now, the length of column two
is gz(A). Continue in the same manner, adjusting column three versus the following,
and so on, producing A’. For instance, if

all 0 a13 i 1A a2 azz2 0
0 a32 0

then A’

0 0 a43 a44

all 0 a13 0
a2 a22 0 0
0 a32 0 0
0 0 a43 a44

--a-22 a- 0 0
--13 0 ll 0
0 0 --(44 a-43

This completes a proof of the theorem, but we note that the same technique may
be used to exploit special structure, such as sparsity or relations among entries. For
example, if

A= 0 a 0
0 0 a
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then for

-a 0 0 b-
0 a 0 c
0 0 a d
-b -c -d d

-b 0 0
0 d -F 0
d o -b o

we have (A) _-< ([a] 2 + Ibl + [c] 2 -]- Id]2) /2. In fact, equality holds.
We note that the theorem can provide better bounds than conventional estimates.

For example, if

2 0

0il0 2
0 0

0 0

then the maximum absolute row and column sums ofA are three and four, so that

(A) =< ]/12.

The maximum absolute row sums ofA *A and AA * are 12 and 1, so that

a,(A)< 11.
However, g(A) gz(A) g3(A) g4(A) /4 + 4 + + /10 so that, by the
theorem,

al(A) < /10.

In fact, I(A)= /10; for

the length ofAx is 5 /10, while the length of x is 5.
This example suggests one of the patterns for which the theorem provides nice

bounds. We call an n-by-n matrix A (aij) k-cyclic if all its nonzero entries are contained
among a, a22,.. lnn, /12, /23, /nl, /lk, /2,k + 1, ln,k 1. The last example
is two-cyclic. IfA is k-cyclic, then the nonzero entries in column one ofA are in positions
1, n k + 2,..., n, in column two are in positions 1, 2, n k + 3, n, and
in column n are in positions n k + 1, n k + 2, n. The largest singular value of
a k-cyclic matrix is then no more than the maximum ofthe lengths ofthe concatenations
of each of these n sets of k rows.

The computational complexity of obtaining the numbers {1 >= >-- {n compares
favorably with any bound using A *A or AA *, such as

g(A (maximum absolute row sum ofAA * )112,

as g 2 g 2 may be found at less expense than AA * itself. In fact, finding g 2
g2 requires little more effort than finding the diagonal of AA *. For diag (AA *)
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(b,..., bn), we have

: Z be.
i:aij 4 o

For real matrices, the gi are slightly more costly to compute than the upper bound for
a given by

rc(A (maximum absolute column sum ofA) 1/2

(maximum absolute row sum ofA

For complex matrices, the gi have the advantage. In any event, neither g(A) nor rc(A
gives smaller bounds for the other singular values, as the {i do.

It is easy to see that rc(A >= g(A) for all A and that

n-/2g(A) <= Y(A) -<- n/2g(A)

and

n-/Zrc(A) {(A) <= n/2rc(A).
We may verify that the upper bound on { cannot be improved by considering the
matrix

The matrix

I + eJ,

with e > 0 small and J the matrix of all ones, shows that the lower bound cannot be
improved.

We have not characterized those matrices for which {(A) =< g(A) (or I(A) =<
rc(A)), although there are many. We conclude with the results ofa numerical experiment
comparing and g. The experiment was performed (for each size and nonzero fraction)
by generating 100 random zero-nonzero patterns, generating 25 random matrices (with
entries chosen from {-4, -3, 5 } in each zero-nonzero class), and evaluating the
number of times (.) (respectively, g(.)) is minimal, and ties are counted in both
columns. The "flops" column gives a measure, in FORTRAN flops, of total calculation
costs. The "bad patterns" column records the number ofzero-nonzero patterns for which

TAnLE
10 10.

Fraction Bad g
nonzero wins Flops patterns wins Flops flops

.1 2103 498207 0 575 5225000 452500

.15 1923 509253 0 636 5225000 452500

.2 1649 519935 849 5225000 452500

.25 1448 530644 1093 5225000 452500

.3 1056 542443 4 1469 5225000 452500
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TABLE 2
20 20.

Fraction Bad g
nonzero wins Flops patterns wins Flops flops

.05 2152 1994005 0 451 40950000 1902500

.1 1894 2040804 0 636 40950000 1902500

.15 1377 2085634 0 1150 40950000 1902500

.2 761 2131355 3 1763 40950000 1902500

.25 304 2172219 17 2205 40950000 1902500

.3 40 2223201 77 2462 40950000 1902500

g(" --< ffl (") for all 25 matrices. As can be seen in Tables and 2, l is generally better
(and much cheaper) for a high degree of sparsity and is not entirely dominated even for
lower degrees of sparsity.
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Abstract. The convergence result . Ye and P. M. Pardalos, Linear Algebra Appl., 152 (1991),
pp. 3-17] of a potential reduction algorithm for the P-matrix linear complementarity problem (LGP)
is extended to the P0-matrix LCP. Computational experience with PSD-matrix, P-matrix, and P0-
matrix LCPs is presented to reinforce the theoretical development. These test problems include
random test problems, the worst case examples of Murty and Fathi, and various LCPs arising in
engineering problems. How row and column scaling may improve the theoretical and practical
efficiency of the algorithm is also illustrated.

Key words, linear complementarity problem, P0-matrix, interior point algorithms, test prob-
lems
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1. Introduction. For a given n by n rational matrix M and a given n rational
vector q, the linear complementarity problem, LCP(M, q), is that of finding an (x, y)
such that

y Mx + q, x >_ 0, y

_
0, xTy 0,

or proving that no such (x, y) exists. Economic equilibrium problems, game theory
problems, numerical solutions of differential equations, and the necessary and suffi-
cient conditions of optimality in optimization are all sources of linear complementarity
problems ([2], [3], [4], [16]).

Some of the earliest proposed algorithms for solving LCPs include the principal
pivoting method of Cottle and Dantzig, Lemke’s complementary pivot algorithm,
Mangasarian’s linear programming algorithm, Murty’s Bard-type method, and Van
der Heyden’s variable dimension algorithm (e.g., [2], [3], [12], [16]). The recent book by
Murty [16] gives a complete presentation of these algorithms. Most of these algorithms
are guaranteed to solve only LCPs with some special structure imposed on the matrix
M. When the matrix M has no special structure, the LCP becomes eomputationally
very difficult with the only existing solution techniques being of the enumerative type
or of an equivalent integer programming formulation ([17], [18]).

Although the general LCP is NP-hard, some classes of LCPs can be solved by
polynomial time algorithms. For example, when M is positive semi-definite (PSD),
the LCP is a convex quadratic program and can be solved by the ellipsoid algorithm
or several interior point algorithms (e.g., see Kojima et al. [10]). Other classes are
discussed in [12] and [24].

An LCP is called a P-matrix (P0-matrix) LCP when the associated matrix M is
a P-matrix (P0-matrix). An n by n matrix M is a P-matrix (P0-matrix) if and only
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if all its principal minors are positive (nonnegative) (e.g., see Berman and Plemmons
[1], Fiedler [6], and Fiedler and Ptk [7]). It is well known that the LCP(M, q) has a
unique solution for every q if and only if M is a P-matrix. At present, no polynomial
time algorithm is known either to test whether a general square matrix is a P-matrix,
or to solve a P-matrix LCP.

Some attempts to understand the complexity of a P-matrix LCP include the
results by Megiddo [14] and by Solow, Stone, and Tovey [19]. Megiddo proved that if
it is NP-hard to solve an LCP with a P-matrix, then NP coNP. Another result is
that the P0-matrix LCP is NP-complete [10].

In this paper we extend our convergence result in [24] the potential reduction
algorithm for the row-sufficient-matrix (a special P0-matrix) LCP to the general P0-
matrix LCP. We also present computational experience with P-matrix and P0-matrix
LCPs. The paper is organized as follows. First the potential reduction algorithm is
reviewed and analyzed. In particular, we prove that a P0-matrix LCP has a positive
"condition number" as does the row-sufficient-matrix LCP. The condition number
serves as a measure of the convergence speed for the potential reduction algorithm for
solving the LCP. After this analysis, we present some computational results with a
large class of test problems. These test problems include the worst case examples by
Murty [15] and Fathi [5], and some P-matrix and P0-matrix LCPs originating from
engineering problems. Finally, we illustrate how row and column scaling can be used
to improve the theoretical and practical performance of the algorithm.

Given the LCP(M, q), we assume throughout the remainder of this paper that
the set + {(x, y) x > O, y Mx + q > 0} is nonempty. An LCP with empty f+
can be transferred to an equivalent or related LCP with nonempty f+, see Kojima
et al. [10], [11]. We also denote the associated feasible domain by ((x,y)’x >_
O, y= Mx + q > O}.

2. A potential reduction algorithm. We now review the potential function
and potential reduction algorithm for the LCP. The potential function

(2.1)
n

(x, y) p log(xTy) E log(xjyj)
j-’l

(O- n)log(xTy) E log(xjyj)

=1
Iog(xTy)’

where p > n, is used with an interior feasible solution (x, y). This function first
appeared in Todd and Ye [20]. The gradients of the potential function are

u)  u-xp P --1and Vy(x,y) x-Y e,

where e is the vector of all ones. Starting from an interior point (x, y0) which satisfies

(x0, y0) _< O(pL),

where L is the size of the input data M and q, the potential reduction algorithm
generates a sequence of interior feasible solutions (xk, yk} terminating at a point such
that

(xk, yk) <_ _(p n)L.
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It can be verified at this point that

(xk)Tyk
_

2-L,

and an exact solution to the LCP can be obtained in O(n3) additional operations.
To achieve a potential reduction, we used the scaled gradient projection method

(see Kojima, Megiddo, and Ye [11] and Ye [23]). We solve the following linear program
subject to an ellipsoid constraint at the kth iteration:

minimize V(xk, yk)5x 4. Vy(xk, yk)Sy

subject to 5y-- MSx,

II(Xk)-lxll2 4" II(gk)-lyll 2 <_ 2 < 1.

The scaled gradient projection vector to the null space of the scaled equality
constraints is

where

(2.3) r ((Y)2+ M(Xk)2MT)-(Yk MXk) (Xkyk Ak )P

and A (xk)Tyk, Xk (yk) denotes the diagonal matrix of x (yk). Then, for some
/ > 0 we assign

xk+l Xk k k pk-Bx p/ll II and

By choosing

(2.4) =min(llpkll 1)<1p+ 2’ 2 2’

we can prove

(x+ y+) (x, y) _< -(llp IlU),

where (llpll) IIpll:/(2(,o + 2)) if IIpll _< (p + 2)/a, and (llpll) (p + 2)/s
otherwise.

The algorithm can be simply stated.

POTENTIAL REDUCTION ALGORITHM

Given x, y0 > 0 and yO Mxo 4" q;
while (xk)Tyk >_ 2-L do

begin
compute rk of (2.3) and pk of (2.2), and select ;
let xk+l xk k pk yk+l yk pk-Zxp/ll IInd -ZYP/ll II;
k=k+l;

end
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From (2.5) we see that Ilpkll 2 partially determines the potential reduction at the
kth iteration of the algorithm. Note that the greater the value of Ilpkll 2, the larger
the potential reduction. Let

and

Then

g(x,y) Xy e

H(x, y) 2I- (XMT y)(y2 + MX2MT)-I(MX y).

iipll gT(, yk)H(xk yk)g(xk yk).

We then use IIg(x, y)ll2H to denote gT(x, y)H(x, y)g(x, y).
Ye and Pardalos [24] defined the condition number for the LCP(M, q) as

"y(M,q) --inf(llg(x,y)ll2H xTy > 2-L, (x,y) < O(pL) and (x,y) e +}.

There is a sequence of propositions for /(M, q).
PROPOSITION 1 (Kojima, Megiddo, and Ye [11]). Let p >_ 2n + -. Then, for

M being a PSD matrix and any q E Rn,

"y(M, q) > 1.

PROPOSITION 2 (Ye [22]). Let p > 3n + x/. Then, for M being a P-matrix and
any q Rn,

,),(M, q) _> min(ne/I,Xl, 1),

where is the least eigenvalue of (M+MT)/2, and is the P-matrix number ofMT,
i.e.,

8 min {x#0 mjax
xj(MTx)j }

PROPOSITION 3 (Ye and Pardalos [24]). Let p > n and be fixed. Then, for M
being a row-sufficient matrix and {(x, y) e +" (x, y) < O(pL)} being bounded,

7(M, q) > O.

In this paper, we prove the following proposition.
PROPOSITION 4. Let p > n and be fixed. Then, .for M being a Po-matrix and

{(x, y) e +" (x, y) <_ O(pL)} being bounded,

’7(M, q) > O.

Proof. In Proposition 4 of [24] it was shown that { (x, y) +" xTy > 2-L, (x, y)
<_O(pn)} is contained in a closed and bounded set {(x,y) fl x > ge, y >
e-e, (x, y) < O(pL)} for some fixed number g > 0. Using this compactness, we
need only to show that for any (x, y) E fl+

IIg(x,y)llH > o.
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The proof is by contradiction. Suppose

then we must have

(2.6) XMTvr + Yr O.

Let 7r = 0 since otherwise clearly lid(X, Y)I[H > 0. However, MT being a P0-matrix
implies that there exists an index j such that

7rj - 0 and "irj(MTT)j >_ O.

This leads to

yj (7r)2 + xrj(MTr)j > O,

which is a contradiction to equality (2.6).
Note that (x, y) <_ (p- n)L implies that xTy < exp(L). Hence,

(2.7) {(x, y) e f+: (x, y) < (p- n)L} c {(x, y) e f: xTy < exp(L)},

and the boundedness of {(x, y) e f: xTy <_ exp(n)} guarantees the boundedness of
the potential level set. It has been shown that the primal-dual algorithm of Kojima
et al. [10] solves the P0-matrix LCP if {(x, y) e f: xTy < exp(L)} is bounded. Here,
from Theorem 1 of Ye and Pardalos [24], Proposition 4 indicates that the potential
reduction algorithm solves the P0-matrix LCP if the potential level set is bounded.
Note that in general the boundedness of xTy does not imply the boundedness of
(x,y). For example, let xlyl 1 and x2Y2 approach zero. Then, xlyl 4-x2Y2
is bounded from above, but plog(xlyl 4- x2y2)- log(xly)- log(x2Y2) approaches
infinity. However, we believe that these two sets are closely related.

3. Computational results. The potential reduction algorithm was implemented
and tested on an IBM 3090-600S computer with Vector Facilities using the VS For-
tran compiler. We used double precision for all computations to solve a variety of test
problems with M being PSD, a P-matrix, and a P0-matrix. LCPs with PSD matrices
include the examples by Murty, Fathi, and random PSD matrices.

In general, an initial feasible solution may not be readily available for the potential
reduction algorithm. However, many techniques have been proposed to overcome this
difficulty (i.e., [10], [11]). For example, if M is a P0-matrix, then we can let

M, ( M e-Me-q)q, (qT, O)T0 1

For LCP(M’, q), x e and y0 e is an interior feasible solution. Also M’ re-
mains a P0-matrix. If a solution exists for LCP(M, q), then it is also a solution for
LCP(M’, q’), and vice versa.

The subroutines DPPF and DPPS of ESSL were used for solving the linear system
(2.3). The DPPF factorizes the symmetric positive definite system using Gaussian
elimination and the DPPS solves the factorized system, xTy < e 10-5 was used as
a stopping criterion and p is set to n1"5. The step size is chosen as 99% of the way
to the boundary (see also [8]). All averages were obtained from five problems in each
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case and the CPU times are given in seconds. All entries of matrices and vectors used
in the tests were generated randomly using the random number generator subroutine
DURAND of the ESSL (if their elements are not explicitly described). Note that the
notation Cl _< v _< c2 for a vector v means that value of vi for i 1,..., n is chosen
randomly between cl and c2.

3.1. Positive semi-definite matrices. First, we consider LCPs with M being
a positive semi-definite matrix. We start with the two classical examples by Murty
and Fathi and then solve random convex LCPs.

3.1.1. Murty’s matrix. Murty [15] has shown that the computational require-
ments of two complementary pivot type algorithms exhibit an exponential growth in
terms of the dimension of the LCP in the worst case. Murty’s example has data:

1
2 1 0

M- 2 2 1 ,q---(-1,...,-1)T

2 2 1

The starting point is

.... y0 (1 4,6,8 2n),x (2,1, ,1), ,...,

and a solution of LCP(M, q) is given by

x* (1, 0,..., 0), y* (0, 1,..., 1).

Note that the matrix M is triangular positive definite and that can be solved very
efficiently by a backward substitution method.

3.1.2. Fathi’s matrix. Fathi’s example [5] has data:

1 2 2 2
2 5 6 6

M- 2 6 9 10
2 6 10 q=(-1’’’’’-1)T.

2 6 10 4(n-1)+1

The starting point is

x (1, 1,..., 1),y MxO + q,

and a solution of LCP(M, q) is given by

Note that the matrix M is PSD. The following Table 1 summarizes the number of
iterations and CPU times required to solve the two examples for different values of n.
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TABLE 1
Murty’s and Fathi’s matrices.

Murty Fathi
n Itr. CPU Itr. CPU
100 14 0.35 16 0.57
200 15 2.19 18 3.96
300 15 7.62 18 12.88
400 15 16.14 17 28.56
500 15 29.92 18 56.02

3.1.3. Random positive semi-definite matrix. Next, we generated LCPs
with M being a random positive semi-definite matrix. The matrix M has the form

M UTAU,
where U E R’x’ is a Householder matrix of a random vector r,0 <_ ri <_ 1,i
1,... ,n and A diag(Ai),0 % Ai % 11,i 1,..., n. We choose a complementary
solution (x*,y*) that satisfies: y > O, (y* + Me)i > O, 0 <_ x <_ 10, i 1,...,n;
x*Ty 0, and q y*-Mx*. Note that since M is a PSD matrix, eTMe >
0. Hence, we have at least one positive element of Me (theoretically all entries of
Me can be zero, but we do not expect that situation in practice), i.e., we have at
least one index i such that y 0. The initial solutions are chosen, respectively,
as x* + e and y* + Me. From the computational results (Table 2), we see that the

TABLE 2
Random positive semi-definite matrix.

n
100 16.0
200 16.0
300 16.0
400 17.0
500 17.0

Avg. Itr. Avg. CPU
0.57
3.51

11.51
28.32
52.75

number of iterations is quite insensitive to the size of the problem. Also note that the
number of iterations is approximately the same among different problems with the
same dimension. This behavior may be expected from our theoretical findings. The
bound for the "condition number" of PSD LCPs is independent of both the data and
the problem’s size. The convergence behavior is also similar to our previous results
with solving convex quadratic programs [8].

3.2. P-matrices. In this section, we solve LCPs with a P-matrix, where the
matrix M is given by

0 P2

where P1 E RTM x nl and P2 E Rn xn2 are positive definite matrices, a is a positive
scalar and Q Rnxn2. In our test problems, nl 2n/5 and n2 3n/5 and
P AA, where A {a} e R=x= and 0 < a < 1 for k 1, 2. The matrix Q
w given by

0<qj<l ifi#j,
1<qij<12 ifi=j.
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Note that for a sufficiently large, the number of negative eigenvalues of M + MT

is approximately equal to min(nl,n2). This may be seen as follows. Consider the
following matrix M’

0 aI O)M’= 0 0 0
0 0 0

M’+ (M’)T will have exactly n (the dimension of I) negative eigenvalues. As a oo,
the matrix M will in block form approach the form of M with a similar transforma-
tion.

Therefore, the parameter a controls, in a sense, the nonconvexity of the LCP.
For the P-matrix LCP, it controls the condition number discussed previously. This
control may be clearly seen in a simple example given by Mathias [13]. Consider

M=
0 1

where a > 1. The P-matrix number and the let eigenvalue of (M + Mr) are,
respecgively,

0= 1-
+i

and =1-.

By Proposition 2, he condition number of he LCP is

(M, q) min(nO/lAl, 1) O(1/a).
We see tha increes, ghe condigion number deteriorages.

Matrix scaling is an imporgan gechnique gha is commonly used in optimization to
improve he practical eNciency and numerical behavior of algorithms [21]. equenly
a matrix M is scaled follows:

EMD,

where E and D are diagonal matrices wih positive diagonal engries. Given his scaling
and an LOP(M, q), we may solve an equivalen CP(M, q), where q Eq. Notice
that given e, a solution of P(, q), the equivalen solution for CP(M, q) may
be simply calculated

x=D.

The classes of P0 and P-matrices are invariant under scaling of the above type.
For our computational experiments we adopted a version of the EMD scaling

known as balanced scaling [21]. Let

r(i) m.ax [Mi,j I, i 1,..., n,
3

M R-IM, where R diag(r),
c(i) m.ax [M,j j 1,..., n,

and

ff R-MC- where C diag(c), and q R-q.



1056 PARDALOS, YE, HAN, AND KALISKI

If *,3" is an optimal solution of LCP(II,t), then x* C-1 and y* R* is
an optimal solution of LCP(M, q). Once again consider the above simple example.
After the balanced scaling, M becomes

We see that a disappears in M. In fact, M is positive definite now. We will discuss
some theoretical aspects of matrix scaling in 4.

For P-matrix LCPs, we generate matrix M and choose a complementary solution
(x* y*) such that 0 < x Yi < 10, i 1, ,n, x*Ty* 0, and q Mx*. The
initial solutions are chosen, respectively, as x* + e and y* + Me (note that every entry
of M is nonnegative). Table 3 shows the computational results with a P-matrix LCP
for n 100 and various values of c. It is clear that our scaling technique is effective
for our potential reduction algorithm.

50
100
150
200
250
300

TABLE 3
P-matrix (n 100).

Without Scaling
Avg. Itr. Avg. CPU

55.0
92.8
110.8
105.4
131.0
128.2

1.66 36.2
2.81 39.4
3.34 43.6
3.18 43.6
3.94 42.0
3.86 38.6

With Scaling
Avg. Itr. Avg. CPU

1.0’9
1.19
1.31
1.31
1.27
1.16

Table 4 summarizes the computational results with a P-matrix LCP using the
scaling technique. The parameter ( was chosen to be 50. Note that the average
number of iterations for a 50 (with scaling, n 100) in Table 3 is 36.2 and a 50
(with scaling, n 100) in Table 4 is 34.6, respectively, since different random seeds
were used in each experiment. It was observed that for an instance of a P-matrix LCP
(n 100 and c 50), 39 iterations are needed to solve the problem with 0.99
and the potential function values are strictly decreasing. On the other hand, it takes
65 iterations to solve it with f 0.5.

TABLE 4
P-matrix (a 50).

100 34.6
200 85.8
300 133.0
400 167.0
500 197.6

Avg. Itr. Avg. CPU
1.03

15.49
77.17

228.03
506.38

Table 5 illustrates the point that when the sizes of P1 and P2 are roughly equal,
the problem becomes more difficult to solve. In this case the problem size n is 100
and the parameter c is chosen to be 50.

From these computational results, we observe the following:
1. As c is allowed to increase, the condition number of the matrix decreases. As

the condition number worsens, the algorithm’s convergence is slowed. This is exactly
what we expected, based on our theoretical development.
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TABLE 5
P-matrix with various nx and n2 (n 100, a 50).

nl n2
10 90 24.0
20 80 28.8
40 60 34.6
50 50 35.0
60 40 35.2
80 20 23.6
90 10 20.4

Avg. Itr. Avg. CPU
0.80
0.91
1.04
1.04
1.05
0.75
0.68

2. The row and column scaling technique, in general, helps to balance the ma-
trix, and improve the convergence speed. This topic certainly has the potential for
fruitful future research.

3. The convergence speed is sensitive to both the size and structure of the
problem.

3.3. P0-matrices. In many practical applications of LCPs, the M matrix is a

P0-matrix. As it was recently shown by Kojima et al. [10], a special P0-LCP is
NP-complete. Consider the matrix

M= ( P+D1 P+D2 )-Ix 0

where P E R is a positive definite matrix and D1 and D2 are diagonal matrices
whose diagonal elements are positive. This problem has an engineering application
considered by Kaneko [9].

We constructed the following test problems:
1. P ATA, where A {aj} E Rx and 0 < aj < 1, 1 < (D1), (D2) < 3.
2. Let x (1) and y (yl), where xl Yl x2, Y2 R Generate x, y such

X2 Y2
that 0 _< (x)i, (y)i < 10 and (x)i + (y)i > 0, where i 1,..., n/2.

3. Generate y complement to x and x complement to y, such that 0
(x)i, (y[) < 10, where i= 1,... ,n/2.

4. Compute q y* Mx* (ql), where ql, q2 R Note that q2 > 0.q.

5. x q2/2 and x2 G-lc, where G diag((P + D2)ii), and ci
where i 1,..., n/2 and yO Mx0 + q. Then we can easily verify that
yO Mx0 + q > O.

From the problem’s construction, we clearly see that the feasible region has
nonempty interior. We further show that the conditions of Proposition 4 are met in
this problem.

PROPOSITION 5. Let M and q be generated as above. Then, M is a Po-matrix
and the set {(x, y) e +" (x, y) <_ O(pL)} is bounded.

Proof. M being a Po-matrix is due to ganeko [9]. From (2.7), it is sufficient to
prove that ((x,y) e + xTy <_ exp(n)} is bounded. First, we see that xl (Y2) is
bounded in : 0 <_ x <_ q2. Now it is sufficient to prove that x2 is bounded. Note
that

(Xl)Tyl --(x2)Ty2 (Xl)T(P+D1)Xl--(x1 )TPx2-(Xl)TD2x2T(Xl)Tql--(x2 T(q2--x1 ).

Since Xl is bounded, xl _> 0, x2 >_ 0, and every component of P is nonnegative,
(xl)T(P + D1)xl + (xl)Tpx2 + (xl)Tql is bounded from below. Thus, (xl)TD2x2 +
(x2)T(q2 --Xl) is bounded from above. Therefore, x2 must be bounded in
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Table 6 shows the computational results with P0-matrix LCP test problems de-
scribed above using the balanced scaling technique. For an instance of these test
problems with n 100, the algorithm needs 277 iterations to solve the problem with

f 0.99 and 449 iterations with/ 0.5. But, for instances of NP-complete prob-
lems introduced in [10] (P0-matrix LCP), it was observed that/ must be very small
(e.g., 0.01 for n 31) in order to guarantee the monotonic decrease of the potential
function value. From the above observation, we conclude that a line search may be
needed to minimize the potential function along the direction pk.

TABLE 6
Po-matrix.

n Avg. Itr.
100 248.6
200 569.2
300 704.4

Avg. CPU

83.7
308.0

From these computational results, we see that:
1. The algorithm does converge, which is encouraging.
2. However, the potential reduction algorithm is currently far from being an

adequate technique for solving the P0-matrix LCP.

4. Matrix scaling. We have previously used matrix scaling to improve practical
efficiency for solving P-matrix LCPs. For any n by n P-matrix M, a theoretical
question is whether there exist scaling matrices E and D such that EMD is positive
definite (PD). It can be verified that if n 2, the answer is "yes." However, for n _> 3
the answer is "no." For example,

M= 0 1 2
4 0 1

cannot be scaled into a PD matrix.
Since

EMD + DME E(MDE-1 + E-1DM)E,
we see tha he definiteness of EMD + DME depends only on ghe definiteness of
MDE- + E-DM. Wihou loss of generality, we only use column scaling, i.e.,
MD, in our subsequen discussion. We now prove the following gheorem.

PROPOSITION 6. Let P1 and P2 be positive definite matces, and let

0 P
Then, M is a P-matx for any matx Q. Fuheore, there exists a scalar > 0
such that

o
i PD.

Pro@ Noe

ZQr
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Let P P1 -t- pT and S P2 + P2T. Then,/17/+ [T can be decomposed as

QTp-I I 0 S- 2QTp-Q 0 I

Now the question is if there exists a/ > 0 such that S- 2QTp-1Q is PD. The
answer is "yes" since S is PD and QTp-IQ is fixed, so that (S- QTp-Q) is PD
for a small enough positive/ by continuity. D

Proposition 6 says that some P-matrices can be scaled into PD matrices. These
include the triangular P-matrices, block triangular matrices where every diagonal
block is PD, or block triangular P-matrices where every diagonal block is at most
2 by 2. This property may not have algorithmic value since triangular P-matrix
LCPs can be solved by back substitution. However, we hope it partially explains why
some matrix scaling can improve the practical efficiency for solving P-matrix LCPs
as indicated in our computational results.

5. Concluding remarks. We have presented our computational experience with
classes of PSD-matrix, P-matrix, and P0-matrix LCPs. These test problems include
the worst case examples of Murty and Fathi, randomly generated positive semi-definite
LCPs, and various LCPs arising from engineering problems.

Based on these preliminary experiments, we make the following remarks:
1. The interior point algorithm has the potential for solving large-scale LCPs.

As we expected, our algorithm did converge for all test problems we tried.
2. The convergence speed worsens from PSD, through P- to P0-matrix LCPs.

This reinforces our theoretical development. Significant difficulties exist in solving
P0-matrix LCPs. Pivoting algorithms are possibly more efficient for some P-matrix
problems, and for some P0-matrix problems when they work.

3. Although the matrix scaling technique may improve the theoretical or practi-
cal efficiency, there exists an obvious dependency between the dimension of the prob-
lem and the number of iterations required. Other row and column scaling techniques
warrant further study and experimentation.

4. In our current experiment, the step size was heuristically taken as 99% of the
way to the boundary. This strategy works for the PSD-matrix LCPs, but may not
work for all P0-matrix LCPs. A line search to minimize the potential function along
the direction pk may be needed. We plan to experiment with that approach.

5. To be really useful in practice, parallel implementation is absolutely nec-
essary to efficiently solve each iteration of the interior point algorithm. If the real
problems are sparse, the computational time is significantly improved according to
our experience with convex quadratic programming problems [8].
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APPROXIMATION OF MATRIX-VALUED FUNCTIONS*

ROY MATHIASt

Abstract. It is shown that if f(z) ’i=o aiz (the series having radius of convergence
then for any n n matrix A with spectral radius less than R and any norm I1" on the space of
n n matrices

k

E 1
maxf(A)- aiAi - (k + 1)! sE[0,1l

i--0

It is also shown that expressions for the error in numerical integration rules can be generalized to
matrix-valued functions. The main point of the paper is that in these two cases it is not necessary
to increase the bound by a factor depending on n when generalizing an inequality for scalar-valued
functions to n x n matrix-valued functions.

Key words, matrix-valued function, truncated Taylor series, numerical integration

AMS subject classifications. 65D30, 15A45

Let Mn denote the space of n n complex matrices. Let p(-) denote the spectral
radius and let tr(.) denote the trace on ME. In this paper we show how some bounds
for scalar functions can be generalized to norm bounds for matrix-valued functions
without introducing a factor depending on n (the size of the matrices). The technique
depends on using the dual norm to reduce the problem to the scalar case.

Given a norm I1" on M, we define its dual (with respect to the inner product
trAB*) by

]]AII D max{Re[tr(AB*)] lIBII <_ 1}.

It follows from this definition that for any A, BE M

(1) IRe[tr(AB*)]] _< IlAII IlBII D.

The duality theorem for norms (see e.g., [2, Thm. 5.5.14]) states that (]1" lID)D II"
and, consequently,

(2) IIAII max{Re[tr(AB*)]" IIBII D <_ 1}.

Our first result deals with the approximation of f(A) by its truncated Taylor
series. Corollary 2 improves the bound in [1, Thm. 11.2.4] by a factor of n in the case
of the spectral norm.

THEOREM 1. Let f [0, 1] - M be k + 1 times continuously differentiable. Then
for any norm I1" on in,

(3)
k f(i) (0)S(l)- E i!

i--O

1
max-< (k + 1)! 8e[0,11
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When we say that f is k + 1 times continuously differentiable we mean that
each of the functions gij(t) (f(t))ij,i,j 1,...,n, is a k + 1 times continuously
differentiable function of the real variable t.

Proof. Let f and k satisfy the conditions of the theorem. Let B E Mn be such
that IIBIID _< 1 and

B,tr /(1)- E i!
i-0 II i--0

The existence of such a B is guaranteed by (2). Define g(t) Re[tr(f(tA)B*)]. Then

(4) g() (t) Re[tr(f(0 (t)B*)].

So now, by the formula for the error in the truncated Taylor series for a real-valued
function we have

f(i)(Of(1)- E i!
i--0

We have used (4) for the third equality and (1) for the final inequality.
COROLLARY 2. Let g be given by the series

i--0

Let R be the radius of convergence of this series. Let AE Ms be given with p(A) < R.
Then for any norm I1" on Mn and k O, 1,...

max II (sA)ll.g(A) E aiAi <- (k + 1), 8e[0,1]
i--0

Proof. Take f(t) g(tA), check that

f(i) (t) Aig(i) (tA),

and apply Theorem 1. [3

Corollary 2 can also be proven by showing

(6) g(A) Ea’A + .
i---0

tkAk+f(k+) (tA)dt
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(using, for example, the method outlined in [3, pp. 444-445]) and then taking norms.
Our next result deals with the error in approximating the integral of a matrix-

valued function by a sum. In the case of the spectral norm it improves on the bound
in [1, Eq. 11.2.7] by a factor of n. See [4] for an application of this bound. We omit
the proof of this result as it can be reduced to the scalar case by the same technique
as was used in the proof of Theorem 1.

THEOREM 3. Let c > O, xi E [0, 1] and ai E R, i 1, 2,..., m be such that for
any function g that is k + 1 times differentiable on [0, 1]

]oo g(x)dx ag(x)
i-1

max
se[O,1]

Let f: [0, 1] Mn be such that f(k+l)(t) exists for t e (0, 1).
I1" on M

Then for any norm

(s)
m

S(x)dx E
i--1

< c max IIf(/x)(s)l I.
[0,q

Note that in Theorem 3 we have not assumed that f is of any special form, but
merely that it is sufficiently differentiable. For example, one can fix X, ZE Mn and
take S(t) e-tXzetX as in [4]. Alternatively, one could fix XE Mn and define the
i,j element of f(t) by S(t)ij etx

Acknowledgment. I am grateful to Professor R. Horn for pointing out (6).
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A DECOMPOSITION FOR THREE-WAY ARRAYS*

S. E. LEURGANSt, It. T. ROSS$, AND R. B. ABEL

Abstract. An I-by-J-by-K array has rank 1 if the array is the outer product of an I-, a J-,
and a K-vector. The authors prove that a three-way array can be uniquely decomposed as the sum
of F rank-1 arrays if the F vectors corresponding to two of the ways are linearly independent and
the F vectors corresponding to the third way have the property that no two are collinear. Several
algorithms that implement the decomposition are described. The algorithms are applied to obtain
initial values for nonlinear least-squares calculations. The performances of the decompositions and
of the nonlinear least-squares solutions on real and on simulated data are compared. An extension
to higher-way arrays is introduced, and the method is compared with those of other authors.

Key words, alternating least-squares algorithm, array rank, multiway arrays

AMS subject classifications. 15A23, 15A69, 62H25, 62J99

1. Introduction. This paper gives a method for identifying the parameters of
a multilinear model proposed by Haxshman [11] and by Carroll and Chang [4]. The
models, described in 3 below, represent three-way arrays in terms of three sets of
parameters, one set associated with each way. To work with these models, it is
necessary to be able to identify the parameters for eemh way from the three-way array.
Kruskal [14] gives conditions on the sets of parameters such that the parameters are
identifiable, but his paper does not include a construction. Assuming conditions
stronger than his weakest conditions, we show how to recover the parameters from
the array. This method is related to the algebraic initialization method of Sands
and Young [25]. Our method requires one eigenvector decomposition, one Moore-
Penrose generalized inverse, and a finite number of arithmetic steps. These models
have been applied recently in the chemical literature, as described in 7 below. In this
paper we concentrate on a mathematical presentation to make these ideas more widely
applicable. Using Moore-Penrose inverses gives a natural derivation, and we provide
some evidence on the effectiveness of an appropriate decomposition for initializing
alternating least-squares iterations.

Section 2 reviews some facts about matrices, or two-way arrays. The models for
three-way arrays of interest to us are outlined in 3. We require a decomposition that
returns the parameters (A, B, and/ in the notation of 3) from a three-way array/.

Section 3 gives identifiability conditions under which a theorem is proven in 4. The
theorem characterizes the parameters of the model. Section 5 shows how the theorem
can be applied to give an algorithm. The section also reports some of our experience
in applying this decomposition to initialize alternating least-squares calculations. We
summarize the behavior of the decompositions and of the least-squares calculations for
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five sets of real data and a few sets of artificial data. In 6 we discuss decompositions
for higher-way arrays. Section 7 compares our work with other papers.

The models of 3 can be interpreted as a representation of an array as the sum
of rank-1 arrays. Since rank-1 arrays are often easy to interpret, these models can
lead to simple interpretations of the array. For two-way arrays, or matrices, such
representations are never unique without side conditions that often interfere with the
simplicity of the interpretation. Frequently the condition that the vectors for each
way be an orthogonal set is imposed. Since negative parameters have no physical
meaning in many applications of these models, orthogonality cannot always provide
representations that are interpretable unless the array is a rank-1 array. However, if
the original array has more than two ways, the array often has a unique representation
as the sum of rank-1 arrays. As has been emphasized in the literature on these models,
side conditions, such as orthogonality, are not required. The sufficient conditions of
3 permit representations that do not sacrifice interpretability. Since representations
for three-way arrays can lead to interpretable parameters, experiments that use three
independent variables to generate three ways of an array can remove ambiguities
unavoidable in experiments that use only two of the independent variables.

2. Decompositions of matrices. The decompositions for three-way arrays rely
on results for two-way arrays, or matrices. The results we will use have been collected
in this section. We state one proposition concerning the Moore-Penrose generalized
inverse of products of matrices. This proposition implies that the Moore-Penrose
generalized inverse can be obtained from a singular value decomposition.

A matrix has rank 1 if it is the outer product of one pair of vectors. An I-by-J
matrix /z has rank F if F is the smallest integer such that D is a sum of rank-1
matrices, or

(1) /z

F

.f=l

where the columns of A are al,..., OF and those of B are fl,..., fF and denotes
the outer product defined by ai fi, the I-by-J matrix whose i,j entry is (I[i]DI[j].
The model (1) is a bilinear model for/z. To avoid trivial reparameterizations we re-
quire the columns of A to be unit vectors whose first nonzero element is positive.
When F 1, the model is identifiable up to the sign convention: a is any column
of/ divided by its length and f} is the vector of the lengths of the columns, where
the jth component is multiplied by the sign of the first nonzero element of the col-
umn. When F > 1, the parameters are not identifiable because AQ(BQ)T ABT
when Q is any orthogonal F-by-F matrix preserving the sign convention for A. This
nonidentifiability leads to the well-known rotation problem in factor analysis. If the
columns of A and B are forced to be orthonormal, then the singular-value decomposi-
tion is the unique (up to permutation) decomposition of/z, provided that the singular
values are unique [12, p. 414]. The singular-value decomposition of an I-by-J matrix
M with rank F is an I-by-F matrix U with orthonormal columns, a J-by-F matrix
V with orthonormal columns, and an F-by-F diagonal matrix S with nonincreasing
positive diagonal elements satisfying M USVT. The diagonal elements of S are
the singular values of M. We follow Greenacre [8] by taking singular values to be
nonzero. The columns of U are the left singular vectors of M, and the columns of
V are the right singular vectors of M. Mathematically, the requirement that the
columns of A be mutually orthogonal is very natural, but practical interpretation is



1066 S.E. LEURGANS, R. T. ROSS, AND It. B. ABEL

frequently compromised.
The Moore-Penrose generalized inverse is a natural extension of matrix inversion

to matrices that may be singular or even rectangular. (For defining properties see,
for example, [26], [8], [20].) We use M+ to denote the Moore-Penrose generalized
inverse of the matrix M. We state a property of Moore-Penrose generalized inverses
as a proposition.

PROPOSITION 2.1. If A and B have equal full column rank and if the square
matrix D is nonsingular, then

(2) (ADBT)+ (B+)TD-1A+.

This proposition follows from Greville [9] and is given as Corollary 5 of Theo-
rem 2.16 of Pringle and Rayner [20, p. 31]. Direct verification follows from routine
applications of the defining properties of Moore-Penrose generalized inverses. If the
hypotheses fail, Greville’s results show that (2) can be false.

3. PARAFAC models for three-way arrays. In this section we describe the
models of interest. Interpretation of these models for three-way arrays is much easier
when the parameters can be identified from the array. We give three identifiability
conditions that are sufficient for identifiability if three parameterization conventions
are also imposed. The parameterization conventions can (essentially) always be im-
posed whenever the model holds. The conventions remove some trivial nonidentifia-
bilities. The results of Kruskal [14], discussed after the identifiability conditions are
introduced, guarantee that IC1, IC2, and IC3 are sufficient for identifiability of all
the parameters. Kruskal also provides weaker conditions, although his paper does not
construct the parameters from the array. Since 5 provides such a construction, the
identifiability of the parameters is verified. This section concludes with a presentation
of some properties of the models.

The same models for three-way arrays were used in methods proposed indepen-
dently by Harshman [10] and by Carroll and Chang [4]. The former paper calls the
models parallel factor models, or PARAFAC, and the latter paper refers to canonical
decompositions, or CANDECOMP. Both acronyms correspond to computer programs.
For recent discussions of the methods in their original contexts, see [15], [2], [7]. Ap-
pellof and Davidson [1] first applied these models to spectroscopy.

The F-factor PARAFAC model for an I-by-J-by-K three-way array D is that D
satisfies the trilinear model:

f--1

Since each array cf ff -/ is a rank-1 array, an F-term trilinear model (3) holds
if D is the sum of F rank-1 arrays [14]. Since the trilinear model is preserved if ci,
fi, and -/ are multiplied by constants whose product is 1 and since the values of
f can be permuted without changing the sum, some parameterization conventions
are necessary to provide identifiability. Before introducing either the identifiability
conditions or a set of parameterization conventions, we rewrite the trilinear model in
terms of matrices.

The trilinear model (3) can be written in terms of the K I-by-J matrices Dk as
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follows:

F F

Ik I[,, k] aI x Di’yy[k] i/i[k]D ADkBT,

where A is a real matrix whose columns are the c/’s, B is a real matrix whose
columns are the y’s, and Dk is the F-by-F diagonal matrix whose diagonal elements
are /i[k], f 1,... ,F. Kruslml [14] refers to the/k’s as 3-slabs of the array/, and
we refer to them as slabs below. Note that the diagonal of Dk is the kth row of/’.

Therefore, the PARAFAC model for the array D is equivalent to requiring that the
K matrices /k can be factored into the product of an I-by-F, an F-by-F, and an
F-by-J matrix in such a way that the K I-by-F matrices are identical, the K F-by-J
matrices are identical, and the K F-by-F matrices are all diagonal. The diagonal
matrices Dk vary with k and can be thought of as reflecting the relative importance
of the ci’s and the/i’s as k varies. The equation displayed above can be summarized
as trilinear matrix equations (4):

(4) /k ADkBT, k 1,... ,K.

The trivial nonidentifiabilities alluded to in the preceding paragraph correspond to
modification of A, B, and /’ by multiplication on the right by diagonal matrices
whose product is the identity matrix or by applying the same permutation to their
columns.

The trivial sources of nonidentifiability are not the only ones: Conditions on A,
B, and/’ are required. One set of sufficient conditions is that all three matrices have
the property that every pair of columns is linearly independent and that two of the
matrices have all columns linearly independent. For specificity, we adopt the following
identifiability conditions:
(IC1) The columns of A are linearly independent.
(IC2) The columns of B are linearly independent.
(IC3) Every pair of columns of/" is linearly independent.

In 4, we show how to recover the parameters under these conditions.
Of course, when these three conditions hold, all F columns of A are linearly

independent, all F columns of B are linearly independent, and every pair of columns
of/’ are linearly independent. In Kruskal’s notation, Io > F, Jo > F, and Ko >_ 2,
so that Io + Jo + Ko _> 2F + 2. This last inequality is sufficient for the parameters
to be uniquely defined, by [14, Thm. 4a]. The same theorem implies that uniqueness
can still hold when IC1 and IC2 fail if IC3 is strengthened. For example, if the last
column of A is the sum of the preceding mutually linearly independent columns, if the
last column of B is the sum of the preceding mutually linearly independent columns,
and if every four columns of/’ are linearly independent, then Kruskal’s results imply
uniqueness, although our decomposition does not apply.

The identifiability conditions are also easy to interpret because each of the three
conditions concerns the parameters associated with one way of the array. The first
two identifiability conditions assert that there must truly be F factors present in two
ways. The third condition requires that no two underlying factors respond to the
other way in an exactly proportional manner. If K > 1, IC3 can hold when F > K.
Observe that if K 1, IC3 can hold only if F 1. This observation corresponds
to the nonidentifiability of bilinear models if F > 1. The conditions IC1 and IC2,
however, can hold only if F _< I and F < J.
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To see that condition IC3 cannot be omitted, suppose that F 2 and that
"}’1 c1’ and "2 c2". Then the trilinear model implies that

/ c- + c {c +c } .
The I-by-J matrix in braces is

(Clal C2a2)(1 2)T (Clal c2a2)MM-l(l 2)T,
where M is any nonsingular 2-by-2 matrix. The arbitrariness of M implies that A
and B cannot be identified. These calculations can be extended to show that failure
of IC3 always prevents identifiability of the columns of A and of B corresponding to
the collinear columns of .

The following parametezation conventions remove these trivial sources of non-
identifiability:
(PC1) The columns of A and of B are unit vectors.
(PC2) In each column of A, the element with lrgest magnitude is positive. If severM

elements in a column have magnitude equal to the largest magnitude, then
the first such element is positive.

(PC3) The diagonal elements of

K

are nonincreasing and positive, that is,

l:-y1 D+[1, 1] _>... _> 1/q,I D+[f f] >_... l/F D+[F, F] > O.

The parameterization conventions are easy to interpret. Convention PC1 asserts
that the constant is carried in the third way. Convention PC2 establishes a sign
convention for A by assuming that the first element of the column achieving the
maximum absolute value for the column is positive. The convention that the columns
of A are all unit vectors implies that PC2 is not vacuous in that every column of
A must have strictly positive maximum absolute value. Convention PC3 determines
the signs of the q,f’s, leaving the sign of the/i’s determined, and it also fixes the
ordering of the factors when the inequalities are strict. If the inequalities are not
strict, additional conditions will be required for identifiability. The requirement that
all of the elements of D+ be positive forces to satisfy a genuinely F-factor model.
If satisfies a PARAFAC model with no more than F- 1 factors, then D+ IF, F] 0,
the Fth column of/ is entirely 0, and the Fth columns of A and B cannot possibly
be well defined. It is possible for PC3 to hold with D+[F, F] 0 if two terms

x i/i[k] and cI, x i,i,[k] exactly cancel when summed over k. Since all
elements of A, B, and/ are generally nonnegative in the models we study, we will
not explicitly present a decomposition as valid when cancellations occur. However,
it will become apparent in 4 that D+ can always be replaced in PC3 and in the
decompositions by a matrix D(w) as defined there.

Once some of the parameters of the trilinear model are known, it is easy to
determine the others. We first suppose that A is known, and we then show that IC1
implies that B and/’ can be determined from D and A. Identifiability condition IC1
implies that ATA is nonsingular. It follows that A+ (ATA)-1AT and that A+A
is the F-dimensional identity matrix, or

(5) A+A IF.
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Equation (5) and the trilinear matrix equations (4) imply that

(6) A+lk A+(ADkBT) DkBT, k 1,..., K.

Summing (6) over k, we obtain

A+it+ D+BT.

Since the rows of BT have length 1 and D+ is diagonal, the fth diagonal element of

D+ must be the length of the fth row of A+/+ and the fth column of B is just the
unit vector formed by normalizing the fth row of A+/+. Algebraically, the diagonal
of D+ is the square root of the diagonal of A+/+(A+/+)T and

(7) B (A+)TD1.

The diagonal matrices Dk, and hence/’, can now be calculated from (6). We note
that this argument does not require B to have full column rank.

If both A and B are known and satisfy IC1 and IC2, a convenient expression is
available for Dk. Since (BT)+ (B+)T, the derivation of (5) shows that IC2 implies
that

(8) BT(BT)+ IF.
If both sides of (6) are multiplied on the right by (BT)+, it follows that

(9) Dk A+p,k(BT)+, k 1,..., K.

4. Mathematical decompositions. This section contains decompositions that
can be used to obtain A from when the identifiability conditions hold. Since (7)
and (6) give B and Dk (and hence/’) from D and A, all of the parameters can be
identified from D if A can be determined from when neither B nor/ is known.
The first part of Theorem 4.1 states that identifiability conditions on the first two
ways imply that the columns of A are eigenvectors of certain matrices computed from
the array . The second part of Theorem 4.1 states that if a weaker identifiability
condition for the third way also holds, the only vectors that are eigenvectors of all of
the matrices are scalar multiples of the columns of A and vectors in the intersection
of all of the kernels of the matrices. The theorem therefore determines A up to
permutation and sign changes of the columns when all three identifiability conditions
hold. The analogues of the theorem obtained by permuting ways of the array are
left to the reader. The two corollaries reexpress the decompositions in forms that
are useful in applications. Corollary 4.3 restates Theorem 4.1 after reduction to an
F-by-F-by-K array . Corollary 4.4 gives a variant appropriate when I J and all
of the matrices [,, k] are symmetric.

The key to the decomposition is to compare two linear combinations of the ma-
trices k, k 1,..., K. To that end, for every K-vector w, define

K

k--1

and

K

D(w) Ew[k]Dk,
k--1
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so that it+ gt(1K) and D+ D(1K). Theorem 4.1 below presents an eigenvalue
problem whose solution is the columns of A. See [17] for an interpretation of the
matrices Ok and a heuristic rationale for the theorem.

THEOREM 4.1. Assume that the trilinear matrix equations (4) hold with the
parameterization conventions PC1-PC3. Using the Moore-Penrose inverse of I+, we

1. If IC1 and IC2 hold, then for every nonzero K-vector w the columns of A are
eigenvectors ofO(w) with eigenvalues equal to the diagonal elements ofD(w)D_1, k
1,...,K.

2. If identifiability conditions ICI-IC3 hold, then there exists a K-vector w such
that the only nontrivial eigenvectors of O(w) are scalar multiples of the columns of
A.

Proof. It suffices to establish the first claim for vectors w that are columns of the
K-dimensional identity matrix or to show that every column of A is an eigenvector
of each matrix Ok, k 1,..., K. First we argue that the columns of A are indeed
eigenvectors of the 0k’s.

By IC1, IC2, and PC3, Proposition 2.1 can be applied to give the Moore-Penrose
generalized inverse of/z+ in terms of the generalized inverses of A, D+, and B:

i.t ++ (BT)+DIA+.
Substitution into the definition of 0k gives

Ok ADk(BT)(BT)+D_IA+.
By (8), Ok ADkD_IA+, so that

(10) OkA ADkD_A+A ADkD_1,
where the right-hand equality follows from (5). Since the matrix DkD+- is diagonal,
equation (10) demonstrates that the columns of A are right-eigenvectors of Ok, with
eigenvalues as claimed.

From part 1, each column of A is an eigenvector of O(w) for every w. The second
part of the theorem will follow if O(w) has F one-dimensional eigenspaces or if the
matrix O(w) has F distinct real nonzero eigenvalues or if the diagonal elements of
D(w)D_ are distinct and positive. Lemma 4.2 below shows that PC3 and IC3
imply that the diagonal elements of D(w)D_ are distinct and positive for almost
all w. The theorem follows.

LEMMA 4.2. If PC3 and IC3 hold, then the diagonal elements of D(w)D_ are
distinct and positive unless w is in a set of Lebesgue measure O.

Proof. We first argue that the set of w’s such that a diagonal element of D(w)D_
is zero has Lebesgue measure 0. By definition the fth diagonal element is 0 if and
only if wT"/I 0 or if w is in the orthogonal complement of "YI, a nonzero vector
by PC3. The union of F orthogonal complements has Lebesgue measure 0, so that
D(w)D_ has positive diagonal elements for almost all w’s.

Next we show that if PC3 is assumed to hold, then if the fth and f’th diagonal
elements of D(w)D_ are tied, then either IC3 fails or w is in a set of measure 0.
The fth diagonal element of D(w)D_1 is wTgI/If[I. Therefore, the fth and f’th
diagonal elements of D(w)D_ are equal if

(11) wT ( kl ) f,
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If the vector expression in parentheses above is zero,

Since PC3 implies that the coefficient of -/i above is positive and finite, -} is a scalar
multiple of tI, or the columns f and f’ of/’ are collinear, so that IC3 fails.

Thus if IC3 holds, none of the vectors in parentheses in (11) can be 0, or

1 1

That is, for a pair of diagonal elements of D(w)D_ to be tied, equation (11) implies
that w must be in the orthogonal complement of one of the nonzero K-vectors above.
Since each orthogonal complement is a hyperplane of dimension K- 1, the diagonal
elements will be distinct unless w lies in the union of F(F- 1)/2 hyperplanes of
dimension K- 1. The lemma follows. [:l

When I (or J) is much larger than F, reparameterization can remove redundant
parameters and reduce the order of the matrices whose eigenvalues are sought. Using
PC3, IC1, and IC2, we see that the column space of/z+ is the same as the column
space of A and that the column space of each/k is a subspace of the column space of
A. Therefore, if U is an I-by-F matrix whose orthonormal columns span the column
space of/+ and if A’ UTA, then A UA’. Therefore, A can be determined by
determining the F-by-F matrix A’. Similarly, if the orthonormal columns of V span
the column space of/z_, setting B’ VTB implies that B VB’. Substituting

for A and B in the trilinear matrix equations (4) gives Izk UA’DkB’TvT. Since
both U and V have orthonormal columns,

Iff’tk uT’kV A’OkB’T k= 1,...,K,

are K F-by-F matrices satisfying an F-factor PARAFAC model. Convenient matrices
U and V are those obtained from the singular-value decomposition of/z+ USVT,
so that/ q, a nonsingular diagonal matrix. Applying Theorem 4.1 to the matrices

Ok =/zq-1 gives Corollary 4.3 below:
COROLLARY 4.3. Let USVT be the singular value decomposition of I+. Define

Ok VT Ik V S-1

FxF=FxlIxjjxFFxF k= 1,...,K.

Assume that the trilinear matrix equations (4) and the parameterization conventions
PC1-PC3 hold.

1. If identifiability conditions IC1 and IC2 are satisfied, then the columns of
Z := UTA are (right) eigenvectors of lk with eigenvalues equal to the diagonal
elements of DkD_ Ak for every k 1,... ,K.

2. If all three identifiability conditions ICI-IC3 hold, then the columns of Z are
the only common eigenvectors of lk, k 1,... ,K.

Theorem 4.1 or Corollary 4.3 can be used to demonstrate that the trilinear matrix
equations (4) do not hold. The matrices Ok, k 1,..., K, need not be symmetric,
so that they can fail to have real eigenvalues. Even if the K matrices have real
eigenvalues, the eigenvectors can fail to be common.
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In some settings the matrices/zk are square and symmetric. When all K matrices
are symmetric, we shall use the suggestive notation k for these matrices. (The
application suggested by this notation is beyond the scope of this paper.) If the
trilinear matrix equations (4) hold, then k ADkAT, so that A B and ,+
AD+AT. If we let the singular-value decomposition of + be given by USUT, the
symmetric matrices

k S-1/2uT.kUS-1/2, k-- 1,...,K,

have the property that P+ IF. Corollary 4.4 below states that the decomposition
can be obtained from the P’s, so that the eigenvalues needed are those of symmetric
matrices.

COROLLARY 4.4. If the K matrices ,k are square symmetric matrices and if
IC1 and IC3 hold, then the only common eigenvectors of Pk are proportional to the
columns of X, where

X ,-I/2uTA.

The eigenvalues are the diagonal elements of the matrices DkD_1.
Proof. The columns of X will not generally be of unit length, so that normaliza-

tions will be required in order to meet the parameterization conventions PC1-PC3.
The demonstration that the columns of X are eigenvectors uses the. two represen-
tations for ,U++, one formula in terms of A+ and one formula in terms of U. It is
necessary to show that kX XAk. The first step is to substitute for -k in the
left-hand side:

(12)
kX (S-1/2UT(ADkAT)US-1/2)S-1/2UTA

S-1/2UTADkATUS-VTA.
The product of the first three matrices is just X. By Proposition 2.1, US-UT

(,+)+. Since (+)+ (AD+AT)+, Proposition 2.1 also implies that (+)+
is (AT)+D_IA+. Therefore, the matrix products to the right of Dk in (12) are

ATus-UTA AT(AT)+DA+A D_. Therefore, kX XDkD_, as
claimed.

The remainder of the proof is similar to the proof of the second part of Theorem
4.1, and so the details will be omitted.

5. A decomposition algorithm. In this section we present an algorithm that
applies the decomposition. In the first subsection we list steps that will determine the
parameters of an F-factor PARAFAC model in the absence of noise. We then indicate
several modifications that will not change the results obtained when p satisfies the
trilinear model. As described in 5.3 below, we have observed that a few of these mod-
ifications result in substantial improvements when applied to real or simulated arrays
of fluorescence data. Subsection 5.2 discusses our implementation of this algorithm.

5.1. Steps in the algorithm.
1. Sum over the third index of the data array Y to obtain Y+ -:kg__ Y[,, k].
2. Fix F > 1.
When the array to be decomposed satisfies the trilinear model (3) and if PC3

holds, the rank of/z+ will be F. If the context of the model ensures that all elements
of A, B, and/" are nonnegative, then PC3 will hold for the smallest F such that the



ARRAY DECOMPOSITIONS 1073

trilinear model (3) holds. If Y, the array to be decomposed, is a perturbation of an
array/z satisfying (3), the rank of Y+ need not be F. The value of F should be at
least as large as the number of dominant singular values of Y+.

3. Obtain the F leading singular values and vectors of Y+. Let S be the F-by-
F diagonal matrix whose diagonal elements are the singular values, let U be
the I-by-F matrix whose orthonormal columns are the left singular vectors,
and let V be the J-by-F matrix whose orthonormal columns are the right
singular vectors.

4. Form//k uTy[,, k]Vs-1 k 1 K’*’
5. Find a K-vector of weights w such that//(w) Kk=l w[k]ilk has F distinct

real eigenvalues.
6. Let Z(w) be an F-by-F matrix whose columns are unit-length eigenvectors

7. Take l UZ(w).
8. Find

BTo +y+ (Z(,w))-lsvT.

The second equality follows from application of Proposition 2.1 to step 7.
9. Set D+ to be the diagonal matrix of lengths of columns of Bo, and take- BoD_1"

10. Find Dk (Z(w))-lilkZ(w)D+ and set the kth row of equal to the
diagonal of Dk, k 1,..., K.

11. Permute the columns of 1,/, and , and change the signs of the columns
to satisfy the parameterization conventions PC2 and PC3.

When F 1, the matrices //k, k 1,... ,K, formed in step 4 are scalars, so
that all linear combinations//(w) automatically have a single (F 1) nontrivial real
eigenvalue. For the F 1 PARAFAC model, steps 4-11 can be replaced by step 41"

41. Set I U,/ V, and [k, 1] 4Ty[,, k], k 1,..., g.
This modification is an application of (9) with/zk replaced by Yk because the

Moore-Penrose generalized inverse of an n-by-1 unit vector is the 1-by-n row vector
that is its transpose.

The matrices 1 and are characterized differently in the steps above, even
though the trilinear model (3) and the parameterization conventions PC1-PC3 treat
the first two ways symmetrically. The proposition below establishes that this asym-
metry is only in .appearances: Exchanging the first two ways of an array will always
give equivalent decompositions even if Y does not satisfy the trilinear model. Thus
steps 8 and 9 are equivalent to 8 and 9 provided that the vector w of step 8 is the
vector used in step 5.

8’. Form//* vT(y[,, k])Tus-1, and set//*(w) EkK__I w[k]il.
9. Let Z* be an F-by-F matrix whose columns are unit-length (right) eigenvec-

tors of//*. Take VZ*.
PROPOSITION 5.1. Let Y be an I-by-J-by-K data array. Define a J-by-I-by-K

array Y* by setting Y*[,, k] ": (Y[,, k])T. Assume it is possible to take w such that
step 5 is possible when applied to Y. Let be the matrix obtained in step 9 when the
algorithm is applied to Y, and let 4" be the matrix ofparameters for the nominal first
way when the algorithm is applied to Y* (with the same vector w). Then 4".

Proof. The superscript * will denote quantities derived from the permuted array
Y*. To establish the proposition, the results of each Y* step must be written in
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terms of quantities computed from Y. Since * U*Z* in step 7, the matrices U*
and Z* need to be written in terms of unstarred quantities. The K-vector w will be
omitted from the notation since the same w is used with both Iz and

In step 1, Y Y_, so that the diagonal matrices of singular values in step 3
are equal and left and right singular vectors are exchanged: S* S, U* V, and
Y* U. In step 4, il vT(t’k)TU,-I ,(,.-IvTyu),-I Si,--1. In
step 5, //* S(//T)s-1 or the matrix//* is similar to IT with diagonal similarity
matrix S-1 [12, p. 44]. Therefore, //* and//have the same eigenvalues, so that
has F distinct positive real eigenvalues.

The matrix equation summarizing the fact that the columns of Z are (right)
eigenvectors of// with diagonal matrix of eigenvalues A is ilZ ZA. When the
eigenvalues are distinct, then Z is nonsingular, so that il ZAZ-1 and T
(zT)-lllZT, implying that T(zT)-I (zT)-lfl_ or that the columns of (zT)-1
are eigenvectors of//T. But the similarity of//* and T implies that the columns of
s(zT)- are (unnormalized) eigenvectors of *, so that the normalized eigenvectors
Z* are ,.(zT)-ID-1, where D is the diagonal matrix of the lengths of the columns
of s(zT)-. Since V is an orthogonal matrix, the lengths of the rows of s(zT)-are the same as the lengths of the rows of s(zT)-V, implying that D D+. Now
substituting for U* and Z*, we obtain Z* V,.(zT)-ID BoD_ .. The
last equality is from step 9, and the preceding equality is from step 8. These equations
complete the proof of the proposition.

The computation of in step 10 relies on the fact that the columns of Z(w) will
be eigenvectors of//k if the trilinear matrix equations (4) hold. But when Y does
not satisfy the trilinear model (3), the matrices Dk may not be diagonal and the
estimate of/’ may not be satisfactory. Since this decomposition is often intended to
initialize a nonlinear least-squares calculation, step 10 can be replaced by step 10 in
the determination of the that gives the best least-squares fit to Y. By the trilinear
matrix equations (4), tt[,, k] is a linear function of/’[k, when A and B are known,
so that a conditional least-squares step will give/’. If the trilinear matrix equations
(4) hold, steps 10 and 10 are equivalent, but the numerical results below demonstrate
that 10 should be preferred to 10 for initializing nonlinear least-squares fit.

10’. Estimate r[k, from Y[,, k] by using least-squares regression of the model
(4) with A and S .

This variant illustrates the nonuniqueness of decomposition algorithms: Either
step 10 or step 10 will recover/" if (4) holds, but the algorithms differ away from the
model.

5.2. Our implementation of the algorithm. We have implemented the de-
composition in FORTRAN by using IMSL subroutines [13]. We use the decomposition
to initialize an alternating least-squares algorithm equivalent to the iterative steps de-
scribed by Carroll and Chang [4] and by Harshman [10]. Sands and Young [25] give
equivalent algorithms involving slightly more compact expressions by exploiting the
multilinear structure. Our implementation does not use the flexibility offered by our
formulation of step 5 because we have generally found that one or more /k has F real
eigenvalues. We restrict our attention to weight vectors w containing one 1 and K- 1
O’s, so that//(w) is always one of the matrices//k" The simplest choice of weights is
to select the k with largest minimum distance between F real eigenvalues. In 5.3.1
below the choice of k is delayed until after one cycle of an alternating least-squares
algorithm has been completed.

The alternating least-squares algorithms exploit the conditional linearity of mul-
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tilinear models. The alternating least-squares algorithm has been extremely slow for
fluorescence data sets, and we now use ad hoc acceleration methods. At each step
these methods extrapolate the recent parameter estimates to approximate the param-
eters attaining the minimum. Iteration stops when the ratio of the vector norm of the
difference between the current estimate and the extrapolated estimate to the vector
norm of the current parameter estimates is less than 10-4

When F 1 the initialization is not used. We have found that the alternating
least-squares algorithm converges rapidly (always in five or fewer cycles) and that the
limit points and the speed of convergence are not especially sensitive to the initializa-
tion.

We have run this code on an IBM 3081D computer at the Instructional and
Research Computing Center, Ohio State University; on Pyramid 90X, DEC3100,
and DEC5400 computers in the Mathematics and Statistics Computer Laboratory
at Ohio State University; and on CRAY computers (XMP; later YMP) at the Ohio
Supercomputer Center. Like most programs in active use, this code evolves. The
code implementing the algorithm and the tests described in 5.3 below is in [18,
Appendix 1].

5.3. Our experience. We now review our experience with this decomposition
to initialize iterative nonlinear least-squares calculations. Our experience with five
real data sets is described in 5.3.1. Four sets of fluorescence data were collected from
aqueous solutions of biochemicals. The rationale for applying the trilinear model to
fluorescence data is explained in [17]. Our fifth data set is the tongue-position data
reported by Harshman, Ladefoged, and Goldstein [11]. Fluorescence data were also
simulated for a study reported in [16]. The simulation results are described in 5.3.2.
Except for the tongue data set, the three ways correspond to excitation wavelength,
emission wavelength, and concentration of a chemical that affects fluorescence inten-
sity. We focus on the behavior of the decomposition and its variants as an initialization
of nonlinear least-squares calculations.

5.3.1. Performance of decomposition on real data. Each of the real fluo-
rescence data sets has some structurally missing entries because fluorescence intensity
cannot be measured accurately when excitation and emission wavelengths are very
close. Since complete arrays are required to attempt the decomposition and since the
fraction of entries missing is small, we filled the missing entries with the expected
fluorescence intensity determined from the parameter estimates from the model with
F- 1 when initializing the computations for the model with F terms. The constructed
entries are used only for the decomposition; all iterative least-squares steps use only
the observed data.

Table 1 is a summary of the behavior of the algorithm for five real data sets.
The triple of integers below the code name of each data set is the dimension vector
of the three-way data array. The negative number below the vector indicates the
number of missing elements. For more description of the fluorescence data sets, see
[18, Appendix 2].

We attempted K decompositions for each data set and for F 2, 3, 4. For each
decomposition the matrix/(w) of step 5 was set equal to one of the matrices/k of
step 4. All eigenvalues from step 5 are listed in the tables of [18, Appendix 2]. When
any eigenvalues were complex, step 5 failed. The number of slabs for which step 5
failed is reported in the column of Table 1 headed "Failure." The number of failures
of step 5 increases with F, the number of terms fit. None of the five decompositions



1076 S.E. LEUItGANS, It. T. ROSS, AND It. B. ABEL

TABLE 1
Summary of real data sets. Four sets of fluorescence data from aqueous solutions o biochem-

icals were collected in the laboratory of the second author. The fifth data set is the tongue-position
data of [11]. The triple of integers below the code name of each data set is the dimension vector
of the three-way data array. The negative number below the vector indicates the number of missing
elements. For explanation of the four sums-of-squares SS1-SS4, see text.

Data set F Failure SS1 Slab

PEA
(17,15,9)
-(8 x )

PCGK
(11,22,7)
-(7 7)

NAT
(8,,7)
-(8 x )

LADH
(,7,7)
--(16 x 7)

TONG
(o,3,)
-(o)

1
2 0
3 3
4 5
1
2 1
3 4
4 4
1
2 0
3 0
4 2
1
2 0
3 0
4 2
1
2 1
3 2
4 5

4.15 (3)
a.sa (3)

58.86 (2)

.573

.510

.669

15.78
.81

1.12

(6)
(3)
()

(3)
(2)
(3)

8.79 (1)
.a7 ()
1.69 (1)

SS2 Slab

.96 (1)

.87 (6)

.58 (9)

.568

.442

.394

14.42
.61
.47

(3)
(2)
()

(3)
()
()

8.67 (1)
.3 (3)
.49 (1)

20.62 (4)
18.88 (1)

ss3 SS4

.44 (1)

.31 (9)

.2 ()

.503

.429

.354

5.96
.50
.33

(2)
()
()

(3)
(2)
(3)

6.15 (1)
.65 (1)
.40 (1)

2.91
.42
.27
.17

3.237
.498
.422
.306

197.23
5.41
.47
.19

15.84
5.36
.38
.34

240.56
19.99
18.43

attempted provided an initialization for the tongue data set (TONG) with F 4.
We note that in the original source the model with F 2 was selected.

For every k for which step 5 was possible, the remaining steps were performed.
The smallest residual sum of squares from the parameter estimates at the end of step
10 is designated SS1 in Table 1, with the number of the corresponding slab indicated
in parentheses. The smallest residual sum of squares resulting when step 10’ replaces
step 10 is designated SS2. Note that the slab corresponding to SS1 is not always the
slab corresponding to the smallest SS2. The smallest residual sum of squares after
one ALS cycle beyond the step giving SS2 is designated SS3. The alternating least-
squares algorithm was iterated to convergence for the slab corresponding to SS3. The
residual sum of squares at convergence is designated SS4. For the residual sums of
squares for every slab, see [18, Appendix 2].

5.3.2. Performance of decomposition on simulated fluorescence data.
We extracted some results from a small simulation study reported in [16], a prelimi-
nary study of several methods of determining F in the trilinear model (3). We first
outline the simulation, and we then report the results and compare them with the
real data.

For the simulation, five independent data arrays were generated for each of three
deterministic 10-by-12-by-5 arrays/ satisfying the trilinear model. Each deterministic
array corresponds to plausible fluorescence parameters. The number of terms in the
true array/ was/ 1, 2, 3. The three theoretical arrays are referred to as NFAK1,
NFAK2, and NFAK3, with the number denoting the number of terms in the true
array/. The elements of/ were between 0 and 104. The data arrays were simulated
by adding independent pseudorandom normal variables with mean 0 and standard
deviation 100. For all 15 simulated data arrays the trilinear model was fit with F set
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TABLE 2
Summary of simulated data sets. Slab number is the value of k used in step 4. The entry in

each cell of the table is the number (out of 5) of replicated data arrays for which step 5 was possible.
The * denotes models and slabs for which the computer code gave complex eigenvalues even when
no noise was present.

Model IF
NFAK1 2

3
4

"NFAK2 2
3
4

NFAK3 2
3
4

Slab number
1 2 3 4 5

4 4 5 5 5
2* 1" 3* 4 2
1" 1 1" 3* 1"
5 5 3 5 5
5 4 5 5 5
2* 2 3 3* 3
5 5 5 5 5
5 5 3 5 5
5 2 4 5 5

equal to 1, 2, 3, and 4.
Table 2 gives the number of slabs that generated successful step 5’s. Figure 1

shows the actual eigenvalues: Each column of plots corresponds to a different theo-
retical array; each row of plots corresponds to a different number of terms fitted. The
circles in each panel are sample eigenvalues (when real) plotted against slab number.
The eigenvalues of the theoretical arrays are superimposed crosses. It is evident from
the figure that the sample eigenvalues were close to the true eigenvalues when the
correct number of terms were fit and when separation of the true eigenvalues was
larger than the variation in the sample eigenvalues. When more eigenvalues were fit
than were present, some of the sample eigenvalues were close to the population pa-
rameters but the other sample eigenvalues varied considerably. Examination of the
three sums-of-squares fits showed that using conditional least-squares fits for is
important.

6. Extensions to four or more ways. In this section we prove that arrays
with four ways can be decomposed by using the decomposition for three-way arrays.
We state an extension to more ways.

The four-way extension of the trilinear model (3) to an I-by-J-by-L-by-M four-
way array/ is called the quadrilinear model:

F

(13)
I=1

where the l’s, the l’s, the l’s, and the 5f’s are the F columns of the matrices
A,B,, and , respectively. The matrix A h I rows, B h J rows, E h L
rows, and h M rows. The parameterization convention PC1 can be extended to
include the third way by requiring that the columns of A, B, and all have unit
length. The sign convention of PC2 can be extended to the matrix B, so that
carries the sign.

The quadrilinear model (13) can be written in terms of three-way arrays. For
example, if the levels of the lt two ways of the four-way array define levels of a way
with K LM levels, a three-way I-by-J-by-K array is induced by

[i,j,k] [i,j,l,m], k + L(m-1), l=l,...,L; m=l,...,U.
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2 fitted; present

3 fitted; present

@

0

4 fitted; present

@

2 fitted; 2 present

3 fitted; 2 present

4 fitted; 2 present

2 fitted; 3 present

3 fitted; 3 present

4 fitted; 3 present

|

FIG. 1. Eigenvalues ]rom simulated arrays. Crosses are eigenvalues from theoretical arrays;
open circles are eigenvalues from data arrays.
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The quadrilinear model (13) implies that the three-way array t2 satisfies

(14) z
F

[ cf x Of x f,
f_--i

where "I is the K-vector equal to the Kronecker product of the L-vector "I with
the M-vector ii, denoted -)’I (R) iI and taken to have the first vector associated with
the larger pattern and the second vector with the subpattern. Equation (14) has
the form of the trilinear model (3), so that has an F-factor three-way PARAFAC
decomposition.

Identifiability conditions IC1 and IC2 are unaffected by the reduction from four
ways to three ways. Identifiability condition IC3 applies directly to the K-vectors
"1"" "’F. Lemma 6.1 at the end of this section shows that IC3 for is equivalent
to IC43 and ICa4 below, so that the following four-way identifiability conditions are
sufficient for identifiability when the parameterization conventions PC1-PC3 alluded
to above are made:

(ICal) The columns of A are linearly independent.
(IC42) The columns of B are linearly independent.
(IC43) No two columns of/’ are collinear.
(IC44) No two columns of z are collinear.
To determine the L-by-F matrix/ and the M-by-F matrix from the K-by-F

matrix , the rows of are summed to add up the coefficients from z (or from/),
leaving the coefficients from/" (respectively, z).~Explicitly, form the L-by-F matrix
G by summing consecutive blocks of M rows of

M

G[1, f] [(/- 1)M + m, f],
m=l

1-1,...,L, f--1,...,F.

The quadrilinear model (13) then implies that

(15) G[, f] T’[, f]l A[, f], f 1,... ,F.

Since the columns of/" are assumed to have length 1,/" can now be determined from
(15). Once the matrix/ is known, the matrix z can be found by summing every
Mth row of to get the M-by-B matrix (:

L

C[m, f] ’[(/- 1)M T m, f],
l--I

f-- 1,...,F.

It is easy to verify that z[, f] ([, f]/1LT/’[, f], f 1,..., F.
We now sketch the extension of the identifiability conditions to N-way arrays,

where N >_ 3. Let z be an N-way array with vn levels in the nth way such that a
formula like (13) holds. Assume that the N matrices On with vn rows and F columns
containing the parameters for the nth way satisfy parameterization conventions like
the parameterization conventions PC1-PC3, that is, the first N- 1 matrices will be
assumed to have length-1 columns and a sign convention will be assumed. Induction
on N shows that if none of the matrices On, n 1,..., N, have any collinear columns
and if at least two of the matrices have linearly independent columns, then the N
matrices On can be identified from
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We conclude this section with a proof of the lemma containing the mathematical
details.

LEMMA 6.1. If Zti "yy (R) iI, f 1,2, and if the lengths of ztl and Of 2 are
positive, then zy and zI2 are collinear K-vectors if and only if’y and /2 are collinear
L-vectors and i and i2 are collinear M-vectors.

Proof. Suppose that - and "2 are collinear. Then

for some c #- 0. Since 1 and 2 are Kronecker products, the L M-dimensional
subvectors of -If are just

-/ [/]il c’2[/]2, 1,..., L.

Observe that -y[/] 0 if and only if 72[/] 0. Since the length of the Kronecker
product of two vectors is the product of their lengths, there must be at least one
such that 71[/] 0. For all such

c7--.
That is, the vector $1 is a multiple of $2, or x and $2 are collinear. The collinearity
of and follows from a similar argument.

7. Discussion. The essential features of the decomposition have been in both
the psychometric and chemometric literatures concerning initialization of alternating
let-squares algorithms. All of these papers discuss real data sets well. We briefly
compare their approaches with ours, and we then summize our conclusions and
recommendations. We conclude our discussion with a brief comparison of array and
tensor decompositions.

The psychometric literature discusses several types of initialization, all of which
are surveyed and compared for a setting with symmetric slabs by Carroll, DeSoete,
and Pruzansky [6]. One simple method is to use one or more random starts. Harshman
[10] recommends several random starts. Carroll, DeSoete, and Prozansky found this
method to be dominated by other methods, and so did we. In our applications, the
inner products of the columns of A (and of B) often exceed 0.9; such confirations are
not likely to arise from simple random schemes. Another simple method is to attempt
to use bilinear models, such the singular vectors of Y+. We found that imposing
nonnegativity constraints did not provide useful initializations. A third approach is to
postulate that the identifiability conditions almost fail or that the columns of A, B,
or F are very close to a prespecified lower-dimensional subspace. In this approximate
setting, Carroll, Pruzansky, and Krusl’s [5] linearly constrained PARAFAC model
(CANDELINC) applies to reduce to another unconstrained PARAFAC model for an
array of smaller dimension. We have not applied this approach directly because in our
applications submodels can be specified only for , the parameter matrix with the
smallest number of rows. However, reduction to Yk in Corollary 4.3 can be thought of

postulating data-dependent linear models. We do not, however, pursue alternating
let-squares fits for these models. Other initialization methods are more similar to
ours. The proposal of Sands and Young [25] differs in detail because they find the
eigenvalues of

1
K

K ’0,
k=l
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where r is an integer (often 2) rather than finding the eigenvalues of a matrix

The chemometric literature has also used initializations based on eigenvalues.
Sanchez and Kowalski [22] rediscovered the approach for I-by-J-by-2 arrays. Sanchez
and gowalski extend their earlier paper to I-by-J-by-g arrays in [21], [23], [24]. They
also propose finding the eigenvectors of a matrix. To present their algorithm in an
extension of our notation, define the IJ-by-K matrix by stacking the matrices
k, k 1,..., K, one above the next. Let wl and w2 be the first and second right
singular vectors of . Sanchez and Kowalski use the eigenvectors of
to recover the decomposition. When noise is present Sanchez and Kowalski first
project Y onto a larger class of multilinear arrays, a class that includes the PARAFAC
models. Their preprocessing is different from ours, so that their algorithm will not
behave exactly like ours. Our experiments with their approach suggest that their
methods and ours behave similarly, with neither method dominating. Our approach
has the advantage that we always try K decompositions, so that the impact of complex
eigenvalues may be avoided.

Burdick, Tu, McGown, and Millican [3] also describe the same eigendecomposi-
tion; readers who compare our paper with theirs should notice that our f (respectively,
F) is their k (respectively, K) and our k (respectively, K) is their f (respectively, F).
They do not apply the decomposition directly to Y but first apply alternating eigen-
problems to obtain better estimates of the column spaces of A and B and then apply
the eigendecomposition to k uUTykVVT, where U and V have orthonormal
columns and are such that their column spaces are estimates of the column spaces
of A and B. They are iteratively refining preprocessing as used by Sanchez and
Kowalski [21]. Our preliminary experiments with our data indicate that the iterative
eigendecomposition is more unstable than our direct initialization.

Sample variation from the trilinear model (3) can cause the decomposition to fail
because complex eigenvalues can occur at step 5. Complex eigenvalues were observed
for some k and some F for every data set. However, the imaginary part of the
eigenvalues was not large: The absolute value of the ratio of the imaginary part to
the real part of the complex eigenvalues never exceeded 0.189 for the fluorescence data
sets. From simulations we see that complex eigenvalues can appear even when the
correct model is fitted, so that complex eigenvalues should not be regarded as evidence
that the trilinear model is inadequate. The set of arrays Y having real eigenvalues for
every slab is a closed set, and those arrays having a slab generating at least one real
eigenvalue with multiplicity at least 2 are on the boundary of this set, so that slight
perturbations give arrays with complex roots. Indeed, slight perturbations of arrays
having distinct real eigenvalues, some of which are not well separated, can also induce
some complex roots. We have seen that nonunique eigenvalues occur when certain
properties of the spectra nearly tie for two factors for some k. These ties can occur
without the spectra being otherwise pathological, and so we recommend that several
decompositions be attempted routinely. Table 1 shows that some decompositions are
better than others when applied to real data, even though the decompositions give
the same results when applied to arrays that exactly satisfy the trilinear model. We
found the same comparison for simulated data. The original decomposition (with
step 10) cannot be recommended because SS1 is smaller than SS4 from F- 1 only for
F 2 (four data sets) and F 3 (two data sets). The minimum SS1 fails to decrease
as F increases for four of the five data sets. Sometimes SS1 is very large in real data
sets: Two slabs of the PEA data exhibited this problem. Using step 10’ produces a
substantial improvement: Only for F 3, 4 of the PEA data does the smallest SS2
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exceed SS4 from F- 1. The conditional-least-squares property guarantees that SS3
will be less than SS2 (which is itself automatically less than SS1), and it is encouraging
that the minimum SS3 was always less than SS4 from F- 1, although the largest SS3
can exceed SS4 from F- 1: This occurred in slab 5 of the PEA data when F 4.

A three-way array can be regarded as an array of components with respect to
specified bases of a tensor in a tensor product of three finite-dimensional vector spaces
[19]. If the bases in the vector spaces are unchanged, the array of components will
change, although the underlying tensor does not. Decomposable tensors generate
rankol arrays, and every tensor in a tensor product of finite-dimensional vector spaces
can be written as a finite sum of decomposable tensors. If a tensor is written as a
sum of decomposable tensors, a multilinear model is determined for each array of
components of the tensor. However, determining the minimal number of terms in and
the uniqueness of a decomposition is not routine in spaces that are tensor products of
more than two vector spaces. For example, Kruskal, Harshman and Lundy introduced
a 2-by-2-by-2 array (reproduced in [27]) that cannot be written as the sum of two rank-
1 arrays. The array can be written as the sum of rank-1 arrays, but not uniquely,
even under parameterization conventions PC1-PC3. This example contrasts with
standard results for tensor products of two vector spaces (such as [19, p. 36]) and
demonstrates again that decompositions for three-way arrays are not immediate from
two-way results.

Acknowledgment. Particularly thorough comments from a referee have led us
to improve the exposition and strengthen a lemma.
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Abstract. Let A E (lnxn. For 1 _< p _< q _< n, the (p, q) numerical range of A is defined and
denoted by

X*Wp,q(A) {Ep(X*AX) X (tq, X Iq},

where Ep(Y) denotes the pth elementary symmetric function on the eigenvalues of Y. In this paper,
the authors explore the relation of this concept and quantum physics, then prove some theorems
relating the geometrical properties of the set W,q(A) and the algebraic properties of the matrix A.
In particular, it is shown that if W,q(A) contains some special boundary points, then A is unitarily
similar to a direct sum of matrices of lower dimensions. In some cases, the matrix A can be shown
to be normal. A conjecture of Marcus on this subject is briefly discussed.

Key words, numerical range, derivation, compound matrix, Grassman space

AMS subject classification. 15A60

1. Introduction. Let A E nn. For 1 <_ p <_ q <_ n the (p, q) numerical range
of A is defined and denoted by

Wp,q(A) {Ep(X*AX) X e Cnq,X*X Iq},

where Ep(Y) denotes the pth elementary symmetric function on the eigenvalues of Y.
Let Qq,n denote the set of all strictly monotonic sequence of length q whose terms
belong to the set {1,...,n}. For co Qq,n and Y nn, let Y[co] be the q q
principal submatrix of Y lying in the rows and columns indexed by co(l),... ,co(q).
One easily verifies that

Wp,q(A) {Ep(UAU*[co]) co e Qq,n, UU* In}.

Since Ep(Y) tr Cp(Y), where Cp(Y) denotes the pth compound of Y (e.g., see [7]
for the definition and properties of compound matrices), one may replace Ep(.) by
trCp(.) in the above two definitions. The concept can be considered in Aq(n), the
qth Grassmann space over (C)n. In fact, if D(A) is the pth derivation of A in Aq((C)n)
determined by the formula

q

Cq(I + tA) trDq(A),
r--O
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then (e.g., see [12])

Wp,q(A) {(Dg(A)x^,x^) x^ is a decomposable unit vector in Aq ((13’)}.

It is not hard to see that

Wp,q(A) {tr(Dg(A)Cq(XX*)) X E nq,X*X Iq}
{tr(ng(A)Cq(UJqU*))" UU*

where Jq Iq (30n-q. The set Wp,q(A) reduces to
(a) the classical numerical range W(A) if I -p- q,
(b) the set {Ep(A)} if q n,
(c) the q-numerical range Wq(A) if I p <_ q,
(d) the classical numerical range of Dqp(A) if p _< q n 1,
(e) the qth decomposable numerical range W(A) if p q.

All these special cases are quite well studied. In particular, many interesting results
relating the geometrical properties of Wp,q(A) and the algebraic properties of the
matrix A have been obtained for those special cases (e.g., see [2], [a], [5], and their
references). In this paper, we study similar problems for the other cases, namely,
when 1 < p < q n- 1. Before proving our results, we first explore the relation
between the (p, q) numerical range of A and quantum physics in 2. Then we study
some special boundary points of Wp,q(A) in 3. Section 4 deals with those matrices
A for which Wp,q(A) is a singleton or a line segment. Further generalizations of the
concept motivated by quantum physics are discussed in 5. A conjecture of Marcus
on the subject is also studied.

Suppose A has eigenvalues )1,..., An. We shall denote by Hp,q(A) the set of all
numbers of the form Ep((1),..., (q)) with w Qq,n. (Note that here Ep(.) denotes
the pth elementary symmetric function of the numbers.) It is known (e.g., see [12])
that Hp,q(A) is the spectrum of Dg(A), and Hp,q(A) C Wp,q(A). If A is normal, then
Wp,q(A) c conv Hp,q(A) W(Dqp(A)). We shall reserve the symbol to denote the
sequence (1,..., q) in Qq,n in our discussion.

2. Motivations from physics. Suppose x Cn is a unit vector representing a

(normalized) state of a certain one-particle system, and the behavior of the particle is
determined by the observable quantity represented by A Cnn. Then (Ax, x) is the
average value (or expectation value, in a probabilistic sense) of a measurement of the
observable A in the state x, and the classical numerical range W(A) can be regarded
as the collection of all possible average values (expectation values) of measurements
of A in states of the one-particle system under consideration. Since W(A) is convex,
if z and Z2 are possible average values of measurements of A, then Az / (1 A)z2
for any A [0, 1] is also a possible average value which can be attained by adjusting
the state vector of the particle.

Suppose there are q particles in the system with (normalized) state vectors
1 _< j <_ q, such that {Xl,... ,Xq} is an orthonormal set. Then their joint state is
represented by x^ Xl A... A xq /kq((n). Observable quantities of an additive
nature, such as the kinetic energy, linear momentum or angular momentum, occur
frequently in physics. If A E (13n n represents such a quantity for a one-particle system,
then the corresponding quantity for a q-particle system is represented by D(A). The
average value of measurements of such a quantity in the state x^ is computed by

q q

(D(A)x^, x^) Z(x A A Ax, A A xq, x^) (Ax,,
i=1 i=1
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Thus Wq(A) can be regarded as the collection of all possible average values of mea-
surements of D(A) for the system. Since Wq(A) is always convex, the physical inter-
pretation in the preceding paragraph also applies to this system.

Quantities of an interactive nature, such as a 2-body, 3-body or many-body in-
teraction or operator, also occur in physics. A p-particle interaction is only effective
in a q-particle system if q >_ p and, in some simple circumstances, may be described as
a derivation D(A). (Under more complex circumstances it may be necessary to con-
sider different operators A1,... ,Ak acting simultaneously on different particles (see
also 4), or linear combinations of derivations.) The average value of measurements
of Dqp(A) in the state x^ is then computed by

where Sp is the symmetric group of degree p and sgn(a) denotes the sign of the
permutation a. Thus Wp,q(A) can be regarded as the collection of all possible average
values of measurements of D(A) in the state x^ of such a system and is very useful
in the study of it.

To better describe the physical interpretation of the operator Dqp(A), we introduce
the concepts of creation operator fi: Aq(n) -+ /q+1(n) defined by fi(x^) ei Ax^,
where {el,..., an} is the standard basis of Cn, and destruction operator (or annihila-
tion operator) gi Aq+(n) --. Aq(n), which is just the adjoint operator of fi. One
easily verifies the following properties of the creation and destruction operators:

(a) + 0 or aU i,j,
(b) ggj + gjg 0 for all i, j,
(c) figj + g fi 5ij for all i, j.
Creation and destruction operators are the building blocks of linear operators

acting on a q-body system. In fact, every linear operator acting on a q-body system can
be expressed as a linear combination of linear operators of the form fil figj8 gj.
Such an operator destroys particles in states j,..., js and creates particles in states
i,..., it. In general (not always) the number of particles is conserved. Thus the
number of particles destroyed and the number of particles created are the same, i.e.,
r s. In our case, D(A) is given by the formula afg, and D,(A) is given by
the formula

i,j,...,ip,jp

One may see [3] for more information concerning creation and destruction operators.

3. Some special boundary points.
THEOREM 3.1. Let i < p < q < n and let A be in upper triangular form. Suppose

w E Qq,n satisfies Ep(A[w]) OWp,q(A) and D-(A[w]) is nonsingular. Then for any
i < j with I{i,j}n{w(1),...,(q)}l 1 we have aij O. In particular, ifw 5, then
A A[] As.

Proof. Let w satisfies the hypotheses of the theorem and suppose z Ep(A[]).
We first show that a 0 if j i + and I{i,J} {w(),... ,w(q)}l . Suppose
there is such an (i, j) pair with aij 0. Then by the elliptical range theorem (e.g.,
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see [14]),
aii aij])W([0

is a nondegenerate elliptical disk with aii and ajj as foci. Thus there exists r > 0 such
that whenever e E with I1 < r, we can find orthogonal vectors u, v in the linear
span of {ei, ej} satisfying u*Au aii + and v*Av ajj . Let U be the unitary
matrix obtained from the identity matrix by replacing the ith and jth columns by
u and v. Let w Qq-l,n be obtained from w by removing k from its range, where
{k} {i,j}fq{w(1),... ,w(q)}, and let z’ Ep_I(A[w’]). Then Ep(V*AV[w]) z+/-ez’

q--1depending on k i or k j. Since Dp_ (A[w]) is nonsingular, z’ 0. It follows that
for all e with I1 < r, z + ez’ Wp,q(A), which contradicts the fact that z OWp,q(A).

Next consider those (i,j) pairs with j i + 2 and I(i,j} fq {w(1),... ,w(q)} 1.
Suppose there is such an (i, j) pair with aij 0. Then by the same arguments as those
in the preceding paragraph, we see that there exists r > 0 such that whenever
with lel < r, we can find orthogonal vectors u, v in the linear span of {e, ej } satisfying
u*Au =aii + and v*Av ajj . Let U be the unitary matrix obtained from the
identity matrix by replacing the ith and jth columns by u and v. Define w Qq-l,,
and z’ Ep_x (A[w’]) as in the preceding paragraph. Since we have shown that ast 0
if t s + 1 and I{s,t} fq {w(1),... ,w(q)} 1, the matrix U*AU[w] is still in upper

1triangular form and Ep(U*AU[w]) z +/-z’. Since Dpq- (A[w]) is nonsingular, z’ 0.
It follows that for all e with I1 < r, z / ez’ Wp,q(A), which contradicts the fact that
z OWp,q(A).

Repeating the above arguments for j i / 3 and so on, we get the conclusion.
COROLLARY 3.2. Let 1 < p < q < n. Suppose A nn is such that Dpq-l(A)

is nonsingular. Set k () 2 (q_).n-2
(a) If A is in upper triangular form and there is more than k w Qq,n such that

Ep(A[w]) OWp,q(A), then A is a diagonal matrix.

(b) /f there are more than k eigenvalues of D(A) (counting multiplicities) lying
on OWp,q(A), then A is normal.

Proof. (a) Suppose the hypotheses are satisfied. Then (see [10, Lemma 1]) for
any 1 _< i < j _< n there is a/ E Qq,n such that Ep(A[]) OWp,q(A) and the set

q--1 q--1{i,j}{/(1),...,/(q)} is a singleton. Since Dp_ (A) is nonsingular, so is Dp_ (A[/]).
Thus the (i, j) entry of A equals zero. Hence A is a diagonal matrix.

(b) Let U be a unitary matrix such that A U*AU is in upper triangular form.
Apply the result in (a) to A. The result follows.

Marcus and Sandy in [12] showed that for a normal matrix A, if z Ep(A[]) is
a simple eigenvalue of Dqp(A) and z is a vertex of cony Hp,q(A) W(D(A)), then
A A[]@A2. In the following result, we obtain the same conclusion without requiring
A to be normal.

THEOREM 3.3. Let 1 < p < q < n and let A (,. Suppose z Ep(A[w]) is
a nondifferentiable boundary point of W(D(A)) for some w e Qq,, and z is a simple
eigenvalue of Dqp(A). Then for any i j with I{i,j} fq {w(1),... ,w(q)} 1 we have
aij O. In particular, if w , then A A[] A2.

Proof. For simplicity, we assume that w . Since z Ep(A[e]) is a nondif-
ferentiable boundary point of W(D(A)), D(A) [z] S. Thus e A... A eq is
a unit eigenvector of D(A). Suppose U*AU is in upper triangular form such that
Ep(U*AU[]) z, then u A.-. A Uq is also a unit eigenvector of D(A) corresponding
to z, whereui is the ith column of U. As aresult, eA...Aeq anduA..-Auq
are linear dependent, and thus {el,...,eq} and {u,...,Uq} have the same linear
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span. Since uAu 0 for all 1 _< j _< q < i _< n, we have eAei 0 for all
1 _< j _< q < i N n. Let V V@Vh be a unitary matrix such that V lqxq
and A’ V*AV is in upper triangular form. We have z Ep(A’[e]) e OWp,q(A).

(A’[e]) is nonsingular. If it is not true, we may assume that A’We claim that Dpq-
has diagonal entries A,...,A such that E_(A,...,Aq_) 0. It follows that
z Ep(A,..., Aq) Ep(A1,..., Aq_, Aq+), which contradicts the assumption that
z is a simple eigenvalue of Dpq (A). So our claim is true and we can apply Theorem 3.1
and conclude that A’ A’[] q)A. rl

Let S c . Following Bebiano [1], we say that z e S is a corner of S if there
exists a r > 0 such that the set {u e S’lu- zl < r} is contained in an angle smaller
than r with z as the vertex. Note that if z is a corner of S and z e T C S, then z is
a corner of T.

THEOREM 3.4. Let 1 < p < q < n and let A xn. Suppose Ep(A[w]) is a
q--1corner of Wp,q(A) .for some w e Qq,n, and Dp_(A[w]) is nonsingular. Then .for any

i 7 j with I{i,j} {w(1),... ,w(q)} 1 we have aij O. In particular, ifw , then
A A[] @ A2.

Proof. For simplicity, we assume that w . Suppose A is not of the form
A[e] @ A2. Then there exists an (q+ 1) x (q+ 1) principal submatrix A’ of A containing
Ale] such that A’ is not in the form of A’[e] @ A2 Let U be a q x q unitary matrix such
that U*A[e]U is in lower triangular form. Set V U I and B V*AV. Note that
Ep(B[e]) Ep(A[e]) e Wp,q(B) W(D(B)) C Wp,q(A) is a corner of W(D(B)).
Thus Ep(B[e]) is the only nonzero entry in the first row and first column of D(B).
Note that the (1, q + 1) entry of Dqp(B) is the coefficient of tP in the polynomial

q

(-1)+b,q+t II(1 + biit),
i=2

which equals bl,q+lEp-l(b22,...,bqq). Since Ep-l(b22,...,bqq) is an eigenvalue of
npq(A[e]) and is nonzero by assumption, it follows that bl,q+i 0.

Next, observe that the (1, q) entry of Dqp(B) is the coefficient of tp in the polyno-
mial

q

(-1)qb2,q+lt(1 -t-bllt)II(1 + biit),
i--3

which equals b1,q+lEp-1(b11, b33,..., bqq). By the same arguments as before, we see
that b2,q+l 0. Repeating the arguments, we see that bi,q+l 0 for all i _< q.

Applying the same arguments to bq+l,j for j q, q- 1,..., 1, we see that all of
them equal zero. Thus B B[] @ B2 and so must A’. This is a contradiction, r

COROLLARY 3.5. Let 1 < p < q < n and let A e nxn. Set k () 2(q_l).n-2
l(A[w]) is nonsingular(a) Suppose there is more than k Qq,n such that Dqp-

a of A a d aao a 
(b) Z/0 (A) (A) A
Proof. Similar to that of Corollary 3.2.
COROLLARY 3.6. Let 1 p q n. Suppose A @n, is such that 0

Wp-l,q-l (A).
(a) The following conditions are equivalent:
(i) cony Wp,q(A) is a polygon (including interior),
(ii) conv Wp,q(A) conv Up,q(A),
(iii) Wp,q(A) c conv He,q(A).
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(b) The set Wp,q(A) is a line segment if and only if A is normal and all points
in Hp,q(A) are collinear. In particular, Wp,q(A) is a singleton if and only if A is a
scalar matrix.

Proof. (a) In general, Hp,q(A) c Wp,q(A). Hence conv Hp,q(A) C conv Wp,q(A).
Since 0 Wp-I,q-1 (A), all the vertices of conv W,q(A) belong to Hp,q(A) by Theorem
3.4. As a result, if condition (i) holds, then conv W,q(A) c conv Hp,q(A) and hence
condition (ii) holds. The converse is trivial. The equivalence of (ii) and (iii) is clear.

(b) If Wp,q(A) is a line segment, then Hp,q(A) C OWp,q(A). By Corollary 3.2,
A is normal. Clearly, the points in Hp,q(A) must be collinear. Conversely, if A is
normal and the points in H,q(A) are collinear, then W,q(A) conv H,q(A) is a line
segment.

Finally, suppose Wp,q(A) is a singleton. Then A is normal. If A1 and A2 are two
distinct eigenvalues of A, then

Ep()kl, )k3,..., q-}-l) Ep(2,)k3,..., )kq+l) ()kl -/2)Ep-l()k3,..., )q-{-1) 0

for 0 Wp_,q_(A) by assumption. This is a contradiction. Thus A is a scalar
matrix. The converse is clear.

Note that the assumptions such as D-(A) are nonsingular, 0 Wp_,q_(A),
in the theorems and corollaries are necessary. Otherwise, the conclusion may not hold
as shown by the following example.

Example. Let (p, q, n) (2, 3, 4) and let A-- E13 / E2a. Then Wp,q(A) {0}
Hp,q(A) and every point in Wp,q(A) is a corner. However, A is not unitarily similar
to A A2 with A E 33.

We shall study the matrices A for which Wp,q(A) is a singleton or a line segment
in 4. Note that the characterization of such matrices is not easy to obtain even with
the assumption that 0 Wp-l,q-1 (A).

It is known that Izl <_ Ep(a(A),..., aq(A)) for any z Wp,q(A), where a(A) >_
>_ an(A) are the singular values of A. If there is z e Wp,q(A) such that Izl

E(aI(A),..., aq(A)), then z e OWp,q(A). For the characterization of those matrices
A with Wp,q(A) having such a boundary point, we have the following result (see [6,
Tam. 8.1]).

THEOREM 3.7. Let 1 < p < q < n and let A nn satisfy rank(A) >_ q.
Suppose z Ep(A[]) satisfies Izl Ep(al(A),... ,aq(A)). Then A A[] A2 such
that #A[] is a positive semidefinite matrix with eigenvalues a (A),..., ca(A).

Note that if we do not assume that rank(A) >_ q, the conclusion of the theorem
may not hold. For example if A B @On-p, where B pp is nonsingular, then z
det(B) Ep(A[]) E(al(A),..., ca(A)) HP__la(A). In fact, if rank(A) r < q,
then Ep(al(A),...,aq(A)) Ep(al(A),...,ar(A)). Moreover, if z Ep(X*AX)
satisfies Iz Ep(al (A), ca(A)), where X e (nq satisfies X*X Iq, then X*AX
cannot have more than r nonzero eigenvalues and thus there exists Y Cqr with
Y*Y Ir such that z Ep(Y*X*AXY). Consequently, we have z e Wp,r(A) such
that Izl Ep(a(A),...,ar(A)), and Theorem 3.7 can be applied. (Note that in [6,
Thm. 8.1, the condition "rank(A) _> q" is incorrectly stated as "rank(A) >_ p".)

4. Degeneracy of Wp,q (A). The purpose of this section is to study the matrices
A for which Wp,q(A) is a singleton or a line segment. In [6, Thm. 7.1], it is shown that
for n > q >_ p >_ 1, Hp,q(A) (0} if and only if A has less than p nonzero eigenvalues;
for n >_ p + q, Wp,q(A) (0} if and only if rank(A) < p; for p + q > n and q > p,
there exists a matrix A with rank(A) _> p such that W,q(A) {0}. We treat the case
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when Hp,q(A) {#} or Wp,q(A) {#} with # = 0 in the following theorem. Since
the cases for p 1 or p q are known, they are excluded in the following discussion.

THEOREM 4.1. Let 1 < p < q < n.

(a) Suppose q < n- 1. Then Hp,q(A) {#} with l 0 if and only if all
eigenvalues of A are equal. Consequently, Wp,q(A) {#} with I 0 if and only if A
is a scalar matrix.

(b) Suppose q n- 1 and # E . There exists a nonscalar A such that Hp,q(A)
Wp,(A)

Proof. (a) Suppose n- 1 > q and suppose not all the eigenvalues are equal, say
A1 - A2. Then for any w Q-l,n with w(1) _> 3, we have

#-’- Ep(,,l,)w(1),...,,w(q_l)) Ep(2,w(1),....,w(q_l)).

It follows that Ep-I(A(1),... AT(q_1)) 0. Since n- 2 > q- 1, we can apply [6,
Thm. 7.1] to conclude that there are less than p- 1 nonzero numbers among A3,.. , An.
But then Ep(A3,..., Aa+2) 0 Hp,q(A), which is a contradiction. The converse of
the statement is clear.

Now suppose Wp,a(A) {#}. Then all eigenvalues of A are equal. If A is not
normal, then (e.g., see [11, Lemma 1]) A is unitarily similar to an upper triangular
matrix A’ whose (1, 2) entry is nonzero. Thus there exist orthonormal vectors u, v
in the linear span of {el,e2} such that v*A’v is not an eigenvalue of A. Let U be a
unitary matrix obtained from I by replacing its first two columns by u and v. Then
U*A’U[2,..., q + 1] is still in upper triangular form and Ep(U*A’U[2,..., q + 1]) - #,
which is a contradiction. The converse of the statement is clear.

(b) Let A u(n-P-11-p I2 @ In-2) be such that Ep(A[]) #. Then for any unitary

matrix U, the matrix U*AU[] is unitarily similar to u([ 1-p 1@ It] @ In-3), where

(n p 1)/(1 p) <_ t <_ 1. Since Ep-l(In-3 @ [n-P-11Lp ])

The result follows.
Note that Theorem 4.1 improves the result in [6, Thm. 6.1]. Next we turn to

those A such that Wp,q(A) is a nondegenerate line segment.
THEOREM 4.2. Suppose 1 < p < q, n >_ p + q and A n,. Assume that

Hp,q(A) is not a singleton. Then all points in Hp,q(A) are collinear if and only if one
of the following conditions hold.

(a) A has exactly p nonzero eigenvalues.
(b) The eigenvalues of A lie on a straight line that passes through the origin.
(c) There are two distinct eigenvalues ofA with multiplicities n- 1 and 1, respec-

tively.
Consequently, Wp,a(A) is a nondegenerate line segment if and only if one of the

following holds.
(a’) A is unitarily similar to A1 @ O, where A1 Cpp is nonsingular.
(b’) A is normal and condition (b) or (c) holds.
Proof. We prove the first statement by induction on p. First suppose p 2.

If A has three noncollinear eigenvalues, one of them must have multiplicity n- 2.
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Otherwise, we can index the eigenvalues in such a way that A1 A2 and 3,..-, ,n are
not collinear. Since E2(Ai, Ajl,..., Ajq-1) are collinear for all 3 _< jl < < jq-1 <_ n
and i 1, 2, there exists a complex unit # such that

for all 3 _< jl < < jq_ <_ n. Hence (Aj +...+Ajq_) are all collinear, which implies
A3,..., An are all collinear. This is a contradiction. Now suppose A has eigenvalues
)1, )2, 3,..., A3. If A3 0, then condition (a) holds. Suppose A3 0. Since

zl E2(), A3,..., )3), z2 E2()2, )3,..., )3), z3 E2(3,..., )3) E H2,q(A)

are collinear, there exists a complex unit # such that

#(Zl z3) #(q- 1)A3(A A3), #(z2 z3) #(q- 1)A3(A2 A3) elR.

It follows that ,1, ,2, ,3 are collinear, which is a contradiction.
Now suppose all the eigenvalues of A are collinear. If they lie on a line passing

through the origin, then condition (b) holds. Suppose this is not the case. We claim
that condition (c) holds. Assume that A has at least three distinct eigenvalues, say
A1, ,2, ,3. One easily checks that for 1 <_ j < k <_ 3 the points AjAk are not collinear,
and the points (Aj + Ak) v’q+l As are collinear. It follows that the points

q-bl

E2 j ,k ,4 ’qT1) )jk + (’j -- k Z ,s + E2()4... qTl)
s:4

are not collinear. Thus A has only two distinct eigenvalues. If both eigenvalues have
multiplicities larger than one, say . A2 ,3 ,4, then one can check that the
points

E2(/l, 2,/5,...,/q-[-2), E2()2, 3,/5,...,/q+2), E2(,3,)4, 5,..., )q+2),

are not collinear. Thus one of the eigenvalues must have multiplicity one, and hence
condition (c) holds.

Now suppose the statement holds for all (n, q,p) triples with n _> p + q,
q > p > 1. Consider the statement for the (n, q, p) case with p > p _> 2.

If A has exactly p nonzero eigenvalues, then condition (a) holds. Suppose A has
more than p nonzero eigenvalues. We claim that all eigenvalues of A are collinear.
Suppose our claim is not true. We first show that one of the eigenvalues of A has
multiplicity n- 2. If it is not the case, then we can index the eigenvalues such
that A1 A2 and there are three noncollinear numbers among A3,... ,An. Since
Ep()i, )jl,’",/jq-1 are collinear for all 3 <_ jl < < jq-1

_
n and i 1, 2,

there exists a complex unit # such that #(A A2)Ep-I(A,...,Ajq_I) ]R for all
3 <_ jl < < jq- <_ n. Thus either all the points Ep-1 (Aj,..., Ajq_) are equal, or
all of them lie on a line passing through the origin. By Theorem 4.1 or the induction
assumption on the set Hp-I,q-I(A’), where A’ diag(A3,... ,An), we conclude that
A3,..., An are collinear, which is a contradiction. Now suppose A has eigenvalues
A1, A2, A3,..., A3. Since

Zl Ep()l, 3,..., )3), z2 Ep(,,2, 3,..., )3), z3 Ep(3, 3) ( Hp,q(A)
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are collinear, there exists a complex unit # such that

#(zl- z3)---ll)A-I(A- A3), (Z2- Z3)--/pq- 11)A-1(A2 A3) E JR.

It follows that )1,,2,,3 are collinear, which is a contradiction. Thus our claim is
proved.

Now suppose A has more than p nonzero eigenvalues and all of them are collinear.
If they lie on a line passing through the origin, then condition (b) holds. Suppose this
is not the case and assume A1 A2. Then by arguments used previously, we see
that either all the points Ep-I(Ajl,..., Ajq_l) are equal, or all of them lie on a line
passing through the origin. Since there are at least p- 1 nonzero numbers among
A3,...,An, by Theorem 4.1 or the induction assumption on the set Up_l,q_l(A),
where A’ diag(A3,... ,An), we conclude that either (i) A3 An - 0 or (ii)
A3 - At An 0. Suppose (i) holds. If A1 or A2 equals A3, then condition (c)
holds. Suppose A, A2, ,3 are distinct. One easily checks that for 1 _< j < k _< 3 the
points

are not collinear, which is a contradiction. Now suppose (ii) holds. If there are three
distinct numbers among A,... ,Ad, then we can show that the points in Hp,q(A)
are not collinear as in the previous case. Otherwise, we may assume A A3 and
A2 A4 An. But then one can check that the points

are not collinear, which is a contradiction.
Now we turn to the set Wp,q(A). Suppose Wp,q(A) is a nondegenerate line seg-

ment. Since Hp,q(A) c Wp,q(A), all points in Hp,q(A) are collinear and they cannot
be the same. As a result, one of the conditions (a) (c) holds.

Suppose condition (a) holds Then A is unitarily similar to A’ [Ao As] inA3
upper triangular form such that A (C) with diagonal entries A,..., Ap is nonsin-
gular and A3 is a nilpotent matrix. Suppose A3 is nonzero. Then (see [11, Lemma 1])
we may assume that the (1, 2) entry of A3 is nonzero. By the elliptical range theorem
(e.g., see [13]), W(A3[1, 2]) is a nondegenerate circular disk centered at origin. Thus
there exists r > 0 such that whenever e E ( with [[ < r, we can find orthogonal
vectors u, v in the linear span of {ep+,ep+2} satisfying u*A’u and v*A’v -.
Let U be the unitary matrix obtained by replacing the (p+ 1)th and (p+ 2)th columns
by u and v. Let z det(A[2,...,q]) 0 and let w (2,...,p + 1,p + 3,...,q + 2).
Then E(U*A’U[w]) ez. t follows that for all with ][ < r, z Wp,q(A), which
contradicts the fact that Wp,q(A) is a line segment. Now suppose A2 is nonzero. We
first show that the last row of A2 is zero. Suppose there exists p < j <_ n such that the
(p, j) entry of A’ is nonzero. Then by the same arguments as those in the preceding
paragraph, we see that there exists r > 0 such that whenever with [e[ < r, we
can find orthogonal vectors u, v in the linear span of {ep, ej} satisfying u*A’u Ap +
and v*Av -. Let U be the unitary matrix obtained by replacing the pth and jth
columns by u and v. Let w Qq,n be such that w(i) i for i 1,..., p and j does not
belong to its range. Since we have shown that A3 0, we see that U*A’U[w] is still in
upper triangular form and Ep(U*A’U[w]) P P-H= / eHi= . It follows that for all
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p p-1with I1 < r, IIi=1A d- IIi= Ai E Wp,q(A), which contradicts the fact that Wp,q(A)
is a line segment. Since we have shown that A3 and the last row of A2 are zero, we
can apply the arguments to show that the p- 1 row of A2 is also zero. Repeating the
arguments, we see that A2 is zero. Hence condition (a) holds.

Now suppose condition (b) or (c) holds. If A is not normal, then (see [11, Lemma
1]) A is unitarily similar to A in upper triangular form with diagonal entries A1,..., An
such that the (1, 2) entry of A is nonzero. Then by the same arguments as those in
the preceding paragraph, we see that there exists r > 0 such that whenever e E with

I1 < r, we can find orthogonal vectors u, v in the linear span of (ei, e2) satisfying
u*A’u ,kl + e and v*A’v 2- 5". Let U be the unitary matrix obtained by
replacing the first and second columns by u and v. Since condition (b) or (c) holds,
Hp-l,q-i(A’[3,... ,hi) - {0}. Thus there exists w E Qq,n such that w(1) 2 and
z’ Ep_i(A’[w(2),...,w(q)]) O. Moreover, Ep(U*A’U[w]) Ep(A’[w])- z’. It
follows that for all e with I1 < r, Ep(A’[w])- ez’ E Wp,q(A), which contradicts the
fact that Wp,q(A) is a line segment. Thus A must be normal and hence condition (b’)
holds.

Note that the conclusion in Theorem 4.2 does not hold if q n- 1. For example if
A has two distinct eigenvalues, then Hp,q(A) has collinear points. In fact, if (p, q, n)
(2, 3, 4), then Hp,q(A) has collinear points if A has eigenvalues (i) satisfying any one
of the conditions (a) (c) in Theorem 4.2; (ii) consisting of two distinct values; (iii) of
the form (,1, ,1, ,1,,1#-1); (iv) (,1,)1,-,1, 2); or (v) (1,-1, 2, -)2). It would
be interesting to characterize those matrices A for which Wp,q(A) is a nondegenerate
line segment without the assumption that n _> p d- q.

5. Further generalization and a conjecture of Marcus. Recall that

Wp,q(A) (trCp(JqU*AU) U*U- I}.

Marcus [8] suggested the study of the set

Wp(A,B) (trCp(BU*AU) U*U- I}.

Moreover, he conjectured that:
If A and B are normal, and if they are unitarily similar to the diagonal matrices

DA and DB, respectively, then

Wp(A, B) C conv Hp(A, B),

where
Hp(A,B) {tr G(D,PtDAP) P a permutation matrix }.

It is known that the conjecture is valid if A or B equals Jq. Also, if the rank A
or S is less than p, then Wp,q(A) Hp,q(A) {0} and the conjecture is trivially
satisfied. If rank of A or B is exactly p, then Wp,q(A) C W(D(A)) conv Hp,q(A).
Furthermore, since Wn-i (A, B) Wi (Cn-i (A), Cn-- (S)) C conv Un- (A, B), the
conjecture is valid for p n- 1. We have the following theorem.

THEOREM 5.1. If A and B are positive semide]inite matrices with eigenvalues
>_ >_ an and fl >_... >_ fin, respectively, then

Wp(A,B) cony Hp,q(A) [Ep(aln,..., anfh), Ep(a,..., ann)].

Proof. Let/(x,... ,xn) Ep(xl,... ,xn). Apply Theorem 5 in [14], we get the
result.
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Whether the conjecture is valid for hermitian matrices A and B is unknown. One
possible approach for solving this special case is to show that the corners of Wp(A, B)
belong to Hp(A, B). However, such a result is not available.

While Wp(A, B) seems to be a nice generalization of W,q(A), it does not have a
natural physical interpretation. To give a more meaningful generalization of Wp,q(A)
in the context of quantum physics, consider

Wp,q(A) {tr(D(A)Cq(U*JqU)) U*U I}.

One may regard Cq(U*JqU) as the description of a pure state of a q-particle system
in which every p of them interact with each other. A mixed state of the q particles
is described by Cq(U*BU) for a fixed B E nn. In connection with such a state we
can define

W(A,B) (tr(D(A)Cq(U*BU)) U*U I}.

Furthermore, one may consider a q-particle system with p-body interaction determined
by the observable quantities represented by A1,..., Ak. Then one would consider

Wq(A1,...,Ak;B) {tr(Dq(A1,...,Ak)Cq(U*BU)) U*U- I},

where T’pl +’." +pk q denotes a partition of q, and Dq(A1,... ,Ak) is determined
by the formula

(See [91 for a particular case.) Clearly, D(A) Dq(A,I) with T: p/ (q--p). In terms
of creation and destruction operators, Dq(A1,... ,Ak) is determined by the formula

Dqr(A1,... ,At)- (pl!’" "pt!) -1 (1) (P) f’l fipgjp 9j1’biljl .bipjp

where Bs (b;)) e (nn with 1 _< s <_ p such that

Bpl jr Bpl jrp2 A2,...,

BplT...Tpt-1Jrl Bpl Jr’"Jrpt Ak.
All these concepts seem to be interesting and deserve further study.
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FAST TRIANGULAR FACTORIZATION OF COVARIANCE
MATRICES OF DIFFERENCED TIME SERIES*

RAJIV VIJAYANt AND H. VINCENT POOR

Abstract. An algorithm is presented for computing the triangular factors of the covariance
matrix of a random vector whose elements are the successive differences of a stationary time series.
This algorithm has applications in the modeling of time series using a difference operator rather than
using a shift operator, as is done in the conventional autoregressive model. The difference-operator
based models offer the benefit of better numerical conditioning when applied to series that are
obtained by sampling continuous-time processes at rapid rates. The covariance matrix of differenced
data is not Toeplitz; however, it has a Toeplitz-like structure that is exploited in this paper to obtain
an O(n2) algorithm. This algorithm is amenable to parallelization; i.e., it requires only O(n) time
when using n processors in parMlel.

Key words, difference operators, triangular factorization, fast algorithms, Toeplitz-like matrices

AMS subject classifications. 65F30, 65Y05, 15-04, 15A23

1. Introduction. Recently, difference-operator based models have been pro-
posed [9] as an alternative to conventional autoregressive models for modeling sta-
tionary time series that are obtained by sampling continuous-time processes at rates
that are rapid relative to the process dynamics. In this approach, the model used is
of the form

(1.1)
where {Xk} is a zero-mean wide-sense stationary discrete-time random process ob-
tained by sampling a continuous-time process {X(t)} t intervM A, and is n incre-
mental difference operator defined by

Xk+ X (q 1)X
Xk A A

Here, q is the shift operator defined by qXk Xk+l, which forms the bis for
describing the process dynamics in the conventional autoregressive model. om this
definition of , we have - Xk+ - X

=0
J

The parameter vector [1, ,,..., ,]r that minimizes ghe mean-squared
modeling error E(u) in (1.1) satisfies
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where Qn is the covariance matrix of [6nxk, sn-lXt:,... ,Xt:] T and n E().
We contrast this with the conventional autoregressive model

n

Xk+n "J" E an’jXk+n-J k,

j’-I

in which the parameter vector an [1, an,,..., an,n]T that minimizes E(e2k) satisfies

(1.3) Rnan [rn, 0,..., 0]T,

where Rn is the Toeplitz covariance matrix of [Xk+n, Xk+n_,...,Xk]T and rn
S(e). It is well known that (1.3) can be solved using the Levinson-Durbin algorithm
[2], which requires O(n2) computations.

The matrix Qn is not Toeplitz, but is related to the Toeplitz matrix R by

(1.4) Qn r

where Wn is an (n + 1) x (n -t- 1) lower triangular matrix whose l, jth element is given
by

(We follow the convention tha the binomial coemcient 0 for j < 0 and j > n.)
As a result, the vectors -n and , that solve (1.a) and (1.), respectively, are reaed
by

We define the predictor polynomials associated with Qn and with the related
Toeplit matrix Nn by

A,(z) z’ + ,lZ- +... +,
and

Bn(z) zn + n,Zn- +’’" + n,n,
respectively. Equation (1.6) is then equivalent to the polynomial relation

An(z) AnBn ( z l )A

Even though 5-based models are theoretically equivalent to shift-operator based
models, in the fast sampling regime the normal equations associated with the 5 models
exhibit better numerical conditioning than do their shift-operator based counterparts.
It has been shown in [9] that, even though the 5-based normal equations are not
Toeplitz, their special structure can be exploited to derive an algorithm to solve them
using only O(n2) computations, analogous to the Levinson-Durbin algorithm for the
Toeplitz equations associated with the conventional model [6].

The Levinson-type algorithm described in [9] solves for the model parameters
by computing the triangular factorization of the inverse of a covariance matrix of
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the differenced data. One handicap of that algorithm is that, since it requires the
computation of n-dimensional inner products, it will require O(n log n) time even
when n processors are used in parallel. In this paper we present an algorithm that
computes the triangular factorization of the covariance matrix, without requiring any
inner-product computations. This algorithm also requires only O(n2) computations
overall, and has the added advantage that the time required is only O(n) when n
processors are used in parallel.

2. The algorithm. We derive an algorithm for finding the triangular factors of
the (n / 1) (n + 1) positive-definite matrix Q (-- Qn) defined in the Introduction.

The factorization is given by

(2.1) Q LDLT,
where L is a lower triangular matrix with l’s on the diagonal, and D is a diagonal
matrix. We actually compute a factorization of the form

(2.2) LQ U,

where L is lower triangular and U is unit upper triangular By comparing with (2.1),
and by the uniqueness of the LDU decomposition [8], we see that U LT, and

(LD)-1
In order to compute the factorization efficiently, we use the following easily veri-

fiable property of the matrix Q"

1
(2.3) Qi’J A [Q,j+I + Q+l,i], 0 <_ i,j < n.

Equation (2.3) implies that the matrix Q has a Toeplitz-like structure as defined by
Heinig and Rost [4], or a displacement structure as defined by Lev-Ari and Kailath
[5]. The algorithm we derive is similar to one derived for Hankel matrices by Rissanen
[7], and is also related to the fast Schur-type algorithm for Toeplitz matrices derived
by Delsome and Ipsen in [1].

The factorization (2.2) can be expressed in terms of the vectors zm [zn,..., z],
m 0,..., n, that solve the equations

z’Q(,) [0,..., o, 1],

where Q(m) is the (m + 1) (m + 1) leading principal submatrix of Q, i.e.,

i,j--O

(Note that {-z/z,}= are the coefficients of the regression of 5n-mxk on 5nxk,
(n-lXk "’’, 5n-m+lXk.)

Since the Q(m)’S are nested, we can define a unit upper triangular matrix S with
elements {s.} such that

(2.5)
z z

Q- "..

Z Zn
1

1 Sl 82 80n
11 s sn
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where the blank spaces in the matrices represent zero elements. By comparing (2.5)
with (2.2), we see that

and

zooz Zl

We now define an (n + 1) (2n + 1) matrix Q, formed by adding n columns to
the right of Q in such a way as to preserve the structure given by (2.3), i.e.,

j n + 1,...,2n,

and

(2.6)

Q,i -Qi+l,j-1 AQ,j-1, i 0,1,..., n 1,

Equation (2.5) can then be augmented as follows:

Zoo

j n / 1,...,2n.

812n1 S Sn

vectors ym satisfy

y) 1 rl r r2n

y ynn 1 r’ rn+l

We shall now obtain relations for recursively computing the rows of the matrices
on the left- and right-hand sides of (2.6). In order to do this, we introduce the vectors
y, [yn,..., ymm], m 0,..., n, that solve the equations

(2.7) ymQ(m) [1, 0,..., 0].

(Note that {-y/yn}’= are the coefficients of the regression of 5nXk on 5n-lXk,
5n-mxk. For the case of m n, by comparing with (1.2), we have yn ny
We can define a matrix R-- {r. } with the structure shown in (2.8) such that the
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For m < n, we define the row vector :m by

9Y zxu7 +
where we assume that yn 0 if i < 0 or i > m. Then, the jth element of

is given by

m+l m m+l

y Q, A "-, Q,, + Q,,
i=0 i=0 i=1

m m

y Q,+ -Y Q+,i
i=0 i=0
m m

+
i=0 i=0
m-?Q,,+ i < :.
i=0

Therefore,

0 0] Q [0,... 0, ..-r" ](.) [Y,...,u,+, ,..., -,+1,. ,
where the right-hand side h m leading zeros. By equating the ruth row on either
side of (2.6), we get

]m 0, 0] Q 0, ,0,1, Sm+, s[z,...,,, ...,

Hence, using the condition that the first m + 1 elements of

[+1 -+ 0, 0] Q
are zero, we get

(.o) z?+ (?_ +? ++z?)/g, 0,..., + 1,

for some constant Kin. om this relationship, we get the following recursion for the
right-hand side of (2.6):

(:.) ?+ (+1? 5l)/g,.
m 1 yields the following expression for Kin"The condition that sm

(2.12)

Now we have

and

rm+lSm+1 rm+2.

[yn,...,ymm,0,...,0]Q_. 1,0,...,0, rm+l,... ,r

_m+ O] ( [0,..., O, 1, m+2,’"0 ,’",’m+l,O,’", ...m+l 8nn].
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From these, we have the recursions

(2.13) yn+l. (y rm+lm Zn+I.
and

(2.14) r}n+l rn
-m+lj

The algorithm is initialized by setting

1
(2.15) zoO Y Qo,o

and

0 0(2.16) sj r Qoh/Qo,o, j 0,..., 2n.

In order for the recursions (2.10) and (2.11) to be valid, we need to show that
Km O. By setting j m + 1 in (2.10), we get

gm m l~m+l
Ym/:m-I-

Since Q, and hence Q(m+l), are positive definite, ,+1~’+1 and yn are positive. If B(m)(Z)
and A(m)(z) are the predictor polynomials associated with Q(m) and with its related
Toeplitz matrix, respectively, then

y yB(m)(O) yA-nA(,)(1) > O,

since A(m)(Z) is a stable predictor polynomial. Thus, we have shown that Km is
positive.

The LDLT factorization of Q can be computed using (2.11), (2.14), and (2.12).
These equations can also be used in conjunction with (2.10) and (2.13) to compute
the UDUT factorization of Q-1.

It should be noted that, because of the number x being shifted in from the right in
(2.9), (2.11) holds only for j _< 2n- m. However, this does not affect our calculations

for j < n This explains the need forsince we are interested only in computing sj
forming the extended matrix Q; the extension ensures that the "error propagation"
from the right does not affect the variables in which we are interested.

3. Conclusions. In this paper, we have presented an O(n2) algorithm for com-
puting the triangular factors of the covariance matrix of a random vector whose ele-
ments are successive differences of a stationary time series. The derivation has been
carried out by exploiting the Toeplitz-like nature of the matrix. The algorithm does
not require the computation of any n-dimensional inner products, and, as a result,
can be parallelized to yield O(n) time complexity by using n processors in parallel.
This algorithm has applications in modeling time series using difference operators.
Such models have been motivated by the need to avoid the problem of numerical
ill-conditioning of the Toeplitz normal equations associated with the conventional
autoregressive model when applied to rapidly sampled processes. A number of such
applications are discussed in [3].
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ON THE SMITH NORMAL FORM OF
STRUCTURED POLYNOMIAL MATRICES, II*

KAZUO MUROTAt

Abstract. The Smith normal form of a polynomial matrix D(s) Q(s) + T(s) is investigated,
where D(s) is structured in the sense that (i) the coefficients of the entries of Q(s) belong to a field
K and (ii) the nonzero coefficients of the entries of T(s) are algebraically independent parameters
over K. It is shown that all the invariant polynomials except for the last do not contain the system
parameters (---- coefficients of T(s)) and that the last invariant polynomial is expressed in terms of the
combinatorial canonical form (CCF) of a layered mixed matrix associated with D(s). This implies
that the generic dependency of the invariant polynomials on the system parameters can be computed
by means of a matroid-theoretic algorithm that involves arithmetic operations in K(s).

Key words. Smith normal form, structured polynomial matrix, mixed matrix, combinatorial
canonical form (CCF)

AMS subject classifications. 15A21, 15A54, 05C50, 93B

1. Introduction. A previous paper [6] by the author investigated the Smith nor-
mal form (e.g., [1], [9]) of a polynomial matrix D(s) QD(S)/TD(S) with coefficients
from a field F that are structured in the following sense:

(A1) The coefficients of the entries of QD(S) belong to a subfield K of F.
(A2) The nonzero coefficients T (c_ F) of the entries of TD(S) are algebraically

independent over K.
(A3) Every minor of QD (s) is a monomial in s.

See [3], [6] for the motivation for such polynomial matrices. It has been shown in [6]
that the invariant polynomials of such a matrix, except for the last one, are monomials
in s and that the last invariant polynomial can be expressed in terms of the combina-
torial canonical form (CCF) of a layered mixed matrix (LM-matrix) associated with
D(s). On the basis of these results an efficient matroid-theoretic algorithm has been
proposed for computing the Smith normal form.

In this paper we consider the Smith normal form of a polynomial matrix D(s)
having the two properties (A1) and (A2) only. We are mainly interested in how the
invariant polynomials depend generically on the system parameters (- coefficients of
T(s)).

The main theorems, which are given in 2, state that if D(s) satisfies (A1) and
(A2), all the invariant polynomials of D(s) except for the last are polynomials in s
free from the system parameters and the last invariant polynomial can be expressed
in terms of the combinatorial canonical form of an LM-matrix associated with D(s).
This implies that the generic dependency of the Smith normal form on the system
parameters can be computed by means of a matroid-theoretic algorithm that involves
arithmetic operations in the field of rational functions K(s).

The following examples illustrate the class of matrices and the problem considered
in this paper.

Received by the editors July 15, 1991; accepted for publication (in revised form) February 3,
1993. This paper was presented at the International Symposium on the Mathematical Theory of
Networks and Systems held in Kobe, Japan, June 17-21, 1991.

Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan
(muroa@kurims.kyoo-u, ac. jp).
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Example 1.1. Consider a 2 x 2 matrix

D(s)= (s+pl s+p3 )0 p28 + 1

Here T {pl,p2,p3} is the set of (nonzero) system parameters. This matrix is
expressed as D(s) QD(s) + TD(S) (where K Q, F Q(p,R2,p3)) with

()QD(S)-- 0 1 TD(S)-- p P3
0 p28

The Smith normal form of D(s) as a matrix over F[s] is given by

diag Is + pl, s + Pl] if Pl l/p2 P3,](s) diag [1, (s + p)(s + l/p2)] otherwise.

This shows that generically speaking, or if there is no algebraic relation among the
system parameters T, the first invariant polynomial is free from 7" and the second
depends on (p, p2) and not on P3. In this paper we are concerned with such generic
dependency of the Smith normal form on the system parameters.

Example 1.2. Consider a 5 5 matrix

(1)

Xl x2 x3 x4 x5

Wl 0 0 1 + pls 382 q-38 P2
W2 S2 + S S + 1 1 0 P3 + PaS

D(s) w3 2s3 + 2s2 2s2 + 2s 2s 0 phs

wa 0 0 0 s2- 1 P6
w5 284+283 283q-282 282 0 8q--p782

The row set and the column set of D are respectively denoted as Row(D) (Wl, w2,
W3, W4, Wh} Col(D)- {Xl,X2,x3, x4, xh}. Here T-- {pl,p2,p3,p4,ph,p6,pT} is the
set of algebraically independent system parameters. This matrix is expressed as
D(s) QD(s) / To(s) (for g Q) with

Xl x2 x3 x4 x5

w 0 0 1 382 + 3s 0
w2 s2 + s s + 1 1 0 0

QD(S) w3 2s3 + 2s2 282 + 2s 2s 0 0
w4 0 0 0 s2- 1 0
w5 284T283 283q-282 282 0 8

(3)

Xl x2 x3 x4 x5

w 0 0 p8 0 P2
w2 0 0 0 0 Pa + pas

TD(S)-- w3 0 0 0 0 PhS
w4 0 0 0 0 P6
w5 0 0 0 0 p782

The Smith normal form of D(s) as a matrix over F[s] is

(4) E(s) diag [1, 1, s + 1, s(s- 1)(s + 1)(s + 1/pl), 0],
so long as T is algebraically independent. Note that the first three invariant poly-
nomials, namely, 1, 1, s + 1, do not contain the parameters Pi and that the last one
depends only on p. The main objective of this paper is to identify the parameters
that appear generically in the Smith normal form.
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2. Results. The results of this paper are presented as Theorems 2.1-2.3 and are
illustrated in Example 2.1. Their proofs are postponed until the next section. We use
the terminology introduced in the previous paper [6].

Let D(s) be an m x n polynomial matrix in indeterminate s over a field F rep-
resented as

D(s) QD(S) + TD(S),

with properties (A1) and (A2) in 1. This implies that D(s) is a mixed matrix
(see [6]-[8]) with respect to the rational function field K(s).

Let dk(s) denote the kth determinantal divisor of D(s) over F for k 1,..., r,
where r rank D(s). Then the kth invariant polynomial ek(s) of D(s) is expressed

ek(s) dk(s)/dk-l(s) for k 1,...,r,

where do(s) 1 by convention. The Smith normal form of D(s) as a matrix over F[s]
is given by

E(s) diag [el (s),..., er(s), 0,..., 0].

We choose dk(s) and ek(s) to be monic in F[s]. Note that the coefficients of dk(s)
and ek(s) are, in general, rational functions in T over K.

The main objective of this paper is to show that the Smith form E(s) of D(s)
has special properties, as stated in Theorems 2.1 and 2.2. The former refers to ek(8)
for k 1,..., r- 1, whereas the latter refers to er(s). The following arguments are
very similar to those of the previous paper [6], in which condition (A3) of 1 is further
imposed.

THEOREM 2.1. For k 1,..., r-1 (-- rank D(s)-l) the kth monic determinantal
divisors and the kth monic invariant polynomials of D(s) contain no elements of T.
That is, dk(s) e g[s], ek(s) e K[s] .for k- 1,..., r- 1.

To determine the last invariant polynomial e(s) we associate with D(s) an aug-
mented (2m) x (m / n)matrix

/(s) --/)(s;t) -diag [t,...,tm] TD(S) T(s; t) )
with new indeterminates t (t,..., t,) in F, where

O(s) (Im lQD(s)), (s;t)= (-diag [t,...,t,]lTD(s)).

It is not difficult to see that/)(s; 1) =/)(s; t)lt, t= is equivalent, as a polynomial
matrix in s over F, to diag [I.,_D(s)], and hence the Smith form E(s) of D(s) is
embedded in the Smith form of D(s; 1) as

o)(8) o

In particular, er(s) is equal to the last invariant polynomial of D(s; 1).
Since D(s; t) is an LM-matrix with respect to K(s), we can talk of its CCF, say,

/)(s; t). See [6, 2] for CCF. Let {/)t(s; t) ll 0, 1,..., b, cx} denote the family of its
irreducible diagonal blocks, where D0(s; t) and Doo(s; t) are the horizontal and the
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vertical tails, respectively, and D(s; t) (1 1,..., b) are square irreducible blocks. As
mentioned in [6, Remark 2.1], there is some indeterminacy in the numerical values of
the entries of D(s; t), although the partitions of the rows and the columns are uniquely
determined. The following theorem states that er (s) is characterized by those diagonal
blocks when they are appropriately chosen; in particular, the statement of the theorem
presupposes that we can choose D(s; t) in such a way that the diagonal blocks are
polynomial matrices in s and 7" over K. See Lemma 3.2 in 3.

THEOREM 2.2. The rth monic determinantal divisor and the rth monic invariant
polynomial of D(s) as a matrix over F[s] can be expressed in terms of the irreducible

0,1,..., b, oI CCF oI Z3( ;
as follows, where r rank D(s).

b

(9) dr(s) cr. 0r(s) H det/)(s; 1),
l--1

b

(10) er(s) cr r(s) H det/(s; 1)
l--1

.for some cr e F- (0}, dr(s) e K[s], and er(s) e K[s]. Moreover, the monic
determinantal divisor (s) (respectively, (s)) e F[s] of the largest order of the
horizontal (respectively, vertical)tail/0(s; t)(respectively, (s;t)) belongs to K[s],
and d-(s) (s) (s).

Remark 2.1. The previous paper [6] treats the special case in which D(s) possesses
the additional property (A3)" Every minor of QD(s) is a monomial in s. For this case
we can further restrict dk(s), ek(s) (k 1,..., r- 1) in Theorem 2.1 and dr(s), er(s)
in Theorem 2.2 to monomials.

Theorem 2.2 shows that parameters that are not contained in the square diagonal
blocks (D(s; t) 1,..., b} of the CCF have no generic influence on the Smith
form. The converse is also true, as stated below, since each parameter contained in a
square diagonal block D(s; t) does appear in its determinant by the irreducibility of
the block (see [4, Whm. 3.5], [5, Lemma 5.1], and [7]).

THEOREM 2.3. The rth monic invariant polynomial of D(s) generically depends
on exactly those parameters in T that are contained in the square irreducible blocks
(D(s; t) 1,..., b} of the CCF of D(s; t).

Example 2.1. Theorems 2.1-2.3 are illustrated here for matrix (1) of Example
1.2. The augmented LM-matrix D(s; t) of (7) is given by

Wl w2 w3 w4 w5 Xl x2 x3 x4 x5

1 0 0 1 382 + 3s 0
1 s2+s s+l 1 0 0

1 2s3 + 2s2 2s2 + 28 28 0 0
1 0 0 0 s2- 1 0

1 2s4-+-283 283-282 282 0 8

Wl w2 w3 7/34 w5 Xl x2 x3 x4 x5

-tl 0 0 pls 0 P2
-t2 0 0 0 0 P3 + pas

--t3 0 0 0 0 p5S

--t4 0 0 0 0 P6
--t5 0 0 0 0 p782
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By means of the admissible transformation (see [6, 2]),

t)= 0
(s; t) )

where Pr and Pc are permutations and

Wl w2

W1 1
W2 i

(11) S(s) w3 -2s 1
W4
w5 --282

w3 w4 w5
--38

we obtain the following CCF of D(s; t)"

D(s;t)

Xl X2 Wl X3
(s2+s s+l 1

1 1
--tl pls

X4 W4 W3 W5

1
-t4

1
0

W2 X5

P2

P6
0
1
0

--t5
0

-2s
--2s2

0
0

0

p5s
p782

P3 T PaS )

We have nonempty tails,

Xl X2

D0(s;t)-- (s2+s s+l),
W3 W5 W2

1 0 -2s
0 1 -2s2

Do (s; t) -t 0 0
0 -t5 0
0 0 --t2

X5

p5s

p782
P3 + PaS

and b- 3 square irreducible diagonal blocks:

Wl X3

--tl plS

X4 W4

D2(s;t)= (s2-1), D3(s;t)= (-t4).

Note that the diagonal blocks are polynomial matrices in s and T over K Q,
whereas a fraction -3s/(s- 1) is contained in an off-diagonal block.

The CCF reveals that r rankD(s) 4 (< 5). Then according to Theorem 2.2
we see that

d4(s) at. d-a(s). (ps + 1). (s2 1). (-1)
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for some monic dd(s) E K[s] and a normalizing factor a4 -1/pl F. The
determinantal divisors of the tails Do(s; t) and D(s; t) are da(s s+ 1 and (s)
s, respectively, from which it follows that dd(s) s(s + 1). The other determinantal
divisors are found as dl (s) d2(s) 1, da(s) s + 1. Thus we obtain the Smith form
E(s) of (4). Note that p is the only member of T that is contained in the square
irreducible blocks Dt(s;t).

3. Proofs. The proofs for Theorems 2.1 and 2.2 are almost parallel to the argu-
ments in [6].

A minor (subdeterminant) of D(s) D(s, T), which can be regarded as a matrix
over K[s, T], is a polynomial in s and T over K. Let d(s, T) K[s, q/ denote the
kth determinantal divisor of D, i.e., the greatest common divisor of all minors of order
k in D as polynomials in (s, T) over K. To prove Theorem 2.1 it suffices to show the
following.

* K[s], i. no p T appears in d*LEMMA 3.1 dr_(s,T) e., r-1.

Proof. Since r rank D, there exists a nonsingular submatrix D[I, J] with III
IJI r. For p T let (i, j) denote the position at which p appears in D. If p does
not appear in 5 det D[I, g] (# 0), then d_ is free from p since d_l divides 5. If
p does appear in ti, then i E I and j J and furthermore ti’ det D[I- i, J- j] O.
Obviously, 5’ does not contain p, and hence d* is free from p since d_l dividesr--1
i’. O

We now turn to the proof of Theorem 2.2. The matrix D(s; t) of (7)_plays the
primary role here, since the Smith form of D(s) is obtained from that of D(s; 1), as
noted in (8). Recall that/(s; t) is an LM-matrix with respect to g(s).

We denote by (Co;C,...,Cb;Co} and (Ro;R,...,Rb;R} the partitions of
the column set and the row set of the CCF, say, D(s) D(s; t), of (s; t) as an LM-
matrix with respect to K(s). Then, for some nonsingular rational function matrix
S(s) over K(s) we have

(12) D(s) D(s; t) Pr 0 I (S; t)

In g_eneral, the transformation (12) does not qualify as an equivalence transforma-
tion of D(s; t) as a polynomial matrix in s, since S(s) can involve rational functions of
s; see the matrix S(s) of (11) in Example 2.1. The following lemma claims, however,
that we may restrict ourselves to a unimodular transformation of the form (12) if
we do not care about the upper off-diagonal blocks in the transformed matrix; see
Example 3.1 below.

LEMMA 3.2. There exists a unimodular polynomial matrix U(s) over K[s] (i.e.,
det V(s) e K {0}) such that

( U(s) O)D(s;t)Pc(13) b(s; t) P O I

is in the same block-triangular form as a CCF D(s;t) of D(s;t) and such that the
diagonal blocks of/)(s; t) coincide with those of/)(s; t); i.e.,

(14) b(s; t)[R}, C,] 0 if 0 <_ < k <_ cx),

(15) b(s; t)[Rk, Ck] b(s; t)[Rk, Ck] .for k
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Proof. From the construction of the CCF (see [3], [6]-[8]) it suffices to note the
following fundamental fact.

LEMMA 3.3. For a matrix A(s) over K[s] there exists a unimodular matrix U(s)
over K[s] such that

U(s)A(s) ( A(oS) )
with rank A(s) rank Ao(s) IRow(A0)l.

Proof. This follows, e.g., from the result on the Hermite normal form [9].
Lemma 3.2 shows that/)(s; t) and/)(s; t) share the same Smith form since they

are connected by a unimodular transformation. On the other hand, (8) shows that
the Smith form E(s) _of D(s) is embedded in the Smith form of/)(s; 1). The following

lemma~claims that D(s;t) and /)(s; 1) have essentially identical Smith forms. We
write D(s; t, 7") for D(s; t) to explicitly indicate its dependence on the coefficients 7"
in TD(S).

LEMMA 3.4 (see [6]). The Smith .form of D(s; 1, :T) is obtained from that of
/)(s; t, T) by setting tl tm 1, and, conversely, the Smith form of/)(s; t, 7")
is obtained from that of/)(s; 1, T) by replacing with /t if E T is contained in
row i.

Thus we have established a link among the Smith forms, which may be schemat-
ically displayed as

(16) D(s) /)(s; 1) Lemma3.4/(8; t) Lemma+____+3.2 /(8; t).

This allows us to concentrate on the Smith form of/)(s;t). Regarding /)(s;t)
/)(s; t, :T) as a matrix over the ring g[s, t, 7], we denote by k(s; t) (e g[s, t,) the
kth determinantal divisor of/)(s; t) for k 1,..., r + m. Then

(7) dk(s) ak" k+m(S; 1) for k 1,...,r,

where ak (e K(T) C_ F) is introduced since dk(s) was defined to be a monic poly-
nomial in F[s]. Since D is in the block-triangular form (14) with full-rank diagonal
blocks (see (15) and [6, Whm. 2.3(c)]), we have r + m rank/) --’:l=0b iRll + ICol,
and therefore a nonvanishing minor of/) of order r + m is expressed as

(18)

b

det/)In0, J]" det/)[I, CoI" H det/)[n, C]
/=1

b

det/)[R0, J]. det D[I, Coo]" II det/)[R, C]
/=1

for some J c_ Co and I c_ no. Then Theorem 2.2 follows from (17) and (18) and the
lemma below, where gcd [8,t,-]{’} denotes the greatest common divisor in the ring

LEMMA 3.5.

gcd K[8,t,zj{det D[R0, J] IJI IR01, J c_ Co} so(t, T). c(s),
gcd K[s,t,-]{det D[I, Cool [[II ICol, I c_ Roo} coo(t, T). d(s),
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where co(t, T), ao(t, T) e Kit, qz], and (s), d(s) e K[s].
Proof. Regarding D[R0, Co] as an irreducible LM-matrix with respect to K(s),

we obtain the first identity from [6, Thm. 2.5(b)]. The second follows similarly from
[6, Tam. 2.5(c)].

Example 3.1. Lemma 3.2 is illustrated here for the matrix D(s) of (1) in Example
1.2. Using a unimodular polynomial matrix

Wl w2 w3 w4 w5

Wl 1
w2 1

V(8) w3 -2s 1
w4 1
w5 -2s2 1

in (13), we obtain the block-triangular matrix

Xl X2 Wl X3 X4 W4 W3
(S2+S S+I 1

3S2 + 3S

S2 1

W5 W2 X5
1

P2

P6
1 0 -2s 0
0 1 -2s2 s

-t3 0 0 pbs

0 -t5 0 p782
0 0 -t2 P3 + p4s

As claimed, the matrix/ is a polynomial matrix in s and it agrees with/ (of Example
2.1) in the diagonal blocks. Also notice the difference between the zero/nonzero
structures of D and /. In particular, we can exchange the positions of the two
blocks {wl,x3} and {xa} in D without destroying the block-triangular structure if
we accordingly exchange the corresponding rows, whereas these two blocks must be
arranged in this order in/ to make it in a block-triangular form. In other words,
the square diagonal blocks are partially ordered as {Wl,X3} -’< {W4}, {X4} -< {W4}
with respect to the zero/nonzero structure in D, whereas they are totally ordered as
{Wi,X3}-< {X4} "< {Wa} in/.

4. Conclusion. We have identified the generic dependency of the Smith normal
form on the system parameters T. Then a natural problem is to find an efficient
algorithm for computing the Smith normal form, or the invariant polynomials of
D(s) QD(s) +TD(S). This problem has been solved in two special cases. If TD(S)
O, then D(s) is simply a polynomial matrix over K, for which Kannan [2] proposed
a polynomial-time algorithm. If QD(s) satisfies the third condition (A3), which is
trivially true in the other extreme case of QD(S) O, an efficient (polynomial-time)
matroid-theoretic algorithm of Murota [6] is available. A naive idea for attacking the
general case would be to substitute numbers from K for the parameters 7" and to
apply Kannan’s algorithm. Then we will often be able to obtain the correct invariant
polynomials ek(s) for k 1,..., r- 1, since they are generically independent of T.
Elaboration of this idea or others is left for future research.
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ON THE SENSITIVITY OF THE SOLUTION OF
NEARLY UNCOUPLED MARKOV CHAINS*

GUODONG ZHANGt

Abstract. This paper deals with the sensitivity of the solution of a nearly uncoupled Markov
chain (NUMC). Such a chain arises in various applications where the states to be modeled can be
grouped into loosely connected aggregates. The solution of an NUMC is very sensitive to general
perturbations. However, in practice the perturbation has a special structure which renders worst case
perturbation bounds a large overestimate. In this paper the structure of the perturbation is exploited
and it is shown that the solution is very insensitive to a certain class of structured perturbations.

Key words, sensitivity, perturbation theory, nearly uncoupled Markov chain, stochastic matrix
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1. Introduction. In this paper we will be concerned with the sensitivity of the
solution of a nearly uncoupled Markov chain (NUMC) whose transition matrix has
the form

(1.1)

Dll E12
E21 D22

P=D+E=

Etl Et2

Elf
E2t

Du

where all the elements of the off-diagonal blocks Eij are small. We will suppose that
P is irreducible so that it has a unique positive left Perron vector vr corresponding to
the eigenvalue one; that is,

(1.2) 7rTp 7rT.

We will normalize r so that the sum of its components is one; that is,

rT1 I,

where

IT=(1, I, 1).

We will use the vector 1 quite often in the later discussion and only give its size with
a subscript (e.g., In for the vector with n elements) explicitly when necessary. Note
that P is stochastic, i.e.,

P1 =I.

The sensitivity of the solution for a general Markov chain has been addressed by
many authors [11], [10], [6], [5]. Obviously, none of these results can be used to predict
the behavior of the solution for an NUMC. The first work addressing the behavior of
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SENSITIVITY OF NUMCs 1113

NUMCs appeared in [12]. The subject then received much attention from researchers,
see [3], [15], and more recently [16], [13]. Especially, the sensitivity of the solution of
an NUMC was analyzed in [16], which gives a deep insight into the transient behavior
of the chain. In addition, special computational strategies have been investigated in
[18], [2], [8], [19]

The central issue in discussions on the sensitivity of the solution of NUMCs is to
assess the difference between the original solution and its perturbed counterpart. Let

=P+F
be a perturbed counterpart of P by F. We assume that P is still an irreducible
stochastic matrix, i.e.,

1 1 P1 + F1 1 + F1,

which implies that F1 0. Let be the left Perron vector of . It has been proved
in [16] that the solution of NUMCs could be very sensitive under perturbation F in
the sense that the bound on the difference of and r increases in inverse proportion
to the size of E. This pessimistic result is anticipated since in the worst case such
a perturbation F could totally contaminate the information carried by E. However,
in many practical situations the perturbation itself bears some special structure, see,
e.g., [13]. It is the aim of this paper to discuss the sensitivity of r to a special class
of perturbations. Specifically, we partition F conformally with P, i.e.,

Fll F12 F
F2 F22 F2

F

FI F2 Fu
and assume that

[IFii[I <_ 5, i: 1,...,t,

]IFj <- eS, i, j 1, t,

where e is the upper bound of [IEij [[, and is another small quantity. The symbol [1" I]
is used to denote the Euclidean vector norm and the subordinate matrix norm with
its specification depending on the context. Since we are mainly concerned with the
case when e becomes small, we will say a quantity is of order unity if it is bounded as
e tends to zero.

In 2 of this paper we introduce a perturbation expansion that appeared first in
[16] and derive an expression suitable for our purpose. In 3 we state two lemmas,
which are then used to prove our main theorem in 4. In 5 we discuss the relation
of conditions in our analysis and the regularity conditions suggested in [15], [18],
[16]. The notation convention is that all matrices and vectors are denoted by bold
characters.

2. A perturbation expansion. Let P be an n x n irreducible stochastic matrix
and 7rT be its left Perron vector. To analyze the sensitivity of 71"w to perturbations,
we first introduce a perturbation expansion [16] which gives a relation between r and
its perturbed counterpart . We note that the analysis of this section is valid for
a general perturbation F as long as the perturbed matrix is still an irreducible
stochastic matrix.
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It has been proved in [16] that there exist n (n- 1) matrices U and V such that

(2.1) .T 7[.T
_
rTFU(I i)-lvT,

where

] vT)u.

The matrices U and V can be chosen such that IlVll- 1, IIUII- IIl111111, and

(1, U)-l= vT

Moreover,

(2.2) vT P(1 U)-
"n’Wp1 ’Tpu 1 0T

vTp1 vTpu 0 B

The perturbation expansion (2.1) shows that it is the term

’TFU(I- )-IvT

that determines the sensitivity of the solution w. Since IIVII 1, we need only to
consider the term

Noticing that vT1 0 and

de___f FU(I- I)-1

U (I- I’T)v,

we have

(2.3) I vT)v,

and

fl F(I IrT)v(I- vT)v + vT)IrTv)-1

FV(I- I)-1.

It has been pointed out in [16] that the matrix V may be chosen to be any
matrix with orthonormal columns that span the complement subspace orthogonal to
the subspace spanned by 1. One of the simplest ways to construct such V is to take
the second to nth columns of the Householder transformation whose first column is
parallel to 1, which can be explicitly written as

V In- 0 flirt-1 lnlnT-l’

where

1 n-vo --, n(n- 1)"
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By this choice of V, we note that

VVT In
1llT.
n

The inverse of (I- B) will play an important role in (2.4) when the associated
Markov chain becomes nearly uncoupled. When e is small, the matrix ) will have
at least t- 1 eigenvalues close to 1 within the distance of order e. Thus the norm of
(I- I)-1 is of order e-1, which indicates that it is unlikely to obtain a tight bound by
simply taking the norm in the perturbation expansion (2.1). As a matter of fact, the
matrix V(I- I)-1 turns out to be highly structured, which results in cancellations
when it is premultiplied by the matrix F. To exploit this structure, we set

(2.5) V(I- l)VT.

Since V has orthogonal columns, we have

(I- 1)-1 vTfitV,

where ]" is the Moore-Penrose inverse of . Then,

n
F(I- lllT)hV

n

We are now going to analyze the structure of the Moore-Penrose inverse of
when the associated Markov chain is nearly uncoupled. First, we give two useful
lemmas, which will be used to prove our main result.

3. Two lemmas. For an irreducible stochastic matrix P associated with a nearly
uncoupled Markov chain, we have

where

It is easy to see that ei _> 0 with at least one positive entry. For each D/i, we can
construct a stochastic matrix (we drop subscripts for convenience)

(3.1) b D + lelT,
q

where q is the dimension of D. Since P is irreducible, it can be seen that D is also
irreducible. The following lemma, which was implied in [4], [7], exploits the structure
of the inverse of (I- D).

LEMMA 3.1. Let # be the left Perron vector of D. Assume

(3.2) .Te >_ C1,
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for some constant Cl, then the inverse of I- D has the property that

C(1) 0 0
0 c(21 0

(I- D)-1 (1,1,..., 1)

0 0 cq)
+ O(1),

where the constants c(i), i- 1, 2, q, are bounded by

for some constant c2.

Proof. From a corollary of the Perron-Frobenius theorem, see, e.g., [1], we know
that

p(D) < p(I)= 1,

i.e., the inverse of (I- D) exists. From

.T(D q_ q-lelT #T,

we have

#T(I D) q-l#TelT.

By multiplying (I- D)-ll on both sides of the above equality, we have

IT(I-- D)-II #Te"
Notice that (I- D)-1 is nonnegative. The hypothesis (3.2) ensures that (I- D)-1 is
at most the order of e-i, which also indicates that

(3.3) det(I- D) _> 51e,

for some constant 51 of order unity. Let

I- D ({1 2 {q)"

Then,

By the fact of this nearly linear dependency of (} and the lower bound (3.3), we
can obtain the result by using the formula

(I- D)-1 adj(I- D)
det(I- D)’

to calculate the inverse.
We point out that condition (3.2) imposed in the lemma is closely related to the

first and second regularity conditions on the NUMCs suggested in [15], [18], [16]. We
will return to this point later in the paper. The importance of Lemma 3.1 lies in
the fact that the dominant term of the inverse of (I- D) has constant columns. We
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will see in the next section that the dominant term of is a partitioned matrix
with each portion of its column being a constant vector. The second lemma of this
section reveals the cancellation effect of F when it is used to premultiply a vector with
constant segments corresponding to the structure of F.

LEMMA 3.2. Let column vector be partitioned as

}T (r}l IT, 21T,..., tlT),

conformed with the block structure of F. Then,

where c is a constant of order [[v$[ I.
Proof. The proof is straightforward by noticing that, for 1 _< i _< t,

Fill + F21 +... +F1 0,

and

Z [IFiJ[[ O(ei).

4. Sensitivity of the solution. Now we come to assess the sensitivity of r
to the structured perturbation F. We assume that e is small and condition (3.2) is
satisfied by all diagonal blocks Dii, i 1,... ,t. As pointed out in 2, we need to
consider the Moore-Penrose inverse of .

To this end, we need to work on the singular value decomposition (SVD) of .
From the structure of ), we know that the order of t- 1 smallest nonzero singular
values of (I- )) is bounded above by e. To see the order of singular values of , we
first note that nonzero singular values of are singular values of (I- I). Noticing
that ) itself is an irreducible stochastic matrix with the same characteristic as that
of P, we have (cf. (2.2)),

(0vT (I- ))(1 I)
0 I- t

where I (I- IT)v. Let

a2 _< a3 _<... _< a

and

be the singular values of I- ] and I- ), respectively. Using an inequality concerning
the singular values of the product of two matrices (cf. [17, Chap. I, Thm. 4.5]), we
obtain the equivalent relation between ai and 5, i.e.,

(4.1)

for some constants cl and c2 depending only on the norm of V and the dimension
n. Inequality (4.1) shows that the order of a2,..., at is bounded above by e. From
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another inequality relating the eigenvalues with the singular values of a matrix (cf.
II.4.1.9 in [9]), we have, for eigenvalues ,ki, i 2,..., n, of B,

n n

(4.2) H I1 Ail <- Hai,
i=2 i=2

where ,ki, i 2,..., n, are ordered so that

Under the assumption that D, i 1,..., t, satisfy condition (3.2), l has only t- 1
eigenvalues that are near to 1 within the order of e. The inequality (4.2) then suggests
that the order of a2 cannot be smaller than e if the order of ll-/21 is bounded below
by e. We now impose the following condition on ,2"

(4.3) I1- A2I >_ ce,

for some constant c of order unity. The discussion of the relation of (4.3) to the
regularity conditions is deferred to the next section.

The following theorem exploits the structure of the Moore-Penrose inverse of .
THEOREM 4.1. Let the SVD of g be

(00T)TT12=S
0 E

where

N diag(a2, a3,...,an).

Suppose that a2,..., at are of order e, i.e.,

(4.4) cle < ai < c2e, i 2,...,t,

and all diagonal blocks f)ii, i 1,..., t, satisfy the condition (3.2). Then,

fit (0, ff-1/2,... r-l/t, 0,..., O)ST q- 0(1),

where

y/T 07i) 1T, ]i)IT,...,7}i)IT), i 2,3,...,t,

for constants rli) j 1 t with the partition conformal with P,’’’,

Proof. From (2.5), we have

VVT(I ))VVT
(I n-lllT)(I )).

Let

S--(N1, l!2,...,Sn) T (tl, t2,..., t,),

then

(I-n-llw)(I-D)tj=ajs, j=2,...,t.
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Noticing that

we have

(i_ v)(0n 0
0T n-llTi)( ).

v[(I )t ] 0,

i.e., (I- )tj- ajsj is parallel to 1. Let

(I 9)t .
Then, by premultiplying with W,

7-Tsj --J Wl.
a

Since aj O(e), j 2,..., t, while the left-hand side of the above equality is of order
unity, we know that

o().

Therefore,

(I P)tj wjj,

where wj O(e), and IIjll is of order unity. Partition tj conformally as

t)
t)

tj

Then, for 1 _< k _< t,

(I- kk)t(kj) Z ]kpt(pj) -t-
p:=flk

where w(kj) O(e) and (kj) is a vector with the norm of order unity. By Lemma 3.1,
we have

t(kJ)- (kJ)1 + O(e), k--1,...,t,

where y(kj) is of order unity. Hence,

tj--v/j+O(e), j--2,...,t.

The conclusion of the theorem then comes from the fact that

’ (tl, t,...,tt,...,tn) 0 N-1
(0, alt.,..., aitt, 0,..., O)Sw + 0(1). I-1
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Note that condition (4.3) guarantees that the smallest positive singular value a2
is bounded below in the order of e, which justifies the hypothesis (4.4). Recalling that

we have, by using Lemma 3.2,

for some constant c.
We now state our perturbation bound of the solution of NUMCs in the following

corollary.
COROLLARY 4.2. Let all diagonal blocks )ii, i 1,..., t, satisfy the condition

(3.2) and the second largest eigenvalue of P satisfy the condition (4.3). If the struc-
tured perturbation F satisfies

F1 O,

we have

(4.5) < c5,

.for some constant c of order unity.
The error bound (4.5) shows that the solution r of an NUMC is insensitive to the

structured perturbations under some conditions related to the regularity conditions
of the associated Markov chain, which is to be discussed in the following section. The
most interesting feature of (4.5) is its independence on e, which reveals the fact that
if we can obtain information with high relative accuracy both in the aggregates and
between the aggregates, we can trust the solution from the measured system.

5. Regularity conditions of an NUMC. In this section we discuss the rela-
tions of conditions (3.2) and (4.3) with three regularity conditions in [15], [18], [16].
To avoid introducing more notations, we choose to state these regularity conditions
with an informal description and refer the reader to the original papers [15], [18],
[16] for rigorous definitions. We further point out that instead of imposing conditions
(3.2) and (4.3) on the perturbed problem as required to prove the theorem, we assume
that the conditions are now imposed on the original matrix P and comment that the
qualitative behavior will be the same as e approaches zero.

Regularity condition 1 (the balanced aggregation condition). This condition can
be stated by the asymptotic block irreducibility of P. The stochastic matrix P is
asymptotically block irreducible in the sense that there is no block reducible matrix
that is within the distance of o(e) to P when e approaches zero.

This regularity condition precludes the possibility of an aggregate becoming asymp-
totically isolated from other aggregates.

To introduce the second regularity condition, we have to describe a behavior of a
nearly uncoupled Markov chain which has been observed for a long time [12]; see also
[3], [15], [2], [8].

It should also be remarked that the bound (4.5) is valid even when e is not small. In this case,
condition (4.3) is sufficient, and condition (3.2) should be discarded.
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Let 00 be an initial state vector of a nearly uncoupled Markov chain.
timestep T the transient state vector 0r has a decompsition

At the

0. + +

where 0(rs) and 0(I) both approach zero as T --, O. But the rate at which 0(r8)
approaches zero becomes slower as e goes to zero; while the rate at which 0(I) tends
to zero is virtually independent on e. The transient states 0(rs) and 0(r) are referred
to as slow transient and fast transient, respectively, in the literature.

Regularity condition 2 (the fast transient condition). There is a constant 0 < c < 1
such that

as e approaches zero.
This regularity condition insures that the fast transient approaches zero really

fast. The third regularity condition concerns the slow transient.
Regularity condition 3 (the slow transient condition). There is a constant c such

that

IIo S>l{- o((1 ce)r),

This last regularity condition reflects the requirement that the slow transient
cannot be too slow.

The second and third regularity conditions can also be stated in terms of the
eigenvalues of Dii and (I P). As e 0, the second regularity condition essentially
requires that the second largest eigenvalues of Dii, i 1,... ,t, are bounded away
from 1, and the third regularity condition deters (t- 1) smallest positive eigenvalues
of (I- P) from approaching to zero faster than e. The relation between the third
regularity condition and our condition (4.3) is now clear since eigenvalues of (I- B)
are asymptotically those of nonzero eigenvalues of (I- P).

To discuss the relation of condition (3.2) with the regularity conditions 1 and 2,
we denote

where rWl 1, i 1,..., t, and i, i 1,..., t, are called coupling coefficients. We
further let be the left Perron vector of D with craWl 1. It has been shown in

[14] that

r + O(e).

If the second largest eigenvalue of D is bounded away from 1 (regularity condition
2), we know that

# # + O(e),

where #i is the left Perron vector of Dii defined in (3.1). Therefore,

#i ri + O(e).
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Condition (3.2) essentially requires that

(5.1) r/Wei _> ce,

for some constant c, which is then guaranteed by the balanced aggregation condition.
In fact, if any of rWei approaches zero faster than e, the corresponding block row
(except the diagonal block) must also approach zero faster than e and the stochastic
matrix P is thus asymptotically reducible. Actually, condition (3.2) is asymptotically
equivalent to the regularity conditions 1 and 2. To see this, we note that its asymptotic
equivalent (5.1) prevents the second largest eigenvalues of Dii from being close to 1
in a higher order than e since the determinants of (I- Dii) are bounded by e-1, as
was shown in the proof of Lemma 3.1. The fact that condition (5.1) prevents P from
being asymptotically irreducible is obvious.
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A COMPONENTWISE PERTURBATION ANALYSIS OF
THE QR DECOMPOSITION*

HONGYUAN ZHA?

Abstract. A first-order componentwise perturbation analysis of the QR decomposition is pre-
sented. In contrast to the traditional normwise perturbation analysis, the bounds derived are invari-
ant under column scaling of the underlying matrix. As an application, an assessment of the accuracy
of the computed QR decomposition using Householder transformations is given.

Key words. QR decomposition, perturbation analysis
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1. Introduction. The QR decomposition is one of the most important decom-
positions of numerical linear algebra: given a matrix A E Rmn, which is of full
column rank, then there exist an orthonormal matrix Q, and a nonsingular upper
triangular matrix R with nonnegative diagonal elements such that

A-QR.

There are several ways of computing the QR decomposition: using Householder trans-
formations, using Jacobi rotations, using the Gram-Schmidt process. The QR decom-
position also has many applications such as computing the singular value decompo-
sition via the Kogbetliantz algorithm [5],2 computing the orthonormal basis of the
column space of a matrix, computing the canonical correlations of matrix pairs [2],
and computing the generalized singular value decomposition [5], [7]. For all these
applications, the accuracy of the computed Q factor is essential.

The purpose of this paper is to derive some componentwise perturbation bounds
for the QR decomposition. There are already several papers dealing with the normwise
perturbation analysis of the QR decomposition; among them Stewart’s paper is the
first to give a thorough analysis [6]. His results were further modified and improved
by Sun [11]. An asymptotic expansion of the QR decomposition under row scaling
is also given in [8]. A typical result of the normwise perturbation analysis can be
roughly stated as follows: Assume that A and A / E are of full column rank, let the
QR decomposition of the perturbed matrix A + E be

(i) A + E (Q / W)(R + F),

where Q + W is orthogonal and R + F is upper triangular with nonnegative diagonal
entries. Then

(2) IIF][F < tc(A)r/1 IIEIIF

Received by the editors February 11, 1992; accepted for publication (in revised form) March
12, 1992. This work is supported by National Science Foundation grant DRC-8412314 and Army
contract DAAL-03-90-G-0105.

Scientific Computing and Computational Mathematics, Stanford University, Stanford, Califor-
nia 94305. Present address, Computer Science Department, Pennsylvania State University, Univer-
sity Park, Pennsylvania 16802 (zha(C)cs. psu. edu).

There are several modified QR decompositions for the case when A is rank deficient; one of the
most widely used is the QR decomposition with column pivoting [2, 5.4.1].

2 Here the matrix A is first reduced to upper triangular form by the QR decomposition.

1124
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and

(3) IIWIIF <  (A)r/2 IIEIIF
IIAIIF

where a(A) IIAIIIIA+II2 is the spectral condition number of A, and r/1 and /2 are
some constants. For a componentwise perturbation of the form IEI < IAI, however,
the above bounds may not be very useful. The reason is that they do not reflect the
facts that the QR decomposition is invariant under column scaling of A, i.e., the QR
decomposition of AD is

AD Q(RD),

where D is a positive diagonal matrix; and so is the perturbation matrix E

IEID < eIADI.
To illustrate the above assertion, let us look at a concrete example.

Example. Consider the following two matrices:

A1 0 10-1 A2 0 101
1 1 1 10l

The spectral condition numbers of A1 and A2 are

cond_2 (h_l) =2. 8284e+10, cond_2 (A_2) =2. 1213e+10.

Computing the QR decomposition of A1 and A2 using MATLAB on a Sun workstation
with machine precision O(10-16), we obtain the following result:

I_1= 1_2=
-7.0711e-01 1.2539e-06 -7.0711e-01 1.0800e-17

0 -1.0000e+O0 0 -1.0000e+O0
-7.0711e-01 -1.2539e-06 -7.0711e-01 -1.0800e-17

and the errors ei IIQ- Q IIF, (i 1,2):

e_1=1.7732e-06, e_2=3.0547e-17.

Using Wilkinson’s classical backward error analysis results [13, Chap. 3], we have

IIEIIF/liA ilF (i 2),

where E is the backward error. With regard to the bound in (3) and the above
computed results, the bound for A1 closely matches the error el, while the bound for
A2 is a bad overestimation of e2. The main reason for this difference is that if we scale
out the 101 factor from the last column of A2, then it is a well-conditioned matrix,
and the bound would tightly predict the result for the scaled matrix. Therefore, in
conclusion, we need to derive perturbation bounds for the QR decomposition that are
invariant under column scaling of the matrix.

As pointed out by one of the referees, the normwise perturbation bounds have
the virtue that they do reflect the perturbation when the columns of A are properly
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scaled, and such scaling is justified since the QR decomposition is invariant under
column scaling. For instance, a tighter bound can be obtained in the above example
if we first scale out the factor 10l in A2. This fact is also supported by the following
result due to van der Sluis [12]: Let a positive diagonal matrix Do be chosen such
that all the columns of Ao ADo have unit length, then

(A0) _< v/min{n(AD): D diag(d,), di > 0}.

This is to say that the condition number of A0 is at most a factor of V off the
optimal condition number of A under column scaling. To use the normwise bounds
properly, we therefore need to first scale the columns of the matrix A. However, it will
be clear from the results in 2 that our componentwise perturbation bounds provide
the scaling automatically, and hence they render it unnecessary to scale the columns
of A beforehand.

The rest of the paper is organized as follows. In 2, we derive our main component-
wise perturbation bounds. In 3, we apply the results in 2 to assess the accuracy
of the computed QR decomposition using Householder transformations. In 4, we
summarize the results and point out some directions for further research.

Notation. If A (aij), then IA[ := (lajl). We write IA[ _< IBI if lajl <_ Ibjl, and
it is easy to check that if A Be, then [A[ <_ IBIICl. A matrix norm II" II on Rmn
is monotone, if IAI <_ [B implies IIAII _< IIBll for all A, B e Rmn [4].

2. Perturbation bounds. In this section, we prove our main results concerning
the componentwise perturbation bounds of the QR decomposition.

THEOREM 2.1. Let A be of full column rank, and IEI _< eGIA such that A + E
is also of full column rank, where G is a matrix with nonnegative entries. Also let
the QR decomposition of A and A + E be A QR and A + E (Q + W)(R + F),
respectively. Moreover, for a square nonsingular matrix S, let

(s) IIIs-l Isl II
be the Bauer-Skeel condition number [10, p. 128],3 and

(4) , max(]lIQTIG[Qll], I[IQTIGTlQlll).
Then if I1" II is a consistent monotone norm and

,(..s(R-) + ..s(R)) < ,
then we have for the Q factor

IIwII < ,(llall + .)(-.s(R-) +
1 ?(tCB(R-1) + tBs(RT))

and :for the R factor

+ 0(),

< ,(..s(R-) + .s(Rr)) + O().

3 We notice that Bs(S) also depends on the norm in the definition.
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Proof. Since A + E is of full column rank, (A -t- E)T(A -+- E) is symmetric positive
definite. Let the Cholesky decomposition of (A -+- E)T(A -t- E) be

(A -t- E)T(A / E) (R / F)T(R / F),

where R - F is upper triangular. Then Q +W (A - E)(R - F)-1 is orthonormal.
We have

A / E (Q + W)(R / F)

the QR decomposition of A+E. It is easy to check that we have the following identity:

W -QFR-1 / ER-1 WFR-1,

therefore

On the other hand, since

RTF -+- FTR -+- FTF ATE + ETA - ETE,
it follows that

(7) FR-1 + R-TFT -+- R-TFTFR-1 QTER-1 -+- R-TETQ -5 R-TETER-1

Since FR-1 is upper triangular,a we obtain

IFR-11 <_ e{IQTIGIQIIRIlR-11 + (IQTIGIQIIRIIR-11)T} + O(e2).
Moreover from

it follows from the definition of :
IIFII <_ ert(lllRI IR-1111-+- IIIR-TI IRTI]I)IIIRIII + O(e2).

The above combined with (6) proves the bound for
Remark 1. Most of the familiar norms we use are monotone norms, for example,

I1" II1, I1" Iloo, and I1" liE. But the spectral norm I1" 112 is not monotone. One way of
getting around this is to modify the spectral norm to obtain IIAII :-IIIAII12, which is
monotone, and the above results can also be cast in terms of this norm.

Remark 2. The bounds in Theorem 2.1 are first-order bounds, and the question
when the second-order terms are negligible naturally arises. Recently Stewart gave a
condition on the perturbation under which one can derive a bound on the second-order
terms [9]. In our context, the condition reduces to the requirement that

1
e7(nBs(R-1) + Bs(RT)) < -.

We notice that this condition is stronger than that in (5); this is to guarantee that
the second-order term will not blow up [9]. However, we will not elaborate on the
details of the proof here.

4 This trick is due to Stewart [6].
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COROLLARY 2.2. Let the ith column of R and F be ri and fi, and let the first i
columns of Q and the ith leading submatrix ofR be Qi and Ri, (i 1,... n), then we
have for the [1" 112 norm

and for the I1" I1 norm

and for the I1" II norm

Proof. If A is replaced by AD, where D is a positive diagonal matrix, the right-
hand sides of the inequalities in Theorem 2.1 remain the same. Let the ith diagonal
element of D be one, and let the other diagonal elements tend to zero. It can be
readily checked from (7) that this will not blow up the second-order term. Then the
above bounds follow easily after some manipulation. D

The above bounds relate each individual column of F to the corresponding column
of R. They are better bounds than those in Theorem 2.1, since a bad scaling of a
column of A will not affect the bounds for the other columns.

From the above analysis, we can consider

as(A) := (ass(R-1) + aBs(RT))/2

as the componentwise condition number for the QR decomposition. It is easy to see
that this condition number is invariant under any column scaling of A; more precisely

as(AD) as(A),

for any positive diagonal matrix D.
Remark 3. Assuming that A E R"xn, it is easy to check that

IIIQIII < IIIQIII , IIQII IIIQIII <
Remark 4. For a matrix norm II" II, define

as(A) := min{llADII" II(AD)+II D diag(di), d > 0},

which is the best condition number of A under column scaling. For the spectral norm,
it is easy to show the following inequality

I{IQTQRDI I(RD)-IQTQIll2

for any positive diagonal D, hence

as(A) <_ n2as(A).

Similar results for the II" II1 and II" II can also be proved.
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3. The Householder triangularization. As mentioned in the preface of the
book Matrix Perturbation Theory, one of the principal purposes of deriving perturba-
tion bounds is to combine them with the backward error analysis to assess the effects
of the rounding errors on the computed results [10, p. xiii]. In this section, we apply
the results in the previous section to derive some bounds for the QR decomposition
computed by the Householder transformations. To this end we need a backward com-
ponentwise error analysis of the Householder triangularization method. This analysis
was recently carried out by Higham [3]. In the following we use the notation as in the
appendix of the paper [3]. Let u be the machine precision, and denote

nu

We cite the following result of Higham [3].5
LEMMA 3.1. Consider applying a sequence of Householder transformations Pk to

the matrix A E Rm’,

(8) Ak+I PkAk, k=l,...,n,

with A1 A. Let the computed version of Pk and Ak be k and -k, respectively. Let
P be the matrix corresponding to the exact application of the kth step of (8) to ftk
defined above.6 Then

n+l (P"" P)TA + A,

where IAI G #m,nGIAI, and #m,n %m+bn+c, with a, b, c small integers. The matrix
G satisfies

11112 2mn(1 + Ore,n),

where

2#m,nV/-(n- 1)Om,,
1 2tt,,nv/-(n 1)"

To derive our bounds, we also need a bound for the difference

K=O,-Pn...P,
where ( fl(n"" [1) is the computed product. The bound can be derived from
the general analysis given by Wilkinson [13, p. 161], and is presented in the following
lemma.

LEMMA 3.2. With the assumption the same as in the above lemma, we have

( 2#n(n 2) )(9) [[- Pn"" PllF < 2v, + 1 2tt,(n- 2)

where #n %’n+b’, and a and b are small integers.
Combining these two results with the bounds in Theorem 2.1, we have the fol-

lowing conclusion, which we write in the form of a theorem.

5 This result appears as Lemma A.7 in an extended version of [3] with the same title: Numerical
Analysis Report No. 182, University of Manchester, Manchester, U.K., 1990.

6 For a more elaborate description, see [13, p. 124].
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THEOREM 3.3. Let the assumptions be the same as above, and furthermore as-
sume that

(10) 8mn2#m,n(1 + Om,n)lllRl IR-11112 < 1.

Then the computed Q factor satisfies7

2QII + + IR- III +
Proof. We use the trivial identity

Q- Q (Q- pn...p;) + (Pn...p; Q),

and ignore the first parenthesized term, since by (9) it is negligible compared to the
bound to be proven. To get the bound for the second term in the above, we use
Theorem 2.1 with the spectral norm (see also the comments in Remark 1). We notice
that v] as defined in (4) has the upper bound

<_ [IQII[[G][ < 2mn(1 + 0m,),

therefore condition (10) implies that the denominator in the bound for the Q factor is
at least one-half. Then the above approximate bound can be obtained by the bounds
of Theorem 2.1.

The results of the example in the introduction section can be well explained by
the above bound. In fact, for the spectral norm, we have

as(A1) 2.8284e+10, as(A2) 3. 1463e+00.

4. Concluding remarks. In this paper, we derived some first-order compo-
nentwise perturbation bounds for the QR decomposition. Those bounds are invariant
under the column scaling of the matrix. Combining those bounds with the result of a
componentwise backward error analysis, we also derived bounds for the computed QR
factors using the Householder transformations. There are still some problems that
deserve further investigation; for example, how to directly estimate the condition
number as(A), for the II" II or [1" [[ norms and how to derive bounds for the
computed QR decomposition using the Gram-Schmidt process. Another interesting
problem is to derive bounds for the second-order terms in Theorem 2.1 in terms of
the condition number as(A). These problems will be addressed in future research.

Acknowledgment. The author thanks Dr. N. J. Higham and the referees for
many helpful comments and suggestions that considerably improved the presentation.
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TOTAL POSITIVITY, QR FACTORIZATION,
AND NEVILLE ELIMINATION*

M. GASCAt AND J. M. PElqIA$

Abstract. A well-known characterization of nonsingular totally positive matrices is improved:
Only the sign of minors with consecutive initial rows or consecutive initial columns has to be checked.
On the other hand, a new characterization of such matrices by their QR factorization is obtained.
As in other recent papers of the authors, Neville elimination plays an essential role.

Key words, total positivity, matrix factorization
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1. Introduction and notations. We recall that a matrix A is said to be totally
positive (respectively, strictly totally positive) if and only if all its minors are nonneg-
ative (respectively, positive). Totally positive (respectively, strictly totally positive)
matrices will be referred to as TP (respectively, STP) matrices.

Following usual notations (see [1], [5]), given k, n e IN, k <_ n, Qk,n will denote
the set of strictly increasing sequences of k natural numbers less than or equal to n:

C (Ci)l<i<n e Qk,, if (1 _<)a < c <... < Ck (_< n).

The dispersion d(a) of a is defined by

k-1

d(a) Z (ai+ ai 1) ak al (k 1),

with the convention d(a) 0 for ( E Ql,n. In general, d(c) 0 means that a consists
of k consecutive integers.

Let n, m, k, be natural numbers with k <_ n, _< m. For an n x m real matrix A
and a E Qk,n, 13 Q,m we denote by A[I the k x submatrix of A containing rows
numbered by and columns numbered by/. When c , A[lc will be denoted by

In [5, Thms. 3.2 and 4.1] we give one characterization of nonsingular TP matrices
and another for STP matrices in terms of the sign of some of their minors. Our
characterization of TP matrices improved some previous ones, which used a greater
number of minors (see [1], [3])" A nonsingular matrix A of order n is TP if and only
if it satisfies, simultaneously, the following conditions:

det A[cI/ _> 0 Va,/ Qk,n
(1.1)

such that d(c)-0 and either c1=1 or >/ Vl<_k,

*Received by the editors September 23, 1991; accepted for publication March 2, 1992.
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tDepartamento de Matemtica Aplicada, Universidad de Zaragoza, Zaragoza, Spain (JMPENA
CC.UNIZAR.ES). The work of this author was partially supported by Direcci6n General de Ciencia
y Tecnologia research grant PS88-0085.
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(1.2) detA[1,2,...,k]>0 Vke{1,2,...,n}.

Compare this characterization with [3], where it is said that A is TP if and only if

det A[al >_ 0 Va,/ E Qk,, such that d(a) -0.

The analogous characterization of STP matrices in [5, Thm. 4.1], particularized
for square matrices, states that a matrix A of order n is STP if and only if it satisfies
simultaneously, for each k E {1,2,... ,n}, the following conditions:

(1.3) detA[a[1,2,...,k] > 0 Va e Qk,n with d(a) O,
(1.4) detA[1,2,... ,k[/] > 0 V/ e Qk,, with d(/) 0.

The asymmetry of conditions (1.1), (1.2), which is contrary to the symmetry of
(1.3), (1.4), led us to search for the new simplification of (1.1) given in Theorem 3.1
of this paper.

Another well-known characterization of TP matrices ([3, TAm. 1.1]) is in terms
of their LU factorization: An n n matrix A is TP if and only if A has an LU
factorization such that L and U are TP. Here, as usual, L (respectively, U) is a lower
(respectively, upper) triangular matrix.

However, we have not seen in the literature any result on the QR factorization of
TP matrices, that is, their factorization as a product of an orthogonal matrix Q by an
upper-triangular matrix R. Because of the interest of that factorization in numerical
analysis, we think that it is worthwhile to study it. In 4 we obtain a characterization
of nonsingular TP matrices in those terms, but in order to get it we have to define
some classes of matrices that contain the class of nonsingular TP matrices. In 5 we
characterize one of these classes, the so-called /-matrices, from an algorithmic point
of view: the Neville elimination (NE).

Finally, in 6 we see that an oscillatory matrix A (that is, a TP matrix such that
A" is STP for some positive integer m) can be transformed by similarity into diagonal
form D p-1AP D with P a --matrix. In [7] it is proved that if A is a nonsingular
TP matrix (the condition of nonsingularity is removed in [3]), then there exist a TP
matrix S and a tridiagonal TP matrix T such that SAS-1 T.

2. Neville elimination. The essence of NE is to make zeros in a column of a
matrix by adding to each row a multiple of the previous one. Eventual reorderings of
the rows of the matrix may be necessary. This process, although not new, is described
in a precise way in [5], where some other references on the subject are given.

Because of the frequent reference to some concepts defined in [5], we recall them
here, although the concepts are particularized to nonsingular matrices, which are
our present subjects. Let A (a)<,< be a nonsingular matrix, and let A
(51j) l<i,j<n be such that ~1

aij ai. If there are zeros in the first column of fi., we
carry the corresponding rows down to the bottom in such a way that the relative order
among them is the same as in fi.. We denote this new matrix by A (ai1/2)<i,j<n.
If we do not need row exchanges, then A1 :-- A.

The method consists of constructing a finite sequence of matrices Ak such that the
submatrix formed by the k- 1 initial columns of Ak is an upper-triangular matrix. If
A (a) <,j<n, then we introduce zeros in its tth column below the main diagonal,
thus forming
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For any j such that 1 _< j <_ n we have

:t/l i 1, 2, t,ij :-- aij

(2.1) t+l
ij :=ai-(ait/ai_l,t)ai_5 ifai_,t0, t<i<_n,
+ if a_,

If A+I has zeros in the (t + 1)th column in the row t + 1 or below it, we will
carry these rows down in a manner similar to that we have used with 1. The matrix
obtained in this way will be denoted by

At+l t-l\(tiJ ) l_i,j_n

being At+ := t+l if there are no row exchanges in/i.+. After at most n steps we
get an upper-triangular matrix An U.

The element

(2.2) pij :--ai, 1 _< i,j <_ n,

(see its function in (2.1)) is called the (i,j) pivot of the NE of A, and the (i,j)
multiplier is defined by

(2.3)
aij/ai-l,j
0

if j
ai_l,j O,

if =0( =0)ai-l,j aij

The complete Neville elimination (CNE) of A consists of carrying out the NE of
A until we arrive at U and, afterwards, proceeding with the NE of UT (the transpose
of U) until we get a diagonal matrix. Obviously, the NE of UT is equivalent to the
NE of U by columns.

In [5, Thm. 4.1 and Cor. 5.5] we see that a nonsingular matrix A is TP (respec-
tively, STP) if and only if there are no row or column exchanges in the CNE of A and
the pivots are nonnegative (respectively, positive).

3. A simplified characterization of nonsingular TP matrices by mi-
nors. The following theorem provides a characterization of nonsingular TP matrices
that is analogous to that of STP matrices given by (1.3) and (1.4).

THEOREM 3.1. Let A be a nonsingular matrix of order n. Then A is TP if and
only if it satisfies simultaneously, .for each k E {1, 2,... n}, the following conditions:

(3.1)

(3.3)

det A[all, 2,... k] >_ 0

detA[1,2,... ,kl >_ 0

detAil, 2,... ,k] > 0.

Proof. Let A be nonsingular and TP. Inequalities (3.1) and (3.2) are direct con-
sequences of the total positivity of A and (3.3) (see [1, Cor. 3.8]) of the nonsingularity
of a TP matrix.

Conversely, from (3.3) A can be decomposed by Gaussian elimination in the form
A L1DU with L1 (respectively, U1) a lower- (respectively, upper-) triangular, unit-
diagonal matrix. By unit diagonal we mean a matrix whose diagonal entries are 1.
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From the Cauchy-Binet identity (see, for example, [1, Eq. (1.23)]) one has V( E Qk,n,
k- 1,2,... ,n,

(3.4) det(L1D1)[all, 2,... ,k] detA[ll,2,... ,k],

and by (3.1) and [3, Whm. 1.4], L1D1 is TP; therefore, D1 and L1 are TP.
Since by the same reasons as for (3.4) we have / e Qk, and Vk e {1, 2,..., n}

(3.5) det(DU1)[1, 2,... ,klf detA[1,2,..., kiWI,

we infer from (3.2) that DIU (and U1) is TP. Then A is TP as a product of TP
matrices [1, Thm. 3.1].

4. A characterization of nonsingular TP matrices by their QR factor-
ization. Let A be an n x n lower- (respectively, upper-) triangular matrix. Following
[2], the minors A[I with k >_ (respectively, (k _< fk Vk) are called nontrivial
minors of A because all other minors are equal to zero.

In [2] the matrix A is called ASTP if and only if the nontrivial minors of A are
all positive (see also [6, 9]).

We are going to define some special classes of matrices. In this section, L (respec-
tively, U) represents a lower- (respectively, upper-) triangular, unit-diagonal matrix,
and D represents a diagonal matrix.

DEFINITION 4.1. A nonsingular matrix A is said to be lowerly TP (respectively,
lowerly STP) if and only if it can be decomposed in the form A LDU and LD is
TP (respectively, ASTP).

Observe that since L is unit diagonal, the total positivity of LD implies that L
and D are TP.

The following propositions characterize lowerly TP and STP matrices.
PROPOSITION 4.2. A nonsingular n x n matrix A is lowerly TP if and only if it

satisfies for each k e {1,2,..., n} conditions (3.1) and (3.3).
Proof. As in Theorem 3.1, we prove that (3.1) and (3.3) imply that A can be

decomposed A LDU and that LD is TP. Then A is lowerly TP.
Conversely, by definition, if A is lowerly TP, it can be factorized A LDU with

D nonsingular, and then it satisfies

detAil, 2,... ,k] 0, k- 1,2,... ,n.

As in (3.4), we deduce that these minors are positive and also satisfy (3.1).
Remark 4.3. If we define upperly TP matrices similarly to lowerly TP matrices,

as nonsingular matrices that can be decomposed in the form LDU with DU totally
positive, we obviously have that a nonsingular matrix is TP if and only if it is lowerly
and upperly TP.

PROPOSITION 4.4. A nonsingular n x n matrix A is lowerly STP if and only if
it satisfies .for each k e {1, 2,... n}

(4.1) det A[I1 2,..., k] > 0 Va e Qk, with d() O.

The proof is analogous to that of Proposition 4.2, where the characterization of
ASTP matrices given by [2, Thm. 3.1] is taken into account.

DEFINITION 4.5. A nonsingular matrix A is said to be a -matrix (respectively, a
strict /-matrix) if it is lowerly TP (respectively, lowerly STP) and in the factorization
A LDU, U- is TP (respectively, ASTP).
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PROPOSITION 4.6. If A and (AT)-1 are lowerly TP (respectively, lowerly STP),
then A is a /-matrix (respectively, strict "-matrix).

Proof. Let us consider the nonstrict case. We have to see that under the condi-
tions of the proposition, U-1 is totally positive.

From the factorization A LDU we get

(4.2) (UT)-1 DLT(AT)-1.

DLT is TP because A is nonsingular, lowerly TP. Then, as we recalled in 2, it is
possible to perform the Neville elimination of DLT without changes of columns, and
the pivots are nonnegative.

So we can postmultiply DLT by certain upper-bidiagonal elementary matrices
with a negative off-diagonal entry, that is, matrices of the form

(4.3) 1 (

1

1

with negative, to get a diagonal matrix. Then DLT can be written in (4.2) as a
product of a diagonal matrix with a finite sequence of inverses of matrices (4.3), which
are also of the type (4.3), but with positive off-diagonal entry

Therefore, in (4.2) (UT)-1 is obtained from the lowerly TP matrix (AT)-I by a
sequence of transformations that consists of multiplying a row by a positive number
and/or adding to a row the next row multiplied by a positive number. Since by Propo-
sition 4.2 all minors of (AT)-I with initial consecutive columns are nonnegative, all
minors of (UT)-I are also nonnegative. Then (UT)-I is totally positive [3, Thm. 1.4],
as is U-I, and A is a -matrix.

The case lowerly STP is proved analogously, by replacing Proposition 4.2 by
Proposition 4.6 and by replacing Theorem 1.4 of [3] by Theorem 3.1 of [2].

The following theorem gives a characterization of nonsingular TP or STP matrices
by their QR factorization.

THEOREM 4.7. Let A be a nonsingular matrix. Then A is TP (respectively, STP)
if and only if there exist two orthogonal "-matrices (respectively, strict -matrices) Q1,
Q2, and two nonsingular, upper-triangular TP (respectively, ASTP) matrices R1, R2
such that

AT Q2R2(4.4) A Q1R1,

Proof. Let A be a nonsingular TP matrix. The Gram-Schmidt method, which
permits orthogonalization of the columns of A, is described by

(4.5) AS- H,

where S is an upper-triangular, unit-diagonal matrix and H is a matrix with orthog-
onal columns. Then there exists a diagonal matrix D with positive diagonal entries
such that HD Q1 is an orthogonal matrix.
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Since A satisfies (3.11 and (3.31, from (4.5) and the Cauchy-Binet formula we
deduce that those inequalities hold for H and Q1 also. Then by Proposition 4.6, Q1
is a v-matrix because it is lowerly TP and (QIT)- Q.

On the other hand, from (4.5) we get

(4.6) A -QD-S-,
and the matrix R1 D-S- is upper triangular with positive diagonal.
A QR and

Then

(4.7) ATA- RT RI.

RTR can be computed from R1 by multiplying each row by a positive number and
adding a linear combination of the previous rows. Therefore, minors of RTR with
consecutive initial rows have the same sign as the corresponding minors of R. Since

RTR is totally positive by (4.7) (as a product of TP matrices), then those minors of
RTRI and R are nonnegative, and by [3, Whm. 1.4], R is TP.

Conversely, assume that A and AT can be expressed in the form

A QR, AT Q2R2,

with Q1, R, Q2, R2 as in the theorem. Since by Proposition 4.2, Q satisfies (3.11
and (3.31, the computation of A from Q shows that A satisfies (3.11 and (3.3) also,
and the same happens with AT. By Theorem 3.1, A is TP.

The case of STP matrices is proved in the same way, with adequate replacements
as follows. At the end of the first part of the proof, Theorem 1.4 of [3] is replaced by
Theorem 3.1 of [2]. In the converse, Proposition 4.2 and Theorem 3.1 of this paper are
replaced, respectively, by Proposition 4.4 of this paper and Theorem 4.1 of [5].

Remark 4.8. Since the QR factorization is essentially unique, a decomposition
(4.4) can be found by any method; then one must choose the appropriate signs.

5. Characterization of strict /-matrices by NE. First we observe some facts
about NE when it is possible to carry it out without changes of rows. In that case,
the NE process for a nonsingular matrix A can be matricially described in the form

1
o o -m21

(5.11 ......... --3. ".. "’. A U,
0 "..

--ran,n-1 --ran2
--mnl 1

where mij is the (i, j) multiplier (see 2).
Conversely, if for a nonsingular matrix A one has

o o 021

(5.2 ....... .. .". A=U
0 ".

,1

with U upper triangular and aij 0 V(i,j), then the NE of A can be performed
without changes of rows and the multipliers are

mij--aij, i n,... ,j / l, j-1,2,...,n-1.

On the basis of this observation, we shall prove the following lemma.
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LEMMA 5.1. Let L be a lower-triangular, unit-diagonal matrix such that its NE
can be performed without changes of rows and such that the multipliers are positive.
Then the NE of L-1 can also be carried out without changes of rows, and the multi-
pliers are negatives of those of L, but, in general, used in a different order.

Proof. The NE transforms L into I by

"1 1

0 1 -121 1

(5.3) ".. ".. "’. "’. L-I,
0 1 ".. "..

-ln,n-1 1 --lnl 1

which can be written

(5.4) En(-ln,n-.) (En-l(-ln-l,n-2)En(-ln,n-2)) (E2(-/21)’.. En(-ln)) L I,
where the factors

(5.5)

"1

1
--lik 1

are nontrivial because by hypothesis lik > 0. Here --lik is the entry (i, i- 1) of the
matrix.

Then
(5.6)

L-1 En(-ln,n-)(En-(-ln-l,n-2)En(-ln,n-2))"" (E2(-/21)""" En(-lnl)).
The elementary matrices Ei(c) defined by (5.5) with c - 0 verify

(5.7) E- (c)-- Ei(-c),
(5.8) Ei(a)Ej()- Ej()E() Vi, j such that li- Jl 7t 1,

as is easily seen.
By (5.6) and (5.7)

(5.9) (En(ln) E2(/2))""" (E,(1,,n-2)E,-(1,-l,n-2)) En(ln,,-)L- I,
and by (5.8) this can be reordered in the form
(5.10)
En(ln) (En-l(ln-.,1)En(ln2)) (E2(/21)... En-.(ln-l,n-2)En(ln,n-1)) L-1 I,

that is,
1

0
/21 1

0

(5.11) "..’.. ". ". L-=I.
0 1 l,_ 1 ".. "..

l, 1 l,= 1 l,,,_,

So we are in the same situation as in (5.2)" The (i, k) multiplier of the NE of L-is the negative of the (i, i- k) multiplier of L (compare (5.3) with (5.11)). rn
Now we easily prove the following theorem, where U is the upper-triangular ma-

trix obtained by the NE of A.
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THEOREM 5.2. A nonsingular matrix A is a strict /-matrix if and only if all the
pivots of the NE ofA are positive and all the multipliers of the NE of UT are negative.

Proof. If A is a strict /-matrix, then it is lowerly STP, and by [5, Prop. 4.4 and
Lemma 2.6] the pivots of the NE of A are positive. By that elimination process we
get the factorization A LDU, where U is an upper-triangular, unit-diagonal matrix.
Since A is a strict /-matrix, the unicity of that factorization implies that U-1 is ASTP,
and therefore (UT) -1 (U-l)T is ASTP also.

By [5, Cor. 5.5] we can apply Lemma 5.1 to the lower-triangular matrix (UT)-,
and we deduce that the multipliers of the NE of UT are negative.

Conversely, if all the pivots of the NE of a nonsingular matrix A are positive,
then from [5, Lemma 2.6] we get (4.1) and therefore A is lowerly STP.

On the other hand, if all the multipliers of the NE of UT are negative, then
by Lemma 5.1 all the multipliers of (UT)- are positive. As a consequence, all mi-
nors of (UT)- with consecutive initial columns and consecutive rows are positive.
Therefore, by [2, Thm. 3.1] (UT)-1 is ASTP, and so, by Proposition 4.6, A is a strict

-matrix. [

6. Remarks on strict 7-matrices in the diagonalization of oscillatory
matrices. Oscillatory matrices are TP matrices A such that for some positive integer
k Ak is STP. In [4, pp. 105-106], some properties of the eigenvalues and eigenvectors
of those matrices are given: The eigenvalues Ai are all simple, real, and positive,
and the corresponding eigenvectors vi can be chosen with certain sign variations in
the sequence of their components. In [4, pp. 106-107], it was proved that A can be
diagonalized

(6.1) P-AP diag {A,A2,... ,An} D

by a matrix P such that

(6.2) det P[al/] > 0 Vc, e Qk,n with d()= 0, 1 1.

That is, with our definitions and by Proposition 4.4, P is lowerly STP.
From (6.1) we get

(6.3) AT (pT)-IDpT,

and in [4, p. 107] it is also proved that pT satisfies the property (6.2). Again by
Proposition 4.4, (p-1)T is lowerly STP.

So by Proposition 4.6 P is a strict /-matrix. In conclusion, an oscillatory matrix
A can be decomposed in the form

(6.4) A P-DP,

where P is a strict -matrix and D is a diagonal matrix with positive diagonal entries.
From [1, Thin. 6.4] and its proof we can deduce the following result, which in

some sense is a converse of (6.4).
Result. If A is a nonsingular real matrix with real eigenvalues > A2 > >

An > 0 and if there exist strict -matrices P, N such that

A P- diag {AI, ,2, An}P-
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and
AT N diag{l,,2, ,)n}N-then there exists a positive integer k such that Ak is STP.
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1. Introduction. Let A be of order n, and suppose that the leading principal
submatrices of A are nonsingular. Then A has an LU factorization

(1.1) A--LU,

where L is lower triangular and U is upper triangular. The factorization is not unique;
however, any other LU factorization must have the form

A- (LD)(D-U),
where D is a nonsingular diagonal matrix. Thus, if the diagonal elements of L (or U)
are specified, the factorization is uniquely determined.

The purpose of this note is to establish a first-order perturbation expansion for
the LU factorization of A along with bounds on the second-order terms. At least three
authors have considered the perturbation of LU, Cholesky, and QR factorizations [1],
[2], [4]. The chief difference between their papers and this one is that the former
treat perturbations bounds for the decompositions in question, while here we treat
the accuracy of a perturbation expansion.

Throughout this note I1" II will denote a family of absolute, consistent matrix
norms; i.e.,

and

IIABII IIAIIIIBII
whenever the product AB i8 defined. Thus the bounds of thi8 paper will hold for the
Frobeniu8 norm, the 1-norm, and the x>norm, but not for the 2-norm (for more on
these norms see [3]).

2. Perturbation of the identity. The heart of this note is the observation that
the LU factorization of the matrix I + F, where F is small, has a simple perturbation
expansion. Specifically, write

F FL + Fu
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where FL is strictly lower triangular and Fu is upper triangular. Then

(2.1) (I + FL)(I + Fu) I + FL + Fu + FLFu I + F +

and the product of the unit lower triangular matrix I + FL and the upper triangular
matrix I + Fu reproduces I + F up to terms of order IIFII 2. The following theorem
shows that we can move these lower-order terms to the right-hand side of (2.1) to get
an LU factorization of I + F.

THEOREM 2.1. If
1

--4

then there is a strictly lower triangular matrix GL and an upper triangular matrix Gu
satisfying

1

such that

(I + FL + GL)(I + Fu + Gu) I + F.

Proof. From (2.2) it follows that the perturbations GL and Gu must satisfy

GL + Gu -(FLFu + FLGu + GLFu + GLGu).

Starting with G 0 and Gj 0, generate strictly lower triangular and upper
triangular iterates according to the formula

(2.3) GkL+1 + Gj+1 -(FLFu + FLGL + aFu + aa).

Because I1" is absolute,

Hence if we set lIFII, 0 0, and define the sequence (’k } by

(2.4) ")’k+l 2 + 2’yk + /, k 0, 1,...,

then IIGL + GII _< "k.
1 thenNow by graphing the right-hand side of (2.4), it is easy to see that if < Z,

the sequence ")’k converges monotonically to

,,/,
1 2 + v/1 4’

which is, therefore, an upper bound on IIG + Gj for all k. It remains only to show
that the sequence Gki + Gku converges.

From (2.3) it follows that

(GkL+1 + Glkj+1) G -I- Gj F a G + G a Fj

+ (G-1 a)a- + a(a- a).
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Hence

II(GL+1 + C+) (GL + Gj)II < 2( +
If 2( + /,) < 1, which is certainly true if _< 1/4, then the series of differences is
majorized by a geometric series, and the sequence converges.

There are some comments to be made on this theorem. In the first place the first-
order expansion is particularly simple: Split F into its lower and upper triangular
parts. We will take advantage of this simplicity in the next section, where we will
derive perturbation expansions and ymptotic bounds for the LU, Cholesky, and
QR factorizations.

The condition that IIFII @ is perhaps too constraining, since the LU factoriza-
tion of I + F exists provided that IIFII < 1, However, IIFll approaches one, it is
possible for the factors in the decomposition to grow arbitrarily, in which ce the
bounds on the second-order terms must also grow. Thus the more restrictive condition
can be seen the price we pay for bounds that do not explode.

As IIFll goes to zero, the bound quickly sumes the ymptotic form

i.e., the order constant for the second-order terms is essentially one. If we write this
in the form

IIGL + Gull % IIFII,

we see that the relative error in the first-order expansion is of the same order the
perturbation itself, with order constant one.

Finally, Theorem 2.1 treats an LU decomposition of I+F in which L is unit lower
triangular. In analyzing symmetric permutations, we may want to take L UT. In
this ce, we may work with slightly different matrices, illustrated below for n 3:

(2.5) L= ( f11 0 0 ) ( fll f12 f13 )f21 f22 0 and u 0 f22 f23
f31 f32 f33 0 0 f22

If L and U are defined analogously, the proof of Theorem 2.1 goes through mutatis
mutandis. For these matrices a useful inequality is

1I k ll ,  llFll ,
 enotes no enius norm.

3. Applications. In this section we will apply the results of the previous section
to get perturbation expansions for the LU, Cholesky, andR decompositions. We will
present only first-order terms, since bounds for the second-order terms can be derived
from Theorem 2.1, and since the rate of convergence of these bounds to zero suggests
that the first-order expansions will be satisfactory for all but the most delicate work.
We will also derive ymptotic bounds for the first-order terms.

Our first application is to the problem we began with: the perturbation of the
LU decomposition. Let A have the LU decomposition (1.1) and let A + E. Then

L-I.U-1 I + L-1EU-1 =_ I + F.
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Let FL and Fu be as in the last section. Then I + F - (I 4- FL)(I + Fu) is the
first-order approximation to the LU factorization of 1 4- F. It follows that

A L(I 4- FL)(I 4- Fu)U

is the first-order approximation to the LU factorization of ft.. Note that because FL
is unit lower triangular, this expansion preserves the scaling of the diagonal elements
of L.

By taking norms we can derive the following asymptotic perturbation bound

(3.1) IlL- LII < [[L-I[[[[U-I[[[IA[[-- =_ Lu(A)[]A[[I[L[

Thus aLu(A) --IIL-II][IU-}I[[AII serves as a condition number for the LU decompo-
sition of A. When A is square, this number is never less than the usual condition
number a(A) -[[A[[[[A-I[[ and can be much larger. Bounds on the U factor can be
derived similarly.

An unhappy aspect of the bound (3.1) is that it overestimates the perturbation
of the leading part of the LU factorization. Specifically, if we partition

A21 A22 L21 L22 0 U22

then A LIU, and the condition number for this part of the factorization is
Lu(A), which is in general smaller than Lu(A). The perturbation in L21 can then
be estimated from the equation L21 A21UI.1

If A is symmetric and positive definite, then A h the Cholesky factorization

A RTR,
where R is upper triangular. Let A + E, where E is symmetric. Setting F
R-TER- and defining v in (2.5), we have

R(=I+ R.

By (2.6) and the consistency of the 2-norm with the obenius norm, we have

[[- R[]F 1 R_T2[]R_I[[2E[F a2(A) [[E[[F

where a2(A) [[A[]2[[A-[[2 is the usual condition number in the 2-norm.
Finally, let A, now rectangular, be of full-column rank, and consider the QR fac-

torization

A=QR,

An alternative approach is to set

so that

L21 I

I(
The proof of Theorem 2.1 can easily be adapted to give a bound on the perturbation of the LU fac-

All ),torization of a perturbation of J and hence on the perturbation of the LU factorization of
A21
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where Q has orthonormal columns and R is upper triangular with positive diagonal
elements. The key to the derivation of the bounds is the equation

ATA RTR;

i.e., R is the Cholesky factor of ATA.
As usual, let A + E, and let EA be the orthogonal projection of E onto the

column space of A. Then ATE ATEA. It follows that

T. ATA _+_ ATEA + E4A :_ ATA + F.

Hence, with/u as above, we have

R~(I+ R.

In particular,

II/- RIlF < x2(A)IIEAlIF
IIRIl IlAl[2

where t2(A) IIRII211R-ll2. Since O A/-t, we have

0 Q(I- u)/ ER-1,

from which it follows that

(3.2) I10 QII < a2(A) 4IIEAIIF + lIE]IF

Asymptotically, the bounds derived in this section agree with the bounds in [1],
[4], with the exception of (3.2), which is a little sharper owing to the presence of

Acknowledgment. This paper has been much improved by the suggestions of
Jim Demmel and Nick Higham.
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A NOTE ON GENERALIZED VANDERMONDE DETERMINANTS*

RANDOLPH P. FLOWEr AND GARY A. HARRISt

Abstract. This note contains elementary derivations of explicit formulae for the determinants
of two types of matrices which are generalized versions of that which is commonly known as the
Vandermonde matrix.

Key words, generalized Vandermonde matrices, Hermite interpolation, linear recursion relation,
degree of a Grassmann manifold
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1. Introduction. In this note we present an elementary derivation of explicit
formulae for the determinants of two types of matrices that occur quite frequently in
the literature. We view both types as generalized Vandermonde matrices. A matrix
of the first type, which we will always denote by M, is constructed as follows. Let
Zl,..., z be distinct complex numbers with associated positive integers ml,..., m.
Let k ml+.--+m and, for each 1 <_ j <_ , let cj denote the column vector
(1, zj, z],..., z]-1)T. Then M denotes the k-by-k matrix

(1.1)
0A superscript on c in (1.1) denotes the number of applications of to cj.

THEOREM 1.1.

det M [0!1!... (mj 1)!] H(zi zj)m’m

Such matrices occur naturally in the process of Hermite interpolation [4]. Notice
in case g k (so each mj 1) that M is the Vandermonde matrix, and Theorem 1.1
yields the well-known formula det M YI>j(z- zj).

Matrices of the second type that we wish to consider are constructed in the same
fashion as M above, except a superscript on cj denotes the number of applications of
the operator

0
(1.2) Dj z. Ozj
to cj. To avoid confusion, henceforth, we let M denote such a matrix. Thus

(1.3)

THEOREM 1.2.

det -- zj det M.
j--1

Received by the editors June 10, 1991; accepted for publication (in revised form) February 16,
1992.
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Matrices of the form//are key to finding general solutions to linear recursion
relations [1]. Notice that M in (1.3) is again the Vandermonde matrix if g k. Also
notice that Theorem 1.1 implies det M 0 (since zi zj for i j), and Theorem
1.2 implies det h:/= 0 if each zj 0. (det M = 0 is needed to show that Hermite
interpolation actually works [4], [3], and det 0 is needed to prove the existence
of a general solution to a given linear recursion relation [1].)

As indicated previously, the purpose of this note is to provide a particularly
elementary and, we hope, interesting derivation of the formulae in Theorems 1.1 and
1.2. Theorem 1.2 follows from an elementary reduction argument given in Lemma
3.1. The formula in Theorem 1.1 is obtained by an inductive procedure completely
analogous to that which is often used to obtain the earlier-mentioned formula for the
Vandermonde determinant. What makes our derivation interesting is our use of the
Leibniz rule for differentiating determinants to construct a tree (see Fig. 2.2) which
has encoded into it all the pertinent information about the derivatives of det M. An
important feature of this process is our ability to count the total number of distinct
branches in such a tree (see Lemma 2.1). An intriguing feature of this tree is that
the number of branches in it is equal to the degree of a certain Grassmann manifold
(see Remark 4.1). This seems unlikely to be only coincidence, and we are currently
studying facets of the Schubert calculus in the hope of eventually understanding the
relation between these a priori unrelated concepts.

2. Proof of Theorem 1.1. Define the polynomial p by

p(zl det M,

thinking of zl as variable and z2,..., Z 35 constants. Then

p’(zl) det [c, c,.

p"(z) det [c, c,.

+ det [c,c,...,c ,c

and so forth. Here is used to denote the columns which are constant with re-
spect to Zl. We need to pursue this differentiation process to its conclusion, so we
shorten the notation by using only the differentiation superscripts on the c columns.
Thus 10, 1,..., ml 11 corresponds to p(z), I0, 1,..., ml 2,m to p’(z), I0, 1,...,
ml-3,m- 1,m + 10, 1,...,ml-2, ml + 11 to p"(z), etc. In general, for integers

0 <_ i < i2 <... < ira1, li,i2,..., iml corresponds to det [cil) c2) c’); .]
Observe that

(e.1)

We record some observations for future use.
(i) If iml >_ k, then li, i2,..., im vanishes.
(ii) Iffor any 1 <_ j <_ m-l, ij+l ijT1, then lil,... ,ij_,ij+l, ij+,...

vanishes.
(iii) It requires m differentiations of p(zi) to obtain
We now construct a diagram which describes completely the process of differen-

tiating p(zl). Place p(z) at the top of the diagram. Each row of the diagram is
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obtained by differentiating that which is immediately above it and ordering the de-
terminants left to right as j goes from 1 to ml in (2.1). Any duplicate determinants
are collected into a single term (with integer coefficient) in the position of that which
first occurs on the left. Figure 2.1 is the diagram so constructed in case k 6 and

10,1,21
10,1,31

10, 2, 31 d- 10, 1, 4
I1, 2, 31 d- 210, 2, 41 + 10, 1, 5

512, 3, 41 + 1611 3, 51 d- 510, 4, 5
2112, 3, 51 d- 2111, 4, 5

4213,4, 51
FIG. 2.1. det M and its derivatives in case k 6, m 3.

Such a diagram gives rise to a tree. Simply connect a determinant in any row to
those derived from it in the next row. Now the integer coefficient counts the number
of distinct paths (branches) from the top of the tree to the given determinant. Figure
2.2 shows the tree obtained from the diagram in Fig. 2.1.

Note that the tree in Fig. 2.2 has a total of 42 distinct branches. In general we
let N(k, m) denote the total number of distinct branches in such a tree.

The pertinent properties of any such tree (obtained from observations (i), (ii),
and (iii)) are the following.

Property 1. Letting the top row be row 0, row j corresponds to p(Y)(z).
Property 2. In each row the leading entry of the leftmost term is greater than or

equal to the leading entries of the other terms in that row.
Property 3. For any nonnegative integer , the leftmost term in row ml is

lu, u / 1,..., u / m 11, and u / m 1 is strictly less than the last entry of any
other term in this row. Also, all terms in all rows above row ml have leading entry
strictly less than .

Property 4. If 2 _< j _< g, then each term in each row above row rnlmy contains
at least one entry equal to 0, 1, 2,..., or my 1.

Property 5. The tree ends with row (k- ml)m. And that row is N(k,ml)lk-
m,...,k-11.

Recall that N(k, m) is the number of distinct branches in the tree. It is also the
number of determinants k- m1,..., k- 11 generated in the diagram. It is a number
we explicitly compute in Lemma 2.1 (proof in 4).

It follows from Properties 1 and 5 that degp _< (k- ml)ml. Property 4 implies
that zy, 2 _< j _< l, is a root of p with multiplicity at least mlmy. Thus

p(z) cl H(z zy)mlm (--1)(k-’)m’c H(Zy Z)mm
j=2 j=2

Since ’y=2 mmy (k- ml)m >_ deg p, it follows that c in (2.2) is independent
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10,1,21

Io, 1,31

10,2,31 10,1,41

11,2,31 210,2,41 10,1,5]

311, 2, 4] 210, 3, 41 3]0, 2, 5

511, 3, 41 611, 2, 51 510, 3, 5

512, 3, 41 11, 3, 51 510, 4, 5

2112,3,51 2111,4,51

a212,4,51

a213,4,51

FIG. 2.2. Tree associated with det M and its derivatives.

of zl and

1
(2.3)

To compute cl we introduce a bit more notation. For 1 < j < let Bj
(m.-- 1)][cj, c,..., c So p(zl) det [B1 (z); B2; ;Bt] and

p((k-ml)’l)(zx) N(k, mi)lk- mi,k- mi + 1,...,k- 11
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N(k, ml)det

0 0 0

(k ml)! 0 B2;... ;B

(k ml +

(k- 1)!

where * consists of zl’s to positive powers. Expanding the determinant by the columns
of the Zl block we obtain

p((k-ml)ml)(O) N(k, ml)(-1)(k+ml)m(k ml)!... (k 1)! det [/2;...
where each/j is obtained from Bj by deleting the last ml rows. Substituting (2.4)
and (2.3) into (2.2) yields

(2.5)

p(Zl)- N(k’ml)((k-ml)’"i(k-[(kml ml]
1)’ )det [2;...;] H(zj-Zl)mm

j-2

The last calculation we need follows in Lemma 2.1.
LEMMA 2.1. (Proof in 4.)

(2.6) N(k, ml) [011!... (ml 1)!][(k ml)ml]!
(k- ml)!... (k- 1)!

It follows from (2.5) and (2.6) that

det M--[0!1!... (ml- 1)!] det [/}2;... ;/}t] H(zj- Zl)mmi
j--2

Note that [/}2;... ;/}] is a k- ml by k- ml matrix of the same form as M. Theorem
1.1 follows by induction.

3. Proof of Theorem 1.2. Theorem 1.2 follows by applying the proof of the
m --1

following lemma to each block Bj [cj,Djcj;...,D cj] of the matrix

[B1;...
LEMMA 3.1. Define the operator D by
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For m a positive integer and c(z) an arbitrary column vector of length m,
(-i)

(3.1) det [c(z),Dc(z),...,D’-lc(z)]--z det [c(z),ct(z),...,c(m-1)(z)].

Proof. Using D(znc(n)) zn+lc(n+l) + nznc(n) we get det [c, Dc,...,Dm-lc]
det [c, zc’, z2c"+zc, z3c"+3z2c"+zc, zm-1c(m-l) +...+zc]. Adding appropriate
multiples of column 2 to succeeding columns, then appropriate multiples of column 3
to succeeding columns, etc., and finally factoring the common powers of z from each
column, we obtain (3.1). F1

4. Proof of Lemma 2.1. The key to proving Lemma 2.1 is the observation
that N(k, ml) is a property of the tree, dependent only on 10,..., ml 11 and k, and
independent of B2,..., B. Thus we may assume B2,..., B to be especially nice. In
particular assume mj 1 for each 2 _< j _< g. Thus for 2 _< j <_ g the zj’s are distinct
and B (1, z,..., z-1)T. Let

A "- IS1 (zl); S2;... ;B]
and

B "- [B:;... ;B; B(z)].
We know det A +/-det B. Inducting on (2.5) and observing that N(], 1) 1 for
all ] we get

(4.1) det A=N(k, ml){(k-ml)’"i(k-1)!}H(zi-z)mmj[(k ml ml]!

Similar use of (2.5) and the observation that N(ml, ml) 1 yields

(4.2) det B +/-[0!1!... (ml 1)!] H(zi zy)mmj.

(The "+/-" occurs in (4.2) because we are forcing the ordering on the zj’s to be the
same as that used in (4.1).) Setting (4.1) +/- (4.2) and solving for N(k, ml) yields
(2.6). FI

Remark 4.1. The right side of (2.6) is a familiar expression in enumerative geome-
try. It is the degree of the complex Grassmann manifold of (ml-1) planes in projective
(k- 1) space [2]. Why the number of branches in a tree constructed as above should
equal this degree is a mystery that merits further study. However, such study promises
to exceed the elementary tenants pervasive in this note.

Acknowledgments. We are especially grateful to our two colleagues, Clyde F.
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contents of this note.
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THE HADAMARD OPERATOR NORM OF A CIRCULANT AND
APPLICATIONS*

ROY MATHIASt

Abstract. Let Mn be the space of n x n complex matrices and let I1" Iloo denote the spectral
norm. Given matrices A [aj] and B [bij] of the same size, define their Hadamard product to be
A o B [ajbj]. Define the Hadamard operator norm of A E Mn to be

lAIIIo max{llA o BIIo IlSllo _< 1}.

It is shown that

()
if and only if

(e)

IIIAIIIo trlAI/n

IAI o I IA*I o I (trlAI/n)I.
It is shown that (2) holds for generalized circulants and hence that the Hadamard operator norm of
a generalized circulant can be computed easily. This allows us to compute or bound

where Tn is the n x n matrix with ones on and above the diagonal and zeros below, and related
quantities. In each ce the norms grow like log n.

Using these results upper and lower bounds are obtained on quantities of the form

sup{ A- S A-B 1, A,B e Mn}
and

sup{I] ]A]B- B]A] [AB- BA] 1, A,B Un, A A*}.
The authors also indicate the extent to which the results generalize to all unitarily invariant

norms, characterize the ce of equality in a matrix Cauchy-Schwarz Inequality, and give a coun-
terexample to a conjecture involving Hadamard products.

Key words. Hadamard product, circulant, triangular truncation, commutator, Cauchy-Schwarz
inequality, matrix absolute value

AMS subject classifications. 15A60, 15A45, 15A57, 47A55, 47B47

1. Introduction. Let Mn denote the space of n x n complex matrices, and let
denote the cone of n-vectors with positive components. Given A E M we define
=_ (A’A) 1/2, the Schatten p-norm of A to be

IIAII, (trlAIP) 1/p for 1

_
p < oc

and I]AII to be the spectral norm of A (i.e., IIAII is the spectral radius of A’A).
Given matrices A [aij] and B [bj] of the same size we define their Hadamard
product to be A o B [aiybii]. Given a norm I1" II on Un we define the corresponding
Hadamard operator norm II1" III on Mn by

(1.1) IIIAIII max{llA o BII IIBII 1}.

We are most interested in Ill" IIIo,:, and Ill" II1 . Given Hermitian A,B e Mn we use
A >_ B to mean that A- B is positive semidefinite.
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There are few classes of matrices for which
that

is easy to compute. It is known

IIIAIII max{aii" i 1,..., n)
IIIA[[I 1

if A is positive semidefinite,

if A is unitary.

In 2 we define a class of matrices that generalizes the circulants, and show that if A
is such a generalized circulant then

n

i--1

and that Ai(A), the eigenvalues of A, are very easy to compute. We also determine
the case of equality in a matrix Cauchy-Schwarz Inequality.

In 3 we will apply the results in 2 to determine the Hadamard operator norm
of the n x n matrices

(1.3) Sn [sign(j i)],
(1.4) n Sn + I,

and to bound the Hadamard operator norm of

(1.6)

T-- the n x n strictly upper triangular matrix of ones

(tij=0 if i>j and tij=l if i<j),

We will also consider matrices of the form [(A A)/(A + A)] where/k are positive
numbers. Let J, E Mn be the matrix of ones.

In 4 we will use the bounds in 3 to prove some inequalities involving commu-
tators, the matrix absolute value, and the eigenvalues of arbitrary perturbations of
Hermitian matrices.

In 5 we will use the results of 2 to give a counterexample to the natural con-
jecture that if A is real and there is a real unitary U such that A o U is entrywise
nonnegative then

max{llA o BII [IB[[ <_ 1}

is attained at a matrix B such that A o B is entrywise nonnegative.

2. General results. In this section we characterize the matrices AE Mn for
which IIIAIII --IIAll/n and show that the circulants are in this class.

Our first result is perhaps well known but appears not to have been formally
stated before.

LEMMA 2.1. Let A Mn. Then

Proof. For any X, Y, Z M we have

(2.1) tr(X o Y)Z tr(X o zT)YT.
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It is a simple exercise to verify this directly. Now by the duality (with respect to the
inner product trAP*) between the norms I1" II1 and I1" Iloo we have

IIIAIlloo max{llA o Bl[o IlBIIoo 1}
--max{ltr(A o B)C*I’IIBIIoo

max{]tr(A o c*T)BTI.]]BI]oo <_ 1, IICIl _< 1}
max(]lA o c*TII" IIClll <

IllAlllx.
We have also used IIUTlloo -IlUlloo and IIc*Tll

The next result is a very useful characterization of matrices with IllAlllo < 1 due
to Haagerup (unpublished). See [2] or [13, Thm. 3.1] for a proof.

LEMM 2.2. L A M.. Thn IllAllloo < 1 if and only i hre ar malacca

P QE Mn with main diagonal entries at most 1 such that

.4*

is positive semidefinite.
The following technical lemma will only be used to prove the "only if" part of

Lemma 2.4 which is not used in the rest of the paper.
LNa 2.a. Let I1o II be unitril inwrint norm on M, such that

(2.2) A _> B _> 0 and A # B imply IIAII > IIBII.
Let A, B, C Mn be such that

(2.3) (A C)> 0C* B

Then

(2.4) IICII IIAII IIBII
with equality if and only if A clC* and B -11C for some c > O.

Note that (2.3) implies (2.4) for any unitarily invariant norm regardless of whether
(2.2) holds or not.

Proof. Let A, B, C Mn satisfy (2.3). Then it is well known that (2.4) holds (see
e.g., [11, Whm. 2.3]). It is clear that if A -IC* and B --ICI then we have equality
in (2.4). So it is sufficient to prove the "only if" part.

Now suppose that equality holds in (2.4). Without loss of generality we may
assume that IIAII IIBII. Let V e Mn be a unitary matrix such that UC ICI. Then

(2.5) (UAU*IcI ICI)>0"B
For positive semidefinite matrices X, Y let X#Y denote their geometric mean (see
[1] for definition). Let S (UAU* + B)/2 and D (UAU*-B)/2 and let
G (UAU*)#B. Then by (2.5) together with the alternate characterization of
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the geometric mean on [1, p. 33] for the second inequality and [1, Eq. (11)] for the
second equality we have

(2.6) 0 IcI a (UAU*)#B S#(S- DStD)

(S is the Moore-Penrose generalized inverse of S). Again by the alternate definition
of the geometric mean we have

S G )>0.(2.7) G S- DStD

So, using (2.6) for the first inequality and (2.7) for the second we have

II ICI IJGII <_ IISII IIs-
IlSll
II(UAU* + B)/2112

< [(IIAII / IIBII)/2]

-IICII,
Thus we must have equality throughout, and in particular, in the third inequality.
That is IISII S DStDII, which by (2.2) implies that DStD 0 which in turn
implies D 0 (since the range of D is contained in that of S). So we have shown
that B- UAU*. Thus (2.5) is

B ICI) > 0,ICI B

and hence B >_ ICI. So if B ICI then by (2.2) we would have IIBII > c II IICII
which is not possible since we have equality in (2.4). Thus B ICI, and now it is
easy to show that A

LEMMA 2.4. Let AE M,. Then

(2.8)
n

Equality holds in (2.8) if and only if

(2.9) IA] o I= IA* oi= (trlAI) I

or, equivalently, if and only if the main diagonal entries of IAI and IA*I are equal to
IIAII1/n. If (2.9) holds and U is a contraction such that UA IAI, then ]llAIlloo
IIA o UT I[oo.

Proof. Take any Ae M. Let U be a contraction such that UA IAI. Then

IIIAIII >_ IIAuTII >_ (e/vfff)(AUT)(en/vfff) --tr(AoUT)j/n ltrUA-- ltrlAI,
n n

which gives (2.8). (en is the vector of l’s; we have used ene J and (2.1) for the
second equality.)
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The matrix

is positive semidefinite and if (2.9) holds then the main diagonal entries are no greater
than IIAIl/n (in fact they are all equal to this) so by Lemma 2.2 IIIAIII <_
(So we must have equality in (2.8).)

Now let us prove the "only if" part. Assume that lllAIll -IIAIli/TM Then there
are matrices P, Q E Mn such that

(2.11) (PA* QA) >0-

and maxpi maxqi _< trlAI/n and so IIPII1 trP _< IIAII1 and IIQII1 trQ
IIAII1. In view of (2.4) we must have pii qii triAl i 1,...,n and hence

IIPII1 IIQII1 IIAII So by the "only if" part of Lemma 2.3 P IA*I and Q
Thus (2.9) follows from the fact that both P and Q have constant main diagonal
entries. [:]

COROLLARY 2.5. Let A Mn. Then

IIIAIII >_ max(llBIl/k" B e Mk is a sub-matrix of A, k- 1,...,n}.

The unitaries are an obvious class of matrices that satisfy (2.9). We now define
the class of generalized circulants and show that they also satisfy (2.9). We say that
A Mn is a generalized z-circulant (where z C has modulus 1) if there are complex
numbers c0,..., cn-1 such that

n--1

(2.12) A E (Ci’
i--0

where C is given by

{1(2.13) cij z
0

i 1,...,n- 1, j i + 1,
i=n, j 1,
otherwise.

We do not use the simpler notation "g-circulant" because it already has an accepted
meaning. A generalized 1-circulant is what is usually referred to as a circulant. We
are most interested in generalized 1-circulants in this paper. The matrix C defined
in (2.13) is normal if and only if Izl 1. It will be seen in the proof of Theorem 2.6
that the normality of C is essential.

The eigenvalues of a generalized z-circulant are very easy to find. Let z eie and
let A be the generalized z-circulant

n-1

j=0

Then, since A is a polynomial in C, the eigenvalues of A are

n--1

Ak= ajw k=l,...,n,
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where wk exp((O + 2kr)/n), k 1,..., n are the eigenvalues of C. It will be seen in
the next section that one can sometimes further simplify the expression for the

Notice that the proof of the next result, which is one of our main results, depends
only on the "if" part of Lemma 2.4.

THEOREM 2.6. Let A E Mn be a generalized z-circulant. Then

nI
lIAIII 1E(2.14) IIIAIIIoo-

i--1

where Ai(A) i 1,... ,n are the eigenvalues of A. Furthermore, there is a unitary
generalized z-circulant V such that II]AIIIoo ]IA o

Proof. Let AE Mn be a generalized z-circulant and let C be the matrix given by
(2.13). The second equality in (2.14) follows from the fact that because C is normal
so is A, hence the singular values of A are the absolute values of its eigenvalues. We
show that A satisfies the condition (2.9) and that the first equality in (2.14) holds.
Because A is normal IAI- (A’A)/2 is a polynomial in A (in particular, IAI- p(A),
where p is a polynomial such that p(Ai) --IAil for each eigenvalue Ai of A), hence a
polynomial in C. Thus AI has constant main diagonal entries. To prove the final
statement note that because A is normal there is a unitary V that is a polynomial in
A (hence in C) such that VA- IAI. Take U- VT. [-]

Recently there has been some interest in the norm

[I[A[[I max{w(A o S): w(B) <_ 1},

where (A) _= max{Ix*Axl: x C’,x*x 1) is the numerical radius of A. By
an analogue of Lemma 2.2 ([2] or [13, Thm. 3.2]) one can derive I[[AI[[
(assuming A is a generalized z-circulant) from Theorem 2.6. Using this fact one
can generalize all but one of the results in this paper to the numerical radius. The
exception is Corollary 4.3, where it is necessary to use the fact that [IUAV[Ioo
for all unitaries U and V; it is not sufficient to use merely [[UAU*I[o --[IA[[o for all
unitaries U.

In the next lemma we identify a class of matrices A for which

max{[}A o B[[o,:, [[B}[ _< 1}

is attained at a matrix B that is essentially unique.
L .. Lt A e M. Au, that A ,o,,, IIIAIIIo IIAIl/n, d

that V =_ AIA]- is irreducible. Let V M, and suppose that [IV[Io <_ 1. Then

(2.15) IIA o vll -IIIAIII -IIAlll/n

if and only if

(2.16) V WTW2 where W1, W2 Mn are diagonal unitary.

Proof. The "if" part of the lemma is clear from Lemma 2.4.
Let us consider the "only if" part. Let A satisfy the conditions of the lemma and

let V Mn be a contraction satisfying (2.15). We must show that V is of the form
(2.16). Then

(,A* [A[ 20, C -V* I
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With these definitions

( (trlA,/n)I -A o V )BoG- -(A o V)* (trlAI/n)I >-0"

By assumption llA o VIl trlAI/n so S o C must be singular. The singularity of
B o C (and the fact that B _> 0, C _> 0) imply that there is a nonzero diagonal matrix
D E M2n such that BD*CTD 0 [13, Lemma 1.2]. Let us first assume that D
is entrywise nonnegative. Let D1, D2 Mn be such that D D1 @ 02. Writing
B(D*CTD) 0 in block form we have

A* IAI -D2YTDt D22 O.

Considering the 1,1 block of the product we have

IA*ID ADVTD IA*IUDVTD,
which (using the nonsingularity of A) gives

U*D2 D2VTD1

or equivalently

(2.17) DU DlrVD2.
Similarly, consideration of the 2, 2 entry gives

(2.18) UD
Combining (2.17) and (2.18) we have DU UD22 Thus (D)ii (D)jj for any i,j
for which uij = 0. The irreducibility of U now ensures that D2 D c2I for some
c > 0, and (because D1 and D2 are entrywise nonnegative) D1 D2 cI. Thus
V U or equivalently V U.

Now let us consider the case where the diagonal matrix D is not nonnegative.
In this case let D (WID1)@ (W202) where 01,02, W1, W2 Mn are diagonal,
W1, W2 are unitary and D1, D2 are nonnegative and proceed as before.

3. Some special matrices. In this section we compute or bound
some matrices related to circulants. The following constants will be useful.

for

1
n-- cot(2j 1)r/2n

n
j--1

1
n

", ------ Z csc(2j 1)/2n[.
n
j-1

[/2]
2

cot(2j- 1)/2n,
n

j=l

Since cotOl < cscOl < cotol + 1 for kr/2, it follows that n < n < +
1. Approximating the sums by integrals one can show that n-/ (l/r)log2,
n/logn -- 2/, and n/logn --* 2/r, as n --. oc. The sequences n and n are
strictly increasing (as will be immediate from the proof of the next lemma).

LEMMA 3.1. For i 1, 2,...
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Proof. We first prove the result for n. Let C be the matrix given by (2.13) when
z -1. Then n I + C + C2 +.." + Cn-*. The eigenvalues of C are

wk --ei(2k-1)r/n k- 1 n

from which it follows that the eigenvalues of :n are Ak (1 w)/(1 wk), which
using half-angle formulae gives

Ak 1 + i cot(2k- 1)r/2n.

One can show that IAkl--I sin(2k- 1)r/2nl-. The result for n follows from this.
To see that III Snllloo 7n, just note that S I and, hence, that its eigen-

values are cot(2k- 1)zr/2n.
Pokrzywa [15] has shown that

(3.2) maxI[IZ Z*]]oo Z e M, [IZ + Z*I] < 1, Z has real eigenvalues} n.

This fact is essentially the same as [l[Sn[[Io "r, as we will demonstrate. (This result
was originally proved to help bound the eigenvalues of an arbitrary perturbation of a
Hermitian matrix; see the discussion at the end of 4.) To show this we first prove
that

(3.3)
max{llZ Z*ll= z e M=, IIZ + Z*llo < 1, Z has real eigenvalues}

-max{llS= o Hlt " H E Mn, {IHllo < 1,H H*}.

Let Z E M= have real eigenvalues then, by Schur’s Upper Triangularization Theorem,
there is a unitary V Mn such that VZV* is upper triangular. Let VZV* D + U,
where D is a real diagonal matrix (real because Z has real eigenvalues) and U is
strictly upper triangular. Then, since Sn o D O, S= o U U, and Sn o U* -U*,
we have

VZV* (VZV*)* U- U* Sn o (2D + U + U*) Sn o [VZV* + (VZV*)*].

Thus, by the unitary invariance of I1" [[o the left-hand side of (3.3) is no greater than
the right-hand side. Conversely, given H Hn let U be strictly upper triangular and
let D be real and diagonal such that H U* -4- 2D + U. Let Z D + U. Then
H Z + Z* and Sn o H U U* Z- Z*. This gives the reverse inequality.

Because Sn is skew-Hermitian (hence iS, is Hermitian) Corollary 3.3 in [13] says
that (3.3) is equal to

Now we will turn our attention to the matrix [(Ai- Aj)/(Ai + Aj)].
THEOREM 3.2. Let A,,..., An be positive real numbers. Then

Furthermore, 2 is the best possible bound that is independent of n.

Proof. First we will show ][1[ I(Ai Ai)/(Ai + A)[ ][]loo < 2. Note that

I(A- A)/(A + Aj) 1 2 min{A, Aj}/(A + Aj).
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Thus

(3.5) [1(,- )/(, + A)I] J -[2 min{A,, Aj}/(Ai + Aj)].

The Cauchy matrix [(Ai / Ai) -1] is positive semidefinite (see e.g., [9, 7.1, problem
17]). The matrix [2min{A,A}] is positive semidefinite. Assume without loss of
generality that A1 >_... >_ An, then

n

2[min{A, A}] 2(A A+)J @ 0_,
i=l

where ’n+l 0. Thus, by the Schur Product Theorem the second matrix in (3.5) is
positive semidefinite. So, using (1.2) for the last inequality, we have

Now we will show that 2 is the best bound in (3.4) that is independent of n. Note
that

mlimo[l(m mJ)/(m + m)[] J, I.

J I is a circulant with one eigenvalue n- 1 and n- 1 eigenvalues -1 so

IIIJ, rlll 2(n- 1)/n.

(Bhatia, Choi, and Davis [6, Thm. 2.1] have also shown this.)
bound independent of n. [:]

COROLLARY 3.3. Let

Thus 2 is the best

, sup{I]l[(A A)/(A + )]111o " e R’+}.
Then

Proof. To get the lower bound note that Sn is the limit of matrices of the form
[(Ai Aj)/(A / )] (see the proof of Theorem 3.2). For the upper bound use the
fact that we may assume without loss of generality that _> >_ An, in which case
[(m,- m)/(m, / m)]- s, o I(,,- ,)/(,, / ,)1 ]. r

Notice that the upper and lower bounds in Corollary 3.3 differ by a factor of 2.
One would like to tighten these bounds since there are many bounds in the rest of
the paper that involve 3,.

COROLLARY 3.4. Let m <_ n and define

(3.6) 5.,, =- sup{lll[( )/(:, + )1111 " e R+, e R+}."
Then

(3.7) 7m <- m <_ 5m,n <_ m+n <_ 27m+n.

Proof. Let

D
Ai + A i,j=l

#’ and #i #iD2
# i=,j=l #i+#J i,j=l
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Since D2 is a submatrix of

D _/?

it follows that IIID2l]lo _< IllDI]lo <_ f,+.
For the lower bound use the fact if we take #i Ai for i 1,..., m then

)i + "J i,j=l

is a submatrix of

A #j D
Ai + #j i=l,j=l

Davies [7, Prop. 4] has proved the following bounds that are independent of n for
the Hadamard operator norm of Sn with respect to the Schatten p-norms:

II1[(,- )/(, + )],=1111 < { p 2 p < ,
cp/(1-p) 1<p2,

where c is an absolute constant (independent of p and n).
Now we will turn our attention to the norm of triangular truncation.
COROLLARY 3.5. For any n 1, 2...

(3.8) (n + 1) < ]lll]l < n +
2n - 2

Proof. For the upper bound use , ( + J)/2. So

IIIn IIIo <- 1/2) [111n IIIo + III Jn III (1/2) + 1].

For the lower bound let U InI-ln (from the proof of Lemma 3.1 we can see
that is nonsingular). Then USn SnU ISnl since n is normal. So we know
(from the proof of Lemma 2.4) that

(/f)*(: U)(/v) IIll/n .
Thus,

III.IIIoo >_ II. o uTIIoo
> (/e)(/4)*( o u + j. o u)(./4-)

(1/2)[’n + (1/n)eUTen].

We will have proved the lower bound if we can show that eUTen n. Because U
* andso *UisUe (eU)en. The first row of , is en enis real we have eUTe en

the first row of SnU Inl. Thus eUen is the sum of the entries in the first row of
Inl. We know that

n--1

I;.I
=0
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for some real coefficients c{ (where (7 is the matrix given by (2.13) with z -1).
Since I,1 is positive definite and real it must be symmetric. The symmetry of Sn
requires that -a,_, i 1, 2,..., n 1. Thus the sum of the first row of I’, is

n--1

(We have used the fact that Inl has constant main diagonal entries for the third
equality.) El

We can obtain a slightly weaker lower bound on IIlnllloo with considerably less
effort. Since n ,-T and IIITnllloo Ill’n_1 IIioo -< IIlnllloo we have

-, IIlllloo < II1111oo + III T,7 IIioo < 2111111oo.
Angelos, Cowen, and Narayan [31 have determined II1 IIioo in closed form for n 2, 3, 4
and bounded IIlnllloo for general n. One can show that our bounds are better than
those in [3, Tam. 1].

We have only considered the norms II1" II]oo and I]1" III1. Using the fact that for
any other unitarily invariant norm I1" on M,, the corresponding Hadamard operator
norm satisfies

(3.9) IIIAIII max{llA o BII: IIBII < 1, B e Mn} <_ IIIAIIIoo,
we have upper bounds on IIIAIII. These bounds may not be very good (cf. the results
of Davies mentioned earlier in this section).

4. Applications. In this section we apply the results of the previous section
to problems involving commutators, the absolute value, and the eigenvalues of an
arbitrary perturbation of a Hermitian matrix. We recast these problems in terms of
bounding the Hadamard operator norm of an appropriate matrix. One advantage of
this approach is that, in view of Lemma 2.1, it is immediate that the same inequality
holds for the spectral norm and the trace norm, and by (3.9) our upper bounds are
valid for all unitarily invariant norms. In the case of the Schatten p-norms (1 < p <
oe) Davies [7] (see his results quoted in the previous section) has obtained stronger
results (that are independent of the dimension n). The bound on the norm of IIITIII is
useful in perturbation bounds for triangular factorizations matrices. For example, it
is used in [8] for a perturbation bound on the Cholesky factor of a positive definite
matrix. We do not discuss these applications here.

First we obtain bounds on

(4.1) c, sup{ll IAI- IBI Iloo: IIA BIIoo 1, A,B e Mn}.

In [12] Kato showed that c does indeed depend on n. (If one looks carefully at his
proof one sees that he showed that c, >_ (1/3)(logn) 1/2 1.) Davies [7, Tams. 13,
14] showed that there are positive constants kl, k2 such that

k log n _< c, _< k2 log n.

(Actually, he defined Cn using II. I1 rather than II. Iloo in (4.1); but using Lemma 4.1,
Lemma 4.2, and the duality result in Lemma 2.1, one can show that defining c with
the norm I]" II1 rather than I1" Iloo changes c by at most 1.)
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LEMMA 4.1. For any n- 1, 2,...

(4.2) cn sup ( d lA-I-tCIt=o[I A, C e Mn, llCIIoo < l A nonsingular /
Proof. One can show that the left-hand side of (4.2) is greater than or equal to

the right-hand side by using the definition of the derivative. In order to show the
reverse inequality it is sufficient to show that

(4.3)

where

n sup ( d
IA + tCl:o A, C E Mn, Ilcll 1, A nonsingular }.

We will first prove this in the special case where A + t(B A) is nonsingular for all
t E [0, 1]. In this case, f(t) IA + t(B A)I is differentiable for all t [0, 1], so

IA[- IBI I1 f’(t)dt

<_ IIf’(t)lldt

Now let us consider the general case. It is known that for any A, B Mn

(See [7, Lemma 2] for the second inequality.)
Take any A, B Mn and any e > 0. Choose s > 0 such that s < e/- and both

A + sI and B + sI are nonsingular. Define A(t) A + sI + t(B A). Then A(t) is
singular at at most n values of t in [0, 1]. Let 0 < tl < < tk < 1 be the points
in [0, 1] at which A(t) is singular. Set to 0 and tk+l 1. Choose r/> 0 such that
2/< ti ti_l, i 1,..., k + 1 and r/< e/v/. Then

/ IA(t_l / )1- IA(t-x)l I1
<_ /II(A- B)ll / ll(t- t_l)(A-

So now

k+l

[I IA]- [S[ I[ -< [A[- [A(0)[ [[ + E [[ [A(ti)[- [A(ti_t)[ [[o
i:1

+ IA(1)I- IBI [1
< ailA Sllo / e[2(k + 1)IIA Bl[ / 2].
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Let e 0 to get (4.3). rl

The next lemma allows us to transform the problem of determining cn into one
involving Hadamard products.

LEMMA 4.2. Let A, C E Mn be given with A nonsingular. Let ai, i 1, n
be the singular values of A and let E be a diagonal matrix with the singular values
of A on the diagonal, and let A UEV be a singular value decomposition of A. Let
f(t) IA + tCI. Then

(4.4) f’(O) V*(H + [(ai aj)/(ai + aj)] o K)V,

where

(4.5) 2H (U*CV) + (U*CV)* and 2K (U*CV) (U*CV)*.

Proof. Generalize (2.18a) in [4] to the complex case. Alternatively, apply [10,
TAm. 6.6.30] to the function f(t) [(A

COROLLARY 4.3. Let n 2, 3, Then

< <c < 1+ < 2 + .
Proof. To prove the lower bound on c let a(k) E Rn be such that+

and let Wk Mn be skew-Hermitian contractions such that

( ( dk
o Wk

Corollary a.a in [la] guarantees that W can be chosen to be skew-Hermitian since

(}k)- k))/(})+ ))] is skew-Hermitian. Then

lim
dldiag(,...,) + tWlt=o .

Thus, by Lemma 4.2, it follows that
Now we prove the upper bound on c, again using Lemma 4.1. ake A, M

with A nonsingular and Ilcll 1. Let A UNV be a singular value decomposition
of A. Le H and K be given by (4.g), and therefore also contractions. hen, by
Lemma 4.1

d
-lA + tCIt=o IIV*(H + [( )/( + )] o K)VIIoo

IIH + [(o-, o-.)/(o-, + o-.)] o KII
< IIHIIoo + I1[(o o-.)/(,:,-, + o-.)] o KIIoo
< + II1[(,:", ,:".)/(,:", + o.)]111
<_ +.

THEOREM 4.4. Let A, B M, be given with A Hermitian. Then

IAIB- BIAI II-< (1 +/,)IIAB- BAll
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e > O, there are A, B E M, with A Hermitian such that

II IAIB- BIAI > e)IiAB- BAll.

Proof. Without loss of generality we may assume that A is diagonal and nonsingu-
lar. Let Ai, i 1,..., k be the positive eigenvalues of A and let --#k+i, i 1,..., n-- k
be the negative eigenvalues of A. Then one can check that

IAIB BIA C o (AB BA),

where

and D is the k (n- k) matrix with i,j entry (A- #j)/(Ai + #j). So to obtain the
inequality we need only find a suitable bound on IIICIII. Using (3.9) and Corollary
3.4 we have

--gn-k

< Jk 0 + -D*0 -J_

To prove the lower bound on IAIB -BIAI use the usual limiting argument. F1

One can prove a variety of other results involving commutators and the absolute
value by reducing them to problems involving the Hadamard product with a matrix
of the form [( )/( + )].

Finally, we apply our results to the problem of bounding the change in the eigen-
values of a Hermitian matrix subjected to an arbitrary perturbation. The bound (4.6)
is similar to one given by Uahan (see [5, 23] for the details) and is based on (3.2).
A strengthening of this result in the case where the eigenvalues of A are clustered is
given in [16]. The lower bound (4.7) is new and improves on that given in [5, nx. 23.4]
by a factor of 7r/2.

THEOREM 4.5. Let A, X Mn be given with A Hermitian and X arbitrary. Let
c1 >_... >_ c, be the eigenvalues of A and let ,. An be the eigenvalues of A + X
ordered such that Re A >_ _> Re An. Then

(4.6) max Ic,- Ail < (’n + 2)llXll
l<i<n

cx)

Furthermore, for any given positive integer n there are A, X M, with A Hermitian
and X 0 such that no matter how , Ai i 1,...,n, the eigenvalues of A and
A + X, respectively, are ordered

(4.7) max Io- ,1 .llXll.
l<i<n

Proof. See [5, 23] for the proof of (4.6). We prove (4.7). Let U be a real unitary
matrix such that ISnl USn. Then since Sn is normal we also have ISnl S,U
and hence ISnl (SnV)* U*S -U*S,. Thus (1/2)(U- U*)Sn --ISnl. Let
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X (1/2)(U U*)T (1/2)(UT U) and let A Sn oX. Clearly X is a contraction,
so by the final statement in Lemma 2.4 IIAIIo IISn o XIIo n. Because A is
Hermitian it follows that one of the eigenvalues of A must be +/-’)’n. Because X is real
and skew-Hermitian its main diagonal entries are 0 and so A + X Sn o X + X is
strictly upper triangular and so all its eigenvalues are 0. Thus we have (4.7). [2

We could also prove (4.7) by using the matrix Z that attains the maximum in
(3.2). The advantage of our approach is that with a little work it is possible to find
explicitly the unitary matrix U in the proof and thus find A and X explicitly.

5. A counterexample. In this section we show that the following conjecture,
which is slightly weaker than Conjecture 6.8 in [14], is false.

CONJECTURE 5.1. Let A E Mn have real entries and suppose that there is a real
unitary U Mn such that all the entries of A o U are positive then

(5.1) I[[A[l[o max{l[A o Bl]o I}BIIo _< ,a,yb, >_ O,i,j ,... ,n,B e M(R)}.

Let

A- 2 10 1 and U1- 2/3 1/3 2/3
e

Then U1 is a unitary matrix and the entries of A o U are positive. Because A is a
generalized z-circulant IIIAIIIo -IIAII1/3. Also A is nonsingular. Let V =- AIAI -.
The U is irreducible. One can numerically check that

.9981 -.0443 -.0424

.0424 .9981 -.0443

.0443 .0424 .9981

By Lemma 2.7, if V e Mn is a contraction such that IIA o Vllo IIIAIII then
V WUW2 for some diagonal unitaries Wi. However, one can show that there is
no way to choose diagonal unitaries Wi such that A o (WOW2) W(A o O)W2 is
entrywise nonnegative. Thus Conjecture 5.1 is false.

[10]
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A NON-INTERIOR-POINT CONTINUATION METHOD FOR
LINEAR COMPLEMENTARITY PROBLEMS*
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Abstract. This paper presents a continuation method for linear complementarity problems
based on a new smooth equation formulation. In particular, the case of a linear complementarity
problem defined by a positive semidefinite or P0 matrix is studied in detail. Extensive numerical
testing of the continuation method is performed for both problems in the literature and randomly
generated problems.

Key words, linear complementarity, continuation, interior-point methods, P0-matrix
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1. Introduction. This paper presents a continuation method for linear com-
plementarity problems (LCP), which is loosely based on notions from the class of
interior-point algorithms for these problems. In particular, the current research was
motivated by the path following algorithm by Kojima, Mizuno, and Yoshise [14].
Given a monotone LCP, the Kojima et al. algorithm creates a strictly feasible path,
called the path of centers, by relaxing the complementarity condition while main-
taining the feasibility condition. It was shown that by following the path properly,
the algorithm will converge to a solution of the LCP. The algorithm is theoretically
significant since its computational complexity is bounded by a polynomial function
of the problem size. However, like all interior-point algorithms, the method has the
following restrictions. First, by construction, the initial homotopy parameter is large
and the starting point is normally far away from the solution of the problem unless a
good estimate close to the path is available. Second, each new iterate is obtained by
Newton’s method at the current iterate, and all intermediate iterates are required to
stay interior, which sometimes prevents the algorithm from using larger step sizes. It
is clear that the main effort in the above algorithm is spent on tracking the feasible
path, or the path of centers, and preventing each iterate from going out of the feasi-
ble region. The natural way to overcome this difficulty is to increase the attraction
domain of the feasible path. The method proposed herein actually identifies the fea-
sible path, which means, under appropriate assumptions, that the attraction domain
of the feasible path is all of 3n instead of the positive orthant n Therefore, the+.
algorithm can start at any initial point whether feasible or not and, in addition, each
intermediate point does not have to stay feasible.

The basis of the research reported herein lies in a prior study on the general prob-
lem of solving monotone variational inequalities by an interior-pointlike continuation
method [3]. Thus, we shall refer to this paper in a few of the proofs in order to keep
the paper to a manageable length.

The remainder of this paper is structured as follows. The next section provides
a brief overview of the related LCP literature. Section 3 presents the basic algorithm
and related theoretical results. The rest of the paper is devoted to computational
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tests of the proposed algorithm, and conclusions are presented in the last section.

1.1. Notation. The following notation will be used throughout the paper. Vec-
tors are denoted by boldface lowercase Roman letters, such as x. All vectors are
column vectors, unless explicitly stated otherwise. Row vectors are the transpose of
column vectors; for example, xT denotes the row vector (xl,..., xn). For notational
simplicity, (XT, X)T is sometimes simplified as (xl X2)T n }n and n denote,+, ++
respectively, n-dimensional Euclidean space, the nonnegative orthant of n, and the
strictly positive orthant of n. Matrices are denoted by boldface capital Roman let-
ters, such as M. The ith row of the n n matrix M is denoted by Mi., and the
jth column is given as M.j. Scalar-valued functions are denoted by Roman or Greek
letters, such as f and 0. Vector-valued functions are denoted by boldface Roman or
Greek letters, such as F and g. Scalars are denoted by lowercase Roman and Greek
letters, such as k and A.

2. Literature review. To begin, let us define the problem under investigation:
DEFINITION 1. Let M E’ and q n. The linear complementarity problem,

LCP(M, q), is to find an x n such that:

x>_0, w=Mx+q>0 and wTx--0.

The following perturbed LCP (PLCP) will be used in the proposed algorithmic de-
velopment.

DEFINITION 2. Let M nn, q ,, and # > O. The perturbed LCP, denoted
by PLCP(#), is to find an x n such that:

x>0, w=Mx+q>0 and wixi #, i l,...,n.

In the study of this problem, the following definitions of various special matrices will
be used.

DEFINITION 3. The matrix M nn is said to be a
1. Po-matrix if for all x O, there exists an index i such that xi 0 and

xi(Mx)i _> O;
2. positive semi-definite matrix if xTMx > 0 for all x;
3. P-matrix if for all x O, there exists an index i such that x(Mx)i > O;
4. positive definite matrix if xTMx > 0 for all x O;
5. Ro-matrix if the following system has no nonzero solution:

x_>0,

Mi.x 0 if xi > 0,
Mi.x>_0 if xi O;

6. Q-matrix if LCP(M, q) has a solution for all q.
Among the above special matrices, the following relations hold:

positive definite matrix = P-matrix = P0-matrix;
positive definite matrix = positive semidefinite matrix = P0-matrix;

where = denotes implication.
The algorithms for the LCP fall into two broad classes: pivoting methods and

interior-point techniques. The pivoting methods (Lemke, principal pivoting, etc.) are
both well known and not directly related to the continuation method described in this
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paper; thus, we simply refer the reader to [21] for details. The only thing to note is
that all these methods have an exponential worst-case performance in general.

The interior-point algorithms developed recently for the LCP are more akin to
our method. Based on the idea of continuation or path following, Kojima et al.
[14] first designed a polynomial algorithm for the monotone LCP, which computes a
solution in O(vfdL) iterations, where n is the dimension of the LCP and L is the
size of the input. The algorithm was then generalized by Kojima, Megiddo, and
Noma [8] to solve nonlinear complementarity problems and LCPs with P0-matrices.
The potential reduction algorithms by Kojima, Mizuno, and Yoshise [13] and Ye [26]
process an LCP with skew-symmetric or positive semidefinite matrices in O(V/-L)
iterations; algorithms by Kojima, Megiddo, and Ye [9] and Ye [25] process an LCP
with a P-matrix in O(n2 max(IAI//n, 1)L) iterations, where A is the least eigenvalue
of the symmetric part of M and is the P-matrix number defined by (see [18]):

---argmrax{m/axxi(Mx)i >_ ,.llxll Vx e

The potential reduction algorithm has been further extended to a broader class of
matrices by Ye [27]. The algorithm for monotone LCPs by Mizuno [19] includes both
path following algorithms and potential reduction algorithms as its special cases. Fi-
nally, Kojima, Megiddo, Noma, and Yoshise [10] have recently carried out an extensive
study of a unified approach for the path following and potential reduction algorithms.

Very little has been done in terms of numerical tests of the interior-point algo-
rithms for the LCP. Mizuno, Yoshise, and Kikuchi [20] modified the path-following
algorithm by Kojima et al. [14] for practical implementation and compared various
path-following algorithms in a limited numerical experiment.

The path following algorithm for LCP(M, q) by Kojima et al. [14] is the method
that is most closely related to the research presented in this paper. Assume M is
positive semidefinite. The steps of the Kojima et al. algorithm are as follows:

Initiation Step. Construct an initial solution that satisfies:
1. (x0)T(w) <_ 2(L)

2. (x, w) is close, as defined in [14], to the solution of PLCP(#) for some #.
Set k 1 and go to Main Step.
Main Step

1. Let #k o/kk-1, where (k < 1 is an appropriately defined parameter.
2. Compute the Newton direction (Axk, Aw) at (xk, wk) of the following sys-

tems of nonlinear equations:

w=Mx+q, wzi=#k, i=l,...n.

3. Let xk+l xk + Ax and wk+l wk + Awk. If (xk+l)T(wk+l) < 2-2L,
stop; otherwise, set k k / 1 and go to Step 1.

Kojima et al. proved that (xk+l)T(wk+l) (_ (xk)T(wk) and (xk,wk) > 0 for all k
and some 0 </ < 1, if ak is appropriately defined. Once (xk+)T(wk+) < 2-2L, the
solution of the LCP can be found in one step by solving a system of linear equations.

Other equation-based approaches for the LCP exist in the literature. Watson [24]
presents a test of various homotopy methods, and Harker and Pang [7] study both
theoretically and computationally the use of Newton’s method for solving the LCP
based on a nondifferentiable equation formulation of the problem.
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3. The continuation method. The algorithm proposed in this section is a
direct application of the algorithm described in [3] for nonlinear complementarity
problems (NCP). Thus, we refer to [3] for some of the proofs. We will show our
algorithm has several advantages over path following interior-point algorithms. The
algorithm is then extended to solve the general LCPs.

THEOREM 3.1. Let # > 0 and mii > 0 .for all i. Then x is a solution of
PLCP(#) if and only if it solves the following system of nonlinear equations, denoted
by J(x, it) 0:

(1) (Mx + q)i + miixi V/[(Mx + q)i miixi]2 + 4miiit O, i 1,..., n.

Proof. See [3].
Denote

1
(Mx + q)i miixi

V/[(Mx + q) mix]2 + 4mit"
Let D Diag{mii} and R(x, it) Diag{ri(x, it)}. Then, after some algebraic ma-
nipulation, we obtain

VJ(x, it) R(x, it)[M + (2R-l(x, it) I)D].

Let x(#) be a solution of J(x, it) 0 (see Theorem 3.7 for a sufficient condition for
the existence of x(it)). Denote the set of paths by

T {(x(it), it): 0 < it _< #},

where # is some positive number.
THEOREM 3.2. If VJ(x(it),it) is nonsingular for all x(#), 0 < it

_
#, then W

consists solely of continuously differentiable paths. If, in addition, T is bounded, then
x(it) approaches a limit point x(0) e S as it approaches zero, where S is the solution
set of the original LCP.

Proof. The first part of the theorem is a direct application of the Path Theorem
(see [28, p. 20]). The proof of the second part of the theorem is similar to that of [3,
Thm. 5]. [3

Therefore, if the conditions in Theorem 3.2 are satisfied, a path in the set T
(which could contain multiple paths), if any exist, is continuously differentiable and
leads to a solution of the original LCP. Various path following algorithms (see [28]) can
then be used to trace the path to a solution of the LCP given that x(#) is known for
some 0 < it _< #. In what follows, we first present a necessary and sufficient condition
for VJ(x, it) to be nonsingular for all x and it > 0. The result itself provides a new
characterization of a P0-matrix.

THEOREM 3.3. M +D is nonsingular for all positive diagonal matrices D if and
only if M is a Po-matrix.

Lemmas 3.4 and 3.5 are established first in order to prove the above theorem.
LEMMA 3.4. Let X diag{xl,...,Xn}, x > 0 .for all i 1,...,n, be a positive

diagonal matrix. IfM + X is nonsingular for any X, then IM + X > 0 for all X.
Proof. Denote x (Xl,..., xn)T and f(x) -IM/XI. Then f(x) is a polynomial

function of x. We first show that either f(x) < 0 or f(x) > 0. Suppose, on the
contrary, that there are two positive diagonal matrices X and X2 such that f(xl) < 0
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and f(x2) > 0, where Xl and x2 are the corresponding vectors of matrices Xl and X2.
Then by the mean value theorem, there exists a positive diagonal matrix X such that
f(x) IM+X 0. However, this violates the assumption of the lemma that M+X
is nonsingular. We now show that f(x) > 0. It is not difficult to see that as all x
approaches -t-c, the expansion term l-[in__1 xi of f(x) becomes dominant. Therefore,
there exists a 5 > 0 such that f(x) IM + X > 0 if x >_ ti for all i 1,..., n.

LEMMA 3.5. Let X be defined as in Lemma 3.4 and Y diag(yl, Yn}, Yi >_ 0
for all i-- 1,..., n, be a nonnegative, diagonal matrix. If M + X is nonsingular for
any X, then IM + YI >- 0 for all Y.

Proof. Denote I (i" yi 0} and I U i-- (1,..., n}. Let xi yi for all i E i
and xi > 0 for all i E I. Then

IM+YI= lim IM+XI>_O,
xiEI--0+

where the equality follows from the continuity of IM + X and the inequality follows
from Lemma 3.4.

Proof of Theorem 3.3. The sufficiency part is well known, and IMI >_ 0 by
Lemma 3.5. Now let I be any subset of (1,..., n} and I be its complement. We
show that IMul _> 0, where Mu is the submatrix of M defined by the index set I.
Suppose on the contrary that IMIII < 0. Let X be a diagonal matrix such that

xi=O Viii and xi>0 Viii.

The expansion term IMHI 1-Iiei xi of f(x) becomes dominant as xiei approaches
Therefore, there exists a 5 > 0 such that IM + X < 0 when xi >_ 5 for all i I.
However, this contradicts the fact that IM + X _> 0. Therefore, IMIII >_ 0 for all
I c {1,..., n} and thus, M is a P0-matrix [6].

The following proposition is a direct consequence of Theorem 3.3.
PROPOSITION 3.6. Assume mii > 0 for all i 1,..., n. VJ(x, #) is nonsingular

for all x Nn, and # > 0 if M is a Po-matrix. Assume, in addition, that M D is
nonsingular, then the conclusion is true only if M is a Po-matrix.

Proof. One can verify that 0 < ri(x, #) < 2 for all # > 0 and 1,..., n. As
a result, both R(x,#) and (2R-l(x,#)- I)D are positive diagonal matrices since
D > 0 by assumption. Therefore, the second part of the Jacobian, and thus the
Jacobian itself, is nonsingular if M is a P0-matrix. To establish necessity, suppose
that M is not a P0-matrix. By Theorem 3.3, there exists a positive diagonal matrix
L diag{ll,..., In} such that M + L is singular. Choose x (M- D)-lt, where t
is a vector whose elements are given by

ti (li raii)- qi Vi= 1,...,n.

One can verify that (2R-(x,#)- I)D L and that the Jacobian VJ(x,#) is
singular. [:]

Although any LCP defined by a matrix with a positive diagonal can be formulated
as a system of nonlinear equations J(x, #) 0 and then solved by a path following
algorithm, Proposition 3.6 states that the most general LCP that can be solved with-
out trouble is the LCP with a P0-matrix. When M is positive semidefinite, it has
been shown [14] that PLCP(#) has a unique solution for all # > 0 given that the
original LCP has a strictly feasible solution. When M is a P0-matrix, PLCP(#) does
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not necessarily have a solution even if the LCP has a solution.
LCP defined by

An example is the

M
-4 2

and q

If the LCP does not have a solution, then PLCP(#) may have no solution for all
# > 0, or may have a solution for some # > # and no solution for 0 < # _< #. An
example would be the LCP defined by

M 0 1
and q

0 2 1

where the PLCP(#) has solutions for all # > 1 and no solution for 0 < # _< 1. In
cases where PLCP(#) has solutions for all 0 < # (we did not find such examples),
the solution x(#) must be unbounded as tt approaches zero. If this is not true, by
Theorem 3.2 (see also [12, Whm. 3.1]), x(#) will approach a solution of the LCP, which
is a contradiction. The following result provides a sufficient condition for PLCP(#) to
have a solution. We remark that different conditions have been proposed by Kojima
et al. [8] for this result to hold.

THEOREM 3.7. Let M E Po and mi > 0 .for all i. If there exists an x such that
the set

x(,) {x. II (x, ,)II < IIJ (x, ,)II }

is uniformly bounded for all 0 < # <_ ft and some ft > O, then PLCP(#) has a unique
solution x(#) for all 0 < It <_ # and x(#) approaches a solution of the LCP as #
approaches zero.

Proof. Let xk be a sequence generated by damped Newton method for equation
J(x, #) 0, starting from x E X(#) for some 0 < # <_ #. In general, let xk X(#).
’J(xk, pt) is nonsingular by Proposition 3.6 since M P0. Therefore, xk+l is well
defined and, in addition, xk+ X(#) because

IlJ(xk+, )I[ -< IIJ(x, )II <- IIJ(x, )II.

Since x X(#), by induction, the entire sequence {xk} generated by damped New-
ton’s method is well defined and bounded. Therefore, {xk } has an accumulation point
x* E X(#). Applying the Global Convergence Theorem by Zangwill (see [16, p. 187]),
one can show that J(x*, #) 0. Therefore, x* x(#), the solution of J(x, #) 0.
The uniqueness of the solution is established in [3, Thm. 15] for the perturbed non-
linear complementarity problem, PNCP(#). Since the set X(#) is uniformly bounded
for all 0 < # <_ # by assumption, x(#) x* X(#) is uniformly bounded for
all 0 < tt <_ # and the path T defined by (2) is bounded. By Theorem 3.2, x(#)
approaches a solution of the LCP as # approaches zero.

Suppose an LCP satisfies the conditions of Theorem 3.7, then a solution of the
LCP can be obtained by a path following algorithm. In addition, from the proof of
Theorem 3.7, it is clear that the solution of PLCP(#) can be found by starting from
any initial point. Therefore, the path does not have to be followed very closely when
# is relatively large. We now show that the conditions of Theorem 3.7 are satisfied if

Damped Newton method is a globalized Newton method by incorporating line search using
as the merit function. See Algorithm 1 for detailed description.
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M E P0 [ R0. It was shown in [1] that M E P0 N R0 implies M Q; i.e., the LCP
has a solution for all q

LEMMA 3.8. IfM Ro and mii> 0 for all i, then the set

X(,)- (x" ]lJ(x,)ll

_
}

is uniformly bounded for all 0 <_ p <_ p < +oc, and 0
Proof. Define Fi(x_i) ’jimijxj + qi and F(x) (Fl(x_l),...,F,(x_)).

Then

(3)

J,(x.,) + F.(x_.) v/F2(x_.) +
2Mi.x + 2qi Fi (x_i) 2 (x_i) + 4#mii.

Suppose the set X(#, a) is not uniformly bounded. Then there exists an unbounded
sequence {xk, k Af} such that

where 0 _< #k,/5 _</2, and 0 _< ak, 5 <_ 5. One can choose an unbounded subsequence
]C c_ Af such that for each i E (1,... ,n} the sequence (Fi(xk_i), k K} is either
bounded, or unbounded from above, or unbounded from below. Let

S+-(i" lim Fi(xi)-+c, ke

S_={i" lim Fi(xk)=--c, ke

So {i" -oc < lim Fi(xk_i) < +cx), k e K}.

To lead to a contradiction, we show that either the subsequence (xk, k E ]C} is
bounded or M cannot be a R0 matrix. We assume k ]C in the rest of the proof.

If i S+ U S0, there exists a -cw < B _< 0 such that

B _< Fi(xk__i)- v/F2(x_i)+ 4#kmii <_ 0

k is bounded since mii > 0 andfor all 0 <_ #k < p since mii> 0. This implies that xi
IJi(xk,#k)] <_ IIJ(xk,#k)ll _< ak <_ 5. Hence, if S_ q}, xk is a bounded sequence,
which contradicts the assumption.

Let S_ and i S_, then

kTherefore, xi -t-x) since mii > 0 and IJi(xk, #)1 <- 5. Define a new sequence

Xk

is bounded for all S+USoand let : be its limit point. From the above discussion, xi
and approaches +cx) when i E S_. Therefore,

f/i{ >_0 if i e S_
=0 if i S+ USo.
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Equation (3)can be rewritten as

1 2q
(4) lixll J(xk,itk) 2Mi.yk 1[ ]ilxall

F,(x_,) + v/F2(x_,) + 4am**

Passing the limit on both sides as k -- oc, the left-hand side becomes zero since

IJi(xk,#k)l <_ . Notice that Fi(xk_i)+ v/F2(xk_i)+ 4#kmii is bounded for all 0 <_

#k < /2 if Fi(x[i) is negative or bounded, and it approaches +(x) if Fi(xi) approaches
+c. Therefore,

-o IIxll
F(x-) / F2(x-) /4m 0

Thus, identity (4) implies

Mi. >-0 ifiES+
=0 ifiS_USo.t

Define

s {i e s_ . > 0}.

Then, : _> 0 satisfies

i>0, Mi.:=0 ViScS_,

i 0, Mi.: _> 0 Vi {1,...,n}\S.

However, this contradicts the assumption that M R0. [:1

Combining Lemma 3.8 and Theorem 3.7, we obtain the following existence result
for PLCP(#).

COROLLARY 3.9. Suppose M Po g Ro and mii> 0 for all i. Then PLCP(#)
has a unique solution .for all it > 0 and the solution approaches one of the solutions

of the LCP as it approaches zero.
Corollary 3.9 also provides an alternative proof for the existence of a solution for

the LCP with M P0 N R0. We now present our continuation method for the LCP
with a matrix M P0 N R0 and positive diagonal elements.

Initiation Step. Let e be a given stopping tolerance. Choose an initial point
x0 n and sequences itk > 0 and k > 0, k 0, 1, 2,... such that

itk < itk-1 and lim itk 0,

k < k-1 and lim e O.
k---oo

Set k 0 and go to the Main Step.
Main Step

1. Starting with xk-l, find x by using Newton’s method to solve J(x, #k) 0
up to the point where IIJ(xk, itk)l _< e.

2. If [[ min{xk, wk}[[ _< e, where w Mx + q and "min" is taken component-
wise, terminate; otherwise, go to Step 1.
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In what follows, we will compare our algorithm with the Polynomial Path Fol-
lowing (PPF) algorithm proposed by Kojima et al. [14]. The proposed continuation
method requires mii > 0 for all i 1,..., n, which is not necessary in the PPF.
However, this assumption is satisfied or can be avoided in many cases such as the
symmetric monotone LCP, QP, and LP as discussed in [4]. Both the PPF and the
continuation method follow the same path; the difference is in the representation of the
path. In the PPF, the path is represented by PLCP(/), and a new point is obtained
by applying Newton’s method to the following system of nonlinear equations:

(Mx + q)ixi #, i-- 1,...,n,

which, by factorization, can be rewritten as

[(Mx + q)i + miixi + V/[(Mx + q)i miixi]2 + 4mii#] Ji(x, #) 0, i 1,..., n,

where Ji(x,#) is defined in (1). One can verify that at the solution of PLCP(#),
the first part of the right-hand side of the equation is positive. By dropping this
part, we obtain a new representation of the path J(x, #) 0, which is used in the
proposed continuation method. Geometrically, the Newton direction obtained by the
PPF is a compromise among the Newton directions of all 2n paths that lead to the
complementarity solutions of

(Mx+q)ixi-0, i--1,...,n.

Among these 2n paths, only one satisfies the feasibility condition and our algorithm
always follows this very path. As a consequence of the above comparison, we believe
that our algorithm will outperform the PPF computationally. The time saving will
come from the following factors:

1. The continuation method identifies the right path to follow and we believe
the Newton direction is more "accurate." More research has to be done in
order to claim this point rigorously.

2. Our algorithm can start from any point including those in the negative or-
thant, while the PPF and other interior-point algorithms have to construct an
initial point which is usually far away from the solution of the problem. For
certain problems, such as the LCP with a row sufficient matrix or P0-matrix,
the construction of the initial solution dramatically increases the dimension
of the problem and reduces the efficiency of the path following algorithm.

3. Since our algorithm does not require that each intermediate iterate stay feasi-
ble, it is possible for our algorithm to take a larger step size at each iteration.

Numerically, both algorithms are ill conditioned as # approaches zero. Let w Mx+
q and X, W be two diagonal matrices whose ith entries are xi and wi, respectively.
In the PPF, the matrix to be inverted is M + WX-, while in our algorithm, it
is M + (2R-(x,#) I)D. Therefore, both algorithms invert matrices of the same
structure at each iteration. In addition, the following result shows that the above two
matrices are identical at the solution of PLCP(#), or J(x, #) 0.

PROPOSITION 3.10. Suppose x* is a solution of PLCP(#), then

M + W*X*-1 M + (2R-1 (x*, #) I)D,

where W* and X* are the corresponding diagonal matrices defined at (x*, w*).
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Proof. It suffices to show that w/x (2/r(x*,#)- 1)m"

Therefore,

1

This result roughly demonstrates that the PPF algorithm and our algorithm have the
same degree of ill-conditioning as tt goes to zero.

Now we will extend the above ideas to the general LCP. Consider a matrix N E
xn that is assumed to have no special structure and whose diagonal could have
negative elements. The general LCP, denoted by LCP(N, q), is to find an x such that

z Nx + q _> 0, x _> 0 and XT. 0.

The above problem is NP-complete in general. Choose a A such that M N + AI is
positive definite. We formulate the following problem, denoted by LCP(M, q, A), of
finding an x such that

y=Mx+q>_0, x>0 and xy=Ax, i=l,...,n.

PPOPOSITION 3.11. (x*,y*) solves LCP(M,q,A) if and only if (x*,z*) solves
LCP(N, q), where z* y* Ax*.

Proof. It is clear that z* Nx* +q if and only if y* Mx* /q by the
construction of M and z*. Suppose (x*, z*) solves LCP(N, q). Then

y*=z*+Xx* >0,
,

xi Yi xi z + Ax2 Ax2.

Hence, (x*, y*) solves LCP(M, q, ). Suppose now that (x*, y*) solves LCP(M, q, ).
That z* >_ 0 is shown case by case:

)x2 Therefore,0 by the equality xy1. If y 0, then x
y )x 0.

0, then2. Ify>0andxi zi =yi >0.
Xx from the equality xiyi Ax23. Ify > 0 and xi > 0, then y

x =0.Therefore, z yi

Therefore, (x*, z*) solves LCP(N, q).
Associated with LCP(M, q,A), we define the following perturbed problem, de-

noted by PLCP(M, q, , #), of finding an x such that

y=Mx+q>0, x>0 and xiyi=Ax/2+#, i=l,...,n.
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Similar to Theorem 3.1, we have the following proposition.
PROPOSITION 3.12. The vector x is a solution of PLCP(M, q, A, ft) if and only

if it solves the following system of nonlinear equations, denoted by J(x, A, #) 0:

+ u). + V/[(Mx + u). + + ,) 0.

or equivalently,

((N + AI)x + q)i + (n,i +

V/[((N + Ai)x + q), (n,, / A)x,] 2 + 4(n,, + A)(Ax2 + #) 0,

where M N / I.
Denote

ri(x, , #) 1 ((N + I)x + q)i- (nii + A)xi
V/i((N + I)x + q) (n + )x]2 + 4(ni + )(Ax2 / #)

ti(x, , #) 1 2Axi
V/[((N + AI)x + q), (n, + A)xi]2 + 4(Hi, + A)(Ax/2 + #)"

Let DN, R(x, A, #), and T(x, A, #) be diagonal matrices whose entries are given by
ni, r(x, A, #), and t (x, A, #), respectively. After some algebraic manipulation, we
obtain

VJ(x, A, #) R(x, A, #){N + AI / (DN + AI)[2T(x, A, #)R-1 (x, A, #) I)]}.

In general, VJ(x, A, #) may be singular, even at the solution point of J(x, A, #)
0. Therefore, the performance of the continuation algorithm cannot be guaranteed.
However, the algorithm provides one way to solve this difficult problem in an equation
setting.

4. Implementation of the continuation method. We have shown in 3 that
PLCP() and J(x, #) share the same solutions if the matrix M has a positive diagonal.
In addition, if M E P0 N R0 and mii > 0, the solution of J(x, #) approaches that
of the original LCP as # goes to zero. Therefore, the solution of an LCP can be
approximated by that of J(x, #) with a very small ; the smaller the #, the better
the approximation. However, as u goes to zero, the Jacobian of J(x, #) becomes
increasingly ill conditioned. To reduce the ill conditioning, the method starts with a
fairly large # and decreases it while solving the nonlinear system of equations.

We now present the implementation details of the continuation method for the
LCP with a positive semidefinite matrix or P0-matrix. Define the error associated
with the LCP at a point xk as

err(xk) min(x, w}l],
where wk Mxk + q and "min" is taken componentwise. The detailed implementa-
tion of the continuation method is stated as follows:

ALGORITHM 1 (CONTINUATION METHOD FOR LCPs). Let x be an arbitrary
initial vector and o > O. Let s, , and a be given scalars with s > 0, e (0, 1), and
a (0, 1/2). In general, given xk with J(xk,#k) = 0, we obtain the next iterate xk+l

by the following steps:
Step 1. Solve the Newton equation

j(xk, #k) + Vj(xk, #k)dk 0
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for the direction dk.
Step 2. Let Ak mk s, where mk is the smallest integer m for which the following
condition holds:

Set x+1 xk +Akdk and check if err(xk+ <_ e, where e is a small positive constant.
Step 3. If the convergence test is not satisfied, .find #+ based on #k, err(xk+) and

By Theorem 3.7, J(x, #) is nonsingular for all x e X(it) and thus, dk 0 for all k.
This together with the fact that IIJ (x, #)11 is bounded below guarantees the existence
of m in step (5) (see [2, p. 22]). Algorithm 1 is now shown to have properties similar
to interior-point algorithms for an LP when M is a positive semidefinite or P0-matrix.
Specifically, the Jacobian of J(x, it) for all x and # is of the following form:

VJ(x, it) R(x, #)[M + (2R-1 (x, #) I)D],

and the second part in the bracket is a positive diagonal matrix. Therefore, the ma-
trix to be inverted at each iteration has the same nonzero structure. This property
allows us to apply minimum reordering heuristics and symbolic factorization tech-
niques to reduce fill-in during the numerical factorization of the matrix. Although
these techniques apply to LCPs with general positive semidefinite and P0-matrices,
we concentrate our tests on problems in which M is symmetric positive semidefinite,
since in this case the minimum reordering heuristic is more efficient and Cholesky
factorization can be used to solve the linear equations [5]. In our implementation, the
multiple minimum ordering heuristic [15] is performed first, and the linear equations
are then solved numerically by SPARSPAK [5]. If the matrix M is 100% dense, the
linear equations are solved directly by routines DGEFA-DGESL from LINPACK. In
both cases, the Armijio line search procedure described in Step 2 is employed.

As in the case of the path following algorithm for the LP [17], it is crucial to reduce
# properly in order to achieve maximum efficiency of the continuation method. From
our experience, # should be reduced rapidly when the iterate is very far away from the
solution, slowly when closer to a solution of the LCP, and then very fast when very
close to the solution. Based on our experience, it seems proper to choose # according
to the following rule:

1. Let u--err(xk)2/n, and choose # according to the following formula:

#={ yr ifu_>l,
u otherwise;

2. if #k < 10-10 set # 10-1"

3. if #k > itk-1, set
4. if IIJ(x,#-)l < 10-a, set #= 10-2#.

The rules are executed following the order listed above. The basic formula in Rule 1
has the property that when err(x) is very large, # decreases very fast; as err(x) gets
smaller, # rapidly approaches zero. Rule 2 takes into consideration numerical stability.
When it is very small and thus, the matrix to be inverted is very ill conditioned,
is reduced carefully and relatively slowly. Rules 3 and 4 make sure that it decreases
monotonically, and therefore, the algorithm converges.

In all the tests reported in the next section, the following parameter values are
used: / 0.5, a 0.1, s 1.0. The initial vector x is taken to be the zero vector.
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The initial #0 is taken to be Ilqll/n. The algorithm terminates when err(x) <_ e
10-6. The continuation algorithm is implemented in Fortran-77 on an Apollo DN4500
workstation. The iteration number reported is the number of linear equations solved,
and all the CPU times reported are in seconds using Apollo system routine get- cput
and excluding input/output time.

5. Numerical experiments. In what follows, the continuation method is com-
pared against both the Polynomial Path Following (PPF) algorithm implemented by
Mizuno, Yoshise, and Kikuchi [20] and Lemke’s algorithm implemented by Tomlin
[23], which is available from the Systems Optimization Laboratory at Stanford Uni-
versity.

The test problems are of two categories: constructed problems and randomly gen-
erated problems. The constructed problems include two problems for which Lemke’s
algorithm is known to run in exponential time (see [21, Chap. 6]) and an example
constructed by Pang (see [21, Chap. 8]) to test SOR methods.

The randomly generated problems are constructed as follows. First, an n m
(n >_ m) matrix A is randomly generated with nonzero entries uniformly distributed
in some interval [a, b]. The matrix M in the LCP is then computed as

M AAT.

The rank of M is at most m and very likely m due to the fact that the elements
of A are randomly generated, and it is almost impossible that two rows of A are
dependent. Therefore, by varying m, one can generate matrices M of various ranks.
In general, the density of M is positively correlated with that of A, which can be
controlled when it is generated. The vectors q are generated in two different ways.
When comparing against PPF, q is generated as a random vector whose elements are
uniformly distributed within some interval [a, b]; this is the case reported in [20]. In
order to control the number of nonzero x’s in the solution, q can also be generated in
a reverse manner: first, a solution vector (x, w) is randomly generated that satisfies
the requirements for an LCP solution, and q is then calculated by

q=w-Mx.

5.1. Comparisons based on constructed problems. The first example con-
sists of an n-vector q, which has each component equal to minus one and the following
matrix M:

1 2 2 2
0 1 2 2
0 0 1 2

0 0 0 1

The second example has the same vector q but a different matrix M:

1 2 2 2
2 5 6 6
2 6 9 10

2 6 10 4(n-1)+1
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Lemke’s algorithm is known to run in exponential time for these two examples. Com-
parisons between the continuation method and the practical version of the PPF al-
gorithm are listed in Table 1. Only iteration numbers are reported since these two
algorithms were run on different machines. The iteration numbers of the PPF algo-
rithm are the best results chosen from [20]. The table shows that the continuation
method outperforms the PPF algorithm by a large margin. For all the test problems
with various dimensions, the continuation method takes only four to five iterations.
In contrast, the PPF algorithm takes a fairly large number of iterations to converge,
and the iteration number increases with the problem size.

TABLE 1
Iterations for the exponential examples.

n Example 1 Example 2 Example 1 Example 2

32
34
36
38
39

The third example was constructed in order to test various SOR methods. The
matrix M has the following form:

6 -4 1 0 0 0 0
-4 6 -4 1 0 0 0
1 -4 6 -4 1 0 0
0 1 -4 6 -4 1 0

0 0 0 0 0 1 -4 6

Pang [22] tried to solve this class of LCPs for n 100 using various iterative SOR
methods and found that convergence was not obtained even after thousands of it-
erations, while Lemke’s method solves these problems very well. The comparison
between the continuation method and Lemke’s method is listed in Table 2. In our
tests, the vector q is generated in the reverse manner, as described above, where the
percentage of nonzeros in the solution is around 50%. The results of the continua-
tion method are very impressive; for problems of various dimensions, the continuation
method outperforms Lemke’s algorithm and as the problem size increases, the relative
performance of the continuation method becomes better.

In summary, the continuation method outperforms both the PPF algorithm and
Lemke’s method for the above constructed problems. All these problems are very
well structured and thus, Newton’s method takes only one iteration to reach to the
solution of PLCP(#) for each .

5.2. Comparisons based on randomly generated problems. Unlike the
linear programming literature, there exist very few standard test problems for LCPs.
Therefore, we have to rely on randomly generated problems to test the performance
of LCP algorithms.

5.2.1. Comparison against the PPF algorithm. As shown in Table 3, the
implementation of the PPF algorithm detailed in [20] does not compare well against
the proposed continuation method. The test problems are generated according to the
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200

300

400

5OO

600

TABLE 2
Results for Pang’s Example

xi > 0 II Iter. CPU sec I] Iter. CPU sec

Max. 115 5.76
Avg. 56.1 112.6 5.634
Min. 109 5.54
Max. 158 14.05
Avg. 49.3 147.8 11.804
Min. 130 9.66
Max. 209 24.20
Avg. 50.4 202.2 23.524
Min. 193 23.00
Max. 259 44.47
Avg. 49.8 249.8 42.798
Min. 242 41.44
Max. 307 72.17
Avg. 49.1 295.6 64.114
Min. 283 58.39

12 2.86
11.2 2.646
11 2.57
11 3.87
10.4 3.674
10 3.59
i2 5:58
11.2 5.198
11 5.14
13 7:42
11.8 6.812
11 6.31
13 9.12
12.0 8.256
11 7.629

TABLE 3
Iterations for randomly generated problems.

n ][ PPF Algorithm ]] Continuation Method

16

32

64

128

Max’
Avg.
Min.
Max.
Avg.
Min.

Avg.
Min.
Max.
Avg.
Min.
Max.
Avg.
Min.

3O
29.3
27
33
32.1
31
35
33.5
32
36
35.5
35

8
6.3
4
7
6.7
6
10
7.3
6
9
7.8
7
10
8.8
8

method reported in [20], where M A AT is a 100% dense positive semidefinite
matrix. The entries of A and q are randomly distributed in [-1, +1]. Similarly, ten
examples were run for problems of dimension 8, 16, 32, and 64. For the problem of
dimension 128, only one example was run for the PPF algorithm in [20], while in our
test, five examples were run for the continuation method. For the same reasons as
given in 5.1, only iteration numbers are reported. The iteration numbers for the PPF
algorithm are the best of all the implementations reported in [20]. As one can see from
Table 3, the continuation method takes far fewer iterations to converge for problems
of all sizes. Since both the PPF algorithm and the continuation method solve the
same type of linear equations at each iteration as shown by Proposition 3.10, the
overall performance of the continuation method should be much better than the PPF
algorithm.

5.2.2. Factors that affect relative performance. We now compare the con-
tinuation method against Lemke’s algorithm based on randomly generated problems.
The following factors could affect their relative performances:



CONTINUATION METHOD FOR LINEAR COMPLEMENTARITY PROBLEMS 1183

1. Density of M: A sparse LCP is favored by both algorithms since sparse linear
equation solution techniques are used in both cases. We are interested in the relative
performance of these two algorithms as the density of M changes.

2. n, the dimension of M: As n increases, both algorithms take a longer time
to solve the LCP. We are interested in the relative performance as n increases.

3. Rank of M: As the rank of M gets lower, the matrix to be inverted in
the continuation method becomes more ill conditioned. As a result, the solutions of
the linear equations are less accurate and the continuation method should take more
iterations to converge.

4. The number of nonzeros in the solution and signs of the q vector: These
two factors are correlated with each other. If there are many negative entries in
the q vector, it is more likely that the solution will have more nonzero x’s and vice
versa. This factor does not seem to have any direct effect on the continuation method.
However, it dramatically affects the performance of Lemke’s algorithm as well as other
algorithms, such as the damped Newton method by Harker and Pang [7]. If there
are many nonzeros in the LCP solution, the base update of Lemke’s algorithm has to
invert matrices of larger dimension and thus, the algorithm may take more time to
converge.

The above four factors will be tested separately in the following four subsections.
While the effects of one factor are tested, other factors remain unchanged. For each
problem instance, five random examples were generated unless explicitly stated oth-
erwise. The average, best case, and worst case of these five examples are reported
herein.

5.2.3. Effects of the number of nonzeros in the solution. This factor is
tested first since it seems to have the largest impact on the performance of the algo-
rithms under investigation. The average density of the examples is listed as an extra
argument since it is difficult to generate series of random matrices with identical
density. The parameters of the problem are chosen as follows:

Dimension of M: 300
Rank of M: 300
Range of entries in M: [-5, +5]
Range of nonzero solutions: [+10, +20]

The results are listed in Table 4, and the relative performance of Lemke’s algo-
rithm versus the continuation method is shown in Fig. 1, where the vertical axis is the
ratio of their CPU times and is plotted using a logarithmic scale (base 2). As we can
see in Table 4, the performance of the continuation method is relatively insensitive to
this factor, while that of Lemke’s algorithm changes dramatically. Lemke’s algorithm
dominates the continuation method when there are fewer nonzeros in the solution,
while the continuation method performs better in the opposite situation. For the test
problems we ran, the two algorithms are tied when the percentage nonzeros in the
solution is between 60% and 70%. However, as we shall see in 5.2.6, the break-even
point becomes smaller when matrix M in the LCP is sparser and larger. Therefore,
the continuation method could be used as an alternative method to solve LCPs when
many nonzeros are expected in the solutions.

5.2.4. Effects of the density of M. Like the interior-point algorithm for linear
programming, the continuation algorithm is competitive with Lemke’s method only
when the matrix M is sparse. The results of increasing the density are listed in Table
5, and the relative performance is shown in Figure 2, where the vertical axis is the
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TABLE 4
Effects of the number of nonzeros in the solution.

% of
of M Iter. CPU sec Iter. CPU sec

Avg.
Min.

Avg.
Min.

Avg.
Min.

Avg.
Min.

Avg.
Min.

Avg.
Min.

28.7

40.7

50.7

5.03

5.25

5.23

160 28.06
146.8 24.51
126 21.21

11 97.75
9.8 85.06
9 74.89
lO 98.09
9.6 87.33
8 75.46
12 105.5
10.4 100.2
10 87.02
11 103.5

204 46.53
192.2 41.36
174 34.71
244 ’64:0’8
227.0 62.51
202 48.70
255 88.47

60.2

68.2

80.1

5.18

5.21

5.29

242.4 81.44
221 74.38
279 126.5
267.0 112.4
253 93.30
302 202:3
284.0 151.6
266 124.4

10.6 94.32
10 74.86
12 125:5
10.2 97.45
9 81.91
11 124.1
10.2 95.87
9 82.82

CPU(Cont.)
CPU, ’,Lemke)

o
o

oo
o oo o

o
o

oooo
o o

o

o o(R)

%of
30 40 50 60 70 80 xi > 0

FIG. 1. Effects of number of nonzeros in the solution.

ratio of their CPU times. The average percentage of nonzeros in the solution is listed
as an extra argument. The parameters of the test problems are chosen as follows:

Dimension of M: 300
Rank of M: 300
Range of entries in M: [-5, +5]
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Range of nonzero solutions: [+10, +20]
It is clear from Table 5 and Fig. 2 that the performance of the continuation method
is affected more by the density of M than is Lemke’s algorithm. The sparser the
matrix M, the better the relative performance of the continuation method against
Lemke’s algorithm. One thing that does not emerge in Table 5 is the fact that the
continuation method is less stable when the density is very low. In our tests, the
continuation method failed to converge several times when M is very sparse. However,
this problem vanishes as the dimension of M gets larger. The reason for this is not
fully understood.

TABLE 5
Effects of the density of M.

Avg.
Min.

Avg.
Min.

Avg.
Min.
Max.
Avg.
Min.

Avg.
Min.
Max.
Avg.
Min.

Density
of M

3.98

5.08

6.04

6.88

8.05

xi > 0 ]1 Iter. CPU sec !1 Iter. CPU sec

229 55.11 11 59.82
50.2 207.0 46.63 9.8 52.36

194 41.50 9 45.31

49.9

50.9

50.3

50.2

8.93 47.3

215 56.93
205.2 52.79
190 47.94
251 96.66
235.4 80.70
223 70.42
240 90.29
229.2 82.10
219 77.11
227 94.48
222.6 88.37
213 81.29
249 120.3
227.0 96.62
212 81.02

9 81.51
8.6 77.07
8 69.52
9 119.1
8.8 108.7
8 93.94
10 140.8
9 134.8
8 128.5
9 176.4
8.8 167.0
8 147.1
9 198.3
8.8 179.3
8 165.8

5.2.5. Effects of the rank of M. The results of the test dealing with the rank
of M are listed in Table 6, and the relative performance is shown in Fig. 3, where the
vertical axis is the same as before. The average density and percentage of nonzeros in
the solution are listed as extra arguments. The parameters of the test problems are
chosen as follows:

Dimension of M: 300
Range of entries in M: [-5, +5]
Range of nonzero solutions: [+10, +20]

As one can see from Table 6, the continuation method takes more iterations to con-
verge when M is of lower rank, while Lemke’s algorithm is not sensitive to this factor.
In our experiments, the continuation method failed to converge several times when
the rank of M is very low. It turns out that whenever the method fails, the solution
of linear equations are very inaccurate because of ill conditioning and thus, the line
search cannot find a descent direction. Similar to the test of density, this is less of a
problem when the dimension of M becomes larger.

5.2.6. Effects of the dimension of M. The results of increasing the problem
dimension are listed in Table 7, where problems of larger sizes are tested. The relative
performance is shown in Fig. 4, where the vertical axis is the same as before. Only
one example of dimension 1500 is run because of excessive computational time. The
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CPU(Cont.)
CPV,,Lemke)

Max.
200 Avg.

Min.
Max.

220 Avg.
Min.
Max.

240 Avg.
Min.
Max.

260 Avg.
Min.
Max.

280 Avg.
Min.

o

o o 0%
0

0000 0 0
o

o
0 oO

Density

4 5 6 7 8 9 of M

FIG. 2. Effects of the sparsity of M.

Density
of M (%)

TABLE 6
Effects of the rank of M.

xi > 0 II Iter. CPU sec II Iter. CPU sec

6.00 48.6

6.14 48.3

6.01 51.7

251 79.20 17 200.0
231.8 67.61 14.6 147.5
198 52.34 11 113.0
248 88.12 17 180.2
228.2 71.38 13.0 146.4
211 60.46 10 105.1
249 91.’90 13 143.7’
235.6 78.57 11.4 128.6
217 64.66 9 100.6
248 82.14 10 118.3
235.2 75.43 9.6 109.6
227 70.57 9 96.39
227 78.91 11 116.4
225.4 73.93 9.2 100.1
142 65.00 8 89.36

6.04 50.6

5.88 50.3

average density ofM and the percentage of nonzeros in the solution are listed as extra
arguments in Table 7. The parameters of the test problems are as follows:

* Rank of M: 0.9n
Range of entries in M: [-5, +5]
Range of nonzero solutions: [+10, +20]

A very special feature of the continuation method is that the iteration number is very
insensitive to the problem size, as one can see in Table 7, although the reason for this
is not quite understood. For problems of the same density and percentage of nonzeros
in the solution, the relative performance of the continuation method becomes better
as the problem size increases. For the test problem we generated, Lemke’s algorithm
is as fast as the continuation method when the dimension of M is 600. However,
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CPU(Cont.)
CPU(Lemke)

o oo
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200 220 240 260 280 of M

FIG. 3. Effects of the rank of M.

the continuation method is much faster when the dimension of M increases to 1000
or larger. Therefore, one can imagine that when the problem size is large enough,
and matrix M is reasonably sparse, the continuation method can be competitive with
Lemke’s algorithm even if the LCP has less than 50% nonzeros in the solution.

n Density
of M

TABLE 7
Effects of the dimension of M.

xi > 0 [[ Iter. CPU sec [[ Iter. CPU sec

Max.
600 Avg. 3.04 60.4

Min.
Max.

800 Avg. 2.99 61.5
Min.
Max.

1000 Avg. 3.03 60.5
Min.
Max.

1200 Avg. 3.00 60.2
Min.

1500 2.99 59.1

503 849.8 11 858.0
487.8 793.9 10.0 768.4
472 727.7 9 677.9
685 3760 11 3044
674.6 3161.7 10.0 2801.7
476 2519 9 2345
948 11165 10 7022
881.2 9356.0 9.6 6672.3
835 7507 9 6331
1095 21652 11 15351
1053.0 19661.2 9.8 13906.0
1009 16077 9 12679

1286 54947 11 36701
Max.
Avg.
Min.

6. Conclusion and future research. This paper modifies the PPF for the
monotone LCP and extends the algorithm to solve LCPs defined by a P0-matrix. The
most attractive property of the continuation algorithm is its flexibility compared with
the PPF. The initial and intermediate iterates do not have to stay interior although the
path followed by our continuation method, or the path of centers, is the same as that of
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CPU(Lemke)

600 800 1000 1200 1500

FIG. 4. Effects of the dimension of M.

the PPF and is contained in the interior. The step size in the continuation algorithm
can be adjusted with more freedom, and a line search can easily be incorporated. The
initial continuation parameter # can be set to be very small (except, of course, for
numerical considerations) and can be reduced quickly in order to achieve more rapid
convergence.

The numerical experiments presented in this paper show that the proposed con-
tinuation method is a viable algorithm for LCPs with positive semidefinite matrices.
The algorithm outperforms Lemke’s method for those LCPs with large, sparse, and
high-rank M and have relatively more nonzeros in the solution. Since the continuation
method takes a very small number of iterations to converge, it has great potential for
very large LCPs. More effort should be spent on improving the speed of solving the
resulting linear equations, which takes at least 95% of the CPU time. The current
code uses an unmodified version of SPARSPAK for solving the linear equations. To
make the code more competitive, SPARSPAK should be modified so that some of the
interface programs are deleted. The improved code should also take care of numerical
instability; that is, to improve the accuracy of the solution of the linear equations.

Future research will be directed toward the following:
computational complexity analysis of the continuation method,
more rigorous comparison between the PPF algorithm and the continuation

method proposed in this paper,
theoretical evidence on reducing optimally, since this procedure is crucial

for the continuation method.
Future research will also be devoted to efficiently solving nonlinear complemen-

tarity problems, nonlinear programs [3], and linear programs as well [4].
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Freund and Zha [2] pointed out that our algorithm in [1] can break down in
the rare situation where two consecutive block steps are taken. Motivated by the
algorithm in [2], we show here how this error in our algorithm can be corrected within
the formulation used in [1] by changing Theorem 3 of [1] (and the corresponding step
in the algorithm) as follows (the proof is straightforward and is omitted here).

THEOREM 3. In case of two consecutive extended Levinson steps with k k +p,
Theorem 1 can be used with the vector Sk given by

(k’)where the matrices p, and Yp, are associated with the previous block step.
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